Properties

Label 81.5.f.a.17.6
Level $81$
Weight $5$
Character 81.17
Analytic conductor $8.373$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Error: no document with id 276274424 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,5,Mod(8,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.8"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.37296700979\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 17.6
Character \(\chi\) \(=\) 81.17
Dual form 81.5.f.a.62.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.254601 - 0.699511i) q^{2} +(11.8322 + 9.92841i) q^{4} +(32.8927 + 5.79987i) q^{5} +(-64.8213 + 54.3915i) q^{7} +(20.2723 - 11.7042i) q^{8} +(12.4316 - 21.5322i) q^{10} +(-67.4291 + 11.8896i) q^{11} +(75.3208 - 27.4145i) q^{13} +(21.5439 + 59.1913i) q^{14} +(39.8885 + 226.219i) q^{16} +(196.337 + 113.355i) q^{17} +(156.848 + 271.668i) q^{19} +(331.610 + 395.198i) q^{20} +(-8.85064 + 50.1945i) q^{22} +(96.4022 - 114.888i) q^{23} +(460.984 + 167.784i) q^{25} -59.6675i q^{26} -1307.00 q^{28} +(540.798 - 1485.83i) q^{29} +(-249.929 - 209.716i) q^{31} +(537.243 + 94.7304i) q^{32} +(129.281 - 108.480i) q^{34} +(-2447.61 + 1413.13i) q^{35} +(374.335 - 648.368i) q^{37} +(229.969 - 40.5497i) q^{38} +(734.693 - 267.407i) q^{40} +(655.793 + 1801.78i) q^{41} +(145.099 + 822.898i) q^{43} +(-915.880 - 528.784i) q^{44} +(-55.8211 - 96.6849i) q^{46} +(-2633.58 - 3138.58i) q^{47} +(826.432 - 4686.93i) q^{49} +(234.734 - 279.745i) q^{50} +(1163.39 + 423.441i) q^{52} -2026.25i q^{53} -2286.88 q^{55} +(-677.466 + 1861.32i) q^{56} +(-901.667 - 756.588i) q^{58} +(-550.354 - 97.0423i) q^{59} +(-1370.05 + 1149.60i) q^{61} +(-210.331 + 121.435i) q^{62} +(-1634.62 + 2831.25i) q^{64} +(2636.51 - 464.887i) q^{65} +(3291.06 - 1197.85i) q^{67} +(1197.67 + 3290.56i) q^{68} +(365.334 + 2071.91i) q^{70} +(359.082 + 207.316i) q^{71} +(-3822.91 - 6621.48i) q^{73} +(-358.234 - 426.927i) q^{74} +(-841.377 + 4771.69i) q^{76} +(3724.15 - 4438.27i) q^{77} +(4707.92 + 1713.54i) q^{79} +7672.29i q^{80} +1427.33 q^{82} +(2025.31 - 5564.49i) q^{83} +(5800.61 + 4867.29i) q^{85} +(612.569 + 108.012i) q^{86} +(-1227.78 + 1030.23i) q^{88} +(-1948.72 + 1125.09i) q^{89} +(-3391.27 + 5873.86i) q^{91} +(2281.30 - 402.255i) q^{92} +(-2865.98 + 1043.13i) q^{94} +(3583.51 + 9845.60i) q^{95} +(-405.930 - 2302.15i) q^{97} +(-3068.15 - 1771.40i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{4} - 3 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} - 1137 q^{14} - 54 q^{16} + 9 q^{17} - 3 q^{19} + 2487 q^{20} + 1002 q^{22} + 2724 q^{23} + 435 q^{25} - 12 q^{28}+ \cdots + 259938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.254601 0.699511i 0.0636503 0.174878i −0.903791 0.427975i \(-0.859227\pi\)
0.967441 + 0.253097i \(0.0814493\pi\)
\(3\) 0 0
\(4\) 11.8322 + 9.92841i 0.739514 + 0.620526i
\(5\) 32.8927 + 5.79987i 1.31571 + 0.231995i 0.787076 0.616856i \(-0.211594\pi\)
0.528632 + 0.848851i \(0.322705\pi\)
\(6\) 0 0
\(7\) −64.8213 + 54.3915i −1.32288 + 1.11003i −0.337198 + 0.941434i \(0.609479\pi\)
−0.985685 + 0.168597i \(0.946076\pi\)
\(8\) 20.2723 11.7042i 0.316755 0.182878i
\(9\) 0 0
\(10\) 12.4316 21.5322i 0.124316 0.215322i
\(11\) −67.4291 + 11.8896i −0.557265 + 0.0982609i −0.445185 0.895438i \(-0.646862\pi\)
−0.112080 + 0.993699i \(0.535751\pi\)
\(12\) 0 0
\(13\) 75.3208 27.4145i 0.445685 0.162216i −0.109421 0.993995i \(-0.534900\pi\)
0.555106 + 0.831779i \(0.312678\pi\)
\(14\) 21.5439 + 59.1913i 0.109918 + 0.301997i
\(15\) 0 0
\(16\) 39.8885 + 226.219i 0.155814 + 0.883667i
\(17\) 196.337 + 113.355i 0.679367 + 0.392233i 0.799617 0.600511i \(-0.205036\pi\)
−0.120249 + 0.992744i \(0.538369\pi\)
\(18\) 0 0
\(19\) 156.848 + 271.668i 0.434481 + 0.752544i 0.997253 0.0740685i \(-0.0235984\pi\)
−0.562772 + 0.826612i \(0.690265\pi\)
\(20\) 331.610 + 395.198i 0.829025 + 0.987994i
\(21\) 0 0
\(22\) −8.85064 + 50.1945i −0.0182864 + 0.103708i
\(23\) 96.4022 114.888i 0.182235 0.217179i −0.667192 0.744886i \(-0.732504\pi\)
0.849426 + 0.527707i \(0.176948\pi\)
\(24\) 0 0
\(25\) 460.984 + 167.784i 0.737574 + 0.268455i
\(26\) 59.6675i 0.0882655i
\(27\) 0 0
\(28\) −1307.00 −1.66709
\(29\) 540.798 1485.83i 0.643042 1.76674i 0.00108784 0.999999i \(-0.499654\pi\)
0.641954 0.766743i \(-0.278124\pi\)
\(30\) 0 0
\(31\) −249.929 209.716i −0.260072 0.218227i 0.503423 0.864040i \(-0.332074\pi\)
−0.763495 + 0.645814i \(0.776518\pi\)
\(32\) 537.243 + 94.7304i 0.524651 + 0.0925102i
\(33\) 0 0
\(34\) 129.281 108.480i 0.111835 0.0938405i
\(35\) −2447.61 + 1413.13i −1.99805 + 1.15357i
\(36\) 0 0
\(37\) 374.335 648.368i 0.273437 0.473607i −0.696302 0.717748i \(-0.745173\pi\)
0.969740 + 0.244141i \(0.0785061\pi\)
\(38\) 229.969 40.5497i 0.159258 0.0280815i
\(39\) 0 0
\(40\) 734.693 267.407i 0.459183 0.167129i
\(41\) 655.793 + 1801.78i 0.390121 + 1.07185i 0.966946 + 0.254981i \(0.0820692\pi\)
−0.576825 + 0.816868i \(0.695709\pi\)
\(42\) 0 0
\(43\) 145.099 + 822.898i 0.0784744 + 0.445050i 0.998575 + 0.0533680i \(0.0169957\pi\)
−0.920101 + 0.391682i \(0.871893\pi\)
\(44\) −915.880 528.784i −0.473078 0.273132i
\(45\) 0 0
\(46\) −55.8211 96.6849i −0.0263805 0.0456923i
\(47\) −2633.58 3138.58i −1.19221 1.42082i −0.882712 0.469914i \(-0.844285\pi\)
−0.309493 0.950902i \(-0.600159\pi\)
\(48\) 0 0
\(49\) 826.432 4686.93i 0.344203 1.95207i
\(50\) 234.734 279.745i 0.0938936 0.111898i
\(51\) 0 0
\(52\) 1163.39 + 423.441i 0.430250 + 0.156598i
\(53\) 2026.25i 0.721344i −0.932693 0.360672i \(-0.882547\pi\)
0.932693 0.360672i \(-0.117453\pi\)
\(54\) 0 0
\(55\) −2286.88 −0.755994
\(56\) −677.466 + 1861.32i −0.216029 + 0.593534i
\(57\) 0 0
\(58\) −901.667 756.588i −0.268034 0.224907i
\(59\) −550.354 97.0423i −0.158102 0.0278777i 0.0940367 0.995569i \(-0.470023\pi\)
−0.252139 + 0.967691i \(0.581134\pi\)
\(60\) 0 0
\(61\) −1370.05 + 1149.60i −0.368193 + 0.308950i −0.808046 0.589119i \(-0.799475\pi\)
0.439853 + 0.898070i \(0.355030\pi\)
\(62\) −210.331 + 121.435i −0.0547166 + 0.0315907i
\(63\) 0 0
\(64\) −1634.62 + 2831.25i −0.399077 + 0.691222i
\(65\) 2636.51 464.887i 0.624025 0.110032i
\(66\) 0 0
\(67\) 3291.06 1197.85i 0.733139 0.266841i 0.0516461 0.998665i \(-0.483553\pi\)
0.681493 + 0.731825i \(0.261331\pi\)
