Properties

Label 81.8.c
Level $81$
Weight $8$
Character orbit 81.c
Rep. character $\chi_{81}(28,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $54$
Newform subspaces $11$
Sturm bound $72$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 11 \)
Sturm bound: \(72\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(81, [\chi])\).

Total New Old
Modular forms 138 58 80
Cusp forms 114 54 60
Eisenstein series 24 4 20

Trace form

\( 54 q - 1662 q^{4} + 417 q^{7} - 516 q^{10} + 9237 q^{13} - 98046 q^{16} - 115902 q^{19} + 70770 q^{22} - 431367 q^{25} - 278532 q^{28} - 338964 q^{31} + 798912 q^{34} - 241398 q^{37} - 1809474 q^{40} - 960900 q^{43}+ \cdots - 12309297 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(81, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
81.8.c.a 81.c 9.c $2$ $25.303$ \(\Q(\sqrt{-3}) \) None 3.8.a.a \(-6\) \(0\) \(-390\) \(64\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-6+6\zeta_{6})q^{2}+92\zeta_{6}q^{4}-390\zeta_{6}q^{5}+\cdots\)
81.8.c.b 81.c 9.c $2$ $25.303$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 27.8.a.a \(0\) \(0\) \(0\) \(-1763\) $\mathrm{U}(1)[D_{3}]$ \(q+2^{7}\zeta_{6}q^{4}+(-1763+1763\zeta_{6})q^{7}+\cdots\)
81.8.c.c 81.c 9.c $2$ $25.303$ \(\Q(\sqrt{-3}) \) None 3.8.a.a \(6\) \(0\) \(390\) \(64\) $\mathrm{SU}(2)[C_{3}]$ \(q+(6-6\zeta_{6})q^{2}+92\zeta_{6}q^{4}+390\zeta_{6}q^{5}+\cdots\)
81.8.c.d 81.c 9.c $4$ $25.303$ \(\Q(\sqrt{-3}, \sqrt{65})\) None 27.8.a.b \(-9\) \(0\) \(-180\) \(-700\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-4\beta _{1}-\beta _{2})q^{2}+(-43+34\beta _{1}+\cdots)q^{4}+\cdots\)
81.8.c.e 81.c 9.c $4$ $25.303$ \(\Q(\sqrt{-3}, \sqrt{-14})\) None 27.8.a.d \(0\) \(0\) \(0\) \(2522\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(-250+250\beta _{1})q^{4}+(20\beta _{2}+\cdots)q^{5}+\cdots\)
81.8.c.f 81.c 9.c $4$ $25.303$ \(\Q(\sqrt{-3}, \sqrt{10})\) None 9.8.a.b \(0\) \(0\) \(0\) \(-520\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+232\beta _{2}q^{4}+(2^{4}\beta _{1}+2^{4}\beta _{3})q^{5}+\cdots\)
81.8.c.g 81.c 9.c $4$ $25.303$ \(\Q(\zeta_{12})\) None 27.8.a.c \(0\) \(0\) \(0\) \(1118\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_{2} q^{2}+(-20\beta_1+20)q^{4}+(34\beta_{3}-34\beta_{2})q^{5}+\cdots\)
81.8.c.h 81.c 9.c $4$ $25.303$ \(\Q(\sqrt{-3}, \sqrt{65})\) None 27.8.a.b \(9\) \(0\) \(180\) \(-700\) $\mathrm{SU}(2)[C_{3}]$ \(q+(4\beta _{1}+\beta _{2})q^{2}+(-43+34\beta _{1}+9\beta _{2}+\cdots)q^{4}+\cdots\)
81.8.c.i 81.c 9.c $8$ $25.303$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 81.8.a.a \(-15\) \(0\) \(-192\) \(-800\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-4\beta _{1}+\beta _{3})q^{2}+(-59+59\beta _{1}+\cdots)q^{4}+\cdots\)
81.8.c.j 81.c 9.c $8$ $25.303$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 81.8.a.a \(15\) \(0\) \(192\) \(-800\) $\mathrm{SU}(2)[C_{3}]$ \(q+(4-4\beta _{1}+\beta _{2})q^{2}+(-59\beta _{1}+5\beta _{3}+\cdots)q^{4}+\cdots\)
81.8.c.k 81.c 9.c $12$ $25.303$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 81.8.a.d \(0\) \(0\) \(0\) \(1932\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{8}q^{2}+(-73-\beta _{4}+73\beta _{5}+\beta _{7}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(81, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(81, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)