Properties

Label 81.8.c.d.55.1
Level $81$
Weight $8$
Character 81.55
Analytic conductor $25.303$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{65})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 17x^{2} + 16x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(2.26556 - 3.92407i\) of defining polynomial
Character \(\chi\) \(=\) 81.55
Dual form 81.8.c.d.28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.29669 + 14.3703i) q^{2} +(-73.6702 - 127.601i) q^{4} +(-57.0934 - 98.8886i) q^{5} +(-719.202 + 1245.70i) q^{7} +320.924 q^{8} +1894.75 q^{10} +(-2964.37 + 5134.44i) q^{11} +(5723.62 + 9913.60i) q^{13} +(-11934.0 - 20670.3i) q^{14} +(6767.18 - 11721.1i) q^{16} -20235.6 q^{17} -6354.94 q^{19} +(-8412.17 + 14570.3i) q^{20} +(-49188.9 - 85197.7i) q^{22} +(-37922.8 - 65684.2i) q^{23} +(32543.2 - 56366.5i) q^{25} -189948. q^{26} +211935. q^{28} +(37392.1 - 64765.1i) q^{29} +(94681.4 + 163993. i) q^{31} +(132830. + 230068. i) q^{32} +(167889. - 290792. i) q^{34} +164247. q^{35} -33407.2 q^{37} +(52725.0 - 91322.4i) q^{38} +(-18322.6 - 31735.7i) q^{40} +(-70622.4 - 122322. i) q^{41} +(123099. - 213213. i) q^{43} +873543. q^{44} +1.25854e6 q^{46} +(-167566. + 290234. i) q^{47} +(-622733. - 1.07860e6i) q^{49} +(540002. + 935310. i) q^{50} +(843321. - 1.46067e6i) q^{52} +1.65156e6 q^{53} +676983. q^{55} +(-230809. + 399774. i) q^{56} +(620462. + 1.07467e6i) q^{58} +(-1.02411e6 - 1.77382e6i) q^{59} +(295235. - 511361. i) q^{61} -3.14217e6 q^{62} -2.67579e6 q^{64} +(653562. - 1.13200e6i) q^{65} +(-26787.7 - 46397.7i) q^{67} +(1.49076e6 + 2.58208e6i) q^{68} +(-1.36271e6 + 2.36027e6i) q^{70} -4.95678e6 q^{71} +817542. q^{73} +(277169. - 480071. i) q^{74} +(468170. + 810895. i) q^{76} +(-4.26396e6 - 7.38540e6i) q^{77} +(-3.78629e6 + 6.55804e6i) q^{79} -1.54545e6 q^{80} +2.34373e6 q^{82} +(509455. - 882402. i) q^{83} +(1.15532e6 + 2.00108e6i) q^{85} +(2.04262e6 + 3.53792e6i) q^{86} +(-951337. + 1.64776e6i) q^{88} +1.37281e6 q^{89} -1.64658e7 q^{91} +(-5.58756e6 + 9.67794e6i) q^{92} +(-2.78049e6 - 4.81596e6i) q^{94} +(362825. + 628432. i) q^{95} +(5.30114e6 - 9.18185e6i) q^{97} +2.06665e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 9 q^{2} - 77 q^{4} - 180 q^{5} - 700 q^{7} + 3654 q^{8} + 2790 q^{10} - 10890 q^{11} + 5480 q^{13} - 29475 q^{14} + 15967 q^{16} + 32832 q^{17} + 32048 q^{19} - 12195 q^{20} - 60705 q^{22} - 24372 q^{23}+ \cdots + 45559476 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.29669 + 14.3703i −0.733331 + 1.27017i 0.222121 + 0.975019i \(0.428702\pi\)
−0.955452 + 0.295147i \(0.904631\pi\)
\(3\) 0 0
\(4\) −73.6702 127.601i −0.575549 0.996880i
\(5\) −57.0934 98.8886i −0.204264 0.353795i 0.745634 0.666355i \(-0.232147\pi\)
−0.949898 + 0.312561i \(0.898813\pi\)
\(6\) 0 0
\(7\) −719.202 + 1245.70i −0.792516 + 1.37268i 0.131889 + 0.991265i \(0.457896\pi\)
−0.924405 + 0.381413i \(0.875437\pi\)
\(8\) 320.924 0.221609
\(9\) 0 0
\(10\) 1894.75 0.599171
\(11\) −2964.37 + 5134.44i −0.671518 + 1.16310i 0.305956 + 0.952046i \(0.401024\pi\)
−0.977474 + 0.211058i \(0.932309\pi\)
\(12\) 0 0
\(13\) 5723.62 + 9913.60i 0.722552 + 1.25150i 0.959974 + 0.280090i \(0.0903643\pi\)
−0.237422 + 0.971407i \(0.576302\pi\)
\(14\) −11934.0 20670.3i −1.16235 2.01325i
\(15\) 0 0
\(16\) 6767.18 11721.1i 0.413036 0.715399i
\(17\) −20235.6 −0.998955 −0.499477 0.866327i \(-0.666475\pi\)
−0.499477 + 0.866327i \(0.666475\pi\)
\(18\) 0 0
\(19\) −6354.94 −0.212556 −0.106278 0.994336i \(-0.533893\pi\)
−0.106278 + 0.994336i \(0.533893\pi\)
\(20\) −8412.17 + 14570.3i −0.235127 + 0.407252i
\(21\) 0 0
\(22\) −49188.9 85197.7i −0.984890 1.70588i
\(23\) −37922.8 65684.2i −0.649910 1.12568i −0.983144 0.182832i \(-0.941473\pi\)
0.333235 0.942844i \(-0.391860\pi\)
\(24\) 0 0
\(25\) 32543.2 56366.5i 0.416553 0.721491i
\(26\) −189948. −2.11948
\(27\) 0 0
\(28\) 211935. 1.82453
\(29\) 37392.1 64765.1i 0.284700 0.493115i −0.687836 0.725866i \(-0.741439\pi\)
0.972536 + 0.232751i \(0.0747727\pi\)
\(30\) 0 0
\(31\) 94681.4 + 163993.i 0.570820 + 0.988688i 0.996482 + 0.0838064i \(0.0267077\pi\)
−0.425663 + 0.904882i \(0.639959\pi\)
\(32\) 132830. + 230068.i 0.716589 + 1.24117i
\(33\) 0 0
\(34\) 167889. 290792.i 0.732565 1.26884i
\(35\) 164247. 0.647528
\(36\) 0 0
\(37\) −33407.2 −0.108426 −0.0542130 0.998529i \(-0.517265\pi\)
−0.0542130 + 0.998529i \(0.517265\pi\)
\(38\) 52725.0 91322.4i 0.155874 0.269982i
\(39\) 0 0
\(40\) −18322.6 31735.7i −0.0452666 0.0784041i
\(41\) −70622.4 122322.i −0.160029 0.277179i 0.774850 0.632145i \(-0.217826\pi\)
−0.934879 + 0.354967i \(0.884492\pi\)
\(42\) 0 0
\(43\) 123099. 213213.i 0.236109 0.408954i −0.723485 0.690340i \(-0.757461\pi\)
0.959595 + 0.281386i \(0.0907943\pi\)
\(44\) 873543. 1.54597
\(45\) 0 0
\(46\) 1.25854e6 1.90640
\(47\) −167566. + 290234.i −0.235421 + 0.407761i −0.959395 0.282067i \(-0.908980\pi\)
0.723974 + 0.689827i \(0.242313\pi\)
\(48\) 0 0
\(49\) −622733. 1.07860e6i −0.756163 1.30971i
\(50\) 540002. + 935310.i 0.610942 + 1.05818i
\(51\) 0 0
\(52\) 843321. 1.46067e6i 0.831728 1.44059i
\(53\) 1.65156e6 1.52381 0.761904 0.647691i \(-0.224265\pi\)
0.761904 + 0.647691i \(0.224265\pi\)
\(54\) 0 0
\(55\) 676983. 0.548667
\(56\) −230809. + 399774.i −0.175629 + 0.304198i
\(57\) 0 0
\(58\) 620462. + 1.07467e6i 0.417559 + 0.723233i
\(59\) −1.02411e6 1.77382e6i −0.649182 1.12442i −0.983319 0.181892i \(-0.941778\pi\)
0.334136 0.942525i \(-0.391555\pi\)
\(60\) 0 0
\(61\) 295235. 511361.i 0.166538 0.288452i −0.770663 0.637243i \(-0.780075\pi\)
0.937200 + 0.348792i \(0.113408\pi\)
\(62\) −3.14217e6 −1.67440
\(63\) 0 0
\(64\) −2.67579e6 −1.27591
\(65\) 653562. 1.13200e6i 0.295182 0.511270i
\(66\) 0 0
\(67\) −26787.7 46397.7i −0.0108811 0.0188467i 0.860534 0.509394i \(-0.170130\pi\)
−0.871415 + 0.490547i \(0.836797\pi\)
\(68\) 1.49076e6 + 2.58208e6i 0.574947 + 0.995838i
\(69\) 0 0
\(70\) −1.36271e6 + 2.36027e6i −0.474853 + 0.822469i
\(71\) −4.95678e6 −1.64360 −0.821798 0.569779i \(-0.807029\pi\)
−0.821798 + 0.569779i \(0.807029\pi\)
\(72\) 0 0
\(73\) 817542. 0.245969 0.122984 0.992409i \(-0.460753\pi\)