\(68\) 1197.67 + 3290.56i 0.259011 + 0.711626i
\(69\) 0 0
\(70\) 365.334 + 2071.91i 0.0745581 + 0.422840i
\(71\) 359.082 + 207.316i 0.0712324 + 0.0411260i 0.535193 0.844730i \(-0.320239\pi\)
−0.463961 + 0.885856i \(0.653572\pi\)
\(72\) 0 0
\(73\) −3822.91 6621.48i −0.717379 1.24254i −0.962035 0.272927i \(-0.912008\pi\)
0.244655 0.969610i \(-0.421325\pi\)
\(74\) −358.234 426.927i −0.0654190 0.0779633i
\(75\) 0 0
\(76\) −841.377 + 4771.69i −0.145668 + 0.826123i
\(77\) 3724.15 4438.27i 0.628124 0.748569i
\(78\) 0 0
\(79\) 4707.92 + 1713.54i 0.754354 + 0.274562i 0.690437 0.723393i \(-0.257418\pi\)
0.0639174 + 0.997955i \(0.479641\pi\)
\(80\) 7672.29i 1.19880i
\(81\) 0 0
\(82\) 1427.33 0.212274
\(83\) 2025.31 5564.49i 0.293992 0.807736i −0.701481 0.712688i \(-0.747477\pi\)
0.995473 0.0950476i \(-0.0303003\pi\)
\(84\) 0 0
\(85\) 5800.61 + 4867.29i 0.802853 + 0.673674i
\(86\) 612.569 + 108.012i 0.0828243 + 0.0146042i
\(87\) 0 0
\(88\) −1227.78 + 1030.23i −0.158546 + 0.133036i
\(89\) −1948.72 + 1125.09i −0.246019 + 0.142039i −0.617940 0.786225i \(-0.712033\pi\)
0.371921 + 0.928264i \(0.378699\pi\)
\(90\) 0 0
\(91\) −3391.27 + 5873.86i −0.409525 + 0.709317i
\(92\) 2281.30 402.255i 0.269530 0.0475254i
\(93\) 0 0
\(94\) −2865.98 + 1043.13i −0.324353 + 0.118055i
\(95\) 3583.51 + 9845.60i 0.397064 + 1.09093i
\(96\) 0 0
\(97\) −405.930 2302.15i −0.0431428 0.244675i 0.955608 0.294641i \(-0.0951999\pi\)
−0.998751 + 0.0499657i \(0.984089\pi\)
\(98\) −3068.15 1771.40i −0.319466 0.184444i
\(99\) 0 0
\(100\) 3788.63 + 6562.09i 0.378863 + 0.656209i
\(101\) 5027.20 + 5991.18i 0.492814 + 0.587313i 0.953931 0.300027i \(-0.0969955\pi\)
−0.461117 + 0.887339i \(0.652551\pi\)
\(102\) 0 0
\(103\) −71.8400 + 407.425i −0.00677161 + 0.0384037i −0.988006 0.154413i \(-0.950651\pi\)
0.981235 + 0.192817i \(0.0617624\pi\)
\(104\) 1206.06 1437.33i 0.111507 0.132889i
\(105\) 0 0
\(106\) −1417.39 515.887i −0.126147 0.0459137i
\(107\) 2540.42i 0.221890i −0.993827 0.110945i \(-0.964612\pi\)
0.993827 0.110945i \(-0.0353878\pi\)
\(108\) 0 0
\(109\) 11640.7 0.979778 0.489889 0.871785i \(-0.337037\pi\)
0.489889 + 0.871785i \(0.337037\pi\)
\(110\) −582.243 + 1599.70i −0.0481192 + 0.132207i
\(111\) 0 0
\(112\) −14890.0 12494.2i −1.18702 0.996029i
\(113\) −17181.1 3029.49i −1.34553 0.237254i −0.545954 0.837815i \(-0.683833\pi\)
−0.799579 + 0.600562i \(0.794944\pi\)
\(114\) 0 0
\(115\) 3837.26 3219.84i 0.290152 0.243467i
\(116\) 21150.8 12211.4i 1.57185 0.907506i
\(117\) 0 0
\(118\) −208.003 + 360.272i −0.0149385 + 0.0258742i
\(119\) −18892.4 + 3331.24i −1.33411 + 0.235240i
\(120\) 0 0
\(121\) −9352.72 + 3404.11i −0.638803 + 0.232505i
\(122\) 455.346 + 1251.05i 0.0305930 + 0.0840535i
\(123\) 0 0
\(124\) −875.076 4962.80i −0.0569118 0.322763i
\(125\) −3888.48 2245.02i −0.248863 0.143681i
\(126\) 0 0
\(127\) 1750.66 + 3032.24i 0.108541 + 0.187999i 0.915180 0.403046i \(-0.132049\pi\)
−0.806638 + 0.591046i \(0.798715\pi\)
\(128\) 7174.88 + 8550.69i 0.437920 + 0.521892i
\(129\) 0 0
\(130\) 346.064 1962.63i 0.0204771 0.116132i
\(131\) 18137.8 21615.8i 1.05692 1.25959i 0.0923590 0.995726i \(-0.470559\pi\)
0.964560 0.263862i \(-0.0849963\pi\)
\(132\) 0 0
\(133\) −24943.5 9078.70i −1.41011 0.513240i
\(134\) 2607.11i 0.145194i
\(135\) 0 0
\(136\) 5306.94 0.286924
\(137\) −2812.61 + 7727.59i −0.149854 + 0.411721i −0.991793 0.127852i \(-0.959192\pi\)
0.841939 + 0.539572i \(0.181414\pi\)
\(138\) 0 0
\(139\) 17872.4 + 14996.8i 0.925027 + 0.776190i 0.974918 0.222565i \(-0.0714429\pi\)
−0.0498909 + 0.998755i \(0.515887\pi\)
\(140\) −42990.8 7580.43i −2.19341 0.386757i
\(141\) 0 0
\(142\) 236.443 198.399i 0.0117260 0.00983927i
\(143\) −4752.86 + 2744.07i −0.232425 + 0.134191i
\(144\) 0 0
\(145\) 26405.9 45736.4i 1.25593 2.17534i
\(146\) −5605.12 + 988.333i −0.262954 + 0.0463658i
\(147\) 0 0
\(148\) 10866.5 3955.08i 0.496096 0.180564i
\(149\) 416.981 + 1145.65i 0.0187821 + 0.0516034i 0.948729 0.316089i \(-0.102370\pi\)
−0.929947 + 0.367693i \(0.880148\pi\)
\(150\) 0 0
\(151\) −4810.34 27280.8i −0.210971 1.19647i −0.887763 0.460300i \(-0.847742\pi\)
0.676792 0.736174i \(-0.263369\pi\)
\(152\) 6359.33 + 3671.56i 0.275248 + 0.158914i
\(153\) 0 0
\(154\) −2156.44 3735.07i −0.0909278 0.157492i
\(155\) −7004.53 8347.67i −0.291552 0.347458i
\(156\) 0 0
\(157\) −4822.84 + 27351.7i −0.195661 + 1.10965i 0.715814 + 0.698291i \(0.246056\pi\)
−0.911475 + 0.411356i \(0.865055\pi\)
\(158\) 2397.29 2856.97i 0.0960297 0.114444i
\(159\) 0 0
\(160\) 17121.9 + 6231.88i 0.668826 + 0.243433i
\(161\) 12690.6i 0.489588i
\(162\) 0 0
\(163\) −20535.9 −0.772925 −0.386463 0.922305i \(-0.626303\pi\)
−0.386463 + 0.922305i \(0.626303\pi\)
\(164\) −10129.3 + 27830.0i −0.376610 + 1.03473i
\(165\) 0 0
\(166\) −3376.78 2833.45i −0.122542 0.102825i
\(167\) −18828.8 3320.02i −0.675132 0.119044i −0.174438 0.984668i \(-0.555811\pi\)
−0.500694 + 0.865624i \(0.666922\pi\)
\(168\) 0 0
\(169\) −16957.3 + 14228.9i −0.593723 + 0.498193i
\(170\) 4881.57 2818.37i 0.168912 0.0975216i
\(171\) 0 0
\(172\) −6453.22 + 11177.3i −0.218132 + 0.377816i
\(173\) 39817.9 7020.98i 1.33041 0.234588i 0.537160 0.843480i \(-0.319497\pi\)
0.793253 + 0.608892i \(0.208386\pi\)
\(174\) 0 0
\(175\) −39007.6 + 14197.6i −1.27372 + 0.463595i
\(176\) −5379.28 14779.5i −0.173660 0.477126i
\(177\) 0 0
\(178\) 290.869 + 1649.60i 0.00918030 + 0.0520641i
\(179\) 37606.9 + 21712.4i 1.17371 + 0.677643i 0.954552 0.298046i \(-0.0963348\pi\)
0.219160 + 0.975689i \(0.429668\pi\)
\(180\) 0 0
\(181\) 23540.6 + 40773.4i 0.718554 + 1.24457i 0.961573 + 0.274551i \(0.0885292\pi\)
−0.243018 + 0.970022i \(0.578137\pi\)
\(182\) 3245.41 + 3867.72i 0.0979774 + 0.116765i
\(183\) 0 0
\(184\) 609.624 3457.35i 0.0180064 0.102119i
\(185\) 16073.4 19155.5i 0.469638 0.559693i
\(186\) 0 0
\(187\) −14586.6 5309.08i −0.417129 0.151822i
\(188\) 63283.7i 1.79051i
\(189\) 0 0
\(190\) 7799.47 0.216052
\(191\) −4278.66 + 11755.5i −0.117285 + 0.322237i −0.984419 0.175837i \(-0.943737\pi\)
0.867135 + 0.498074i \(0.165959\pi\)
\(192\) 0 0
\(193\) 7137.74 + 5989.28i 0.191622 + 0.160790i 0.733551 0.679634i \(-0.237861\pi\)
−0.541929 + 0.840424i \(0.682306\pi\)
\(194\) −1713.73 302.176i −0.0455342 0.00802891i
\(195\) 0 0
