Properties

Label 810.4.e.bh.541.1
Level $810$
Weight $4$
Character 810.541
Analytic conductor $47.792$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [810,4,Mod(271,810)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("810.271"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(810, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,-16,-20,0,-2,-64,0,-80,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 254x^{6} + 23581x^{4} + 947376x^{2} + 13883076 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(7.40373i\) of defining polynomial
Character \(\chi\) \(=\) 810.541
Dual form 810.4.e.bh.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(-2.50000 - 4.33013i) q^{5} +(-15.8018 + 27.3694i) q^{7} -8.00000 q^{8} -10.0000 q^{10} +(-26.3335 + 45.6110i) q^{11} +(-33.5544 - 58.1179i) q^{13} +(31.6035 + 54.7389i) q^{14} +(-8.00000 + 13.8564i) q^{16} -19.4751 q^{17} +103.354 q^{19} +(-10.0000 + 17.3205i) q^{20} +(52.6671 + 91.2221i) q^{22} +(-77.2047 - 133.722i) q^{23} +(-12.5000 + 21.6506i) q^{25} -134.217 q^{26} +126.414 q^{28} +(41.9220 - 72.6110i) q^{29} +(57.8816 + 100.254i) q^{31} +(16.0000 + 27.7128i) q^{32} +(-19.4751 + 33.7319i) q^{34} +158.018 q^{35} +417.744 q^{37} +(103.354 - 179.014i) q^{38} +(20.0000 + 34.6410i) q^{40} +(74.2798 + 128.656i) q^{41} +(226.330 - 392.015i) q^{43} +210.668 q^{44} -308.819 q^{46} +(256.506 - 444.282i) q^{47} +(-327.891 - 567.924i) q^{49} +(25.0000 + 43.3013i) q^{50} +(-134.217 + 232.471i) q^{52} +139.549 q^{53} +263.335 q^{55} +(126.414 - 218.956i) q^{56} +(-83.8440 - 145.222i) q^{58} +(277.631 + 480.872i) q^{59} +(12.8106 - 22.1885i) q^{61} +231.526 q^{62} +64.0000 q^{64} +(-167.772 + 290.589i) q^{65} +(477.181 + 826.501i) q^{67} +(38.9502 + 67.4638i) q^{68} +(158.018 - 273.694i) q^{70} -49.5295 q^{71} -399.667 q^{73} +(417.744 - 723.553i) q^{74} +(-206.708 - 358.028i) q^{76} +(-832.232 - 1441.47i) q^{77} +(-375.436 + 650.275i) q^{79} +80.0000 q^{80} +297.119 q^{82} +(587.011 - 1016.73i) q^{83} +(48.6878 + 84.3297i) q^{85} +(-452.659 - 784.029i) q^{86} +(210.668 - 364.888i) q^{88} -1011.21 q^{89} +2120.87 q^{91} +(-308.819 + 534.890i) q^{92} +(-513.013 - 888.565i) q^{94} +(-258.385 - 447.535i) q^{95} +(-422.506 + 731.802i) q^{97} -1311.56 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 16 q^{4} - 20 q^{5} - 2 q^{7} - 64 q^{8} - 80 q^{10} - 36 q^{11} - 32 q^{13} + 4 q^{14} - 64 q^{16} - 180 q^{17} + 328 q^{19} - 80 q^{20} + 72 q^{22} + 42 q^{23} - 100 q^{25} - 128 q^{26}+ \cdots - 5352 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) −2.50000 4.33013i −0.223607 0.387298i
\(6\) 0 0
\(7\) −15.8018 + 27.3694i −0.853214 + 1.47781i 0.0250771 + 0.999686i \(0.492017\pi\)
−0.878292 + 0.478125i \(0.841316\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) −26.3335 + 45.6110i −0.721806 + 1.25020i 0.238470 + 0.971150i \(0.423354\pi\)
−0.960275 + 0.279054i \(0.909979\pi\)
\(12\) 0 0
\(13\) −33.5544 58.1179i −0.715870 1.23992i −0.962623 0.270844i \(-0.912697\pi\)
0.246753 0.969078i \(-0.420636\pi\)
\(14\) 31.6035 + 54.7389i 0.603314 + 1.04497i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −19.4751 −0.277848 −0.138924 0.990303i \(-0.544364\pi\)
−0.138924 + 0.990303i \(0.544364\pi\)
\(18\) 0 0
\(19\) 103.354 1.24795 0.623974 0.781445i \(-0.285517\pi\)
0.623974 + 0.781445i \(0.285517\pi\)
\(20\) −10.0000 + 17.3205i −0.111803 + 0.193649i
\(21\) 0 0
\(22\) 52.6671 + 91.2221i 0.510394 + 0.884028i
\(23\) −77.2047 133.722i −0.699926 1.21231i −0.968492 0.249046i \(-0.919883\pi\)
0.268566 0.963261i \(-0.413450\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) −134.217 −1.01239
\(27\) 0 0
\(28\) 126.414 0.853214
\(29\) 41.9220 72.6110i 0.268439 0.464949i −0.700020 0.714123i \(-0.746826\pi\)
0.968459 + 0.249174i \(0.0801590\pi\)
\(30\) 0 0
\(31\) 57.8816 + 100.254i 0.335350 + 0.580843i 0.983552 0.180625i \(-0.0578121\pi\)
−0.648202 + 0.761468i \(0.724479\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −19.4751 + 33.7319i −0.0982340 + 0.170146i
\(35\) 158.018 0.763138
\(36\) 0 0
\(37\) 417.744 1.85613 0.928063 0.372424i \(-0.121473\pi\)
0.928063 + 0.372424i \(0.121473\pi\)
\(38\) 103.354 179.014i 0.441216 0.764208i
\(39\) 0 0
\(40\) 20.0000 + 34.6410i 0.0790569 + 0.136931i
\(41\) 74.2798 + 128.656i 0.282940 + 0.490067i 0.972108 0.234535i \(-0.0753568\pi\)
−0.689167 + 0.724602i \(0.742023\pi\)
\(42\) 0 0
\(43\) 226.330 392.015i 0.802674 1.39027i −0.115177 0.993345i \(-0.536743\pi\)
0.917850 0.396926i \(-0.129923\pi\)
\(44\) 210.668 0.721806
\(45\) 0 0
\(46\) −308.819 −0.989845
\(47\) 256.506 444.282i 0.796071 1.37883i −0.126087 0.992019i \(-0.540242\pi\)
0.922157 0.386815i \(-0.126425\pi\)
\(48\) 0 0
\(49\) −327.891 567.924i −0.955950 1.65575i
\(50\) 25.0000 + 43.3013i 0.0707107 + 0.122474i
\(51\) 0 0
\(52\) −134.217 + 232.471i −0.357935 + 0.619961i
\(53\) 139.549 0.361671 0.180835 0.983513i \(-0.442120\pi\)
0.180835 + 0.983513i \(0.442120\pi\)
\(54\) 0 0
\(55\) 263.335 0.645603
\(56\) 126.414 218.956i 0.301657 0.522485i
\(57\) 0 0
\(58\) −83.8440 145.222i −0.189815 0.328769i
\(59\) 277.631 + 480.872i 0.612619 + 1.06109i 0.990797 + 0.135355i \(0.0432174\pi\)
−0.378178 + 0.925733i \(0.623449\pi\)
\(60\) 0 0
\(61\) 12.8106 22.1885i 0.0268889 0.0465730i −0.852268 0.523106i \(-0.824773\pi\)
0.879157 + 0.476533i \(0.158107\pi\)
\(62\) 231.526 0.474256
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −167.772 + 290.589i −0.320147 + 0.554510i
\(66\) 0 0
\(67\) 477.181 + 826.501i 0.870103 + 1.50706i 0.861889 + 0.507096i \(0.169281\pi\)
0.00821346 + 0.999966i \(0.497386\pi\)
\(68\) 38.9502 + 67.4638i 0.0694619 + 0.120312i
\(69\) 0 0
\(70\) 158.018 273.694i 0.269810 0.467325i
\(71\) −49.5295 −0.0827897 −0.0413949 0.999143i \(-0.513180\pi\)