0.122984 + 0.992409i \(0.460753\pi\)
\(74\) 277169. 480071.i 0.0795121 0.137719i
\(75\) 0 0
\(76\) 468170. + 810895.i 0.122337 + 0.211893i
\(77\) −4.26396e6 7.38540e6i −1.06438 1.84356i
\(78\) 0 0
\(79\) −3.78629e6 + 6.55804e6i −0.864009 + 1.49651i 0.00401783 + 0.999992i \(0.498721\pi\)
−0.868027 + 0.496516i \(0.834612\pi\)
\(80\) −1.54545e6 −0.337473
\(81\) 0 0
\(82\) 2.34373e6 0.469417
\(83\) 509455. 882402.i 0.0977986 0.169392i −0.812975 0.582299i \(-0.802153\pi\)
0.910773 + 0.412907i \(0.135487\pi\)
\(84\) 0 0
\(85\) 1.15532e6 + 2.00108e6i 0.204050 + 0.353425i
\(86\) 2.04262e6 + 3.53792e6i 0.346293 + 0.599797i
\(87\) 0 0
\(88\) −951337. + 1.64776e6i −0.148814 + 0.257754i
\(89\) 1.37281e6 0.206418 0.103209 0.994660i \(-0.467089\pi\)
0.103209 + 0.994660i \(0.467089\pi\)
\(90\) 0 0
\(91\) −1.64658e7 −2.29054
\(92\) −5.58756e6 + 9.67794e6i −0.748109 + 1.29576i
\(93\) 0 0
\(94\) −2.78049e6 4.81596e6i −0.345283 0.598047i
\(95\) 362825. + 628432.i 0.0434175 + 0.0752013i
\(96\) 0 0
\(97\) 5.30114e6 9.18185e6i 0.589750 1.02148i −0.404514 0.914532i \(-0.632559\pi\)
0.994265 0.106946i \(-0.0341072\pi\)
\(98\) 2.06665e7 2.21807
\(99\) 0 0
\(100\) −9.58986e6 −0.958986
\(101\) 5.21385e6 9.03065e6i 0.503540 0.872156i −0.496452 0.868064i \(-0.665364\pi\)
0.999992 0.00409199i \(-0.00130252\pi\)
\(102\) 0 0
\(103\) −766574. 1.32775e6i −0.0691232 0.119725i 0.829392 0.558667i \(-0.188687\pi\)
−0.898516 + 0.438942i \(0.855353\pi\)
\(104\) 1.83685e6 + 3.18151e6i 0.160124 + 0.277343i
\(105\) 0 0
\(106\) −1.37025e7 + 2.37335e7i −1.11745 + 1.93549i
\(107\) 9.64859e6 0.761414 0.380707 0.924696i \(-0.375681\pi\)
0.380707 + 0.924696i \(0.375681\pi\)
\(108\) 0 0
\(109\) 5.79409e6 0.428541 0.214270 0.976774i \(-0.431263\pi\)
0.214270 + 0.976774i \(0.431263\pi\)
\(110\) −5.61672e6 + 9.72845e6i −0.402354 + 0.696898i
\(111\) 0 0
\(112\) 9.73395e6 + 1.68597e7i 0.654675 + 1.13393i
\(113\) 7.24214e6 + 1.25438e7i 0.472164 + 0.817812i 0.999493 0.0318497i \(-0.0101398\pi\)
−0.527329 + 0.849661i \(0.676806\pi\)
\(114\) 0 0
\(115\) −4.33028e6 + 7.50027e6i −0.265506 + 0.459869i
\(116\) −1.10188e7 −0.655435
\(117\) 0 0
\(118\) 3.39871e7 1.90426
\(119\) 1.45535e7 2.52074e7i 0.791688 1.37124i
\(120\) 0 0
\(121\) −7.83137e6 1.35643e7i −0.401873 0.696064i
\(122\) 4.89894e6 + 8.48521e6i 0.244255 + 0.423061i
\(123\) 0 0
\(124\) 1.39504e7 2.41628e7i 0.657069 1.13808i
\(125\) −1.63528e7 −0.748873
\(126\) 0 0
\(127\) −1.65775e7 −0.718136 −0.359068 0.933311i \(-0.616905\pi\)
−0.359068 + 0.933311i \(0.616905\pi\)
\(128\) 5.19800e6 9.00320e6i 0.219079 0.379456i
\(129\) 0 0
\(130\) 1.08448e7 + 1.87837e7i 0.432932 + 0.749860i
\(131\) −7.23890e6 1.25381e7i −0.281335 0.487286i 0.690379 0.723448i \(-0.257444\pi\)
−0.971714 + 0.236162i \(0.924110\pi\)
\(132\) 0 0
\(133\) 4.57049e6 7.91632e6i 0.168454 0.291771i
\(134\) 888999. 0.0319179
\(135\) 0 0
\(136\) −6.49411e6 −0.221377
\(137\) −2.10969e7 + 3.65409e7i −0.700966 + 1.21411i 0.267161 + 0.963652i \(0.413914\pi\)
−0.968128 + 0.250457i \(0.919419\pi\)
\(138\) 0 0
\(139\) −2.39966e7 4.15634e7i −0.757877 1.31268i −0.943931 0.330141i \(-0.892904\pi\)
0.186055 0.982539i \(-0.440430\pi\)
\(140\) −1.21001e7 2.09580e7i −0.372684 0.645508i
\(141\) 0 0
\(142\) 4.11249e7 7.12303e7i 1.20530 2.08764i
\(143\) −6.78676e7 −1.94083
\(144\) 0 0
\(145\) −8.53938e6 −0.232615
\(146\) −6.78289e6 + 1.17483e7i −0.180377 + 0.312421i
\(147\) 0 0
\(148\) 2.46111e6 + 4.26277e6i 0.0624044 + 0.108088i
\(149\) −5.78338e6 1.00171e7i −0.143229 0.248079i 0.785482 0.618884i \(-0.212415\pi\)
−0.928711 + 0.370805i \(0.879082\pi\)
\(150\) 0 0
\(151\) −5.49667e6 + 9.52051e6i −0.129921 + 0.225030i −0.923646 0.383247i \(-0.874806\pi\)
0.793725 + 0.608277i \(0.208139\pi\)
\(152\) −2.03945e6 −0.0471044
\(153\) 0 0
\(154\) 1.41507e8 3.12216
\(155\) 1.08114e7 1.87258e7i 0.233195 0.403906i
\(156\) 0 0
\(157\) −1.24009e7 2.14790e7i −0.255744 0.442961i 0.709354 0.704853i \(-0.248987\pi\)
−0.965097 + 0.261892i \(0.915654\pi\)
\(158\) −6.28273e7 1.08820e8i −1.26721 2.19487i
\(159\) 0 0
\(160\) 1.51674e7 2.62707e7i 0.292746 0.507051i
\(161\) 1.09097e8 2.06025
\(162\) 0 0
\(163\) 3.04106e6 0.0550008 0.0275004 0.999622i \(-0.491245\pi\)
0.0275004 + 0.999622i \(0.491245\pi\)
\(164\) −1.04055e7 + 1.80229e7i −0.184209 + 0.319060i
\(165\) 0 0
\(166\) 8.45359e6 + 1.46420e7i 0.143438 + 0.248441i
\(167\) 5.34244e7 + 9.25337e7i 0.887629 + 1.53742i 0.842670 + 0.538430i \(0.180982\pi\)
0.0449591 + 0.998989i \(0.485684\pi\)
\(168\) 0 0
\(169\) −3.41454e7 + 5.91415e7i −0.544162 + 0.942517i
\(170\) −3.83414e7 −0.598545
\(171\) 0 0
\(172\) −3.62748e7 −0.543570
\(173\) −4.97468e7 + 8.61640e7i −0.730472 + 1.26521i 0.226209 + 0.974079i \(0.427367\pi\)
−0.956682 + 0.291136i \(0.905967\pi\)
\(174\) 0 0
\(175\) 4.68103e7 + 8.10778e7i 0.660249 + 1.14359i
\(176\) 4.01208e7 + 6.94913e7i 0.554722 + 0.960807i
\(177\) 0 0
\(178\) −1.13898e7 + 1.97277e7i −0.151372 + 0.262185i
\(179\) 2.29173e7 0.298661 0.149330 0.988787i \(-0.452288\pi\)
0.149330 + 0.988787i \(0.452288\pi\)
\(180\) 0 0
\(181\) −1.35824e8 −1.70256 −0.851280 0.524712i \(-0.824173\pi\)
−0.851280 + 0.524712i \(0.824173\pi\)
\(182\) 1.36611e8 2.36618e8i 1.67972 2.90936i
\(183\) 0 0
\(184\) −1.21703e7 2.10796e7i −0.144026 0.249460i
\(185\) 1.90733e6 + 3.30359e6i 0.0221475 + 0.0383605i
\(186\) 0 0
\(187\) 5.99859e7 1.03899e8i 0.670816 1.16189i
\(188\) 4.93786e7 0.541984
\(189\) 0 0
\(190\) −1.20410e7 −0.127358
\(191\) −5.59594e7 + 9.69245e7i −0.581107 + 1.00651i 0.414241 + 0.910167i \(0.364047\pi\)
−0.995348 + 0.0963402i \(0.969286\pi\)
\(192\) 0 0
\(193\) −5.14492e7 8.91126e7i −0.515143 0.892254i −0.999846 0.0175746i \(-0.994406\pi\)
0.484703 0.874679i \(-0.338928\pi\)
\(194\) 8.79639e7 + 1.52358e8i 0.864965 + 1.49816i
\(195\) 0 0
\(196\) −9.17537e7 + 1.58922e8i −0.870417 + 1.50761i
\(197\) 3.77994e7 0.352252 0.176126 0.984368i \(-0.443643\pi\)
0.176126 + 0.984368i \(0.443643\pi\)
\(198\) 0 0
\(199\) −49088.1 −0.000441560 −0.000220780 1.00000i \(-0.500070\pi\)
−0.000220780 1.00000i \(0.500070\pi\)