\(196\) 56312.3 47251.6i 1.46585 1.23000i
\(197\) −5465.01 + 3155.23i −0.140818 + 0.0813014i −0.568754 0.822508i \(-0.692574\pi\)
0.427936 + 0.903809i \(0.359241\pi\)
\(198\) 0 0
\(199\) −19132.7 + 33138.8i −0.483136 + 0.836816i −0.999812 0.0193646i \(-0.993836\pi\)
0.516677 + 0.856181i \(0.327169\pi\)
\(200\) 11309.0 1994.08i 0.282724 0.0498519i
\(201\) 0 0
\(202\) 5470.83 1991.22i 0.134076 0.0487996i
\(203\) 45761.3 + 125728.i 1.11047 + 3.05099i
\(204\) 0 0
\(205\) 11120.7 + 63068.8i 0.264622 + 1.50075i
\(206\) 266.708 + 153.984i 0.00628494 + 0.00362861i
\(207\) 0 0
\(208\) 9206.11 + 15945.4i 0.212789 + 0.368562i
\(209\) −13806.1 16453.5i −0.316067 0.376674i
\(210\) 0 0
\(211\) 2970.23 16845.0i 0.0667153 0.378361i −0.933109 0.359595i \(-0.882915\pi\)
0.999824 0.0187666i \(-0.00597395\pi\)
\(212\) 20117.5 23975.1i 0.447612 0.533444i
\(213\) 0 0
\(214\) −1777.05 646.795i −0.0388037 0.0141234i
\(215\) 27908.9i 0.603762i
\(216\) 0 0
\(217\) 27607.5 0.586283
\(218\) 2963.75 8142.82i 0.0623631 0.171341i
\(219\) 0 0
\(220\) −27058.9 22705.1i −0.559068 0.469114i
\(221\) 17895.9 + 3155.52i 0.366410 + 0.0646080i
\(222\) 0 0
\(223\) −55489.0 + 46560.8i −1.11583 + 0.936291i −0.998386 0.0567890i \(-0.981914\pi\)
−0.117442 + 0.993080i \(0.537469\pi\)
\(224\) −39977.3 + 23080.9i −0.796741 + 0.459999i
\(225\) 0 0
\(226\) −6493.49 + 11247.1i −0.127134 + 0.220202i
\(227\) −50165.4 + 8845.52i −0.973538 + 0.171661i −0.637722 0.770267i \(-0.720123\pi\)
−0.335816 + 0.941928i \(0.609012\pi\)
\(228\) 0 0
\(229\) 85834.2 31241.1i 1.63678 0.595738i 0.650306 0.759673i \(-0.274641\pi\)
0.986471 + 0.163935i \(0.0524186\pi\)
\(230\) −1275.35 3503.98i −0.0241086 0.0662379i
\(231\) 0 0
\(232\) −6427.26 36450.8i −0.119413 0.677222i
\(233\) −45583.3 26317.5i −0.839642 0.484768i 0.0175004 0.999847i \(-0.494429\pi\)
−0.857143 + 0.515079i \(0.827762\pi\)
\(234\) 0 0
\(235\) −68422.3 118511.i −1.23897 2.14596i
\(236\) −5548.44 6612.37i −0.0996200 0.118722i
\(237\) 0 0
\(238\) −2479.79 + 14063.6i −0.0437785 + 0.248280i
\(239\) 4247.15 5061.55i 0.0743535 0.0886110i −0.727585 0.686017i \(-0.759357\pi\)
0.801939 + 0.597406i \(0.203802\pi\)
\(240\) 0 0
\(241\) 16925.2 + 6160.29i 0.291408 + 0.106064i 0.483588 0.875296i \(-0.339333\pi\)
−0.192180 + 0.981360i \(0.561556\pi\)
\(242\) 7409.02i 0.126512i
\(243\) 0 0
\(244\) −27624.4 −0.463995
\(245\) 54367.2 149373.i 0.905742 2.48851i
\(246\) 0 0
\(247\) 19261.6 + 16162.4i 0.315717 + 0.264918i
\(248\) −7521.20 1326.19i −0.122288 0.0215627i
\(249\) 0 0
\(250\) −2560.43 + 2148.45i −0.0409668 + 0.0343752i
\(251\) −21455.0 + 12387.0i −0.340550 + 0.196617i −0.660515 0.750813i \(-0.729662\pi\)
0.319965 + 0.947429i \(0.396329\pi\)
\(252\) 0 0
\(253\) −5134.35 + 8892.95i −0.0802129 + 0.138933i
\(254\) 2566.81 452.597i 0.0397856 0.00701527i
\(255\) 0 0
\(256\) −41345.3 + 15048.4i −0.630879 + 0.229621i
\(257\) −17438.2 47911.0i −0.264019 0.725385i −0.998887 0.0471749i \(-0.984978\pi\)
0.734868 0.678210i \(-0.237244\pi\)
\(258\) 0 0
\(259\) 11000.8 + 62388.7i 0.163993 + 0.930050i
\(260\) 35811.3 + 20675.7i 0.529753 + 0.305853i
\(261\) 0 0
\(262\) −10502.6 18191.0i −0.153001 0.265005i
\(263\) 43299.3 + 51602.1i 0.625993 + 0.746029i 0.982088 0.188420i \(-0.0603367\pi\)
−0.356096 + 0.934449i \(0.615892\pi\)
\(264\) 0 0
\(265\) 11752.0 66649.0i 0.167348 0.949078i
\(266\) −12701.3 + 15136.8i −0.179508 + 0.213930i
\(267\) 0 0
\(268\) 50833.3 + 18501.8i 0.707748 + 0.257599i
\(269\) 53854.7i 0.744250i 0.928183 + 0.372125i \(0.121371\pi\)
−0.928183 + 0.372125i \(0.878629\pi\)
\(270\) 0 0
\(271\) −55212.6 −0.751795 −0.375898 0.926661i \(-0.622666\pi\)
−0.375898 + 0.926661i \(0.622666\pi\)
\(272\) −17811.5 + 48936.7i −0.240748 + 0.661450i
\(273\) 0 0
\(274\) 4689.44 + 3934.91i 0.0624625 + 0.0524123i
\(275\) −33078.6 5832.64i −0.437403 0.0771259i
\(276\) 0 0
\(277\) 75052.6 62976.6i 0.978152 0.820767i −0.00565790 0.999984i \(-0.501801\pi\)
0.983810 + 0.179217i \(0.0573565\pi\)
\(278\) 15040.7 8683.78i 0.194617 0.112362i
\(279\) 0 0
\(280\) −33079.1 + 57294.7i −0.421928 + 0.730800i
\(281\) −56691.2 + 9996.19i −0.717965 + 0.126597i −0.520683 0.853750i \(-0.674323\pi\)
−0.197282 + 0.980347i \(0.563211\pi\)
\(282\) 0 0
\(283\) 42767.7 15566.2i 0.534002 0.194361i −0.0609224 0.998143i \(-0.519404\pi\)
0.594924 + 0.803782i \(0.297182\pi\)
\(284\) 2190.42 + 6018.13i 0.0271576 + 0.0746148i
\(285\) 0 0
\(286\) 709.421 + 4023.32i 0.00867305 + 0.0491873i
\(287\) −140511. 81123.9i −1.70587 0.984884i
\(288\) 0 0
\(289\) −16061.7 27819.6i −0.192307 0.333085i
\(290\) −25270.1 30115.8i −0.300477 0.358095i
\(291\) 0 0
\(292\) 20507.2 116302.i 0.240514 1.36403i
\(293\) 25799.3 30746.4i 0.300520 0.358146i −0.594560 0.804051i \(-0.702674\pi\)
0.895080 + 0.445905i \(0.147118\pi\)
\(294\) 0 0
\(295\) −17539.8 6383.97i −0.201549 0.0733579i
\(296\) 17525.2i 0.200023i
\(297\) 0 0
\(298\) 907.556 0.0102198
\(299\) 4111.50 11296.2i 0.0459894 0.126355i
\(300\) 0 0
\(301\) −54164.2 45449.1i −0.597832 0.501641i
\(302\) −20307.9 3580.84i −0.222665 0.0392619i
\(303\) 0 0
\(304\) −55200.0 + 46318.3i −0.597300 + 0.501194i
\(305\) −51732.0 + 29867.5i −0.556109 + 0.321070i
\(306\) 0 0
\(307\) 44563.2 77185.8i 0.472825 0.818956i −0.526692 0.850056i \(-0.676568\pi\)
0.999516 + 0.0311002i \(0.00990110\pi\)
\(308\) 88129.8 15539.7i 0.929012 0.163810i
\(309\) 0 0
\(310\) −7622.65 + 2774.42i −0.0793200 + 0.0288701i
\(311\) 23554.2 + 64714.7i 0.243528 + 0.669087i 0.999889 + 0.0149321i \(0.00475320\pi\)
−0.756361 + 0.654155i \(0.773025\pi\)
\(312\) 0 0
\(313\) −4982.98 28259.9i −0.0508628 0.288457i 0.948758 0.316004i \(-0.102341\pi\)
−0.999621 + 0.0275472i \(0.991230\pi\)
\(314\) 17904.9 + 10337.4i 0.181599 + 0.104846i
\(315\) 0 0
\(316\) 38692.4 + 67017.2i 0.387482 + 0.671139i
\(317\) −98084.4 116892.i −0.976071 1.16324i −0.986578 0.163291i \(-0.947789\pi\)
0.0105069 0.999945i \(-0.496655\pi\)
\(318\) 0 0
\(319\) −18799.6 + 106618.i −0.184743 + 1.04773i
\(320\) −70187.9 + 83646.7i −0.685429 + 0.816863i
\(321\) 0 0
\(322\) 8877.23 + 3231.05i 0.0856181 + 0.0311624i
\(323\) 71118.1i 0.681671i
\(324\) 0 0
\(325\) 39321.4 0.372273
\(326\) −5228.45 + 14365.1i −0.0491969 + 0.135167i
\(327\) 0 0
\(328\) 34382.8 + 28850.6i 0.319590 + 0.268168i