−0.0413949 + 0.999143i \(0.513180\pi\)
\(72\) 0 0
\(73\) −399.667 −0.640788 −0.320394 0.947284i \(-0.603815\pi\)
−0.320394 + 0.947284i \(0.603815\pi\)
\(74\) 417.744 723.553i 0.656239 1.13664i
\(75\) 0 0
\(76\) −206.708 358.028i −0.311987 0.540377i
\(77\) −832.232 1441.47i −1.23171 2.13338i
\(78\) 0 0
\(79\) −375.436 + 650.275i −0.534682 + 0.926096i 0.464497 + 0.885575i \(0.346235\pi\)
−0.999179 + 0.0405214i \(0.987098\pi\)
\(80\) 80.0000 0.111803
\(81\) 0 0
\(82\) 297.119 0.400138
\(83\) 587.011 1016.73i 0.776299 1.34459i −0.157762 0.987477i \(-0.550428\pi\)
0.934061 0.357113i \(-0.116239\pi\)
\(84\) 0 0
\(85\) 48.6878 + 84.3297i 0.0621286 + 0.107610i
\(86\) −452.659 784.029i −0.567576 0.983070i
\(87\) 0 0
\(88\) 210.668 364.888i 0.255197 0.442014i
\(89\) −1011.21 −1.20436 −0.602182 0.798359i \(-0.705702\pi\)
−0.602182 + 0.798359i \(0.705702\pi\)
\(90\) 0 0
\(91\) 2120.87 2.44316
\(92\) −308.819 + 534.890i −0.349963 + 0.606154i
\(93\) 0 0
\(94\) −513.013 888.565i −0.562907 0.974983i
\(95\) −258.385 447.535i −0.279049 0.483328i
\(96\) 0 0
\(97\) −422.506 + 731.802i −0.442258 + 0.766013i −0.997857 0.0654373i \(-0.979156\pi\)
0.555599 + 0.831451i \(0.312489\pi\)
\(98\) −1311.56 −1.35192
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 757.515 1312.05i 0.746292 1.29262i −0.203296 0.979117i \(-0.565165\pi\)
0.949589 0.313499i \(-0.101501\pi\)
\(102\) 0 0
\(103\) 30.3883 + 52.6341i 0.0290704 + 0.0503514i 0.880195 0.474613i \(-0.157412\pi\)
−0.851124 + 0.524964i \(0.824079\pi\)
\(104\) 268.435 + 464.943i 0.253098 + 0.438379i
\(105\) 0 0
\(106\) 139.549 241.706i 0.127870 0.221477i
\(107\) 222.983 0.201463 0.100732 0.994914i \(-0.467882\pi\)
0.100732 + 0.994914i \(0.467882\pi\)
\(108\) 0 0
\(109\) −398.980 −0.350599 −0.175300 0.984515i \(-0.556089\pi\)
−0.175300 + 0.984515i \(0.556089\pi\)
\(110\) 263.335 456.110i 0.228255 0.395349i
\(111\) 0 0
\(112\) −252.828 437.911i −0.213304 0.369453i
\(113\) 3.94448 + 6.83204i 0.00328376 + 0.00568765i 0.867663 0.497153i \(-0.165621\pi\)
−0.864379 + 0.502841i \(0.832288\pi\)
\(114\) 0 0
\(115\) −386.024 + 668.612i −0.313016 + 0.542160i
\(116\) −335.376 −0.268439
\(117\) 0 0
\(118\) 1110.53 0.866375
\(119\) 307.741 533.023i 0.237064 0.410606i
\(120\) 0 0
\(121\) −721.411 1249.52i −0.542007 0.938783i
\(122\) −25.6211 44.3771i −0.0190133 0.0329321i
\(123\) 0 0
\(124\) 231.526 401.016i 0.167675 0.290422i
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 867.604 0.606200 0.303100 0.952959i \(-0.401978\pi\)
0.303100 + 0.952959i \(0.401978\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 335.544 + 581.179i 0.226378 + 0.392098i
\(131\) −393.441 681.460i −0.262406 0.454500i 0.704475 0.709729i \(-0.251182\pi\)
−0.966881 + 0.255229i \(0.917849\pi\)
\(132\) 0 0
\(133\) −1633.17 + 2828.74i −1.06477 + 1.84423i
\(134\) 1908.72 1.23051
\(135\) 0 0
\(136\) 155.801 0.0982340
\(137\) −41.6309 + 72.1069i −0.0259618 + 0.0449672i −0.878714 0.477348i \(-0.841598\pi\)
0.852753 + 0.522315i \(0.174932\pi\)
\(138\) 0 0
\(139\) −454.730 787.615i −0.277480 0.480609i 0.693278 0.720670i \(-0.256166\pi\)
−0.970758 + 0.240061i \(0.922833\pi\)
\(140\) −316.035 547.389i −0.190785 0.330449i
\(141\) 0 0
\(142\) −49.5295 + 85.7876i −0.0292706 + 0.0506981i
\(143\) 3534.42 2.06687
\(144\) 0 0
\(145\) −419.220 −0.240099
\(146\) −399.667 + 692.244i −0.226553 + 0.392401i
\(147\) 0 0
\(148\) −835.487 1447.11i −0.464031 0.803726i
\(149\) −1558.65 2699.65i −0.856975 1.48432i −0.874801 0.484483i \(-0.839008\pi\)
0.0178259 0.999841i \(-0.494326\pi\)
\(150\) 0 0
\(151\) 857.118 1484.57i 0.461929 0.800084i −0.537128 0.843501i \(-0.680491\pi\)
0.999057 + 0.0434164i \(0.0138242\pi\)
\(152\) −826.831 −0.441216
\(153\) 0 0
\(154\) −3328.93 −1.74190
\(155\) 289.408 501.270i 0.149973 0.259761i
\(156\) 0 0
\(157\) 1935.54 + 3352.46i 0.983906 + 1.70418i 0.646699 + 0.762745i \(0.276149\pi\)
0.337207 + 0.941430i \(0.390518\pi\)
\(158\) 750.872 + 1300.55i 0.378077 + 0.654849i
\(159\) 0 0
\(160\) 80.0000 138.564i 0.0395285 0.0684653i
\(161\) 4879.88 2.38875
\(162\) 0 0
\(163\) 1192.36 0.572963 0.286482 0.958086i \(-0.407514\pi\)
0.286482 + 0.958086i \(0.407514\pi\)
\(164\) 297.119 514.625i 0.141470 0.245034i
\(165\) 0 0
\(166\) −1174.02 2033.47i −0.548926 0.950768i
\(167\) −280.195 485.312i −0.129833 0.224877i 0.793779 0.608207i \(-0.208111\pi\)
−0.923612 + 0.383329i \(0.874777\pi\)
\(168\) 0 0
\(169\) −1153.29 + 1997.56i −0.524939 + 0.909221i
\(170\) 194.751 0.0878631
\(171\) 0 0
\(172\) −1810.64 −0.802674
\(173\) 934.699 1618.95i 0.410774 0.711481i −0.584201 0.811609i \(-0.698592\pi\)
0.994975 + 0.100128i \(0.0319253\pi\)
\(174\) 0 0
\(175\) −395.044 684.236i −0.170643 0.295562i
\(176\) −421.337 729.777i −0.180451 0.312551i
\(177\) 0 0
\(178\) −1011.21 + 1751.47i −0.425807 + 0.737519i
\(179\) 1700.66 0.710130 0.355065 0.934842i \(-0.384459\pi\)
0.355065 + 0.934842i \(0.384459\pi\)
\(180\) 0 0
\(181\) −544.922 −0.223777 −0.111889 0.993721i \(-0.535690\pi\)
−0.111889 + 0.993721i \(0.535690\pi\)
\(182\) 2120.87 3673.46i 0.863788 1.49612i
\(183\) 0 0
\(184\) 617.638 + 1069.78i 0.247461 + 0.428615i
\(185\) −1044.36 1808.88i −0.415042 0.718874i
\(186\) 0 0
\(187\) 512.849 888.280i 0.200552 0.347366i
\(188\) −2052.05 −0.796071
\(189\) 0 0
\(190\) −1033.54 −0.394636
\(191\) −1119.54 + 1939.10i −0.424122 + 0.734600i −0.996338 0.0855025i \(-0.972750\pi\)
0.572216 + 0.820103i \(0.306084\pi\)
\(192\) 0 0
\(193\) 368.762 + 638.715i 0.137534 + 0.238216i 0.926563 0.376140i \(-0.122749\pi\)
−0.789029 + 0.614357i \(0.789416\pi\)
\(194\) 845.013 + 1463.60i 0.312724 + 0.541653i
\(195\) 0 0
\(196\) −1311.56 + 2271.69i −0.477975 + 0.827877i
\(197\) −1104.80 −0.399562 −0.199781 0.979841i \(-0.564023\pi\)
−0.199781 + 0.979841i \(0.564023\pi\)