\(200\) 1.04439e7 1.80894e7i 0.0923118 0.159889i
\(201\) 0 0
\(202\) 8.65154e7 + 1.49849e8i 0.738522 + 1.27916i
\(203\) 5.37850e7 + 9.31584e7i 0.451258 + 0.781603i
\(204\) 0 0
\(205\) −8.06415e6 + 1.39675e7i −0.0653762 + 0.113235i
\(206\) 2.54401e7 0.202761
\(207\) 0 0
\(208\) 1.54931e8 1.19376
\(209\) 1.88384e7 3.26290e7i 0.142735 0.247225i
\(210\) 0 0
\(211\) −9.42860e7 1.63308e8i −0.690969 1.19679i −0.971521 0.236954i \(-0.923851\pi\)
0.280552 0.959839i \(-0.409483\pi\)
\(212\) −1.21671e8 2.10741e8i −0.877025 1.51905i
\(213\) 0 0
\(214\) −8.00514e7 + 1.38653e8i −0.558368 + 0.967122i
\(215\) −2.81125e7 −0.192914
\(216\) 0 0
\(217\) −2.72380e8 −1.80953
\(218\) −4.80718e7 + 8.32627e7i −0.314262 + 0.544318i
\(219\) 0 0
\(220\) −4.98735e7 8.63835e7i −0.315784 0.546955i
\(221\) −1.15821e8 2.00608e8i −0.721797 1.25019i
\(222\) 0 0
\(223\) −5.28378e7 + 9.15177e7i −0.319064 + 0.552635i −0.980293 0.197549i \(-0.936702\pi\)
0.661229 + 0.750184i \(0.270035\pi\)
\(224\) −3.82125e8 −2.27163
\(225\) 0 0
\(226\) −2.40343e8 −1.38501
\(227\) 2.29625e7 3.97723e7i 0.130295 0.225678i −0.793495 0.608577i \(-0.791741\pi\)
0.923790 + 0.382898i \(0.125074\pi\)
\(228\) 0 0
\(229\) 6.14475e7 + 1.06430e8i 0.338127 + 0.585653i 0.984080 0.177724i \(-0.0568733\pi\)
−0.645953 + 0.763377i \(0.723540\pi\)
\(230\) −7.18540e7 1.24455e8i −0.389407 0.674473i
\(231\) 0 0
\(232\) 1.20000e7 2.07847e7i 0.0630921 0.109279i
\(233\) 1.68276e8 0.871519 0.435760 0.900063i \(-0.356480\pi\)
0.435760 + 0.900063i \(0.356480\pi\)
\(234\) 0 0
\(235\) 3.82677e7 0.192351
\(236\) −1.50894e8 + 2.61355e8i −0.747272 + 1.29431i
\(237\) 0 0
\(238\) 2.41492e8 + 4.18277e8i 1.16114 + 2.01115i
\(239\) −4.01263e7 6.95008e7i −0.190124 0.329304i 0.755167 0.655532i \(-0.227556\pi\)
−0.945291 + 0.326228i \(0.894222\pi\)
\(240\) 0 0
\(241\) −7.46641e7 + 1.29322e8i −0.343599 + 0.595131i −0.985098 0.171993i \(-0.944980\pi\)
0.641499 + 0.767124i \(0.278313\pi\)
\(242\) 2.59898e8 1.17882
\(243\) 0 0
\(244\) −8.70000e7 −0.383402
\(245\) −7.11078e7 + 1.23162e8i −0.308913 + 0.535053i
\(246\) 0 0
\(247\) −3.63733e7 6.30004e7i −0.153583 0.266014i
\(248\) 3.03855e7 + 5.26293e7i 0.126499 + 0.219102i
\(249\) 0 0
\(250\) 1.35675e8 2.34995e8i 0.549172 0.951194i
\(251\) −4.54290e8 −1.81332 −0.906661 0.421861i \(-0.861377\pi\)
−0.906661 + 0.421861i \(0.861377\pi\)
\(252\) 0 0
\(253\) 4.49668e8 1.74570
\(254\) 1.37539e8 2.38224e8i 0.526631 0.912152i
\(255\) 0 0
\(256\) −8.49980e7 1.47221e8i −0.316642 0.548440i
\(257\) 1.46072e7 + 2.53004e7i 0.0536786 + 0.0929741i 0.891616 0.452792i \(-0.149572\pi\)
−0.837938 + 0.545766i \(0.816239\pi\)
\(258\) 0 0
\(259\) 2.40265e7 4.16151e7i 0.0859293 0.148834i
\(260\) −1.92592e8 −0.679566
\(261\) 0 0
\(262\) 2.40236e8 0.825246
\(263\) 2.24703e8 3.89197e8i 0.761664 1.31924i −0.180328 0.983607i \(-0.557716\pi\)
0.941992 0.335635i \(-0.108951\pi\)
\(264\) 0 0
\(265\) −9.42934e7 1.63321e8i −0.311258 0.539115i
\(266\) 7.58399e7 + 1.31359e8i 0.247066 + 0.427930i
\(267\) 0 0
\(268\) −3.94692e6 + 6.83626e6i −0.0125252 + 0.0216944i
\(269\) −1.94325e7 −0.0608689 −0.0304345 0.999537i \(-0.509689\pi\)
−0.0304345 + 0.999537i \(0.509689\pi\)
\(270\) 0 0
\(271\) −2.13963e7 −0.0653051 −0.0326525 0.999467i \(-0.510395\pi\)
−0.0326525 + 0.999467i \(0.510395\pi\)
\(272\) −1.36938e8 + 2.37184e8i −0.412604 + 0.714652i
\(273\) 0 0
\(274\) −3.50069e8 6.06338e8i −1.02808 1.78069i
\(275\) 1.92940e8 + 3.34182e8i 0.559445 + 0.968988i
\(276\) 0 0
\(277\) 9.25074e7 1.60228e8i 0.261515 0.452958i −0.705129 0.709079i \(-0.749111\pi\)
0.966645 + 0.256121i \(0.0824445\pi\)
\(278\) 7.96371e8 2.22310
\(279\) 0 0
\(280\) 5.27107e7 0.143498
\(281\) 1.81176e7 3.13805e7i 0.0487111 0.0843700i −0.840642 0.541591i \(-0.817822\pi\)
0.889353 + 0.457221i \(0.151155\pi\)
\(282\) 0 0
\(283\) 1.98050e8 + 3.43032e8i 0.519424 + 0.899668i 0.999745 + 0.0225757i \(0.00718669\pi\)
−0.480321 + 0.877093i \(0.659480\pi\)
\(284\) 3.65167e8 + 6.32488e8i 0.945970 + 1.63847i
\(285\) 0 0
\(286\) 5.63077e8 9.75278e8i 1.42327 2.46517i
\(287\) 2.03167e8 0.507303
\(288\) 0 0
\(289\) −857331. −0.00208932
\(290\) 7.08486e7 1.22713e8i 0.170584 0.295460i
\(291\) 0 0
\(292\) −6.02285e7 1.04319e8i −0.141567 0.245201i
\(293\) −1.98234e8 3.43351e8i −0.460406 0.797447i 0.538575 0.842578i \(-0.318963\pi\)
−0.998981 + 0.0451308i \(0.985630\pi\)
\(294\) 0 0
\(295\) −1.16940e8 + 2.02547e8i −0.265208 + 0.459355i
\(296\) −1.07212e7 −0.0240282
\(297\) 0 0
\(298\) 1.91932e8 0.420136
\(299\) 4.34111e8 7.51903e8i 0.939187 1.62672i
\(300\) 0 0
\(301\) 1.77066e8 + 3.06687e8i 0.374241 + 0.648204i
\(302\) −9.12083e7 1.57977e8i −0.190551 0.330043i
\(303\) 0 0
\(304\) −4.30051e7 + 7.44869e7i −0.0877934 + 0.152063i
\(305\) −6.74238e7 −0.136070
\(306\) 0 0
\(307\) −3.12263e8 −0.615936 −0.307968 0.951397i \(-0.599649\pi\)
−0.307968 + 0.951397i \(0.599649\pi\)
\(308\) −6.28254e8 + 1.08817e9i −1.22520 + 2.12211i
\(309\) 0 0
\(310\) 1.79397e8 + 3.10725e8i 0.342019 + 0.592393i
\(311\) −1.41454e8 2.45006e8i −0.266658 0.461865i 0.701339 0.712828i \(-0.252586\pi\)
−0.967997 + 0.250963i \(0.919253\pi\)
\(312\) 0 0
\(313\) 4.77901e8 8.27749e8i 0.880912 1.52578i 0.0305838 0.999532i \(-0.490263\pi\)
0.850328 0.526252i \(-0.176403\pi\)
\(314\) 4.11546e8 0.750179
\(315\) 0 0
\(316\) 1.11575e9 1.98912
\(317\) −2.06526e8 + 3.57713e8i −0.364139 + 0.630707i −0.988638 0.150319i \(-0.951970\pi\)
0.624499 + 0.781026i \(0.285303\pi\)
\(318\) 0 0
\(319\) 2.21688e8 + 3.83975e8i 0.382362 + 0.662271i
\(320\) 1.52770e8 + 2.64605e8i 0.260623 + 0.451412i
\(321\) 0 0
\(322\) −9.05141e8 + 1.56775e9i −1.51085 + 2.61687i
\(323\) 1.28596e8 0.212334
\(324\) 0 0
\(325\) 7.45059e8 1.20392
\(326\) −2.52308e7 + 4.37010e7i −0.0403338 + 0.0698602i
\(327\) 0 0
\(328\) −2.26644e7 3.92560e7i −0.0354639 0.0614253i
\(329\) −2.41028e8 4.17473e8i −0.373149 0.646313i
\(330\) 0 0
\(331\) −1.14440e8 + 1.98216e8i −0.173452 + 0.300428i −0.939625 0.342207i \(-0.888826\pi\)
0.766172 + 0.642635i \(0.222159\pi\)
\(332\) −1.50127e8 −0.225151
\(333\) 0 0
\(334\) −1.77298e9 −2.60370