\(329\) 341424. + 60202.3i 3.15430 + 0.556188i
\(330\) 0 0
\(331\) −81778.9 + 68620.6i −0.746423 + 0.626324i −0.934554 0.355820i \(-0.884202\pi\)
0.188131 + 0.982144i \(0.439757\pi\)
\(332\) 79210.5 45732.2i 0.718632 0.414902i
\(333\) 0 0
\(334\) −7116.22 + 12325.6i −0.0637905 + 0.110488i
\(335\) 115199. 20312.7i 1.02650 0.181000i
\(336\) 0 0
\(337\) −6305.13 + 2294.88i −0.0555180 + 0.0202069i −0.369630 0.929179i \(-0.620516\pi\)
0.314112 + 0.949386i \(0.398293\pi\)
\(338\) 5635.91 + 15484.5i 0.0493322 + 0.135539i
\(339\) 0 0
\(340\) 20309.6 + 115182.i 0.175689 + 0.996382i
\(341\) 19345.9 + 11169.4i 0.166372 + 0.0960551i
\(342\) 0 0
\(343\) 99774.7 + 172815.i 0.848071 + 1.46890i
\(344\) 12572.9 + 14983.8i 0.106247 + 0.126620i
\(345\) 0 0
\(346\) 5226.44 29640.6i 0.0436570 0.247591i
\(347\) −23538.4 + 28052.0i −0.195487 + 0.232973i −0.854880 0.518826i \(-0.826369\pi\)
0.659392 + 0.751799i \(0.270814\pi\)
\(348\) 0 0
\(349\) 31908.3 + 11613.7i 0.261971 + 0.0953496i 0.469667 0.882844i \(-0.344374\pi\)
−0.207696 + 0.978193i \(0.566596\pi\)
\(350\) 30901.0i 0.252253i
\(351\) 0 0
\(352\) −37352.1 −0.301460
\(353\) −18275.2 + 50210.7i −0.146660 + 0.402946i −0.991171 0.132593i \(-0.957670\pi\)
0.844510 + 0.535540i \(0.179892\pi\)
\(354\) 0 0
\(355\) 10608.8 + 8901.82i 0.0841800 + 0.0706354i
\(356\) −34228.0 6035.32i −0.270073 0.0476212i
\(357\) 0 0
\(358\) 24762.8 20778.5i 0.193212 0.162124i
\(359\) 94896.6 54788.6i 0.736312 0.425110i −0.0844152 0.996431i \(-0.526902\pi\)
0.820727 + 0.571321i \(0.193569\pi\)
\(360\) 0 0
\(361\) 15958.1 27640.2i 0.122452 0.212093i
\(362\) 34514.9 6085.91i 0.263384 0.0464418i
\(363\) 0 0
\(364\) −98444.3 + 35830.8i −0.742998 + 0.270429i
\(365\) −87342.2 239971.i −0.655599 1.80124i
\(366\) 0 0
\(367\) −31256.6 177265.i −0.232065 1.31610i −0.848708 0.528862i \(-0.822619\pi\)
0.616643 0.787243i \(-0.288492\pi\)
\(368\) 29835.1 + 17225.3i 0.220309 + 0.127195i
\(369\) 0 0
\(370\) −9307.17 16120.5i −0.0679852 0.117754i
\(371\) 110211. + 131344.i 0.800714 + 0.954254i
\(372\) 0 0
\(373\) −35563.1 + 201689.i −0.255613 + 1.44965i 0.538882 + 0.842381i \(0.318847\pi\)
−0.794495 + 0.607271i \(0.792264\pi\)
\(374\) −7427.52 + 8851.77i −0.0531007 + 0.0632830i
\(375\) 0 0
\(376\) −90123.4 32802.2i −0.637473 0.232021i
\(377\) 126740.i 0.891723i
\(378\) 0 0
\(379\) −102840. −0.715949 −0.357975 0.933731i \(-0.616533\pi\)
−0.357975 + 0.933731i \(0.616533\pi\)
\(380\) −55350.3 + 152074.i −0.383313 + 1.05314i
\(381\) 0 0
\(382\) 7133.76 + 5985.93i 0.0488868 + 0.0410209i
\(383\) −223273. 39369.1i −1.52208 0.268385i −0.650833 0.759221i \(-0.725580\pi\)
−0.871252 + 0.490836i \(0.836691\pi\)
\(384\) 0 0
\(385\) 148239. 124387.i 1.00009 0.839177i
\(386\) 6006.84 3468.05i 0.0403155 0.0232761i
\(387\) 0 0
\(388\) 18053.6 31269.7i 0.119922 0.207712i
\(389\) −194117. + 34228.1i −1.28282 + 0.226195i −0.773176 0.634192i \(-0.781333\pi\)
−0.509641 + 0.860387i \(0.670222\pi\)
\(390\) 0 0
\(391\) 31950.5 11629.0i 0.208989 0.0760658i
\(392\) −38103.2 104688.i −0.247964 0.681276i
\(393\) 0 0
\(394\) 815.717 + 4626.16i 0.00525469 + 0.0298008i
\(395\) 144918. + 83668.5i 0.928813 + 0.536250i
\(396\) 0 0
\(397\) −11400.4 19746.1i −0.0723335 0.125285i 0.827590 0.561333i \(-0.189711\pi\)
−0.899924 + 0.436048i \(0.856378\pi\)
\(398\) 18309.7 + 21820.7i 0.115589 + 0.137753i
\(399\) 0 0
\(400\) −19568.0 + 110976.i −0.122300 + 0.693598i
\(401\) −136140. + 162246.i −0.846640 + 1.00899i 0.153144 + 0.988204i \(0.451060\pi\)
−0.999784 + 0.0207820i \(0.993384\pi\)
\(402\) 0 0
\(403\) −24574.1 8944.26i −0.151310 0.0550724i
\(404\) 120801.i 0.740130i
\(405\) 0 0
\(406\) 99599.2 0.604232
\(407\) −17532.3 + 48169.5i −0.105840 + 0.290793i
\(408\) 0 0
\(409\) 31824.6 + 26704.0i 0.190247 + 0.159636i 0.732936 0.680298i \(-0.238149\pi\)
−0.542689 + 0.839933i \(0.682594\pi\)
\(410\) 46948.7 + 8278.32i 0.279290 + 0.0492464i
\(411\) 0 0
\(412\) −4895.11 + 4107.49i −0.0288382 + 0.0241981i
\(413\) 40952.9 23644.2i 0.240096 0.138620i
\(414\) 0 0
\(415\) 98891.2 171285.i 0.574198 0.994540i
\(416\) 43062.6 7593.09i 0.248836 0.0438765i
\(417\) 0 0
\(418\) −15024.5 + 5468.45i −0.0859896 + 0.0312977i
\(419\) −115543. 317452.i −0.658136 1.80821i −0.585217 0.810877i \(-0.698991\pi\)
−0.0729191 0.997338i \(-0.523231\pi\)
\(420\) 0 0
\(421\) −24231.5 137423.i −0.136715 0.775348i −0.973650 0.228046i \(-0.926766\pi\)
0.836936 0.547302i \(-0.184345\pi\)
\(422\) −11027.1 6366.47i −0.0619205 0.0357498i
\(423\) 0 0
\(424\) −23715.7 41076.8i −0.131918 0.228489i
\(425\) 71488.9 + 85197.2i 0.395787 + 0.471680i
\(426\) 0 0
\(427\) 26279.4 149038.i 0.144132 0.817411i
\(428\) 25222.4 30058.8i 0.137689 0.164091i
\(429\) 0 0
\(430\) 19522.6 + 7105.64i 0.105585 + 0.0384296i
\(431\) 344917.i 1.85678i −0.371610 0.928389i \(-0.621194\pi\)
0.371610 0.928389i \(-0.378806\pi\)
\(432\) 0 0
\(433\) 205873. 1.09805 0.549027 0.835805i \(-0.314999\pi\)
0.549027 + 0.835805i \(0.314999\pi\)
\(434\) 7028.90 19311.7i 0.0373171 0.102528i
\(435\) 0 0
\(436\) 137736. + 115574.i 0.724559 + 0.607977i
\(437\) 46331.8 + 8169.55i 0.242614 + 0.0427794i
\(438\) 0 0
\(439\) −218946. + 183718.i −1.13608 + 0.953282i −0.999303 0.0373199i \(-0.988118\pi\)
−0.136774 + 0.990602i \(0.543674\pi\)
\(440\) −46360.3 + 26766.2i −0.239465 + 0.138255i
\(441\) 0 0
\(442\) 6763.63 11714.9i 0.0346206 0.0599647i
\(443\) −252713. + 44560.2i −1.28772 + 0.227059i −0.775254 0.631650i \(-0.782378\pi\)
−0.512463 + 0.858709i \(0.671267\pi\)
\(444\) 0 0
\(445\) −70624.0 + 25705.0i −0.356642 + 0.129807i
\(446\) 18442.2 + 50669.6i 0.0927136 + 0.254729i
\(447\) 0 0
\(448\) −48037.5 272434.i −0.239345 1.35739i
\(449\) 195404. + 112817.i 0.969261 + 0.559603i 0.899011 0.437926i \(-0.144287\pi\)
0.0702500 + 0.997529i \(0.477620\pi\)
\(450\) 0 0
\(451\) −65641.9 113695.i −0.322722 0.558970i
\(452\) −173213. 206427.i −0.847818 1.01039i
\(453\) 0 0
\(454\) −6584.64 + 37343.4i −0.0319463 + 0.181176i
\(455\) −145616. + 173538.i −0.703373 + 0.838247i
\(456\) 0 0
\(457\) −182922. 66578.1i −0.875856 0.318786i −0.135320 0.990802i \(-0.543206\pi\)
−0.740536 + 0.672016i \(0.765428\pi\)
\(458\) 67996.0i 0.324155i
\(459\) 0 0
\(460\) 77371.3 0.365649