\(198\) 0 0
\(199\) 4004.57 1.42651 0.713257 0.700902i \(-0.247219\pi\)
0.713257 + 0.700902i \(0.247219\pi\)
\(200\) 100.000 173.205i 0.0353553 0.0612372i
\(201\) 0 0
\(202\) −1515.03 2624.11i −0.527708 0.914018i
\(203\) 1324.88 + 2294.76i 0.458071 + 0.793403i
\(204\) 0 0
\(205\) 371.399 643.282i 0.126535 0.219165i
\(206\) 121.553 0.0411117
\(207\) 0 0
\(208\) 1073.74 0.357935
\(209\) −2721.67 + 4714.07i −0.900775 + 1.56019i
\(210\) 0 0
\(211\) 778.258 + 1347.98i 0.253922 + 0.439806i 0.964602 0.263710i \(-0.0849460\pi\)
−0.710680 + 0.703515i \(0.751613\pi\)
\(212\) −279.098 483.413i −0.0904177 0.156608i
\(213\) 0 0
\(214\) 222.983 386.218i 0.0712280 0.123371i
\(215\) −2263.30 −0.717933
\(216\) 0 0
\(217\) −3658.52 −1.14450
\(218\) −398.980 + 691.053i −0.123956 + 0.214697i
\(219\) 0 0
\(220\) −526.671 912.221i −0.161401 0.279554i
\(221\) 653.475 + 1131.85i 0.198903 + 0.344510i
\(222\) 0 0
\(223\) 2151.77 3726.97i 0.646156 1.11918i −0.337877 0.941190i \(-0.609709\pi\)
0.984033 0.177985i \(-0.0569580\pi\)
\(224\) −1011.31 −0.301657
\(225\) 0 0
\(226\) 15.7779 0.00464394
\(227\) 1209.36 2094.67i 0.353604 0.612460i −0.633274 0.773928i \(-0.718289\pi\)
0.986878 + 0.161468i \(0.0516228\pi\)
\(228\) 0 0
\(229\) −100.905 174.772i −0.0291178 0.0504335i 0.851099 0.525005i \(-0.175936\pi\)
−0.880217 + 0.474571i \(0.842603\pi\)
\(230\) 772.047 + 1337.22i 0.221336 + 0.383365i
\(231\) 0 0
\(232\) −335.376 + 580.888i −0.0949074 + 0.164384i
\(233\) 187.810 0.0528062 0.0264031 0.999651i \(-0.491595\pi\)
0.0264031 + 0.999651i \(0.491595\pi\)
\(234\) 0 0
\(235\) −2565.06 −0.712027
\(236\) 1110.53 1923.49i 0.306310 0.530544i
\(237\) 0 0
\(238\) −615.482 1066.05i −0.167629 0.290342i
\(239\) −1706.45 2955.65i −0.461844 0.799938i 0.537209 0.843449i \(-0.319479\pi\)
−0.999053 + 0.0435116i \(0.986145\pi\)
\(240\) 0 0
\(241\) −582.337 + 1008.64i −0.155650 + 0.269593i −0.933295 0.359109i \(-0.883080\pi\)
0.777646 + 0.628703i \(0.216414\pi\)
\(242\) −2885.64 −0.766513
\(243\) 0 0
\(244\) −102.484 −0.0268889
\(245\) −1639.45 + 2839.62i −0.427514 + 0.740476i
\(246\) 0 0
\(247\) −3467.97 6006.70i −0.893367 1.54736i
\(248\) −463.053 802.031i −0.118564 0.205359i
\(249\) 0 0
\(250\) 125.000 216.506i 0.0316228 0.0547723i
\(251\) −4345.22 −1.09270 −0.546351 0.837556i \(-0.683983\pi\)
−0.546351 + 0.837556i \(0.683983\pi\)
\(252\) 0 0
\(253\) 8132.29 2.02084
\(254\) 867.604 1502.73i 0.214324 0.371220i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −669.053 1158.83i −0.162391 0.281269i 0.773335 0.633998i \(-0.218587\pi\)
−0.935726 + 0.352729i \(0.885254\pi\)
\(258\) 0 0
\(259\) −6601.08 + 11433.4i −1.58367 + 2.74300i
\(260\) 1342.17 0.320147
\(261\) 0 0
\(262\) −1573.77 −0.371098
\(263\) −2391.83 + 4142.77i −0.560785 + 0.971308i 0.436643 + 0.899635i \(0.356167\pi\)
−0.997428 + 0.0716734i \(0.977166\pi\)
\(264\) 0 0
\(265\) −348.873 604.266i −0.0808721 0.140075i
\(266\) 3266.34 + 5657.47i 0.752904 + 1.30407i
\(267\) 0 0
\(268\) 1908.72 3306.00i 0.435051 0.753531i
\(269\) 6102.65 1.38322 0.691608 0.722273i \(-0.256903\pi\)
0.691608 + 0.722273i \(0.256903\pi\)
\(270\) 0 0
\(271\) −422.742 −0.0947591 −0.0473796 0.998877i \(-0.515087\pi\)
−0.0473796 + 0.998877i \(0.515087\pi\)
\(272\) 155.801 269.855i 0.0347310 0.0601558i
\(273\) 0 0
\(274\) 83.2619 + 144.214i 0.0183578 + 0.0317966i
\(275\) −658.339 1140.28i −0.144361 0.250041i
\(276\) 0 0
\(277\) 1641.28 2842.78i 0.356011 0.616629i −0.631280 0.775555i \(-0.717470\pi\)
0.987290 + 0.158926i \(0.0508033\pi\)
\(278\) −1818.92 −0.392416
\(279\) 0 0
\(280\) −1264.14 −0.269810
\(281\) −320.964 + 555.926i −0.0681391 + 0.118020i −0.898082 0.439828i \(-0.855040\pi\)
0.829943 + 0.557848i \(0.188373\pi\)
\(282\) 0 0
\(283\) 3613.55 + 6258.84i 0.759021 + 1.31466i 0.943350 + 0.331799i \(0.107655\pi\)
−0.184329 + 0.982865i \(0.559011\pi\)
\(284\) 99.0590 + 171.575i 0.0206974 + 0.0358490i
\(285\) 0 0
\(286\) 3534.42 6121.80i 0.730751 1.26570i
\(287\) −4695.00 −0.965635
\(288\) 0 0
\(289\) −4533.72 −0.922801
\(290\) −419.220 + 726.110i −0.0848877 + 0.147030i
\(291\) 0 0
\(292\) 799.335 + 1384.49i 0.160197 + 0.277469i
\(293\) −1862.21 3225.45i −0.371303 0.643115i 0.618464 0.785813i \(-0.287755\pi\)
−0.989766 + 0.142698i \(0.954422\pi\)
\(294\) 0 0
\(295\) 1388.16 2404.36i 0.273972 0.474533i
\(296\) −3341.95 −0.656239
\(297\) 0 0
\(298\) −6234.58 −1.21195
\(299\) −5181.11 + 8973.94i −1.00211 + 1.73571i
\(300\) 0 0
\(301\) 7152.81 + 12389.0i 1.36971 + 2.37240i
\(302\) −1714.24 2969.14i −0.326633 0.565745i
\(303\) 0 0
\(304\) −826.831 + 1432.11i −0.155993 + 0.270188i
\(305\) −128.106 −0.0240502
\(306\) 0 0
\(307\) −5190.35 −0.964914 −0.482457 0.875920i \(-0.660256\pi\)
−0.482457 + 0.875920i \(0.660256\pi\)
\(308\) −3328.93 + 5765.87i −0.615855 + 1.06669i
\(309\) 0 0
\(310\) −578.816 1002.54i −0.106047 0.183679i
\(311\) −1815.68 3144.86i −0.331055 0.573403i 0.651664 0.758507i \(-0.274071\pi\)
−0.982719 + 0.185104i \(0.940738\pi\)
\(312\) 0 0
\(313\) 1819.45 3151.37i 0.328566 0.569093i −0.653661 0.756787i \(-0.726768\pi\)
0.982228 + 0.187694i \(0.0601013\pi\)
\(314\) 7742.18 1.39145
\(315\) 0 0
\(316\) 3003.49 0.534682
\(317\) 2050.60 3551.75i 0.363323 0.629293i −0.625183 0.780478i \(-0.714976\pi\)
0.988505 + 0.151185i \(0.0483090\pi\)
\(318\) 0 0
\(319\) 2207.91 + 3824.21i 0.387521 + 0.671206i
\(320\) −160.000 277.128i −0.0279508 0.0484123i
\(321\) 0 0
\(322\) 4879.88 8452.20i 0.844550 1.46280i
\(323\) −2012.83 −0.346739
\(324\) 0 0
\(325\) 1677.72 0.286348
\(326\) 1192.36 2065.23i 0.202573 0.350867i
\(327\) 0 0
\(328\) −594.238 1029.25i −0.100035 0.173265i
\(329\) 8106.50 + 14040.9i 1.35844 + 2.35288i
\(330\) 0 0
\(331\) 2891.20 5007.70i 0.480105 0.831566i −0.519635 0.854388i \(-0.673932\pi\)
