Properties

Label 6-8112e3-1.1-c1e3-0-7
Degree $6$
Conductor $533806460928$
Sign $1$
Analytic cond. $271778.$
Root an. cond. $8.04826$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s + 9·7-s + 6·9-s + 5·11-s − 3·15-s − 8·17-s − 4·19-s + 27·21-s + 2·25-s + 10·27-s + 11·29-s + 5·31-s + 15·33-s − 9·35-s + 8·37-s − 2·41-s − 12·43-s − 6·45-s + 4·47-s + 40·49-s − 24·51-s + 5·53-s − 5·55-s − 12·57-s − 5·59-s + 22·61-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s + 3.40·7-s + 2·9-s + 1.50·11-s − 0.774·15-s − 1.94·17-s − 0.917·19-s + 5.89·21-s + 2/5·25-s + 1.92·27-s + 2.04·29-s + 0.898·31-s + 2.61·33-s − 1.52·35-s + 1.31·37-s − 0.312·41-s − 1.82·43-s − 0.894·45-s + 0.583·47-s + 40/7·49-s − 3.36·51-s + 0.686·53-s − 0.674·55-s − 1.58·57-s − 0.650·59-s + 2.81·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{12} \cdot 3^{3} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(271778.\)
Root analytic conductor: \(8.04826\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{12} \cdot 3^{3} \cdot 13^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(25.99205603\)
\(L(\frac12)\) \(\approx\) \(25.99205603\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{3} \)
13 \( 1 \)
good5$A_4\times C_2$ \( 1 + T - T^{2} - 19 T^{3} - p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
7$A_4\times C_2$ \( 1 - 9 T + 41 T^{2} - 125 T^{3} + 41 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
11$A_4\times C_2$ \( 1 - 5 T + 25 T^{2} - 111 T^{3} + 25 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
17$A_4\times C_2$ \( 1 + 8 T + 63 T^{2} + 264 T^{3} + 63 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
19$A_4\times C_2$ \( 1 + 4 T + 25 T^{2} + 88 T^{3} + 25 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
23$A_4\times C_2$ \( 1 + 41 T^{2} - 56 T^{3} + 41 p T^{4} + p^{3} T^{6} \)
29$A_4\times C_2$ \( 1 - 11 T + 111 T^{2} - 21 p T^{3} + 111 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} \)
31$A_4\times C_2$ \( 1 - 5 T + 43 T^{2} - 185 T^{3} + 43 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
37$A_4\times C_2$ \( 1 - 8 T + 67 T^{2} - 584 T^{3} + 67 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
41$A_4\times C_2$ \( 1 + 2 T + 59 T^{2} - 68 T^{3} + 59 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
43$A_4\times C_2$ \( 1 + 12 T + 149 T^{2} + 928 T^{3} + 149 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
47$A_4\times C_2$ \( 1 - 4 T + 109 T^{2} - 312 T^{3} + 109 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
53$A_4\times C_2$ \( 1 - 5 T + 123 T^{2} - 573 T^{3} + 123 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
59$A_4\times C_2$ \( 1 + 5 T + 141 T^{2} + 423 T^{3} + 141 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} \)
61$A_4\times C_2$ \( 1 - 22 T + 335 T^{2} - 3012 T^{3} + 335 p T^{4} - 22 p^{2} T^{5} + p^{3} T^{6} \)
67$A_4\times C_2$ \( 1 - 6 T + 185 T^{2} - 700 T^{3} + 185 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
71$A_4\times C_2$ \( 1 + 18 T + 293 T^{2} + 2548 T^{3} + 293 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} \)
73$A_4\times C_2$ \( 1 - 13 T + 189 T^{2} - 1885 T^{3} + 189 p T^{4} - 13 p^{2} T^{5} + p^{3} T^{6} \)
79$A_4\times C_2$ \( 1 + 31 T + 513 T^{2} + 5431 T^{3} + 513 p T^{4} + 31 p^{2} T^{5} + p^{3} T^{6} \)
83$A_4\times C_2$ \( 1 - 13 T + 121 T^{2} - 591 T^{3} + 121 p T^{4} - 13 p^{2} T^{5} + p^{3} T^{6} \)
89$A_4\times C_2$ \( 1 - 14 T + 211 T^{2} - 2436 T^{3} + 211 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} \)
97$A_4\times C_2$ \( 1 - 23 T + 381 T^{2} - 47 p T^{3} + 381 p T^{4} - 23 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.07407645853732151939640425788, −6.79422148340942119837430215179, −6.54983483781620696437646686230, −6.38332040132208548899647489374, −6.02203917093923973386319320259, −5.71288012745902610938381863789, −5.49899560743922865113482615454, −4.92686729235372645666758831862, −4.80238638213805621284302924001, −4.62949765483961591500623942103, −4.56685267715797850881826346700, −4.32634901193769798644573483481, −4.22600850872310321550698232775, −3.71410816135174402760476839648, −3.60583307969797927715169294998, −3.31277400546431827346903232661, −2.70325707116672335674925087520, −2.69471139406962644985427789637, −2.35546743651468869400597329739, −1.89397030075278217426767582139, −1.81769533703880865270978632236, −1.76663806319342905446693793824, −1.19200341787482235924645974352, −0.77821818188097693257205406722, −0.71025987110883785642170192373, 0.71025987110883785642170192373, 0.77821818188097693257205406722, 1.19200341787482235924645974352, 1.76663806319342905446693793824, 1.81769533703880865270978632236, 1.89397030075278217426767582139, 2.35546743651468869400597329739, 2.69471139406962644985427789637, 2.70325707116672335674925087520, 3.31277400546431827346903232661, 3.60583307969797927715169294998, 3.71410816135174402760476839648, 4.22600850872310321550698232775, 4.32634901193769798644573483481, 4.56685267715797850881826346700, 4.62949765483961591500623942103, 4.80238638213805621284302924001, 4.92686729235372645666758831862, 5.49899560743922865113482615454, 5.71288012745902610938381863789, 6.02203917093923973386319320259, 6.38332040132208548899647489374, 6.54983483781620696437646686230, 6.79422148340942119837430215179, 7.07407645853732151939640425788

Graph of the $Z$-function along the critical line