\(461\) 77924.7 214096.i 0.366668 1.00741i −0.609952 0.792439i \(-0.708811\pi\)
0.976620 0.214974i \(-0.0689667\pi\)
\(462\) 0 0
\(463\) −271314. 227659.i −1.26564 1.06200i −0.995058 0.0992998i \(-0.968340\pi\)
−0.270581 0.962697i \(-0.587216\pi\)
\(464\) 357694. + 63071.1i 1.66141 + 0.292951i
\(465\) 0 0
\(466\) −30015.0 + 25185.6i −0.138219 + 0.115979i
\(467\) −127308. + 73501.4i −0.583744 + 0.337025i −0.762620 0.646847i \(-0.776087\pi\)
0.178876 + 0.983872i \(0.442754\pi\)
\(468\) 0 0
\(469\) −148178. + 256652.i −0.673656 + 1.16681i
\(470\) −100320. + 17689.1i −0.454142 + 0.0800775i
\(471\) 0 0
\(472\) −12292.7 + 4474.19i −0.0551779 + 0.0200831i
\(473\) −19567.8 53762.1i −0.0874621 0.240300i
\(474\) 0 0
\(475\) 26722.6 + 151551.i 0.118438 + 0.671695i
\(476\) −256613. 148155.i −1.13257 0.653888i
\(477\) 0 0
\(478\) −2459.28 4259.60i −0.0107635 0.0186429i
\(479\) 210335. + 250668.i 0.916729 + 1.09251i 0.995418 + 0.0956156i \(0.0304820\pi\)
−0.0786896 + 0.996899i \(0.525074\pi\)
\(480\) 0 0
\(481\) 10420.5 59097.8i 0.0450402 0.255436i
\(482\) 8618.38 10271.0i 0.0370964 0.0442097i
\(483\) 0 0
\(484\) −144461. 52579.5i −0.616679 0.224453i
\(485\) 78078.1i 0.331930i
\(486\) 0 0
\(487\) 241088. 1.01652 0.508261 0.861203i \(-0.330288\pi\)
0.508261 + 0.861203i \(0.330288\pi\)
\(488\) −14318.7 + 39340.4i −0.0601264 + 0.165196i
\(489\) 0 0
\(490\) −90645.8 76060.9i −0.377534 0.316788i
\(491\) −91179.6 16077.4i −0.378211 0.0666889i −0.0186891 0.999825i \(-0.505949\pi\)
−0.359522 + 0.933136i \(0.617060\pi\)
\(492\) 0 0
\(493\) 274606. 230421.i 1.12984 0.948045i
\(494\) 16209.8 9358.71i 0.0664237 0.0383497i
\(495\) 0 0
\(496\) 37472.3 64903.9i 0.152317 0.263820i
\(497\) −34552.4 + 6092.52i −0.139883 + 0.0246652i
\(498\) 0 0
\(499\) 12674.5 4613.13i 0.0509012 0.0185265i −0.316444 0.948611i \(-0.602489\pi\)
0.367345 + 0.930085i \(0.380267\pi\)
\(500\) −23719.9 65170.0i −0.0948797 0.260680i
\(501\) 0 0
\(502\) 3202.41 + 18161.8i 0.0127078 + 0.0720693i
\(503\) 157137. + 90723.2i 0.621074 + 0.358577i 0.777287 0.629146i \(-0.216595\pi\)
−0.156213 + 0.987723i \(0.549929\pi\)
\(504\) 0 0
\(505\) 130610. + 226223.i 0.512146 + 0.887063i
\(506\) 4913.50 + 5855.69i 0.0191907 + 0.0228706i
\(507\) 0 0
\(508\) −9391.07 + 53259.4i −0.0363905 + 0.206381i
\(509\) −209919. + 250172.i −0.810245 + 0.965613i −0.999868 0.0162444i \(-0.994829\pi\)
0.189623 + 0.981857i \(0.439273\pi\)
\(510\) 0 0
\(511\) 607958. + 221279.i 2.32826 + 0.847419i
\(512\) 211347.i 0.806224i
\(513\) 0 0
\(514\) −37954.0 −0.143659
\(515\) −4726.03 + 12984.7i −0.0178189 + 0.0489571i
\(516\) 0 0
\(517\) 214896. + 180319.i 0.803985 + 0.674624i
\(518\) 46442.4 + 8189.05i 0.173083 + 0.0305193i
\(519\) 0 0
\(520\) 48006.9 40282.5i 0.177540 0.148974i
\(521\) 39759.4 22955.1i 0.146475 0.0845676i −0.424971 0.905207i \(-0.639716\pi\)
0.571447 + 0.820639i \(0.306382\pi\)
\(522\) 0 0
\(523\) −231013. + 400127.i −0.844566 + 1.46283i 0.0414310 + 0.999141i \(0.486808\pi\)
−0.885997 + 0.463690i \(0.846525\pi\)
\(524\) 429221. 75683.2i 1.56321 0.275637i
\(525\) 0 0
\(526\) 47120.3 17150.4i 0.170309 0.0619872i
\(527\) −25298.0 69505.8i −0.0910890 0.250265i
\(528\) 0 0
\(529\) 44688.1 + 253439.i 0.159691 + 0.905653i
\(530\) −43629.6 25189.6i −0.155321 0.0896745i
\(531\) 0 0
\(532\) −205000. 355071.i −0.724321 1.25456i
\(533\) 98789.8 + 117733.i 0.347742 + 0.414423i
\(534\) 0 0
\(535\) 14734.1 83561.4i 0.0514774 0.291943i
\(536\) 52697.5 62802.4i 0.183426 0.218598i
\(537\) 0 0
\(538\) 37672.0 + 13711.5i 0.130153 + 0.0473718i
\(539\) 325861.i 1.12164i
\(540\) 0 0
\(541\) −391014. −1.33597 −0.667986 0.744174i \(-0.732843\pi\)
−0.667986 + 0.744174i \(0.732843\pi\)
\(542\) −14057.2 + 38621.8i −0.0478520 + 0.131472i
\(543\) 0 0
\(544\) 94742.5 + 79498.4i 0.320145 + 0.268634i
\(545\) 382895. + 67514.8i 1.28910 + 0.227303i
\(546\) 0 0
\(547\) −163659. + 137326.i −0.546972 + 0.458964i −0.873914 0.486080i \(-0.838426\pi\)
0.326942 + 0.945044i \(0.393982\pi\)
\(548\) −110002. + 63509.7i −0.366302 + 0.211485i
\(549\) 0 0
\(550\) −12501.8 + 21653.8i −0.0413284 + 0.0715829i
\(551\) 488476. 86131.5i 1.60894 0.283700i
\(552\) 0 0
\(553\) −398376. + 144997.i −1.30270 + 0.474142i
\(554\) −24944.3 68534.0i −0.0812742 0.223299i
\(555\) 0 0
\(556\) 62576.7 + 354890.i 0.202424 + 1.14801i
\(557\) −55557.4 32076.1i −0.179074 0.103388i 0.407784 0.913079i \(-0.366302\pi\)
−0.586857 + 0.809690i \(0.699635\pi\)
\(558\) 0 0
\(559\) 33488.3 + 58003.5i 0.107169 + 0.185623i
\(560\) −417308. 497328.i −1.33070 1.58587i
\(561\) 0 0
\(562\) −7441.20 + 42201.2i −0.0235597 + 0.133614i
\(563\) 210551. 250925.i 0.664264 0.791640i −0.323727 0.946151i \(-0.604936\pi\)
0.987991 + 0.154511i \(0.0493803\pi\)
\(564\) 0 0
\(565\) −547562. 199296.i −1.71529 0.624313i
\(566\) 33879.6i 0.105756i
\(567\) 0 0
\(568\) 9705.90 0.0300842
\(569\) −7988.21 + 21947.4i −0.0246732 + 0.0677889i −0.951418 0.307903i \(-0.900373\pi\)
0.926745 + 0.375692i \(0.122595\pi\)
\(570\) 0 0
\(571\) 44186.9 + 37077.2i 0.135526 + 0.113720i 0.708031 0.706182i \(-0.249584\pi\)
−0.572505 + 0.819901i \(0.694028\pi\)
\(572\) −83481.2 14720.0i −0.255150 0.0449899i
\(573\) 0 0
\(574\) −92521.3 + 77634.6i −0.280813 + 0.235630i
\(575\) 63716.2 36786.5i 0.192714 0.111264i
\(576\) 0 0
\(577\) 220787. 382414.i 0.663165 1.14864i −0.316614 0.948554i \(-0.602546\pi\)
0.979779 0.200081i \(-0.0641206\pi\)
\(578\) −23549.4 + 4152.40i −0.0704895 + 0.0124292i
\(579\) 0 0
\(580\) 766531. 278994.i 2.27863 0.829353i
\(581\) 171378. + 470857.i 0.507695 + 1.39488i
\(582\) 0 0
\(583\) 24091.3 + 136628.i 0.0708799 + 0.401980i
\(584\) −154998. 89488.4i −0.454466 0.262386i
\(585\) 0 0
\(586\) −14938.9 25875.0i −0.0435035 0.0753503i
\(587\) −154877. 184575.i −0.449480 0.535670i 0.492956 0.870054i \(-0.335916\pi\)
−0.942437 + 0.334384i \(0.891472\pi\)
\(588\) 0 0
\(589\) 17772.2 100791.i 0.0512285 0.290531i
\(590\) −8931.31 + 10643.9i −0.0256573 + 0.0305772i
\(591\) 0 0
\(592\) 161605. + 58819.3i 0.461116 + 0.167833i
\(593\) 435330.i 1.23797i 0.785404 + 0.618984i \(0.212455\pi\)
−0.785404 + 0.618984i \(0.787545\pi\)
\(594\) 0 0
\(595\) −640742. −1.80988
\(596\) −6440.64 + 17695.5i −0.0181316 + 0.0498162i
\(597\) 0 0
\(598\) −6855.06 5752.08i −0.0191694 0.0160850i