0.999740 + 0.0228228i \(0.00726535\pi\)
\(332\) −4696.09 −0.776299
\(333\) 0 0
\(334\) −1120.78 −0.183612
\(335\) 2385.90 4132.51i 0.389122 0.673979i
\(336\) 0 0
\(337\) 5165.11 + 8946.23i 0.834901 + 1.44609i 0.894111 + 0.447845i \(0.147808\pi\)
−0.0592108 + 0.998245i \(0.518858\pi\)
\(338\) 2306.58 + 3995.12i 0.371188 + 0.642916i
\(339\) 0 0
\(340\) 194.751 337.319i 0.0310643 0.0538050i
\(341\) −6096.91 −0.968230
\(342\) 0 0
\(343\) 9885.00 1.55609
\(344\) −1810.64 + 3136.12i −0.283788 + 0.491535i
\(345\) 0 0
\(346\) −1869.40 3237.89i −0.290461 0.503093i
\(347\) 2207.94 + 3824.26i 0.341580 + 0.591635i 0.984726 0.174109i \(-0.0557045\pi\)
−0.643146 + 0.765744i \(0.722371\pi\)
\(348\) 0 0
\(349\) 2922.40 5061.75i 0.448231 0.776359i −0.550040 0.835138i \(-0.685388\pi\)
0.998271 + 0.0587795i \(0.0187209\pi\)
\(350\) −1580.18 −0.241325
\(351\) 0 0
\(352\) −1685.35 −0.255197
\(353\) 6315.79 10939.3i 0.952282 1.64940i 0.211814 0.977310i \(-0.432063\pi\)
0.740468 0.672091i \(-0.234604\pi\)
\(354\) 0 0
\(355\) 123.824 + 214.469i 0.0185123 + 0.0320643i
\(356\) 2022.43 + 3502.95i 0.301091 + 0.521505i
\(357\) 0 0
\(358\) 1700.66 2945.63i 0.251069 0.434864i
\(359\) 12417.4 1.82553 0.912766 0.408484i \(-0.133942\pi\)
0.912766 + 0.408484i \(0.133942\pi\)
\(360\) 0 0
\(361\) 3823.01 0.557372
\(362\) −544.922 + 943.832i −0.0791173 + 0.137035i
\(363\) 0 0
\(364\) −4241.74 7346.91i −0.610790 1.05792i
\(365\) 999.168 + 1730.61i 0.143285 + 0.248176i
\(366\) 0 0
\(367\) 801.493 1388.23i 0.113999 0.197452i −0.803380 0.595466i \(-0.796967\pi\)
0.917379 + 0.398014i \(0.130301\pi\)
\(368\) 2470.55 0.349963
\(369\) 0 0
\(370\) −4177.44 −0.586958
\(371\) −2205.12 + 3819.38i −0.308583 + 0.534481i
\(372\) 0 0
\(373\) 1706.77 + 2956.21i 0.236925 + 0.410367i 0.959830 0.280581i \(-0.0905270\pi\)
−0.722905 + 0.690947i \(0.757194\pi\)
\(374\) −1025.70 1776.56i −0.141812 0.245625i
\(375\) 0 0
\(376\) −2052.05 + 3554.26i −0.281453 + 0.487492i
\(377\) −5626.66 −0.768668
\(378\) 0 0
\(379\) −3087.00 −0.418386 −0.209193 0.977874i \(-0.567084\pi\)
−0.209193 + 0.977874i \(0.567084\pi\)
\(380\) −1033.54 + 1790.14i −0.139525 + 0.241664i
\(381\) 0 0
\(382\) 2239.08 + 3878.21i 0.299899 + 0.519441i
\(383\) 5667.92 + 9817.13i 0.756181 + 1.30974i 0.944785 + 0.327690i \(0.106270\pi\)
−0.188605 + 0.982053i \(0.560396\pi\)
\(384\) 0 0
\(385\) −4161.16 + 7207.34i −0.550837 + 0.954078i
\(386\) 1475.05 0.194503
\(387\) 0 0
\(388\) 3380.05 0.442258
\(389\) −5414.94 + 9378.94i −0.705779 + 1.22245i 0.260630 + 0.965439i \(0.416070\pi\)
−0.966410 + 0.257007i \(0.917264\pi\)
\(390\) 0 0
\(391\) 1503.57 + 2604.26i 0.194473 + 0.336837i
\(392\) 2623.13 + 4543.39i 0.337979 + 0.585397i
\(393\) 0 0
\(394\) −1104.80 + 1913.57i −0.141266 + 0.244681i
\(395\) 3754.36 0.478234
\(396\) 0 0
\(397\) 3974.56 0.502462 0.251231 0.967927i \(-0.419165\pi\)
0.251231 + 0.967927i \(0.419165\pi\)
\(398\) 4004.57 6936.12i 0.504349 0.873558i
\(399\) 0 0
\(400\) −200.000 346.410i −0.0250000 0.0433013i
\(401\) 6655.92 + 11528.4i 0.828880 + 1.43566i 0.898918 + 0.438118i \(0.144355\pi\)
−0.0700379 + 0.997544i \(0.522312\pi\)
\(402\) 0 0
\(403\) 3884.36 6727.91i 0.480134 0.831616i
\(404\) −6060.12 −0.746292
\(405\) 0 0
\(406\) 5299.53 0.647811
\(407\) −11000.7 + 19053.7i −1.33976 + 2.32053i
\(408\) 0 0
\(409\) −3210.71 5561.12i −0.388165 0.672321i 0.604038 0.796956i \(-0.293558\pi\)
−0.992203 + 0.124634i \(0.960224\pi\)
\(410\) −742.798 1286.56i −0.0894736 0.154973i
\(411\) 0 0
\(412\) 121.553 210.536i 0.0145352 0.0251757i
\(413\) −17548.3 −2.09078
\(414\) 0 0
\(415\) −5870.11 −0.694343
\(416\) 1073.74 1859.77i 0.126549 0.219189i
\(417\) 0 0
\(418\) 5443.34 + 9428.15i 0.636944 + 1.10322i
\(419\) −2313.43 4006.98i −0.269734 0.467193i 0.699059 0.715064i \(-0.253602\pi\)
−0.968793 + 0.247871i \(0.920269\pi\)
\(420\) 0 0
\(421\) −2575.50 + 4460.90i −0.298153 + 0.516416i −0.975713 0.219051i \(-0.929704\pi\)
0.677561 + 0.735467i \(0.263037\pi\)
\(422\) 3113.03 0.359100
\(423\) 0 0
\(424\) −1116.39 −0.127870
\(425\) 243.439 421.649i 0.0277848 0.0481246i
\(426\) 0 0
\(427\) 404.859 + 701.236i 0.0458840 + 0.0794735i
\(428\) −445.966 772.435i −0.0503658 0.0872361i
\(429\) 0 0
\(430\) −2263.30 + 3920.15i −0.253828 + 0.439642i
\(431\) 2452.29 0.274067 0.137033 0.990566i \(-0.456243\pi\)
0.137033 + 0.990566i \(0.456243\pi\)
\(432\) 0 0
\(433\) 11033.4 1.22456 0.612279 0.790642i \(-0.290253\pi\)
0.612279 + 0.790642i \(0.290253\pi\)
\(434\) −3658.52 + 6336.75i −0.404642 + 0.700861i
\(435\) 0 0
\(436\) 797.959 + 1382.11i 0.0876498 + 0.151814i
\(437\) −7979.40 13820.7i −0.873470 1.51290i
\(438\) 0 0
\(439\) 410.002 710.144i 0.0445748 0.0772057i −0.842877 0.538106i \(-0.819140\pi\)
0.887452 + 0.460900i \(0.152473\pi\)
\(440\) −2106.68 −0.228255
\(441\) 0 0
\(442\) 2613.90 0.281291
\(443\) −3353.20 + 5807.91i −0.359628 + 0.622894i −0.987899 0.155101i \(-0.950430\pi\)
0.628271 + 0.777995i \(0.283763\pi\)
\(444\) 0 0
\(445\) 2528.03 + 4378.68i 0.269304 + 0.466448i
\(446\) −4303.53 7453.94i −0.456902 0.791377i
\(447\) 0 0
\(448\) −1011.31 + 1751.64i −0.106652 + 0.184726i
\(449\) −9873.94 −1.03782 −0.518908 0.854830i \(-0.673661\pi\)
−0.518908 + 0.854830i \(0.673661\pi\)
\(450\) 0 0
\(451\) −7824.20 −0.816912
\(452\) 15.7779 27.3281i 0.00164188 0.00284382i
\(453\) 0 0
\(454\) −2418.72 4189.35i −0.250036 0.433074i
\(455\) −5302.18 9183.64i −0.546308 0.946232i
\(456\) 0 0
\(457\) 6540.21 11328.0i 0.669449 1.15952i −0.308610 0.951189i \(-0.599864\pi\)
0.978058 0.208331i \(-0.0668030\pi\)
\(458\) −403.619 −0.0411788
\(459\) 0 0
\(460\) 3088.19 0.313016
\(461\) −4784.40 + 8286.83i −0.483366 + 0.837215i −0.999818 0.0191014i \(-0.993919\pi\)
0.516451 + 0.856317i \(0.327253\pi\)
\(462\) 0 0
