| L(s) = 1 | + (1 − 1.73i)2-s + (−1.99 − 3.46i)4-s + (−2.5 − 4.33i)5-s + (−15.8 + 27.3i)7-s − 7.99·8-s − 10·10-s + (−26.3 + 45.6i)11-s + (−33.5 − 58.1i)13-s + (31.6 + 54.7i)14-s + (−8 + 13.8i)16-s − 19.4·17-s + 103.·19-s + (−10 + 17.3i)20-s + (52.6 + 91.2i)22-s + (−77.2 − 133. i)23-s + ⋯ |
| L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.223 − 0.387i)5-s + (−0.853 + 1.47i)7-s − 0.353·8-s − 0.316·10-s + (−0.721 + 1.25i)11-s + (−0.715 − 1.23i)13-s + (0.603 + 1.04i)14-s + (−0.125 + 0.216i)16-s − 0.277·17-s + 1.24·19-s + (−0.111 + 0.193i)20-s + (0.510 + 0.884i)22-s + (−0.699 − 1.21i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.482790226\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.482790226\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1 + 1.73i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.5 + 4.33i)T \) |
| good | 7 | \( 1 + (15.8 - 27.3i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (26.3 - 45.6i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (33.5 + 58.1i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + 19.4T + 4.91e3T^{2} \) |
| 19 | \( 1 - 103.T + 6.85e3T^{2} \) |
| 23 | \( 1 + (77.2 + 133. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-41.9 + 72.6i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-57.8 - 100. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 - 417.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-74.2 - 128. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-226. + 392. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-256. + 444. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 139.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-277. - 480. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-12.8 + 22.1i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-477. - 826. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 49.5T + 3.57e5T^{2} \) |
| 73 | \( 1 + 399.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (375. - 650. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-587. + 1.01e3i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + 1.01e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (422. - 731. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.932038920404471654933564906676, −9.015317617998244321769053225069, −8.122882217597967854866921592851, −7.10388308575433575720723523820, −5.80365901738426656151275828149, −5.26995896378542345093673697644, −4.25403931384755717703032609722, −2.78430680165688868239427997136, −2.38896539304171023858898200699, −0.51523642695522175045970864992,
0.75512866105652672116826565436, 2.81443208887811426551863733765, 3.71033819405614995276575145561, 4.52435409345861721738027743379, 5.81025732892650599429158704454, 6.57742492263494001341656063450, 7.48698670015815005848981561688, 7.85543434236801148966399546574, 9.339875662497785678625031715898, 9.834552438591596388228364593626