\(335\) −3.05881e6 + 5.29801e6i −0.00444524 + 0.00769938i
\(336\) 0 0
\(337\) −4.89037e8 8.47037e8i −0.696044 1.20558i −0.969827 0.243793i \(-0.921608\pi\)
0.273783 0.961792i \(-0.411725\pi\)
\(338\) −5.66587e8 9.81358e8i −0.798102 1.38235i
\(339\) 0 0
\(340\) 1.70226e8 2.94839e8i 0.234881 0.406827i
\(341\) −1.12268e9 −1.53326
\(342\) 0 0
\(343\) 6.06895e8 0.812053
\(344\) 3.95053e7 6.84252e7i 0.0523240 0.0906278i
\(345\) 0 0
\(346\) −8.25468e8 1.42975e9i −1.07136 1.85564i
\(347\) 7.10494e7 + 1.23061e8i 0.0912867 + 0.158113i 0.908053 0.418856i \(-0.137569\pi\)
−0.816766 + 0.576969i \(0.804235\pi\)
\(348\) 0 0
\(349\) 2.31667e8 4.01259e8i 0.291726 0.505284i −0.682492 0.730893i \(-0.739104\pi\)
0.974218 + 0.225609i \(0.0724372\pi\)
\(350\) −1.55348e9 −1.93673
\(351\) 0 0
\(352\) −1.57502e9 −1.92481
\(353\) 1.10318e8 1.91076e8i 0.133486 0.231204i −0.791532 0.611127i \(-0.790716\pi\)
0.925018 + 0.379924i \(0.124050\pi\)
\(354\) 0 0
\(355\) 2.82999e8 + 4.90169e8i 0.335727 + 0.581496i
\(356\) −1.01136e8 1.75172e8i −0.118803 0.205773i
\(357\) 0 0
\(358\) −1.90138e8 + 3.29329e8i −0.219017 + 0.379349i
\(359\) 2.57110e8 0.293284 0.146642 0.989190i \(-0.453153\pi\)
0.146642 + 0.989190i \(0.453153\pi\)
\(360\) 0 0
\(361\) −8.53486e8 −0.954820
\(362\) 1.12689e9 1.95183e9i 1.24854 2.16253i
\(363\) 0 0
\(364\) 1.21304e9 + 2.10104e9i 1.31831 + 2.28339i
\(365\) −4.66762e7 8.08456e7i −0.0502425 0.0870225i
\(366\) 0 0
\(367\) −3.61360e8 + 6.25893e8i −0.381600 + 0.660951i −0.991291 0.131688i \(-0.957960\pi\)
0.609691 + 0.792639i \(0.291293\pi\)
\(368\) −1.02652e9 −1.07374
\(369\) 0 0
\(370\) −6.32980e7 −0.0649657
\(371\) −1.18781e9 + 2.05735e9i −1.20764 + 2.09170i
\(372\) 0 0
\(373\) 2.94579e8 + 5.10226e8i 0.293915 + 0.509075i 0.974732 0.223378i \(-0.0717085\pi\)
−0.680817 + 0.732453i \(0.738375\pi\)
\(374\) 9.95369e8 + 1.72403e9i 0.983861 + 1.70410i
\(375\) 0 0
\(376\) −5.37761e7 + 9.31429e7i −0.0521713 + 0.0903634i
\(377\) 8.56073e8 0.822842
\(378\) 0 0
\(379\) 9.02541e8 0.851589 0.425794 0.904820i \(-0.359995\pi\)
0.425794 + 0.904820i \(0.359995\pi\)
\(380\) 5.34588e7 9.25934e7i 0.0499778 0.0865641i
\(381\) 0 0
\(382\) −9.28556e8 1.60831e9i −0.852288 1.47621i
\(383\) −2.79688e8 4.84433e8i −0.254377 0.440594i 0.710349 0.703849i \(-0.248537\pi\)
−0.964726 + 0.263256i \(0.915204\pi\)
\(384\) 0 0
\(385\) −4.86888e8 + 8.43315e8i −0.434827 + 0.753142i
\(386\) 1.70743e9 1.51108
\(387\) 0 0
\(388\) −1.56215e9 −1.35772
\(389\) 6.70702e8 1.16169e9i 0.577705 1.00061i −0.418037 0.908430i \(-0.637282\pi\)
0.995742 0.0921844i \(-0.0293849\pi\)
\(390\) 0 0
\(391\) 7.67392e8 + 1.32916e9i 0.649230 + 1.12450i
\(392\) −1.99850e8 3.46150e8i −0.167572 0.290244i
\(393\) 0 0
\(394\) −3.13610e8 + 5.43189e8i −0.258317 + 0.447419i
\(395\) 8.64687e8 0.705942
\(396\) 0 0
\(397\) 2.24763e9 1.80285 0.901423 0.432939i \(-0.142523\pi\)
0.901423 + 0.432939i \(0.142523\pi\)
\(398\) 407269. 705410.i 0.000323810 0.000560855i
\(399\) 0 0
\(400\) −4.40451e8 7.62884e8i −0.344103 0.596003i
\(401\) 1.20251e9 + 2.08281e9i 0.931289 + 1.61304i 0.781120 + 0.624380i \(0.214648\pi\)
0.150169 + 0.988660i \(0.452018\pi\)
\(402\) 0 0
\(403\) −1.08384e9 + 1.87727e9i −0.824893 + 1.42876i
\(404\) −1.53642e9 −1.15925
\(405\) 0 0
\(406\) −1.78495e9 −1.32369
\(407\) 9.90311e7 1.71527e8i 0.0728100 0.126111i
\(408\) 0 0
\(409\) −3.81997e8 6.61639e8i −0.276076 0.478178i 0.694330 0.719657i \(-0.255701\pi\)
−0.970406 + 0.241479i \(0.922367\pi\)
\(410\) −1.33812e8 2.31768e8i −0.0958849 0.166077i
\(411\) 0 0
\(412\) −1.12947e8 + 1.95631e8i −0.0795676 + 0.137815i
\(413\) 2.94618e9 2.05795
\(414\) 0 0
\(415\) −1.16346e8 −0.0799068
\(416\) −1.52053e9 + 2.63364e9i −1.03554 + 1.79362i
\(417\) 0 0
\(418\) 3.12593e8 + 5.41426e8i 0.209345 + 0.362596i
\(419\) −1.44306e8 2.49945e8i −0.0958373 0.165995i 0.814120 0.580696i \(-0.197220\pi\)
−0.909958 + 0.414701i \(0.863886\pi\)
\(420\) 0 0
\(421\) 7.79439e8 1.35003e9i 0.509090 0.881770i −0.490855 0.871242i \(-0.663315\pi\)
0.999945 0.0105283i \(-0.00335132\pi\)
\(422\) 3.12905e9 2.02684
\(423\) 0 0
\(424\) 5.30027e8 0.337689
\(425\) −6.58532e8 + 1.14061e9i −0.416117 + 0.720737i
\(426\) 0 0
\(427\) 4.24667e8 + 7.35544e8i 0.263968 + 0.457205i
\(428\) −7.10814e8 1.23117e9i −0.438231 0.759038i
\(429\) 0 0
\(430\) 2.33240e8 4.03984e8i 0.141470 0.245033i
\(431\) −9.87526e8 −0.594125 −0.297063 0.954858i \(-0.596007\pi\)
−0.297063 + 0.954858i \(0.596007\pi\)
\(432\) 0 0
\(433\) −2.07048e9 −1.22564 −0.612820 0.790223i \(-0.709965\pi\)
−0.612820 + 0.790223i \(0.709965\pi\)
\(434\) 2.25986e9 3.91419e9i 1.32699 2.29841i
\(435\) 0 0
\(436\) −4.26852e8 7.39329e8i −0.246646 0.427204i
\(437\) 2.40997e8 + 4.17419e8i 0.138142 + 0.239270i
\(438\) 0 0
\(439\) 1.55383e9 2.69131e9i 0.876553 1.51823i 0.0214532 0.999770i \(-0.493171\pi\)
0.855100 0.518464i \(-0.173496\pi\)
\(440\) 2.17260e8 0.121589
\(441\) 0 0
\(442\) 3.84373e9 2.11726
\(443\) −8.88643e8 + 1.53917e9i −0.485640 + 0.841153i −0.999864 0.0165031i \(-0.994747\pi\)
0.514224 + 0.857656i \(0.328080\pi\)
\(444\) 0 0
\(445\) −7.83786e7 1.35756e8i −0.0421636 0.0730294i
\(446\) −8.76758e8 1.51859e9i −0.467959 0.810528i
\(447\) 0 0
\(448\) 1.92443e9 3.33322e9i 1.01118 1.75142i
\(449\) −3.38966e9 −1.76723 −0.883616 0.468212i \(-0.844898\pi\)
−0.883616 + 0.468212i \(0.844898\pi\)
\(450\) 0 0
\(451\) 8.37404e8 0.429850
\(452\) 1.06706e9 1.84820e9i 0.543506 0.941381i
\(453\) 0 0
\(454\) 3.81026e8 + 6.59957e8i 0.191099 + 0.330994i
\(455\) 9.40086e8 + 1.62828e9i 0.467873 + 0.810379i
\(456\) 0 0
\(457\) 1.04822e9 1.81557e9i 0.513744 0.889830i −0.486129 0.873887i \(-0.661592\pi\)
0.999873 0.0159431i \(-0.00507507\pi\)
\(458\) −2.03924e9 −0.991836
\(459\) 0 0
\(460\) 1.27605e9 0.611246
\(461\) −8.92296e8 + 1.54550e9i −0.424185 + 0.734711i −0.996344 0.0854323i \(-0.972773\pi\)
0.572158 + 0.820143i \(0.306106\pi\)
\(462\) 0 0
\(463\) −1.14900e9 1.99013e9i −0.538005 0.931852i −0.999011 0.0444554i \(-0.985845\pi\)
0.461006 0.887397i \(-0.347489\pi\)
\(464\) −5.06079e8 8.76554e8i −0.235183 0.407348i
\(465\) 0 0