\(599\) 137450. + 24236.2i 0.383082 + 0.0675477i 0.361873 0.932227i \(-0.382137\pi\)
0.0212090 + 0.999775i \(0.493248\pi\)
\(600\) 0 0
\(601\) −30948.8 + 25969.1i −0.0856830 + 0.0718966i −0.684623 0.728897i \(-0.740033\pi\)
0.598940 + 0.800794i \(0.295589\pi\)
\(602\) −45582.4 + 26317.0i −0.125778 + 0.0726179i
\(603\) 0 0
\(604\) 213938. 370552.i 0.586427 1.01572i
\(605\) −327380. + 57725.9i −0.894419 + 0.157710i
\(606\) 0 0
\(607\) 292764. 106557.i 0.794585 0.289205i 0.0873443 0.996178i \(-0.472162\pi\)
0.707241 + 0.706973i \(0.249940\pi\)
\(608\) 58530.1 + 160810.i 0.158333 + 0.435017i
\(609\) 0 0
\(610\) 7721.61 + 43791.4i 0.0207514 + 0.117687i
\(611\) −284406. 164202.i −0.761828 0.439841i
\(612\) 0 0
\(613\) 51413.6 + 89051.0i 0.136822 + 0.236983i 0.926292 0.376806i \(-0.122978\pi\)
−0.789470 + 0.613789i \(0.789644\pi\)
\(614\) −42646.5 50824.1i −0.113122 0.134813i
\(615\) 0 0
\(616\) 23550.6 133562.i 0.0620641 0.351983i
\(617\) 23587.4 28110.4i 0.0619597 0.0738407i −0.734174 0.678961i \(-0.762431\pi\)
0.796134 + 0.605120i \(0.206875\pi\)
\(618\) 0 0
\(619\) 475026. + 172895.i 1.23976 + 0.451234i 0.876928 0.480622i \(-0.159589\pi\)
0.362828 + 0.931856i \(0.381811\pi\)
\(620\) 168315.i 0.437865i
\(621\) 0 0
\(622\) 51265.6 0.132509
\(623\) 65122.9 178924.i 0.167787 0.460990i
\(624\) 0 0
\(625\) −349755. 293479.i −0.895373 0.751307i
\(626\) −21036.8 3709.35i −0.0536822 0.00946561i
\(627\) 0 0
\(628\) −328624. + 275748.i −0.833258 + 0.699187i
\(629\) 146992. 84865.8i 0.371529 0.214502i
\(630\) 0 0
\(631\) −244451. + 423401.i −0.613949 + 1.06339i 0.376619 + 0.926368i \(0.377087\pi\)
−0.990568 + 0.137023i \(0.956247\pi\)
\(632\) 115496. 20365.1i 0.289157 0.0509861i
\(633\) 0 0
\(634\) −106740. + 38850.2i −0.265551 + 0.0966528i
\(635\) 39997.5 + 109892.i 0.0991940 + 0.272533i
\(636\) 0 0
\(637\) −66242.4 375680.i −0.163252 0.925846i
\(638\) 69794.1 + 40295.6i 0.171466 + 0.0989957i
\(639\) 0 0
\(640\) 186408. + 322869.i 0.455098 + 0.788253i
\(641\) 160001. + 190682.i 0.389410 + 0.464081i 0.924761 0.380549i \(-0.124265\pi\)
−0.535351 + 0.844630i \(0.679821\pi\)
\(642\) 0 0
\(643\) 101222. 574056.i 0.244822 1.38846i −0.576083 0.817391i \(-0.695419\pi\)
0.820905 0.571065i \(-0.193469\pi\)
\(644\) −125998. + 150158.i −0.303802 + 0.362057i
\(645\) 0 0
\(646\) 49747.9 + 18106.8i 0.119209 + 0.0433886i
\(647\) 512607.i 1.22455i −0.790645 0.612274i \(-0.790255\pi\)
0.790645 0.612274i \(-0.209745\pi\)
\(648\) 0 0
\(649\) 38263.7 0.0908442
\(650\) 10011.3 27505.7i 0.0236953 0.0651023i
\(651\) 0 0
\(652\) −242985. 203888.i −0.571589 0.479620i
\(653\) −376391. 66367.9i −0.882700 0.155644i −0.286117 0.958195i \(-0.592364\pi\)
−0.596584 + 0.802551i \(0.703476\pi\)
\(654\) 0 0
\(655\) 721970. 605805.i 1.68282 1.41205i
\(656\) −381437. + 220223.i −0.886371 + 0.511746i
\(657\) 0 0
\(658\) 129039. 223502.i 0.298037 0.516215i
\(659\) −751732. + 132551.i −1.73098 + 0.305219i −0.948340 0.317256i \(-0.897239\pi\)
−0.782640 + 0.622474i \(0.786128\pi\)
\(660\) 0 0
\(661\) −190739. + 69423.3i −0.436553 + 0.158892i −0.550941 0.834544i \(-0.685731\pi\)
0.114389 + 0.993436i \(0.463509\pi\)
\(662\) 27179.9 + 74676.1i 0.0620200 + 0.170399i
\(663\) 0 0
\(664\) −24070.3 136510.i −0.0545941 0.309619i
\(665\) −767805. 443292.i −1.73623 1.00241i
\(666\) 0 0
\(667\) −118569. 205368.i −0.266515 0.461617i
\(668\) −189824. 226223.i −0.425400 0.506972i
\(669\) 0 0
\(670\) 15120.9 85754.8i 0.0336843 0.191033i
\(671\) 78712.6 93806.0i 0.174823 0.208346i
\(672\) 0 0
\(673\) −63092.7 22963.9i −0.139299 0.0507008i 0.271430 0.962458i \(-0.412504\pi\)
−0.410729 + 0.911757i \(0.634726\pi\)
\(674\) 4994.79i 0.0109950i
\(675\) 0 0
\(676\) −341913. −0.748208
\(677\) 208638. 573229.i 0.455215 1.25069i −0.473794 0.880636i \(-0.657116\pi\)
0.929009 0.370058i \(-0.120662\pi\)
\(678\) 0 0
\(679\) 151530. + 127149.i 0.328669 + 0.275786i
\(680\) 174560. + 30779.6i 0.377508 + 0.0665648i
\(681\) 0 0
\(682\) 12738.6 10689.0i 0.0273875 0.0229809i
\(683\) 171841. 99212.2i 0.368370 0.212679i −0.304376 0.952552i \(-0.598448\pi\)
0.672746 + 0.739873i \(0.265115\pi\)
\(684\) 0 0
\(685\) −137333. + 237868.i −0.292681 + 0.506939i
\(686\) 146289. 25794.6i 0.310858 0.0548127i
\(687\) 0 0
\(688\) −180367. + 65648.3i −0.381049 + 0.138690i
\(689\) −55548.8 152619.i −0.117014 0.321492i
\(690\) 0 0
\(691\) 50674.2 + 287388.i 0.106128 + 0.601883i 0.990764 + 0.135600i \(0.0432962\pi\)
−0.884635 + 0.466283i \(0.845593\pi\)
\(692\) 540842. + 312255.i 1.12943 + 0.652075i
\(693\) 0 0
\(694\) 13629.8 + 23607.5i 0.0282989 + 0.0490152i
\(695\) 500894. + 596942.i 1.03699 + 1.23584i
\(696\) 0 0
\(697\) −75484.4 + 428093.i −0.155379 + 0.881197i
\(698\) 16247.8 19363.4i 0.0333490 0.0397438i
\(699\) 0 0
\(700\) −602506. 219294.i −1.22960 0.447539i
\(701\) 661865.i 1.34689i 0.739235 + 0.673447i \(0.235187\pi\)
−0.739235 + 0.673447i \(0.764813\pi\)
\(702\) 0 0
\(703\) 234855. 0.475213
\(704\) 76558.6 210343.i 0.154472 0.424408i
\(705\) 0 0
\(706\) 30470.1 + 25567.4i 0.0611313 + 0.0512953i
\(707\) −651739. 114919.i −1.30387 0.229908i
\(708\) 0 0
\(709\) 122517. 102804.i 0.243728 0.204512i −0.512738 0.858545i \(-0.671369\pi\)
0.756466 + 0.654033i \(0.226924\pi\)
\(710\) 8927.93 5154.54i 0.0177106 0.0102252i
\(711\) 0 0
\(712\) −26336.6 + 45616.4i −0.0519518 + 0.0899831i
\(713\) −48187.5 + 8496.75i −0.0947884 + 0.0167138i
\(714\) 0 0
\(715\) −172250. + 62693.8i −0.336935 + 0.122634i
\(716\) 229404. + 630282.i 0.447481 + 1.22944i
\(717\) 0 0
\(718\) −14164.4 80330.4i −0.0274758 0.155823i
\(719\) 271500. + 156751.i 0.525185 + 0.303216i 0.739053 0.673647i \(-0.235273\pi\)
−0.213869 + 0.976862i \(0.568606\pi\)
\(720\) 0 0
\(721\) −17503.7 30317.3i −0.0336713 0.0583203i
\(722\) −15271.7 18200.0i −0.0292962 0.0349139i
\(723\) 0 0
\(724\) −126278. + 716161.i −0.240908 + 1.36626i
\(725\) 498598. 594206.i 0.948581 1.13048i
\(726\) 0 0
\(727\) 174359. + 63461.4i 0.329895 + 0.120072i 0.501657 0.865067i \(-0.332724\pi\)
−0.171762 + 0.985138i \(0.554946\pi\)
\(728\) 158769.i 0.299573i
\(729\) 0 0
\(730\) −190100. −0.356727
\(731\) −64791.5 + 178013.i −0.121250 + 0.333133i
\(732\) 0 0
\(733\) 566483. + 475336.i 1.05434 + 0.884693i 0.993543 0.113457i \(-0.0361925\pi\)