\(463\) −160.312 277.669i −0.0160915 0.0278712i 0.857868 0.513871i \(-0.171789\pi\)
−0.873959 + 0.486000i \(0.838456\pi\)
\(464\) 670.752 + 1161.78i 0.0671097 + 0.116237i
\(465\) 0 0
\(466\) 187.810 325.296i 0.0186698 0.0323370i
\(467\) 4083.18 0.404597 0.202299 0.979324i \(-0.435159\pi\)
0.202299 + 0.979324i \(0.435159\pi\)
\(468\) 0 0
\(469\) −30161.2 −2.96954
\(470\) −2565.06 + 4442.82i −0.251740 + 0.436026i
\(471\) 0 0
\(472\) −2221.05 3846.97i −0.216594 0.375151i
\(473\) 11920.1 + 20646.3i 1.15875 + 2.00701i
\(474\) 0 0
\(475\) −1291.92 + 2237.68i −0.124795 + 0.216151i
\(476\) −2461.93 −0.237064
\(477\) 0 0
\(478\) −6825.78 −0.653147
\(479\) 1286.40 2228.11i 0.122708 0.212537i −0.798127 0.602490i \(-0.794175\pi\)
0.920835 + 0.389953i \(0.127509\pi\)
\(480\) 0 0
\(481\) −14017.1 24278.4i −1.32874 2.30145i
\(482\) 1164.67 + 2017.27i 0.110061 + 0.190631i
\(483\) 0 0
\(484\) −2885.64 + 4998.08i −0.271003 + 0.469391i
\(485\) 4225.06 0.395568
\(486\) 0 0
\(487\) 7204.59 0.670372 0.335186 0.942152i \(-0.391201\pi\)
0.335186 + 0.942152i \(0.391201\pi\)
\(488\) −102.484 + 177.508i −0.00950667 + 0.0164660i
\(489\) 0 0
\(490\) 3278.91 + 5679.24i 0.302298 + 0.523595i
\(491\) −865.439 1498.98i −0.0795452 0.137776i 0.823509 0.567304i \(-0.192013\pi\)
−0.903054 + 0.429527i \(0.858680\pi\)
\(492\) 0 0
\(493\) −816.436 + 1414.11i −0.0745850 + 0.129185i
\(494\) −13871.9 −1.26341
\(495\) 0 0
\(496\) −1852.21 −0.167675
\(497\) 782.653 1355.59i 0.0706374 0.122348i
\(498\) 0 0
\(499\) −9723.03 16840.8i −0.872270 1.51082i −0.859643 0.510895i \(-0.829314\pi\)
−0.0126270 0.999920i \(-0.504019\pi\)
\(500\) −250.000 433.013i −0.0223607 0.0387298i
\(501\) 0 0
\(502\) −4345.22 + 7526.15i −0.386328 + 0.669140i
\(503\) 6493.41 0.575600 0.287800 0.957691i \(-0.407076\pi\)
0.287800 + 0.957691i \(0.407076\pi\)
\(504\) 0 0
\(505\) −7575.15 −0.667504
\(506\) 8132.29 14085.5i 0.714475 1.23751i
\(507\) 0 0
\(508\) −1735.21 3005.47i −0.151550 0.262492i
\(509\) −4932.71 8543.70i −0.429545 0.743994i 0.567288 0.823520i \(-0.307993\pi\)
−0.996833 + 0.0795257i \(0.974659\pi\)
\(510\) 0 0
\(511\) 6315.44 10938.7i 0.546730 0.946963i
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −2676.21 −0.229655
\(515\) 151.942 263.171i 0.0130007 0.0225178i
\(516\) 0 0
\(517\) 13509.4 + 23399.1i 1.14922 + 1.99050i
\(518\) 13202.2 + 22866.8i 1.11983 + 1.93960i
\(519\) 0 0
\(520\) 1342.17 2324.71i 0.113189 0.196049i
\(521\) −5324.37 −0.447726 −0.223863 0.974621i \(-0.571867\pi\)
−0.223863 + 0.974621i \(0.571867\pi\)
\(522\) 0 0
\(523\) 6262.02 0.523554 0.261777 0.965128i \(-0.415691\pi\)
0.261777 + 0.965128i \(0.415691\pi\)
\(524\) −1573.77 + 2725.84i −0.131203 + 0.227250i
\(525\) 0 0
\(526\) 4783.66 + 8285.54i 0.396535 + 0.686819i
\(527\) −1127.25 1952.46i −0.0931762 0.161386i
\(528\) 0 0
\(529\) −5837.63 + 10111.1i −0.479792 + 0.831025i
\(530\) −1395.49 −0.114370
\(531\) 0 0
\(532\) 13065.4 1.06477
\(533\) 4984.82 8633.96i 0.405097 0.701648i
\(534\) 0 0
\(535\) −557.457 965.544i −0.0450485 0.0780264i
\(536\) −3817.45 6612.01i −0.307628 0.532827i
\(537\) 0 0
\(538\) 6102.65 10570.1i 0.489041 0.847044i
\(539\) 34538.1 2.76004
\(540\) 0 0
\(541\) 23066.3 1.83308 0.916542 0.399938i \(-0.130968\pi\)
0.916542 + 0.399938i \(0.130968\pi\)
\(542\) −422.742 + 732.210i −0.0335024 + 0.0580279i
\(543\) 0 0
\(544\) −311.602 539.710i −0.0245585 0.0425366i
\(545\) 997.449 + 1727.63i 0.0783964 + 0.135786i
\(546\) 0 0
\(547\) 6770.53 11726.9i 0.529227 0.916648i −0.470192 0.882564i \(-0.655815\pi\)
0.999419 0.0340838i \(-0.0108513\pi\)
\(548\) 333.048 0.0259618
\(549\) 0 0
\(550\) −2633.35 −0.204157
\(551\) 4332.80 7504.63i 0.334997 0.580232i
\(552\) 0 0
\(553\) −11865.1 20551.0i −0.912397 1.58032i
\(554\) −3282.56 5685.56i −0.251738 0.436022i
\(555\) 0 0
\(556\) −1818.92 + 3150.46i −0.138740 + 0.240305i
\(557\) 10550.8 0.802603 0.401302 0.915946i \(-0.368558\pi\)
0.401302 + 0.915946i \(0.368558\pi\)
\(558\) 0 0
\(559\) −30377.4 −2.29844
\(560\) −1264.14 + 2189.56i −0.0953923 + 0.165224i
\(561\) 0 0
\(562\) 641.928 + 1111.85i 0.0481816 + 0.0834531i
\(563\) −11506.2 19929.3i −0.861328 1.49186i −0.870648 0.491907i \(-0.836300\pi\)
0.00931961 0.999957i \(-0.497033\pi\)
\(564\) 0 0
\(565\) 19.7224 34.1602i 0.00146854 0.00254359i
\(566\) 14454.2 1.07342
\(567\) 0 0
\(568\) 396.236 0.0292706
\(569\) 10644.4 18436.6i 0.784245 1.35835i −0.145204 0.989402i \(-0.546384\pi\)
0.929449 0.368950i \(-0.120283\pi\)
\(570\) 0 0
\(571\) 11019.6 + 19086.5i 0.807628 + 1.39885i 0.914502 + 0.404581i \(0.132582\pi\)
−0.106874 + 0.994273i \(0.534084\pi\)
\(572\) −7068.84 12243.6i −0.516719 0.894983i
\(573\) 0 0
\(574\) −4695.00 + 8131.98i −0.341404 + 0.591328i
\(575\) 3860.24 0.279970
\(576\) 0 0
\(577\) 8130.59 0.586622 0.293311 0.956017i \(-0.405243\pi\)
0.293311 + 0.956017i \(0.405243\pi\)
\(578\) −4533.72 + 7852.63i −0.326259 + 0.565098i
\(579\) 0 0
\(580\) 838.440 + 1452.22i 0.0600247 + 0.103966i
\(581\) 18551.6 + 32132.3i 1.32470 + 2.29445i
\(582\) 0 0
\(583\) −3674.82 + 6364.98i −0.261056 + 0.452162i
\(584\) 3197.34 0.226553
\(585\) 0 0
\(586\) −7448.85 −0.525101
\(587\) 4447.17 7702.72i 0.312699 0.541611i −0.666247 0.745731i \(-0.732100\pi\)
0.978946 + 0.204121i \(0.0654335\pi\)
\(588\) 0 0
\(589\) 5982.29 + 10361.6i 0.418499 + 0.724861i
\(590\) −2776.31 4808.72i −0.193727 0.335545i
\(591\) 0 0
\(592\) −3341.95 + 5788.43i −0.232016 + 0.401863i
\(593\) −6979.35 −0.483318 −0.241659 0.970361i \(-0.577691\pi\)
−0.241659 + 0.970361i \(0.577691\pi\)
\(594\) 0 0
\(595\) −3077.41 −0.212036
\(596\) −6234.58 + 10798.6i −0.428487 + 0.742162i
\(597\) 0 0
\(598\) 10362.2 + 17947.9i 0.708600 + 1.22733i
\(599\) −11997.3 20779.9i −0.818355 1.41743i −0.906893 0.421360i \(-0.861553\pi\)
0.0885379 0.996073i \(-0.471781\pi\)