\(466\) −1.39614e9 + 2.41818e9i −0.639112 + 1.10697i
\(467\) −8.59979e8 −0.390732 −0.195366 0.980730i \(-0.562589\pi\)
−0.195366 + 0.980730i \(0.562589\pi\)
\(468\) 0 0
\(469\) 7.70632e7 0.0344939
\(470\) −3.17496e8 + 5.49919e8i −0.141057 + 0.244318i
\(471\) 0 0
\(472\) −3.28663e8 5.69261e8i −0.143865 0.249181i
\(473\) 7.29819e8 + 1.26408e9i 0.317103 + 0.549239i
\(474\) 0 0
\(475\) −2.06810e8 + 3.58206e8i −0.0885409 + 0.153357i
\(476\) −4.28865e9 −1.82262
\(477\) 0 0
\(478\) 1.33166e9 0.557695
\(479\) −1.53303e7 + 2.65529e7i −0.00637349 + 0.0110392i −0.869195 0.494470i \(-0.835362\pi\)
0.862821 + 0.505509i \(0.168695\pi\)
\(480\) 0 0
\(481\) −1.91210e8 3.31185e8i −0.0783434 0.135695i
\(482\) −1.23893e9 2.14589e9i −0.503944 0.872857i
\(483\) 0 0
\(484\) −1.15388e9 + 1.99857e9i −0.462595 + 0.801238i
\(485\) −1.21064e9 −0.481858
\(486\) 0 0
\(487\) −5.78717e8 −0.227047 −0.113523 0.993535i \(-0.536214\pi\)
−0.113523 + 0.993535i \(0.536214\pi\)
\(488\) 9.47479e7 1.64108e8i 0.0369063 0.0639235i
\(489\) 0 0
\(490\) −1.17992e9 2.04368e9i −0.453071 0.784742i
\(491\) −1.64860e9 2.85545e9i −0.628534 1.08865i −0.987846 0.155436i \(-0.950322\pi\)
0.359312 0.933218i \(-0.383011\pi\)
\(492\) 0 0
\(493\) −7.56654e8 + 1.31056e9i −0.284402 + 0.492599i
\(494\) 1.20711e9 0.450509
\(495\) 0 0
\(496\) 2.56291e9 0.943076
\(497\) 3.56493e9 6.17463e9i 1.30258 2.25613i
\(498\) 0 0
\(499\) 2.13590e9 + 3.69949e9i 0.769537 + 1.33288i 0.937814 + 0.347138i \(0.112846\pi\)
−0.168277 + 0.985740i \(0.553820\pi\)
\(500\) 1.20472e9 + 2.08663e9i 0.431013 + 0.746536i
\(501\) 0 0
\(502\) 3.76910e9 6.52827e9i 1.32976 2.30322i
\(503\) 1.85857e9 0.651165 0.325582 0.945514i \(-0.394440\pi\)
0.325582 + 0.945514i \(0.394440\pi\)
\(504\) 0 0
\(505\) −1.19071e9 −0.411419
\(506\) −3.73076e9 + 6.46187e9i −1.28018 + 2.21733i
\(507\) 0 0
\(508\) 1.22127e9 + 2.11530e9i 0.413322 + 0.715895i
\(509\) 1.06304e9 + 1.84125e9i 0.357305 + 0.618870i 0.987510 0.157559i \(-0.0503624\pi\)
−0.630205 + 0.776429i \(0.717029\pi\)
\(510\) 0 0
\(511\) −5.87978e8 + 1.01841e9i −0.194934 + 0.337636i
\(512\) 4.15150e9 1.36697
\(513\) 0 0
\(514\) −4.84766e8 −0.157457
\(515\) −8.75327e7 + 1.51611e8i −0.0282387 + 0.0489109i
\(516\) 0 0
\(517\) −9.93457e8 1.72072e9i −0.316178 0.547637i
\(518\) 3.98681e8 + 6.90536e8i 0.126029 + 0.218289i
\(519\) 0 0
\(520\) 2.09744e8 3.63287e8i 0.0654150 0.113302i
\(521\) −5.97837e9 −1.85204 −0.926021 0.377472i \(-0.876793\pi\)
−0.926021 + 0.377472i \(0.876793\pi\)
\(522\) 0 0
\(523\) 5.69436e8 0.174056 0.0870280 0.996206i \(-0.472263\pi\)
0.0870280 + 0.996206i \(0.472263\pi\)
\(524\) −1.06658e9 + 1.84738e9i −0.323844 + 0.560914i
\(525\) 0 0
\(526\) 3.72858e9 + 6.45809e9i 1.11710 + 1.93488i
\(527\) −1.91594e9 3.31850e9i −0.570223 0.987655i
\(528\) 0 0
\(529\) −1.17386e9 + 2.03319e9i −0.344765 + 0.597150i
\(530\) 3.12929e9 0.913021
\(531\) 0 0
\(532\) −1.34684e9 −0.387815
\(533\) 8.08432e8 1.40025e9i 0.231259 0.400552i
\(534\) 0 0
\(535\) −5.50871e8 9.54136e8i −0.155529 0.269384i
\(536\) −8.59683e6 1.48901e7i −0.00241136 0.00417659i
\(537\) 0 0
\(538\) 1.61226e8 2.79251e8i 0.0446371 0.0773137i
\(539\) 7.38403e9 2.03111
\(540\) 0 0
\(541\) −1.88830e9 −0.512722 −0.256361 0.966581i \(-0.582524\pi\)
−0.256361 + 0.966581i \(0.582524\pi\)
\(542\) 1.77519e8 3.07472e8i 0.0478902 0.0829483i
\(543\) 0 0
\(544\) −2.68789e9 4.65557e9i −0.715840 1.23987i
\(545\) −3.30804e8 5.72969e8i −0.0875352 0.151615i
\(546\) 0 0
\(547\) −2.94314e8 + 5.09767e8i −0.0768875 + 0.133173i −0.901906 0.431933i \(-0.857832\pi\)
0.825018 + 0.565106i \(0.191165\pi\)
\(548\) 6.21686e9 1.61376
\(549\) 0 0
\(550\) −6.40305e9 −1.64103
\(551\) −2.37625e8 + 4.11578e8i −0.0605148 + 0.104815i
\(552\) 0 0
\(553\) −5.44621e9 9.43311e9i −1.36948 2.37201i
\(554\) 1.53501e9 + 2.65872e9i 0.383555 + 0.664336i
\(555\) 0 0
\(556\) −3.53568e9 + 6.12397e9i −0.872390 + 1.51102i
\(557\) 5.59795e9 1.37257 0.686287 0.727331i \(-0.259239\pi\)
0.686287 + 0.727331i \(0.259239\pi\)
\(558\) 0 0
\(559\) 2.81828e9 0.682405
\(560\) 1.11149e9 1.92515e9i 0.267453 0.463241i
\(561\) 0 0
\(562\) 3.00632e8 + 5.20709e8i 0.0714427 + 0.123742i
\(563\) 1.53093e9 + 2.65165e9i 0.361557 + 0.626235i 0.988217 0.153058i \(-0.0489121\pi\)
−0.626661 + 0.779292i \(0.715579\pi\)
\(564\) 0 0
\(565\) 8.26957e8 1.43233e9i 0.192892 0.334098i
\(566\) −6.57263e9 −1.52364
\(567\) 0 0
\(568\) −1.59075e9 −0.364236
\(569\) −8.72861e8 + 1.51184e9i −0.198633 + 0.344043i −0.948086 0.318015i \(-0.896984\pi\)
0.749452 + 0.662059i \(0.230317\pi\)
\(570\) 0 0
\(571\) 2.64148e9 + 4.57517e9i 0.593773 + 1.02844i 0.993719 + 0.111906i \(0.0356955\pi\)
−0.399946 + 0.916539i \(0.630971\pi\)
\(572\) 4.99983e9 + 8.65995e9i 1.11704 + 1.93477i
\(573\) 0 0
\(574\) −1.68562e9 + 2.91957e9i −0.372021 + 0.644359i
\(575\) −4.93651e9 −1.08289
\(576\) 0 0
\(577\) −6.38776e9 −1.38431 −0.692155 0.721749i \(-0.743338\pi\)
−0.692155 + 0.721749i \(0.743338\pi\)
\(578\) 7.11301e6 1.23201e7i 0.00153217 0.00265379i
\(579\) 0 0
\(580\) 6.29098e8 + 1.08963e9i 0.133881 + 0.231889i
\(581\) 7.32803e8 + 1.26925e9i 0.155014 + 0.268492i
\(582\) 0 0
\(583\) −4.89584e9 + 8.47985e9i −1.02326 + 1.77235i
\(584\) 2.62369e8 0.0545089
\(585\) 0 0
\(586\) 6.57874e9 1.35052
\(587\) 2.96744e9 5.13976e9i 0.605548 1.04884i −0.386417 0.922324i \(-0.626287\pi\)
0.991965 0.126515i \(-0.0403793\pi\)
\(588\) 0 0
\(589\) −6.01695e8 1.04217e9i −0.121331 0.210152i
\(590\) −1.94044e9 3.36093e9i −0.388971 0.673718i
\(591\) 0 0
\(592\) −2.26072e8 + 3.91569e8i −0.0447838 + 0.0775679i
\(593\) −2.18286e9 −0.429867 −0.214933 0.976629i \(-0.568953\pi\)
−0.214933 + 0.976629i \(0.568953\pi\)
\(594\) 0 0
\(595\) −3.32364e9 −0.646852
\(596\) −8.52125e8 + 1.47592e9i −0.164870 + 0.285563i
\(597\) 0 0
\(598\) 7.20338e9 + 1.24766e10i 1.37747 + 2.38585i
\(599\) −4.25945e9 7.37759e9i −0.809766 1.40256i −0.913026 0.407902i \(-0.866260\pi\)
0.103259 0.994654i \(-0.467073\pi\)
\(600\) 0 0
\(601\) 3.29770e9 5.71178e9i 0.619656 1.07328i −0.369893 0.929074i \(-0.620606\pi\)
0.989548 0.144201i \(-0.0460611\pi\)
\(602\) −5.87623e9 −1.09777