0.0607933 + 0.998150i \(0.480637\pi\)
\(734\) −131957. 23267.5i −0.244928 0.0431875i
\(735\) 0 0
\(736\) 62674.7 52590.4i 0.115701 0.0970846i
\(737\) −207671. + 119899.i −0.382333 + 0.220740i
\(738\) 0 0
\(739\) 212883. 368724.i 0.389809 0.675170i −0.602614 0.798033i \(-0.705874\pi\)
0.992424 + 0.122863i \(0.0392076\pi\)
\(740\) 380367. 67068.9i 0.694607 0.122478i
\(741\) 0 0
\(742\) 119937. 43653.4i 0.217843 0.0792885i
\(743\) 46087.3 + 126624.i 0.0834841 + 0.229371i 0.974410 0.224778i \(-0.0721657\pi\)
−0.890926 + 0.454149i \(0.849943\pi\)
\(744\) 0 0
\(745\) 7071.04 + 40101.9i 0.0127400 + 0.0722523i
\(746\) 132029. + 76227.0i 0.237242 + 0.136972i
\(747\) 0 0
\(748\) −119881. 207640.i −0.214263 0.371114i
\(749\) 138177. + 164673.i 0.246305 + 0.293535i
\(750\) 0 0
\(751\) 47356.0 268569.i 0.0839644 0.476186i −0.913611 0.406590i \(-0.866718\pi\)
0.997575 0.0695961i \(-0.0221710\pi\)
\(752\) 604956. 720959.i 1.06976 1.27490i
\(753\) 0 0
\(754\) −88655.8 32268.1i −0.155942 0.0567584i
\(755\) 925239.i 1.62316i
\(756\) 0 0
\(757\) 914027. 1.59502 0.797512 0.603303i \(-0.206149\pi\)
0.797512 + 0.603303i \(0.206149\pi\)
\(758\) −26183.1 + 71937.5i −0.0455704 + 0.125204i
\(759\) 0 0
\(760\) 187881. + 157651.i 0.325279 + 0.272941i
\(761\) −717737. 126556.i −1.23936 0.218532i −0.484717 0.874671i \(-0.661077\pi\)
−0.754640 + 0.656139i \(0.772188\pi\)
\(762\) 0 0
\(763\) −754567. + 633157.i −1.29613 + 1.08758i
\(764\) −167340. + 96613.5i −0.286690 + 0.165520i
\(765\) 0 0
\(766\) −84384.7 + 146159.i −0.143816 + 0.249096i
\(767\) −44113.5 + 7778.40i −0.0749861 + 0.0132221i
\(768\) 0 0
\(769\) −253227. + 92167.2i −0.428211 + 0.155856i −0.547130 0.837048i \(-0.684280\pi\)
0.118918 + 0.992904i \(0.462057\pi\)
\(770\) −49268.3 135364.i −0.0830972 0.228308i
\(771\) 0 0
\(772\) 24991.3 + 141733.i 0.0419329 + 0.237813i
\(773\) 798882. + 461235.i 1.33698 + 0.771904i 0.986358 0.164615i \(-0.0526382\pi\)
0.350618 + 0.936518i \(0.385971\pi\)
\(774\) 0 0
\(775\) −80026.3 138610.i −0.133238 0.230776i
\(776\) −35173.9 41918.7i −0.0584114 0.0696120i
\(777\) 0 0
\(778\) −25479.5 + 144502.i −0.0420952 + 0.238734i
\(779\) −386626. + 460763.i −0.637113 + 0.759281i
\(780\) 0 0
\(781\) −26677.5 9709.81i −0.0437364 0.0159187i
\(782\) 25310.5i 0.0413891i
\(783\) 0 0
\(784\) 1.09324e6 1.77861
\(785\) −317273. + 871699.i −0.514865 + 1.41458i
\(786\) 0 0
\(787\) −58281.0 48903.6i −0.0940974 0.0789571i 0.594525 0.804077i \(-0.297340\pi\)
−0.688623 + 0.725120i \(0.741784\pi\)
\(788\) −95989.6 16925.6i −0.154587 0.0272578i
\(789\) 0 0
\(790\) 95423.3 80069.7i 0.152897 0.128296i
\(791\) 1.27848e6 738131.i 2.04334 1.17972i
\(792\) 0 0
\(793\) −71677.0 + 124148.i −0.113981 + 0.197421i
\(794\) −16715.2 + 2947.34i −0.0265137 + 0.00467508i
\(795\) 0 0
\(796\) −555397. + 202148.i −0.876551 + 0.319039i
\(797\) 16522.6 + 45395.5i 0.0260113 + 0.0714655i 0.952019 0.306040i \(-0.0990041\pi\)
−0.926007 + 0.377506i \(0.876782\pi\)
\(798\) 0 0
\(799\) −161295. 914750.i −0.252655 1.43288i
\(800\) 231766. + 133810.i 0.362134 + 0.209078i
\(801\) 0 0
\(802\) 78831.3 + 136540.i 0.122560 + 0.212281i
\(803\) 336502. + 401028.i 0.521863 + 0.621932i
\(804\) 0 0
\(805\) −73604.0 + 417429.i −0.113582 + 0.644156i
\(806\) −12513.2 + 14912.7i −0.0192619 + 0.0229554i
\(807\) 0 0
\(808\) 172035. + 62615.6i 0.263508 + 0.0959090i
\(809\) 427329.i 0.652928i −0.945210 0.326464i \(-0.894143\pi\)
0.945210 0.326464i \(-0.105857\pi\)
\(810\) 0 0
\(811\) −31386.9 −0.0477207 −0.0238604 0.999715i \(-0.507596\pi\)
−0.0238604 + 0.999715i \(0.507596\pi\)
\(812\) −706823. + 1.94198e6i −1.07201 + 2.94532i
\(813\) 0 0
\(814\) 29231.4 + 24528.0i 0.0441165 + 0.0370181i
\(815\) −675480. 119105.i −1.01694 0.179315i
\(816\) 0 0
\(817\) −200797. + 168489.i −0.300824 + 0.252421i
\(818\) 26782.4 15462.8i 0.0400260 0.0231090i
\(819\) 0 0
\(820\) −494590. + 856656.i −0.735560 + 1.27403i
\(821\) −240577. + 42420.2i −0.356917 + 0.0629341i −0.349232 0.937036i \(-0.613557\pi\)
−0.00768530 + 0.999970i \(0.502446\pi\)
\(822\) 0 0
\(823\) 761740. 277251.i 1.12462 0.409329i 0.288286 0.957544i \(-0.406915\pi\)
0.836337 + 0.548215i \(0.184692\pi\)
\(824\) 3312.23 + 9100.27i 0.00487827 + 0.0134029i
\(825\) 0 0
\(826\) −6112.70 34666.9i −0.00895928 0.0508106i
\(827\) 425347. + 245574.i 0.621917 + 0.359064i 0.777615 0.628741i \(-0.216429\pi\)
−0.155698 + 0.987805i \(0.549763\pi\)
\(828\) 0 0
\(829\) 397952. + 689273.i 0.579057 + 1.00296i 0.995588 + 0.0938348i \(0.0299126\pi\)
−0.416531 + 0.909122i \(0.636754\pi\)
\(830\) −94637.7 112785.i −0.137375 0.163717i
\(831\) 0 0
\(832\) −45503.6 + 258064.i −0.0657354 + 0.372804i
\(833\) 693548. 826538.i 0.999508 1.19117i
\(834\) 0 0
\(835\) −600073. 218409.i −0.860659 0.313254i
\(836\) 331754.i 0.474683i
\(837\) 0 0
\(838\) −251479. −0.358107
\(839\) 237489. 652495.i 0.337380 0.926944i −0.648755 0.760997i \(-0.724710\pi\)
0.986135 0.165946i \(-0.0530678\pi\)
\(840\) 0 0
\(841\) −1.37342e6 1.15244e6i −1.94183 1.62939i
\(842\) −102299. 18038.0i −0.144293 0.0254428i
\(843\) 0 0
\(844\) 202389. 169824.i 0.284120 0.238405i
\(845\) −640298. + 369676.i −0.896745 + 0.517736i
\(846\) 0 0
\(847\) 421101. 729368.i 0.586974 1.01667i
\(848\) 458377. 80824.2i 0.637428 0.112396i
\(849\) 0 0
\(850\) 77797.6 28316.0i 0.107678 0.0391917i
\(851\) −38402.7 105511.i −0.0530277 0.145692i
\(852\) 0 0
\(853\) 83911.0 + 475883.i 0.115324 + 0.654037i 0.986589 + 0.163224i \(0.0521892\pi\)
−0.871265 + 0.490813i \(0.836700\pi\)
\(854\) −97562.7 56327.9i −0.133773 0.0772338i
\(855\) 0 0
\(856\) −29733.6 51500.2i −0.0405789 0.0702848i
\(857\) −695915. 829359.i −0.947533 1.12923i −0.991489 0.130192i \(-0.958441\pi\)
0.0439559 0.999033i \(-0.486004\pi\)
\(858\) 0 0
\(859\) 55630.3 315495.i 0.0753920 0.427569i −0.923627 0.383292i \(-0.874790\pi\)
0.999019 0.0442774i \(-0.0140986\pi\)
\(860\) −277091. + 330224.i −0.374650 + 0.446490i
\(861\) 0 0
\(862\) −241273. 87816.2i −0.324709 0.118184i
\(863\) 360673.i 0.484274i −0.970242 0.242137i \(-0.922152\pi\)
0.970242 0.242137i \(-0.0778484\pi\)
\(864\) 0 0
\(865\) 1.35044e6 1.80486
\(866\) 52415.5 144010.i 0.0698914 0.192025i
\(867\) 0 0
\(868\) 326658. + 274099.i 0.433564 + 0.363804i