\(600\) 0 0
\(601\) −7805.56 + 13519.6i −0.529776 + 0.917599i 0.469621 + 0.882868i \(0.344391\pi\)
−0.999397 + 0.0347309i \(0.988943\pi\)
\(602\) 28611.3 1.93706
\(603\) 0 0
\(604\) −6856.94 −0.461929
\(605\) −3607.05 + 6247.60i −0.242393 + 0.419837i
\(606\) 0 0
\(607\) −12900.5 22344.4i −0.862630 1.49412i −0.869382 0.494141i \(-0.835482\pi\)
0.00675169 0.999977i \(-0.497851\pi\)
\(608\) 1653.66 + 2864.23i 0.110304 + 0.191052i
\(609\) 0 0
\(610\) −128.106 + 221.885i −0.00850302 + 0.0147277i
\(611\) −34427.6 −2.27953
\(612\) 0 0
\(613\) 6249.09 0.411743 0.205871 0.978579i \(-0.433997\pi\)
0.205871 + 0.978579i \(0.433997\pi\)
\(614\) −5190.35 + 8989.94i −0.341149 + 0.590887i
\(615\) 0 0
\(616\) 6657.86 + 11531.7i 0.435475 + 0.754265i
\(617\) −5715.09 9898.83i −0.372903 0.645886i 0.617108 0.786878i \(-0.288304\pi\)
−0.990011 + 0.140992i \(0.954971\pi\)
\(618\) 0 0
\(619\) 4365.08 7560.55i 0.283437 0.490927i −0.688792 0.724959i \(-0.741859\pi\)
0.972229 + 0.234032i \(0.0751920\pi\)
\(620\) −2315.26 −0.149973
\(621\) 0 0
\(622\) −7262.73 −0.468182
\(623\) 15978.9 27676.3i 1.02758 1.77982i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) −3638.89 6302.75i −0.232331 0.402410i
\(627\) 0 0
\(628\) 7742.18 13409.8i 0.491953 0.852088i
\(629\) −8135.61 −0.515720
\(630\) 0 0
\(631\) −4394.10 −0.277221 −0.138610 0.990347i \(-0.544264\pi\)
−0.138610 + 0.990347i \(0.544264\pi\)
\(632\) 3003.49 5202.20i 0.189039 0.327424i
\(633\) 0 0
\(634\) −4101.20 7103.49i −0.256908 0.444977i
\(635\) −2169.01 3756.83i −0.135550 0.234780i
\(636\) 0 0
\(637\) −22004.3 + 38112.6i −1.36867 + 2.37061i
\(638\) 8831.64 0.548037
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) 5308.39 9194.41i 0.327097 0.566548i −0.654838 0.755769i \(-0.727263\pi\)
0.981934 + 0.189221i \(0.0605964\pi\)
\(642\) 0 0
\(643\) −10062.5 17428.8i −0.617148 1.06893i −0.990003 0.141043i \(-0.954954\pi\)
0.372855 0.927890i \(-0.378379\pi\)
\(644\) −9759.76 16904.4i −0.597187 1.03436i
\(645\) 0 0
\(646\) −2012.83 + 3486.32i −0.122591 + 0.212334i
\(647\) −2621.86 −0.159314 −0.0796568 0.996822i \(-0.525382\pi\)
−0.0796568 + 0.996822i \(0.525382\pi\)
\(648\) 0 0
\(649\) −29244.1 −1.76877
\(650\) 1677.72 2905.89i 0.101239 0.175352i
\(651\) 0 0
\(652\) −2384.72 4130.46i −0.143241 0.248100i
\(653\) −14260.1 24699.2i −0.854579 1.48017i −0.877035 0.480426i \(-0.840482\pi\)
0.0224567 0.999748i \(-0.492851\pi\)
\(654\) 0 0
\(655\) −1967.21 + 3407.30i −0.117351 + 0.203258i
\(656\) −2376.95 −0.141470
\(657\) 0 0
\(658\) 32426.0 1.92112
\(659\) −3281.43 + 5683.60i −0.193970 + 0.335966i −0.946562 0.322521i \(-0.895470\pi\)
0.752592 + 0.658487i \(0.228803\pi\)
\(660\) 0 0
\(661\) 873.679 + 1513.26i 0.0514103 + 0.0890452i 0.890585 0.454816i \(-0.150295\pi\)
−0.839175 + 0.543861i \(0.816962\pi\)
\(662\) −5782.40 10015.4i −0.339485 0.588006i
\(663\) 0 0
\(664\) −4696.09 + 8133.86i −0.274463 + 0.475384i
\(665\) 16331.7 0.952356
\(666\) 0 0
\(667\) −12946.3 −0.751548
\(668\) −1120.78 + 1941.25i −0.0649165 + 0.112439i
\(669\) 0 0
\(670\) −4771.81 8265.01i −0.275151 0.476575i
\(671\) 674.695 + 1168.61i 0.0388172 + 0.0672333i
\(672\) 0 0
\(673\) −1263.96 + 2189.24i −0.0723954 + 0.125392i −0.899951 0.435992i \(-0.856398\pi\)
0.827555 + 0.561384i \(0.189731\pi\)
\(674\) 20660.4 1.18073
\(675\) 0 0
\(676\) 9226.32 0.524939
\(677\) −3024.20 + 5238.07i −0.171683 + 0.297364i −0.939008 0.343894i \(-0.888254\pi\)
0.767325 + 0.641258i \(0.221587\pi\)
\(678\) 0 0
\(679\) −13352.7 23127.5i −0.754682 1.30715i
\(680\) −389.502 674.638i −0.0219658 0.0380459i
\(681\) 0 0
\(682\) −6096.91 + 10560.2i −0.342321 + 0.592917i
\(683\) −23230.8 −1.30147 −0.650733 0.759307i \(-0.725538\pi\)
−0.650733 + 0.759307i \(0.725538\pi\)
\(684\) 0 0
\(685\) 416.309 0.0232210
\(686\) 9885.00 17121.3i 0.550162 0.952908i
\(687\) 0 0
\(688\) 3621.28 + 6272.23i 0.200668 + 0.347568i
\(689\) −4682.48 8110.30i −0.258909 0.448444i
\(690\) 0 0
\(691\) 11215.2 19425.2i 0.617431 1.06942i −0.372522 0.928024i \(-0.621507\pi\)
0.989953 0.141399i \(-0.0451599\pi\)
\(692\) −7477.59 −0.410774
\(693\) 0 0
\(694\) 8831.76 0.483068
\(695\) −2273.65 + 3938.08i −0.124093 + 0.214935i
\(696\) 0 0
\(697\) −1446.61 2505.60i −0.0786143 0.136164i
\(698\) −5844.80 10123.5i −0.316947 0.548969i
\(699\) 0 0
\(700\) −1580.18 + 2736.94i −0.0853214 + 0.147781i
\(701\) 16185.3 0.872054 0.436027 0.899934i \(-0.356385\pi\)
0.436027 + 0.899934i \(0.356385\pi\)
\(702\) 0 0
\(703\) 43175.4 2.31635
\(704\) −1685.35 + 2919.11i −0.0902257 + 0.156275i
\(705\) 0 0
\(706\) −12631.6 21878.5i −0.673365 1.16630i
\(707\) 23940.1 + 41465.5i 1.27349 + 2.20576i
\(708\) 0 0
\(709\) −17703.7 + 30663.7i −0.937765 + 1.62426i −0.168138 + 0.985763i \(0.553775\pi\)
−0.769627 + 0.638494i \(0.779558\pi\)
\(710\) 495.295 0.0261804
\(711\) 0 0
\(712\) 8089.71 0.425807
\(713\) 8937.47 15480.1i 0.469440 0.813094i
\(714\) 0 0
\(715\) −8836.05 15304.5i −0.462167 0.800497i
\(716\) −3401.32 5891.26i −0.177532 0.307495i
\(717\) 0 0
\(718\) 12417.4 21507.6i 0.645423 1.11790i
\(719\) 5469.90 0.283718 0.141859 0.989887i \(-0.454692\pi\)
0.141859 + 0.989887i \(0.454692\pi\)
\(720\) 0 0
\(721\) −1920.75 −0.0992131
\(722\) 3823.01 6621.65i 0.197061 0.341319i
\(723\) 0 0
\(724\) 1089.84 + 1887.66i 0.0559443 + 0.0968985i
\(725\) 1048.05 + 1815.28i 0.0536877 + 0.0929899i
\(726\) 0 0
\(727\) 2742.28 4749.77i 0.139898 0.242310i −0.787560 0.616238i \(-0.788656\pi\)
0.927458 + 0.373928i \(0.121989\pi\)
\(728\) −16967.0 −0.863788
\(729\) 0 0
\(730\) 3996.67 0.202635
\(731\) −4407.80 + 7634.53i −0.223021 + 0.386284i
\(732\) 0 0
\(733\) 3339.41 + 5784.03i 0.168273 + 0.291457i 0.937813 0.347142i \(-0.112848\pi\)
−0.769540 + 0.638599i \(0.779514\pi\)
\(734\) −1602.99 2776.45i −0.0806094 0.139620i