\(603\) 0 0
\(604\) 1.61976e9 0.299104
\(605\) −8.94238e8 + 1.54887e9i −0.164176 + 0.284361i
\(606\) 0 0
\(607\) 3.30740e9 + 5.72858e9i 0.600242 + 1.03965i 0.992784 + 0.119915i \(0.0382623\pi\)
−0.392542 + 0.919734i \(0.628404\pi\)
\(608\) −8.44125e8 1.46207e9i −0.152315 0.263818i
\(609\) 0 0
\(610\) 5.59394e8 9.68899e8i 0.0997846 0.172832i
\(611\) −3.83635e9 −0.680414
\(612\) 0 0
\(613\) −6.77351e9 −1.18769 −0.593843 0.804581i \(-0.702390\pi\)
−0.593843 + 0.804581i \(0.702390\pi\)
\(614\) 2.59075e9 4.48731e9i 0.451685 0.782342i
\(615\) 0 0
\(616\) −1.36841e9 2.37015e9i −0.235876 0.408548i
\(617\) −5.48291e9 9.49667e9i −0.939751 1.62770i −0.765935 0.642918i \(-0.777723\pi\)
−0.173816 0.984778i \(-0.555610\pi\)
\(618\) 0 0
\(619\) −2.78882e9 + 4.83038e9i −0.472610 + 0.818585i −0.999509 0.0313431i \(-0.990022\pi\)
0.526898 + 0.849928i \(0.323355\pi\)
\(620\) −3.18590e9 −0.536861
\(621\) 0 0
\(622\) 4.69441e9 0.782194
\(623\) −9.87331e8 + 1.71011e9i −0.163589 + 0.283345i
\(624\) 0 0
\(625\) −1.60880e9 2.78652e9i −0.263585 0.456543i
\(626\) 7.92999e9 + 1.37352e10i 1.29200 + 2.23781i
\(627\) 0 0
\(628\) −1.82716e9 + 3.16473e9i −0.294386 + 0.509891i
\(629\) 6.76015e8 0.108313
\(630\) 0 0
\(631\) −6.36080e9 −1.00788 −0.503940 0.863739i \(-0.668117\pi\)
−0.503940 + 0.863739i \(0.668117\pi\)
\(632\) −1.21511e9 + 2.10463e9i −0.191472 + 0.331640i
\(633\) 0 0
\(634\) −3.42696e9 5.93568e9i −0.534069 0.925034i
\(635\) 9.46467e8 + 1.63933e9i 0.146689 + 0.254073i
\(636\) 0 0
\(637\) 7.12857e9 1.23470e10i 1.09273 1.89267i
\(638\) −7.35711e9 −1.12159
\(639\) 0 0
\(640\) −1.18709e9 −0.179000
\(641\) 3.77408e8 6.53690e8i 0.0565989 0.0980322i −0.836338 0.548215i \(-0.815308\pi\)
0.892937 + 0.450182i \(0.148641\pi\)
\(642\) 0 0
\(643\) −5.21207e9 9.02756e9i −0.773164 1.33916i −0.935821 0.352476i \(-0.885340\pi\)
0.162657 0.986683i \(-0.447994\pi\)
\(644\) −8.03718e9 1.39208e10i −1.18578 2.05383i
\(645\) 0 0
\(646\) −1.06692e9 + 1.84797e9i −0.155711 + 0.269700i
\(647\) 8.26499e9 1.19971 0.599857 0.800107i \(-0.295224\pi\)
0.599857 + 0.800107i \(0.295224\pi\)
\(648\) 0 0
\(649\) 1.21434e10 1.74375
\(650\) −6.18153e9 + 1.07067e10i −0.882875 + 1.52918i
\(651\) 0 0
\(652\) −2.24036e8 3.88042e8i −0.0316556 0.0548292i
\(653\) −4.56354e9 7.90429e9i −0.641366 1.11088i −0.985128 0.171822i \(-0.945035\pi\)
0.343762 0.939057i \(-0.388299\pi\)
\(654\) 0 0
\(655\) −8.26587e8 + 1.43169e9i −0.114933 + 0.199069i
\(656\) −1.91166e9 −0.264391
\(657\) 0 0
\(658\) 7.99895e9 1.09457
\(659\) −7.53027e8 + 1.30428e9i −0.102497 + 0.177530i −0.912713 0.408602i \(-0.866017\pi\)
0.810216 + 0.586132i \(0.199350\pi\)
\(660\) 0 0
\(661\) −4.89923e9 8.48572e9i −0.659816 1.14284i −0.980663 0.195704i \(-0.937301\pi\)
0.320847 0.947131i \(-0.396033\pi\)
\(662\) −1.89895e9 3.28907e9i −0.254396 0.440627i
\(663\) 0 0
\(664\) 1.63496e8 2.83184e8i 0.0216730 0.0375388i
\(665\) −1.04378e9 −0.137636
\(666\) 0 0
\(667\) −5.67206e9 −0.740117
\(668\) 7.87157e9 1.36340e10i 1.02175 1.76972i
\(669\) 0 0
\(670\) −5.07559e7 8.79119e7i −0.00651966 0.0112924i
\(671\) 1.75037e9 + 3.03173e9i 0.223666 + 0.387401i
\(672\) 0 0
\(673\) 4.59414e9 7.95729e9i 0.580968 1.00627i −0.414397 0.910096i \(-0.636008\pi\)
0.995365 0.0961693i \(-0.0306590\pi\)
\(674\) 1.62296e10 2.04172
\(675\) 0 0
\(676\) 1.00620e10 1.25277
\(677\) −5.08073e9 + 8.80008e9i −0.629312 + 1.09000i 0.358379 + 0.933576i \(0.383330\pi\)
−0.987690 + 0.156423i \(0.950004\pi\)
\(678\) 0 0
\(679\) 7.62519e9 + 1.32072e10i 0.934773 + 1.61907i
\(680\) 3.70770e8 + 6.42193e8i 0.0452193 + 0.0783221i
\(681\) 0 0
\(682\) 9.31455e9 1.61333e10i 1.12439 1.94750i
\(683\) −9.85009e9 −1.18295 −0.591477 0.806322i \(-0.701455\pi\)
−0.591477 + 0.806322i \(0.701455\pi\)
\(684\) 0 0
\(685\) 4.81798e9 0.572727
\(686\) −5.03522e9 + 8.72126e9i −0.595503 + 1.03144i
\(687\) 0 0
\(688\) −1.66606e9 2.88570e9i −0.195043 0.337825i
\(689\) 9.45293e9 + 1.63729e10i 1.10103 + 1.90704i
\(690\) 0 0
\(691\) −1.77163e9 + 3.06856e9i −0.204268 + 0.353803i −0.949899 0.312556i \(-0.898815\pi\)
0.745631 + 0.666359i \(0.232148\pi\)
\(692\) 1.46594e10 1.68169
\(693\) 0 0
\(694\) −2.35790e9 −0.267773
\(695\) −2.74010e9 + 4.74599e9i −0.309613 + 0.536266i
\(696\) 0 0
\(697\) 1.42909e9 + 2.47526e9i 0.159862 + 0.276889i
\(698\) 3.84414e9 + 6.65824e9i 0.427863 + 0.741081i
\(699\) 0 0
\(700\) 6.89705e9 1.19460e10i 0.760012 1.31638i
\(701\) 1.22196e10 1.33982 0.669908 0.742444i \(-0.266334\pi\)
0.669908 + 0.742444i \(0.266334\pi\)
\(702\) 0 0
\(703\) 2.12301e8 0.0230466
\(704\) 7.93202e9 1.37387e10i 0.856800 1.48402i
\(705\) 0 0
\(706\) 1.83055e9 + 3.17060e9i 0.195778 + 0.339098i
\(707\) 7.49962e9 + 1.29897e10i 0.798126 + 1.38240i
\(708\) 0 0
\(709\) −5.09117e9 + 8.81817e9i −0.536483 + 0.929216i 0.462607 + 0.886563i \(0.346914\pi\)
−0.999090 + 0.0426522i \(0.986419\pi\)
\(710\) −9.39183e9 −0.984795
\(711\) 0 0
\(712\) 4.40569e8 0.0457440
\(713\) 7.18117e9 1.24381e10i 0.741962 1.28512i
\(714\) 0 0
\(715\) 3.87479e9 + 6.71134e9i 0.396440 + 0.686654i
\(716\) −1.68833e9 2.92427e9i −0.171894 0.297729i
\(717\) 0 0
\(718\) −2.13316e9 + 3.69474e9i −0.215074 + 0.372519i
\(719\) 2.32175e9 0.232951 0.116476 0.993194i \(-0.462840\pi\)
0.116476 + 0.993194i \(0.462840\pi\)
\(720\) 0 0
\(721\) 2.20529e9 0.219125
\(722\) 7.08112e9 1.22649e10i 0.700199 1.21278i
\(723\) 0 0
\(724\) 1.00062e10 + 1.73313e10i 0.979906 + 1.69725i
\(725\) −2.43372e9 4.21533e9i −0.237185 0.410817i
\(726\) 0 0
\(727\) −6.04458e9 + 1.04695e10i −0.583439 + 1.01055i 0.411629 + 0.911352i \(0.364960\pi\)
−0.995068 + 0.0991947i \(0.968373\pi\)
\(728\) −5.28426e9 −0.507603
\(729\) 0 0
\(730\) 1.54903e9 0.147377
\(731\) −2.49098e9 + 4.31450e9i −0.235863 + 0.408526i
\(732\) 0 0
\(733\) −6.75924e9 1.17073e10i −0.633919 1.09798i −0.986743 0.162291i \(-0.948112\pi\)
0.352824 0.935690i \(-0.385222\pi\)
\(734\) −5.99618e9 1.03857e10i −0.559678 0.969391i
\(735\) 0 0
\(736\) 1.00745e10 1.74496e10i 0.931436 1.61329i
\(737\) 3.17635e8 0.0292275
\(738\) 0 0
\(739\) 9.64611e9 0.879218 0.439609 0.898189i \(-0.355117\pi\)