\(869\) −337824. 59567.5i −0.447354 0.0788806i
\(870\) 0 0
\(871\) 215047. 180446.i 0.283463 0.237854i
\(872\) 235984. 136246.i 0.310349 0.179180i
\(873\) 0 0
\(874\) 17510.8 30329.6i 0.0229236 0.0397049i
\(875\) 374166. 65975.6i 0.488707 0.0861722i
\(876\) 0 0
\(877\) −1.11500e6 + 405826.i −1.44969 + 0.527644i −0.942504 0.334194i \(-0.891536\pi\)
−0.507184 + 0.861838i \(0.669314\pi\)
\(878\) 72768.5 + 199930.i 0.0943962 + 0.259351i
\(879\) 0 0
\(880\) −91220.2 517336.i −0.117795 0.668047i
\(881\) −669688. 386644.i −0.862821 0.498150i 0.00213514 0.999998i \(-0.499320\pi\)
−0.864956 + 0.501848i \(0.832654\pi\)
\(882\) 0 0
\(883\) −537395. 930796.i −0.689243 1.19380i −0.972083 0.234637i \(-0.924610\pi\)
0.282840 0.959167i \(-0.408724\pi\)
\(884\) 180418. + 215014.i 0.230875 + 0.275146i
\(885\) 0 0
\(886\) −33170.8 + 188121.i −0.0422560 + 0.239645i
\(887\) 400533. 477336.i 0.509086 0.606705i −0.448878 0.893593i \(-0.648176\pi\)
0.957964 + 0.286888i \(0.0926208\pi\)
\(888\) 0 0
\(889\) −278408. 101332.i −0.352273 0.128217i
\(890\) 55946.8i 0.0706309i
\(891\) 0 0
\(892\) −1.11883e6 −1.40616
\(893\) 439581. 1.20774e6i 0.551235 1.51450i
\(894\) 0 0
\(895\) 1.11106e6 + 932293.i 1.38705 + 1.16388i
\(896\) −930169. 164014.i −1.15863 0.204298i
\(897\) 0 0
\(898\) 128666. 107964.i 0.159556 0.133883i
\(899\) −446763. + 257939.i −0.552787 + 0.319152i
\(900\) 0 0
\(901\) 229687. 397829.i 0.282935 0.490057i
\(902\) −96243.5 + 16970.3i −0.118293 + 0.0208582i
\(903\) 0 0
\(904\) −383758. + 139677.i −0.469592 + 0.170918i
\(905\) 537832. + 1.47768e6i 0.656673 + 1.80420i
\(906\) 0 0
\(907\) −150017. 850789.i −0.182358 1.03421i −0.929303 0.369319i \(-0.879591\pi\)
0.746944 0.664887i \(-0.231520\pi\)
\(908\) −681390. 393401.i −0.826465 0.477160i
\(909\) 0 0
\(910\) 84317.8 + 146043.i 0.101821 + 0.176359i
\(911\) −187578. 223547.i −0.226020 0.269360i 0.641103 0.767455i \(-0.278477\pi\)
−0.867122 + 0.498096i \(0.834033\pi\)
\(912\) 0 0
\(913\) −70405.4 + 399289.i −0.0844625 + 0.479011i
\(914\) −93144.2 + 111005.i −0.111497 + 0.132877i
\(915\) 0 0
\(916\) 1.32578e6 + 482546.i 1.58009 + 0.575106i
\(917\) 2.38770e6i 2.83950i
\(918\) 0 0
\(919\) −690029. −0.817026 −0.408513 0.912752i \(-0.633953\pi\)
−0.408513 + 0.912752i \(0.633953\pi\)
\(920\) 40104.3 110186.i 0.0473823 0.130182i
\(921\) 0 0
\(922\) −129923. 109018.i −0.152836 0.128244i
\(923\) 32729.8 + 5771.16i 0.0384185 + 0.00677422i
\(924\) 0 0
\(925\) 281348. 236079.i 0.328822 0.275915i
\(926\) −228327. + 131825.i −0.266278 + 0.153736i
\(927\) 0 0
\(928\) 431293. 747022.i 0.500814 0.867436i
\(929\) −748149. + 131919.i −0.866875 + 0.152854i −0.589363 0.807868i \(-0.700621\pi\)
−0.277513 + 0.960722i \(0.589510\pi\)
\(930\) 0 0
\(931\) 1.40291e6 510619.i 1.61857 0.589112i
\(932\) −278060. 763965.i −0.320116 0.879512i
\(933\) 0 0
\(934\) 19002.2 + 107767.i 0.0217826 + 0.123535i
\(935\) −449000. 259230.i −0.513598 0.296526i
\(936\) 0 0
\(937\) 106034. + 183656.i 0.120772 + 0.209183i 0.920072 0.391749i \(-0.128130\pi\)
−0.799300 + 0.600932i \(0.794796\pi\)
\(938\) 141804. + 168996.i 0.161170 + 0.192075i
\(939\) 0 0
\(940\) 367037. 2.08157e6i 0.415388 2.35578i
\(941\) 151335. 180355.i 0.170908 0.203680i −0.673791 0.738922i \(-0.735335\pi\)
0.844699 + 0.535242i \(0.179780\pi\)
\(942\) 0 0
\(943\) 270222. + 98352.7i 0.303876 + 0.110602i
\(944\) 128371.i 0.144054i
\(945\) 0 0
\(946\) −42589.2 −0.0475901
\(947\) −110408. + 303342.i −0.123112 + 0.338246i −0.985904 0.167312i \(-0.946491\pi\)
0.862792 + 0.505558i \(0.168713\pi\)
\(948\) 0 0
\(949\) −469470. 393932.i −0.521285 0.437410i
\(950\) 112815. + 19892.4i 0.125003 + 0.0220414i
\(951\) 0 0
\(952\) −344003. + 288652.i −0.379566 + 0.318494i
\(953\) −866462. + 500252.i −0.954034 + 0.550812i −0.894332 0.447405i \(-0.852348\pi\)
−0.0597020 + 0.998216i \(0.519015\pi\)
\(954\) 0 0
\(955\) −208917. + 361855.i −0.229069 + 0.396760i
\(956\) 100506. 17722.0i 0.109971 0.0193908i
\(957\) 0 0
\(958\) 228896. 83311.5i 0.249407 0.0907766i
\(959\) −237998. 653894.i −0.258783 0.711001i
\(960\) 0 0
\(961\) −141884. 804662.i −0.153633 0.871298i
\(962\) −38686.5 22335.7i −0.0418032 0.0241351i
\(963\) 0 0
\(964\) 139101. + 240931.i 0.149685 + 0.259261i
\(965\) 200043. + 238402.i 0.214817 + 0.256009i
\(966\) 0 0
\(967\) −270413. + 1.53359e6i −0.289184 + 1.64004i 0.400761 + 0.916182i \(0.368746\pi\)
−0.689945 + 0.723861i \(0.742365\pi\)
\(968\) −149759. + 178475.i −0.159824 + 0.190470i
\(969\) 0 0
\(970\) −54616.5 19878.8i −0.0580471 0.0211274i
\(971\) 1.32763e6i 1.40811i −0.710143 0.704057i \(-0.751370\pi\)
0.710143 0.704057i \(-0.248630\pi\)
\(972\) 0 0
\(973\) −1.97421e6 −2.08530
\(974\) 61381.2 168643.i 0.0647020 0.177767i
\(975\) 0 0
\(976\) −314711. 264074.i −0.330379 0.277221i
\(977\) 1.76176e6 + 310645.i 1.84568 + 0.325443i 0.983465 0.181098i \(-0.0579650\pi\)
0.862216 + 0.506541i \(0.169076\pi\)
\(978\) 0 0
\(979\) 118023. 99033.3i 0.123141 0.103328i
\(980\) 2.12632e6 1.22763e6i 2.21399 1.27825i
\(981\) 0 0
\(982\) −34460.8 + 59687.8i −0.0357357 + 0.0618960i
\(983\) −390849. + 68917.3i −0.404485 + 0.0713216i −0.372190 0.928157i \(-0.621393\pi\)
−0.0322954 + 0.999478i \(0.510282\pi\)
\(984\) 0 0
\(985\) −198059. + 72087.5i −0.204137 + 0.0742998i
\(986\) −91267.4 250755.i −0.0938776 0.257927i
\(987\) 0 0
\(988\) 67440.4 + 382473.i 0.0690885 + 0.391821i
\(989\) 108529. + 62659.1i 0.110956 + 0.0640607i
\(990\) 0 0
\(991\) 451332. + 781730.i 0.459567 + 0.795994i 0.998938 0.0460748i \(-0.0146713\pi\)
−0.539371 + 0.842068i \(0.681338\pi\)
\(992\) −114406. 136344.i −0.116259 0.138552i
\(993\) 0 0
\(994\) −4535.30 + 25721.0i −0.00459022 + 0.0260324i
\(995\) −821526. + 979056.i −0.829803 + 0.988921i
\(996\) 0 0
\(997\) −281527. 102467.i −0.283224 0.103085i 0.196502 0.980503i \(-0.437042\pi\)
−0.479726 + 0.877418i \(0.659264\pi\)
\(998\) 10040.4i 0.0100807i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.5.f.a.17.6 66
3.2 odd 2 27.5.f.a.23.6 yes 66
27.7 even 9 27.5.f.a.20.6 66
27.20 odd 18 inner 81.5.f.a.62.6 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.f.a.20.6 66 27.7 even 9
27.5.f.a.23.6 yes 66 3.2 odd 2
81.5.f.a.17.6 66 1.1 even 1 trivial
81.5.f.a.62.6 66 27.20 odd 18 inner