\(735\) 0 0
\(736\) 2470.55 4279.12i 0.123731 0.214308i
\(737\) −50263.4 −2.51218
\(738\) 0 0
\(739\) 31170.0 1.55156 0.775782 0.631002i \(-0.217356\pi\)
0.775782 + 0.631002i \(0.217356\pi\)
\(740\) −4177.44 + 7235.53i −0.207521 + 0.359437i
\(741\) 0 0
\(742\) 4410.24 + 7638.77i 0.218201 + 0.377935i
\(743\) −1407.51 2437.87i −0.0694972 0.120373i 0.829183 0.558977i \(-0.188806\pi\)
−0.898680 + 0.438605i \(0.855473\pi\)
\(744\) 0 0
\(745\) −7793.23 + 13498.3i −0.383251 + 0.663810i
\(746\) 6827.08 0.335063
\(747\) 0 0
\(748\) −4102.79 −0.200552
\(749\) −3523.52 + 6102.91i −0.171891 + 0.297724i
\(750\) 0 0
\(751\) 3995.76 + 6920.87i 0.194151 + 0.336280i 0.946622 0.322346i \(-0.104471\pi\)
−0.752471 + 0.658626i \(0.771138\pi\)
\(752\) 4104.10 + 7108.52i 0.199018 + 0.344709i
\(753\) 0 0
\(754\) −5626.66 + 9745.67i −0.271765 + 0.470711i
\(755\) −8571.18 −0.413162
\(756\) 0 0
\(757\) −16253.4 −0.780371 −0.390185 0.920736i \(-0.627589\pi\)
−0.390185 + 0.920736i \(0.627589\pi\)
\(758\) −3087.00 + 5346.84i −0.147922 + 0.256208i
\(759\) 0 0
\(760\) 2067.08 + 3580.28i 0.0986589 + 0.170882i
\(761\) −2768.92 4795.91i −0.131897 0.228452i 0.792511 0.609858i \(-0.208773\pi\)
−0.924408 + 0.381406i \(0.875440\pi\)
\(762\) 0 0
\(763\) 6304.58 10919.8i 0.299136 0.518119i
\(764\) 8956.34 0.424122
\(765\) 0 0
\(766\) 22671.7 1.06940
\(767\) 18631.5 32270.7i 0.877111 1.51920i
\(768\) 0 0
\(769\) −6966.69 12066.7i −0.326691 0.565845i 0.655162 0.755488i \(-0.272600\pi\)
−0.981853 + 0.189643i \(0.939267\pi\)
\(770\) 8322.32 + 14414.7i 0.389501 + 0.674635i
\(771\) 0 0
\(772\) 1475.05 2554.86i 0.0687670 0.119108i
\(773\) 33075.0 1.53897 0.769486 0.638663i \(-0.220512\pi\)
0.769486 + 0.638663i \(0.220512\pi\)
\(774\) 0 0
\(775\) −2894.08 −0.134140
\(776\) 3380.05 5854.42i 0.156362 0.270827i
\(777\) 0 0
\(778\) 10829.9 + 18757.9i 0.499061 + 0.864399i
\(779\) 7677.10 + 13297.1i 0.353095 + 0.611578i
\(780\) 0 0
\(781\) 1304.29 2259.09i 0.0597581 0.103504i
\(782\) 6014.28 0.275026
\(783\) 0 0
\(784\) 10492.5 0.477975
\(785\) 9677.72 16762.3i 0.440016 0.762131i
\(786\) 0 0
\(787\) −17371.4 30088.2i −0.786817 1.36281i −0.927908 0.372810i \(-0.878394\pi\)
0.141091 0.989997i \(-0.454939\pi\)
\(788\) 2209.60 + 3827.13i 0.0998904 + 0.173015i
\(789\) 0 0
\(790\) 3754.36 6502.75i 0.169081 0.292857i
\(791\) −249.319 −0.0112070
\(792\) 0 0
\(793\) −1719.40 −0.0769959
\(794\) 3974.56 6884.14i 0.177647 0.307694i
\(795\) 0 0
\(796\) −8009.14 13872.2i −0.356629 0.617699i
\(797\) 13308.0 + 23050.1i 0.591459 + 1.02444i 0.994036 + 0.109052i \(0.0347814\pi\)
−0.402577 + 0.915386i \(0.631885\pi\)
\(798\) 0 0
\(799\) −4995.49 + 8652.45i −0.221186 + 0.383106i
\(800\) −800.000 −0.0353553
\(801\) 0 0
\(802\) 26623.7 1.17221
\(803\) 10524.7 18229.2i 0.462524 0.801116i
\(804\) 0 0
\(805\) −12199.7 21130.5i −0.534140 0.925158i
\(806\) −7768.72 13455.8i −0.339506 0.588041i
\(807\) 0 0
\(808\) −6060.12 + 10496.4i −0.263854 + 0.457009i
\(809\) 15155.9 0.658656 0.329328 0.944216i \(-0.393178\pi\)
0.329328 + 0.944216i \(0.393178\pi\)
\(810\) 0 0
\(811\) 15130.7 0.655130 0.327565 0.944829i \(-0.393772\pi\)
0.327565 + 0.944829i \(0.393772\pi\)
\(812\) 5299.53 9179.05i 0.229036 0.396701i
\(813\) 0 0
\(814\) 22001.3 + 38107.4i 0.947354 + 1.64087i
\(815\) −2980.91 5163.08i −0.128118 0.221908i
\(816\) 0 0
\(817\) 23392.0 40516.2i 1.00169 1.73499i
\(818\) −12842.8 −0.548948
\(819\) 0 0
\(820\) −2971.19 −0.126535
\(821\) 10966.2 18994.0i 0.466165 0.807422i −0.533088 0.846060i \(-0.678969\pi\)
0.999253 + 0.0386378i \(0.0123019\pi\)
\(822\) 0 0
\(823\) 1015.31 + 1758.57i 0.0430029 + 0.0744833i 0.886726 0.462296i \(-0.152974\pi\)
−0.843723 + 0.536779i \(0.819641\pi\)
\(824\) −243.107 421.073i −0.0102779 0.0178019i
\(825\) 0 0
\(826\) −17548.3 + 30394.5i −0.739203 + 1.28034i
\(827\) 30865.0 1.29780 0.648901 0.760873i \(-0.275229\pi\)
0.648901 + 0.760873i \(0.275229\pi\)
\(828\) 0 0
\(829\) −22051.0 −0.923840 −0.461920 0.886921i \(-0.652839\pi\)
−0.461920 + 0.886921i \(0.652839\pi\)
\(830\) −5870.11 + 10167.3i −0.245487 + 0.425197i
\(831\) 0 0
\(832\) −2147.48 3719.54i −0.0894837 0.154990i
\(833\) 6385.71 + 11060.4i 0.265608 + 0.460047i
\(834\) 0 0
\(835\) −1400.97 + 2426.56i −0.0580631 + 0.100568i
\(836\) 21773.4 0.900775
\(837\) 0 0
\(838\) −9253.72 −0.381461
\(839\) −13100.6 + 22690.9i −0.539074 + 0.933703i 0.459880 + 0.887981i \(0.347892\pi\)
−0.998954 + 0.0457225i \(0.985441\pi\)
\(840\) 0 0
\(841\) 8679.59 + 15033.5i 0.355881 + 0.616405i
\(842\) 5151.01 + 8921.81i 0.210826 + 0.365161i
\(843\) 0 0
\(844\) 3113.03 5391.93i 0.126961 0.219903i
\(845\) 11532.9 0.469519
\(846\) 0 0
\(847\) 45598.2 1.84979
\(848\) −1116.39 + 1933.65i −0.0452089 + 0.0783040i
\(849\) 0 0
\(850\) −486.878 843.297i −0.0196468 0.0340292i
\(851\) −32251.8 55861.7i −1.29915 2.25019i
\(852\) 0 0
\(853\) 4813.43 8337.11i 0.193211 0.334651i −0.753102 0.657904i \(-0.771443\pi\)
0.946313 + 0.323253i \(0.104777\pi\)
\(854\) 1619.43 0.0648898
\(855\) 0 0
\(856\) −1783.86 −0.0712280
\(857\) 10634.1 18418.8i 0.423867 0.734160i −0.572447 0.819942i \(-0.694006\pi\)
0.996314 + 0.0857822i \(0.0273389\pi\)
\(858\) 0 0
\(859\) 12007.9 + 20798.3i 0.476954 + 0.826109i 0.999651 0.0264093i \(-0.00840731\pi\)
−0.522697 + 0.852519i \(0.675074\pi\)
\(860\) 4526.59 + 7840.29i 0.179483 + 0.310874i
\(861\) 0 0
\(862\) 2452.29 4247.49i 0.0968971 0.167831i
\(863\) −38716.4 −1.52714 −0.763569 0.645726i \(-0.776555\pi\)
−0.763569 + 0.645726i \(0.776555\pi\)
\(864\) 0 0
\(865\) −9346.99 −0.367407
\(866\) 11033.4 19110.5i 0.432946 0.749885i
\(867\) 0 0
\(868\) 7317.05 + 12673.5i 0.286125 + 0.495584i
\(869\) −19773.1 34248.1i −0.771873 1.33692i
\(870\) 0 0
\(871\) 32023.0 55465.4i 1.24576 2.15772i
\(872\) 3191.84 0.123956