0.439609 + 0.898189i \(0.355117\pi\)
\(740\) 2.81027e8 4.86752e8i 0.0254939 0.0441567i
\(741\) 0 0
\(742\) −1.97098e10 3.41383e10i −1.77120 3.06781i
\(743\) 6.34672e9 + 1.09928e10i 0.567660 + 0.983217i 0.996797 + 0.0799770i \(0.0254847\pi\)
−0.429136 + 0.903240i \(0.641182\pi\)
\(744\) 0 0
\(745\) −6.60385e8 + 1.14382e9i −0.0585127 + 0.101347i
\(746\) −9.77613e9 −0.862147
\(747\) 0 0
\(748\) −1.76767e10 −1.54435
\(749\) −6.93929e9 + 1.20192e10i −0.603432 + 1.04518i
\(750\) 0 0
\(751\) 9.19331e8 + 1.59233e9i 0.0792013 + 0.137181i 0.902906 0.429839i \(-0.141430\pi\)
−0.823704 + 0.567020i \(0.808096\pi\)
\(752\) 2.26791e9 + 3.92813e9i 0.194474 + 0.336840i
\(753\) 0 0
\(754\) −7.10258e9 + 1.23020e10i −0.603415 + 1.04515i
\(755\) 1.25529e9 0.106153
\(756\) 0 0
\(757\) −3.69951e9 −0.309962 −0.154981 0.987917i \(-0.549532\pi\)
−0.154981 + 0.987917i \(0.549532\pi\)
\(758\) −7.48811e9 + 1.29698e10i −0.624496 + 1.08166i
\(759\) 0 0
\(760\) 1.16439e8 + 2.01679e8i 0.00962171 + 0.0166653i
\(761\) 4.55240e9 + 7.88499e9i 0.374451 + 0.648567i 0.990245 0.139340i \(-0.0444980\pi\)
−0.615794 + 0.787907i \(0.711165\pi\)
\(762\) 0 0
\(763\) −4.16712e9 + 7.21766e9i −0.339625 + 0.588248i
\(764\) 1.64902e10 1.33782
\(765\) 0 0
\(766\) 9.28193e9 0.746170
\(767\) 1.17233e10 2.03053e10i 0.938135 1.62490i
\(768\) 0 0
\(769\) 2.43749e9 + 4.22186e9i 0.193286 + 0.334782i 0.946337 0.323180i \(-0.104752\pi\)
−0.753051 + 0.657962i \(0.771419\pi\)
\(770\) −8.07912e9 1.39934e10i −0.637744 1.10461i
\(771\) 0 0
\(772\) −7.58054e9 + 1.31299e10i −0.592980 + 1.02707i
\(773\) −1.86703e9 −0.145386 −0.0726930 0.997354i \(-0.523159\pi\)
−0.0726930 + 0.997354i \(0.523159\pi\)
\(774\) 0 0
\(775\) 1.23249e10 0.951106
\(776\) 1.70126e9 2.94668e9i 0.130694 0.226369i
\(777\) 0 0
\(778\) 1.11292e10 + 1.92764e10i 0.847298 + 1.46756i
\(779\) 4.48802e8 + 7.77347e8i 0.0340152 + 0.0589161i
\(780\) 0 0
\(781\) 1.46937e10 2.54503e10i 1.10370 1.91167i
\(782\) −2.54673e10 −1.90440
\(783\) 0 0
\(784\) −1.68566e10 −1.24929
\(785\) −1.41602e9 + 2.45262e9i −0.104478 + 0.180961i
\(786\) 0 0
\(787\) 3.38274e8 + 5.85908e8i 0.0247376 + 0.0428468i 0.878129 0.478424i \(-0.158792\pi\)
−0.853392 + 0.521270i \(0.825458\pi\)
\(788\) −2.78469e9 4.82323e9i −0.202738 0.351153i
\(789\) 0 0
\(790\) −7.17405e9 + 1.24258e10i −0.517689 + 0.896665i
\(791\) −2.08343e10 −1.49679
\(792\) 0 0
\(793\) 6.75924e9 0.481329
\(794\) −1.86479e10 + 3.22992e10i −1.32208 + 2.28992i
\(795\) 0 0
\(796\) 3.61633e6 + 6.26367e6i 0.000254140 + 0.000440183i
\(797\) −1.39211e10 2.41121e10i −0.974025 1.68706i −0.683116 0.730310i \(-0.739376\pi\)
−0.290909 0.956751i \(-0.593958\pi\)
\(798\) 0 0
\(799\) 3.39082e9 5.87306e9i 0.235175 0.407334i
\(800\) 1.72908e10 1.19399
\(801\) 0 0
\(802\) −3.99075e10 −2.73177
\(803\) −2.42349e9 + 4.19762e9i −0.165172 + 0.286087i
\(804\) 0 0
\(805\) −6.22870e9 1.07884e10i −0.420835 0.728907i
\(806\) −1.79846e10 3.11502e10i −1.20984 2.09550i
\(807\) 0 0
\(808\) 1.67325e9 2.89815e9i 0.111589 0.193278i
\(809\) −5.64823e9 −0.375053 −0.187527 0.982260i \(-0.560047\pi\)
−0.187527 + 0.982260i \(0.560047\pi\)
\(810\) 0 0
\(811\) −7.40101e9 −0.487212 −0.243606 0.969874i \(-0.578330\pi\)
−0.243606 + 0.969874i \(0.578330\pi\)
\(812\) 7.92471e9 1.37260e10i 0.519442 0.899701i
\(813\) 0 0
\(814\) 1.64326e9 + 2.84621e9i 0.106788 + 0.184962i
\(815\) −1.73625e8 3.00727e8i −0.0112347 0.0194590i
\(816\) 0 0
\(817\) −7.82284e8 + 1.35496e9i −0.0501866 + 0.0869257i
\(818\) 1.26773e10 0.809820
\(819\) 0 0
\(820\) 2.37635e9 0.150509
\(821\) −7.64324e9 + 1.32385e10i −0.482033 + 0.834905i −0.999787 0.0206240i \(-0.993435\pi\)
0.517755 + 0.855529i \(0.326768\pi\)
\(822\) 0 0
\(823\) 1.48998e10 + 2.58073e10i 0.931714 + 1.61378i 0.780392 + 0.625291i \(0.215020\pi\)
0.151322 + 0.988485i \(0.451647\pi\)
\(824\) −2.46012e8 4.26106e8i −0.0153183 0.0265321i
\(825\) 0 0
\(826\) −2.44436e10 + 4.23375e10i −1.50916 + 2.61394i
\(827\) −6.76407e9 −0.415852 −0.207926 0.978145i \(-0.566671\pi\)
−0.207926 + 0.978145i \(0.566671\pi\)
\(828\) 0 0
\(829\) −2.81440e10 −1.71571 −0.857857 0.513888i \(-0.828205\pi\)
−0.857857 + 0.513888i \(0.828205\pi\)
\(830\) 9.65288e8 1.67193e9i 0.0585981 0.101495i
\(831\) 0 0
\(832\) −1.53152e10 2.65267e10i −0.921915 1.59680i
\(833\) 1.26014e10 + 2.18263e10i 0.755373 + 1.30834i
\(834\) 0 0
\(835\) 6.10035e9 1.05661e10i 0.362621 0.628077i
\(836\) −5.55131e9 −0.328605
\(837\) 0 0
\(838\) 4.78904e9 0.281122
\(839\) 4.01326e9 6.95116e9i 0.234601 0.406341i −0.724556 0.689216i \(-0.757955\pi\)
0.959157 + 0.282875i \(0.0912883\pi\)
\(840\) 0 0
\(841\) 5.82859e9 + 1.00954e10i 0.337892 + 0.585246i
\(842\) 1.29335e10 + 2.24015e10i 0.746663 + 1.29326i
\(843\) 0 0
\(844\) −1.38921e10 + 2.40619e10i −0.795373 + 1.37763i
\(845\) 7.79790e9 0.444610
\(846\) 0 0
\(847\) 2.25294e10 1.27396
\(848\) 1.11764e10 1.93582e10i 0.629387 1.09013i
\(849\) 0 0
\(850\) −1.09273e10 1.89266e10i −0.610304 1.05708i
\(851\) 1.26689e9 + 2.19432e9i 0.0704671 + 0.122053i
\(852\) 0 0
\(853\) −1.72702e10 + 2.99129e10i −0.952743 + 1.65020i −0.213291 + 0.976989i \(0.568418\pi\)
−0.739451 + 0.673210i \(0.764915\pi\)
\(854\) −1.40933e10 −0.774303
\(855\) 0 0
\(856\) 3.09647e9 0.168736
\(857\) −9.13008e9 + 1.58138e10i −0.495498 + 0.858227i −0.999987 0.00519114i \(-0.998348\pi\)
0.504489 + 0.863418i \(0.331681\pi\)
\(858\) 0 0
\(859\) 1.08974e10 + 1.88749e10i 0.586608 + 1.01604i 0.994673 + 0.103082i \(0.0328705\pi\)
−0.408065 + 0.912953i \(0.633796\pi\)
\(860\) 2.07105e9 + 3.58717e9i 0.111032 + 0.192312i
\(861\) 0 0
\(862\) 8.19320e9 1.41910e10i 0.435691 0.754638i
\(863\) 1.25884e10 0.666702 0.333351 0.942803i \(-0.391821\pi\)
0.333351 + 0.942803i \(0.391821\pi\)
\(864\) 0 0
\(865\) 1.13609e10 0.596835
\(866\) 1.71781e10 2.97534e10i 0.898800 1.55677i
\(867\) 0 0
\(868\) 2.00663e10 + 3.47559e10i 1.04148 + 1.80389i
\(869\) −2.24479e10 3.88809e10i −1.16040 2.00986i
\(870\) 0 0
\(871\) 3.06646e8 5.31126e8i 0.0157244 0.0272354i
\(872\) 1.85946e9 0.0949685
\(873\) 0 0
\(874\) −7.99792e9 −0.405216
\(875\) 1.17610e10 2.03707e10i 0.593494 1.02796i
\(876\) 0 0
\(877\) −9.17484e9 1.58913e10i −0.459304 0.795537i 0.539621 0.841908i \(-0.318568\pi\)
−0.998924 + 0.0463711i \(0.985234\pi\)
\(878\) 2.57833e10 + 4.46580e10i 1.28561 + 2.22674i
\(879\) 0 0
\(880\) 4.58127e9 7.93499e9i 0.226619 0.392516i
\(881\) 1.25257e10 0.617146 0.308573 0.951201i \(-0.400149\pi\)
0.308573 + 0.951201i \(0.400149\pi\)
\(882\) 0 0
\(883\) 2.79816e10 1.36776 0.683880 0.729594i \(-0.260291\pi\)
0.683880 + 0.729594i \(0.260291\pi\)
\(884\) −1.70651e10 + 2.95577e10i −0.830858 + 1.43909i
\(885\) 0 0
\(886\) −1.47456e10 2.55401e10i −0.712269 1.23369i
\(887\) 1.37282e10 + 2.37780e10i 0.660515 + 1.14405i 0.980481 + 0.196616i \(0.0629952\pi\)
−0.319966 + 0.947429i \(0.603671\pi\)
\(888\) 0 0
\(889\) 1.19226e10 2.06505e10i 0.569134 0.985769i
\(890\) 2.60113e9 0.123679
\(891\) 0 0
\(892\) 1.55703e10 0.734547
\(893\) 1.06488e9 1.84442e9i 0.0500402 0.0866721i
\(894\) 0 0
\(895\) −1.30843e9 2.26626e9i −0.0610055 0.105665i
\(896\) 7.47683e9 + 1.29502e10i 0.347248 + 0.601450i
\(897\) 0 0
\(898\) 2.81230e10 4.87104e10i 1.29597 2.24468i
\(899\) 1.41614e10 0.650049
\(900\) 0 0
\(901\) −3.34205e10 −1.52221
\(902\) −6.94768e9 + 1.20337e10i −0.315222 + 0.545981i
\(903\) 0 0
\(904\) 2.32418e9 + 4.02559e9i 0.104636 + 0.181234i
\(905\) 7.75466e9 + 1.34315e10i 0.347771 + 0.602357i
\(906\) 0 0
\(907\) −1.58184e9 + 2.73983e9i −0.0703944 + 0.121927i −0.899074 0.437796i \(-0.855759\pi\)
0.828680 + 0.559723i \(0.189092\pi\)
\(908\) −6.76662e9 −0.299966
\(909\) 0 0
\(910\) −3.11984e10 −1.37242
\(911\) 8.63699e9 1.49597e10i 0.378485 0.655555i −0.612357 0.790581i \(-0.709779\pi\)
0.990842 + 0.135027i \(0.0431120\pi\)
\(912\) 0 0
\(913\) 3.02043e9 + 5.23153e9i 0.131347 + 0.227500i
\(914\) 1.73935e10 + 3.01265e10i 0.753488 + 1.30508i
\(915\) 0 0
\(916\) 9.05370e9 1.56815e10i 0.389217 0.674144i
\(917\) 2.08249e10 0.891849
\(918\) 0 0
\(919\) 9.42182e9 0.400434 0.200217 0.979752i \(-0.435835\pi\)
0.200217 + 0.979752i \(0.435835\pi\)
\(920\) −1.38969e9 + 2.40702e9i −0.0588384 + 0.101911i
\(921\) 0 0
\(922\) −1.48062e10 2.56451e10i −0.622137 1.07757i
\(923\) −2.83707e10 4.91395e10i −1.18758 2.05696i
\(924\) 0 0
\(925\) −1.08718e9 + 1.88304e9i −0.0451652 + 0.0782283i
\(926\) 3.81316e10 1.57814
\(927\) 0 0
\(928\) 1.98671e10 0.816051
\(929\) 1.16296e10 2.01431e10i 0.475894 0.824272i −0.523725 0.851888i \(-0.675458\pi\)
0.999619 + 0.0276152i \(0.00879131\pi\)
\(930\) 0 0
\(931\) 3.95743e9 + 6.85447e9i 0.160727 + 0.278388i
\(932\) −1.23969e10 2.14721e10i −0.501602 0.868800i
\(933\) 0 0
\(934\) 7.13498e9 1.23582e10i 0.286536 0.496295i
\(935\) −1.36992e10 −0.548093
\(936\) 0 0
\(937\) 2.57549e10 1.02275 0.511377 0.859357i \(-0.329136\pi\)
0.511377 + 0.859357i \(0.329136\pi\)
\(938\) −6.39370e8 + 1.10742e9i −0.0252954 + 0.0438130i
\(939\) 0 0
\(940\) −2.81919e9 4.88299e9i −0.110708 0.191751i
\(941\) 1.06913e10 + 1.85178e10i 0.418278 + 0.724479i 0.995766 0.0919198i \(-0.0293004\pi\)
−0.577488 + 0.816399i \(0.695967\pi\)
\(942\) 0 0
\(943\) −5.35640e9 + 9.27756e9i −0.208009 + 0.360282i
\(944\) −2.77215e10 −1.07254
\(945\) 0 0
\(946\) −2.42203e10 −0.930167
\(947\) −1.95339e10 + 3.38338e10i −0.747420 + 1.29457i 0.201635 + 0.979461i \(0.435375\pi\)
−0.949055 + 0.315109i \(0.897959\pi\)
\(948\) 0 0
\(949\) 4.67930e9 + 8.10478e9i 0.177725 + 0.307829i
\(950\) −3.43168e9 5.94384e9i −0.129860 0.224924i
\(951\) 0 0
\(952\) 4.67058e9 8.08968e9i 0.175445 0.303880i
\(953\) −1.44692e10 −0.541527 −0.270763 0.962646i \(-0.587276\pi\)
−0.270763 + 0.962646i \(0.587276\pi\)
\(954\) 0 0
\(955\) 1.27796e10 0.474796
\(956\) −5.91223e9 + 1.02403e10i −0.218851 + 0.379061i
\(957\) 0 0
\(958\) −2.54382e8 4.40603e8i −0.00934775 0.0161908i
\(959\) −3.03459e10 5.25607e10i −1.11105 1.92440i
\(960\) 0 0
\(961\) −4.17283e9 + 7.22756e9i −0.151670 + 0.262700i
\(962\) 6.34564e9 0.229807
\(963\) 0 0
\(964\) 2.20021e10 0.791032
\(965\) −5.87481e9 + 1.01755e10i −0.210450 + 0.364510i
\(966\) 0 0
\(967\) −1.84269e10 3.19163e10i −0.655329 1.13506i −0.981811 0.189860i \(-0.939197\pi\)
0.326482 0.945203i \(-0.394137\pi\)
\(968\) −2.51327e9 4.35312e9i −0.0890586 0.154254i
\(969\) 0 0
\(970\) 1.00443e10 1.73973e10i 0.353361 0.612040i
\(971\) −1.36704e10 −0.479198 −0.239599 0.970872i \(-0.577016\pi\)
−0.239599 + 0.970872i \(0.577016\pi\)
\(972\) 0 0
\(973\) 6.90337e10 2.40252
\(974\) 4.80144e9 8.31634e9i 0.166500 0.288387i
\(975\) 0 0
\(976\) −3.99581e9 6.92095e9i −0.137572 0.238282i
\(977\) −1.75709e10 3.04336e10i −0.602785 1.04405i −0.992397 0.123075i \(-0.960725\pi\)
0.389613 0.920979i \(-0.372609\pi\)
\(978\) 0 0
\(979\) −4.06952e9 + 7.04862e9i −0.138613 + 0.240085i
\(980\) 2.09541e10 0.711178
\(981\) 0 0
\(982\) 5.47116e10 1.84369
\(983\) −1.64952e10 + 2.85705e10i −0.553885 + 0.959356i 0.444105 + 0.895975i \(0.353522\pi\)
−0.997989 + 0.0633816i \(0.979811\pi\)
\(984\) 0 0
\(985\) −2.15810e9 3.73794e9i −0.0719523 0.124625i
\(986\) −1.25555e10 2.17467e10i −0.417122 0.722477i
\(987\) 0 0
\(988\) −5.35926e9 + 9.28250e9i −0.176789 + 0.306207i
\(989\) −1.86730e10 −0.613799
\(990\) 0 0
\(991\) −2.08796e10 −0.681496 −0.340748 0.940155i \(-0.610680\pi\)
−0.340748 + 0.940155i \(0.610680\pi\)
\(992\) −2.51530e10 + 4.35663e10i −0.818086 + 1.41697i
\(993\) 0 0
\(994\) 5.91542e10 + 1.02458e11i 1.91044 + 3.30898i
\(995\) 2.80260e6 + 4.85425e6i 9.01947e−5 + 0.000156222i
\(996\) 0 0
\(997\) 1.64943e10 2.85690e10i 0.527111 0.912982i −0.472390 0.881389i \(-0.656609\pi\)
0.999501 0.0315927i \(-0.0100580\pi\)
\(998\) −7.08837e10 −2.25730
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.8.c.d.55.1 4
3.2 odd 2 81.8.c.h.55.2 4
9.2 odd 6 27.8.a.b.1.1 2
9.4 even 3 inner 81.8.c.d.28.1 4
9.5 odd 6 81.8.c.h.28.2 4
9.7 even 3 27.8.a.e.1.2 yes 2
36.7 odd 6 432.8.a.q.1.2 2
36.11 even 6 432.8.a.j.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.8.a.b.1.1 2 9.2 odd 6
27.8.a.e.1.2 yes 2 9.7 even 3
81.8.c.d.28.1 4 9.4 even 3 inner
81.8.c.d.55.1 4 1.1 even 1 trivial
81.8.c.h.28.2 4 9.5 odd 6
81.8.c.h.55.2 4 3.2 odd 2
432.8.a.j.1.1 2 36.11 even 6
432.8.a.q.1.2 2 36.7 odd 6