\(873\) 0 0
\(874\) −31917.6 −1.23527
\(875\) −1975.22 + 3421.18i −0.0763138 + 0.132179i
\(876\) 0 0
\(877\) −22641.3 39216.0i −0.871772 1.50995i −0.860162 0.510021i \(-0.829638\pi\)
−0.0116099 0.999933i \(-0.503696\pi\)
\(878\) −820.004 1420.29i −0.0315191 0.0545927i
\(879\) 0 0
\(880\) −2106.68 + 3648.88i −0.0807003 + 0.139777i
\(881\) −7095.59 −0.271347 −0.135673 0.990754i \(-0.543320\pi\)
−0.135673 + 0.990754i \(0.543320\pi\)
\(882\) 0 0
\(883\) 798.332 0.0304258 0.0152129 0.999884i \(-0.495157\pi\)
0.0152129 + 0.999884i \(0.495157\pi\)
\(884\) 2613.90 4527.41i 0.0994514 0.172255i
\(885\) 0 0
\(886\) 6706.40 + 11615.8i 0.254295 + 0.440453i
\(887\) 21005.5 + 36382.6i 0.795147 + 1.37724i 0.922746 + 0.385410i \(0.125940\pi\)
−0.127598 + 0.991826i \(0.540727\pi\)
\(888\) 0 0
\(889\) −13709.7 + 23745.8i −0.517218 + 0.895849i
\(890\) 10112.1 0.380853
\(891\) 0 0
\(892\) −17214.1 −0.646156
\(893\) 26510.9 45918.3i 0.993454 1.72071i
\(894\) 0 0
\(895\) −4251.65 7364.07i −0.158790 0.275032i
\(896\) 2022.62 + 3503.29i 0.0754142 + 0.130621i
\(897\) 0 0
\(898\) −9873.94 + 17102.2i −0.366924 + 0.635531i
\(899\) 9706.05 0.360083
\(900\) 0 0
\(901\) −2717.74 −0.100489
\(902\) −7824.20 + 13551.9i −0.288822 + 0.500254i
\(903\) 0 0
\(904\) −31.5558 54.6563i −0.00116099 0.00201089i
\(905\) 1362.30 + 2359.58i 0.0500381 + 0.0866686i
\(906\) 0 0
\(907\) −5094.26 + 8823.51i −0.186496 + 0.323021i −0.944080 0.329717i \(-0.893047\pi\)
0.757583 + 0.652738i \(0.226380\pi\)
\(908\) −9674.88 −0.353604
\(909\) 0 0
\(910\) −21208.7 −0.772595
\(911\) 13329.3 23087.0i 0.484762 0.839633i −0.515084 0.857140i \(-0.672239\pi\)
0.999847 + 0.0175064i \(0.00557273\pi\)
\(912\) 0 0
\(913\) 30916.2 + 53548.4i 1.12067 + 1.94106i
\(914\) −13080.4 22656.0i −0.473372 0.819904i
\(915\) 0 0
\(916\) −403.619 + 699.089i −0.0145589 + 0.0252168i
\(917\) 24868.3 0.895553
\(918\) 0 0
\(919\) −6192.18 −0.222265 −0.111132 0.993806i \(-0.535448\pi\)
−0.111132 + 0.993806i \(0.535448\pi\)
\(920\) 3088.19 5348.90i 0.110668 0.191683i
\(921\) 0 0
\(922\) 9568.81 + 16573.7i 0.341792 + 0.592001i
\(923\) 1661.93 + 2878.55i 0.0592666 + 0.102653i
\(924\) 0 0
\(925\) −5221.80 + 9044.41i −0.185613 + 0.321490i
\(926\) −641.250 −0.0227568
\(927\) 0 0
\(928\) 2683.01 0.0949074
\(929\) 4552.34 7884.88i 0.160772 0.278466i −0.774374 0.632729i \(-0.781935\pi\)
0.935146 + 0.354263i \(0.115268\pi\)
\(930\) 0 0
\(931\) −33888.8 58697.1i −1.19297 2.06629i
\(932\) −375.620 650.593i −0.0132015 0.0228657i
\(933\) 0 0
\(934\) 4083.18 7072.27i 0.143047 0.247764i
\(935\) −5128.49 −0.179379
\(936\) 0 0
\(937\) −52517.5 −1.83103 −0.915513 0.402289i \(-0.868215\pi\)
−0.915513 + 0.402289i \(0.868215\pi\)
\(938\) −30161.2 + 52240.7i −1.04989 + 1.81846i
\(939\) 0 0
\(940\) 5130.13 + 8885.65i 0.178007 + 0.308317i
\(941\) 26558.0 + 45999.8i 0.920048 + 1.59357i 0.799338 + 0.600882i \(0.205184\pi\)
0.120710 + 0.992688i \(0.461483\pi\)
\(942\) 0 0
\(943\) 11469.5 19865.8i 0.396074 0.686021i
\(944\) −8884.21 −0.306310
\(945\) 0 0
\(946\) 47680.5 1.63872
\(947\) −27937.4 + 48388.9i −0.958651 + 1.66043i −0.232867 + 0.972509i \(0.574811\pi\)
−0.725784 + 0.687923i \(0.758523\pi\)
\(948\) 0 0
\(949\) 13410.6 + 23227.8i 0.458721 + 0.794528i
\(950\) 2583.85 + 4475.35i 0.0882432 + 0.152842i
\(951\) 0 0
\(952\) −2461.93 + 4264.18i −0.0838147 + 0.145171i
\(953\) −26732.4 −0.908655 −0.454327 0.890835i \(-0.650120\pi\)
−0.454327 + 0.890835i \(0.650120\pi\)
\(954\) 0 0
\(955\) 11195.4 0.379346
\(956\) −6825.78 + 11822.6i −0.230922 + 0.399969i
\(957\) 0 0
\(958\) −2572.80 4456.23i −0.0867677 0.150286i
\(959\) −1315.68 2278.83i −0.0443020 0.0767334i
\(960\) 0 0
\(961\) 8194.94 14194.0i 0.275081 0.476454i
\(962\) −56068.5 −1.87913
\(963\) 0 0
\(964\) 4658.69 0.155650
\(965\) 1843.81 3193.57i 0.0615071 0.106533i
\(966\) 0 0
\(967\) 2540.47 + 4400.23i 0.0844841 + 0.146331i 0.905171 0.425047i \(-0.139742\pi\)
−0.820687 + 0.571378i \(0.806409\pi\)
\(968\) 5771.29 + 9996.16i 0.191628 + 0.331910i
\(969\) 0 0
\(970\) 4225.06 7318.02i 0.139854 0.242235i
\(971\) 4341.74 0.143495 0.0717473 0.997423i \(-0.477142\pi\)
0.0717473 + 0.997423i \(0.477142\pi\)
\(972\) 0 0
\(973\) 28742.1 0.946999
\(974\) 7204.59 12478.7i 0.237012 0.410517i
\(975\) 0 0
\(976\) 204.969 + 355.017i 0.00672223 + 0.0116432i
\(977\) 13212.2 + 22884.2i 0.432647 + 0.749366i 0.997100 0.0760985i \(-0.0242464\pi\)
−0.564453 + 0.825465i \(0.690913\pi\)
\(978\) 0 0
\(979\) 26628.8 46122.5i 0.869317 1.50570i
\(980\) 13115.6 0.427514
\(981\) 0 0
\(982\) −3461.76 −0.112494
\(983\) 5221.57 9044.02i 0.169422 0.293448i −0.768795 0.639496i \(-0.779143\pi\)
0.938217 + 0.346048i \(0.112476\pi\)
\(984\) 0 0
\(985\) 2762.00 + 4783.92i 0.0893447 + 0.154750i
\(986\) 1632.87 + 2828.22i 0.0527396 + 0.0913476i
\(987\) 0 0
\(988\) −13871.9 + 24026.8i −0.446684 + 0.773679i
\(989\) −69894.9 −2.24725
\(990\) 0 0
\(991\) −6631.49 −0.212569 −0.106285 0.994336i \(-0.533895\pi\)
−0.106285 + 0.994336i \(0.533895\pi\)
\(992\) −1852.21 + 3208.13i −0.0592820 + 0.102680i
\(993\) 0 0
\(994\) −1565.31 2711.19i −0.0499482 0.0865128i
\(995\) −10011.4 17340.3i −0.318978 0.552487i
\(996\) 0 0
\(997\) −20120.0 + 34848.9i −0.639125 + 1.10700i 0.346500 + 0.938050i \(0.387370\pi\)
−0.985625 + 0.168947i \(0.945963\pi\)
\(998\) −38892.1 −1.23358
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.4.e.bh.541.1 8
3.2 odd 2 810.4.e.bg.541.1 8
9.2 odd 6 810.4.a.u.1.4 yes 4
9.4 even 3 inner 810.4.e.bh.271.1 8
9.5 odd 6 810.4.e.bg.271.1 8
9.7 even 3 810.4.a.t.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.4.a.t.1.4 4 9.7 even 3
810.4.a.u.1.4 yes 4 9.2 odd 6
810.4.e.bg.271.1 8 9.5 odd 6
810.4.e.bg.541.1 8 3.2 odd 2
810.4.e.bh.271.1 8 9.4 even 3 inner
810.4.e.bh.541.1 8 1.1 even 1 trivial