Properties

Label 81.12.c.f
Level $81$
Weight $12$
Character orbit 81.c
Analytic conductor $62.236$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,12,Mod(28,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.28"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-2600] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.2357976253\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-31})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 7x^{2} - 8x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + 1300 \beta_1 q^{4} + (10 \beta_{3} - 10 \beta_{2}) q^{5} + (50071 \beta_1 + 50071) q^{7} + 748 \beta_{2} q^{8} - 33480 q^{10} - 9554 \beta_{3} q^{11} + 1039121 \beta_1 q^{13} + (50071 \beta_{3} - 50071 \beta_{2}) q^{14}+ \cdots - 529778298 \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2600 q^{4} + 100142 q^{7} - 133920 q^{10} - 2078242 q^{13} + 10333408 q^{16} - 2317204 q^{19} + 63973584 q^{22} + 96986650 q^{25} - 260369200 q^{28} + 178115096 q^{31} + 675639792 q^{34} - 2267727652 q^{37}+ \cdots + 209474212742 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 7x^{2} - 8x + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 7\nu^{2} - 7\nu - 64 ) / 56 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{3} + 3\nu^{2} + 45\nu + 12 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 51\nu^{3} + 21\nu^{2} + 315\nu - 744 ) / 28 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - 18\beta_1 ) / 36 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} + 270\beta _1 + 270 ) / 36 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 14\beta_{3} - 7\beta_{2} + 414 ) / 36 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
−2.16091 1.82495i
2.66091 + 0.958928i
−2.16091 + 1.82495i
2.66091 0.958928i
−28.9310 50.1099i 0 −650.000 + 1125.83i 289.310 501.099i 0 25035.5 + 43362.8i −43280.7 0 −33480.0
28.2 28.9310 + 50.1099i 0 −650.000 + 1125.83i −289.310 + 501.099i 0 25035.5 + 43362.8i 43280.7 0 −33480.0
55.1 −28.9310 + 50.1099i 0 −650.000 1125.83i 289.310 + 501.099i 0 25035.5 43362.8i −43280.7 0 −33480.0
55.2 28.9310 50.1099i 0 −650.000 1125.83i −289.310 501.099i 0 25035.5 43362.8i 43280.7 0 −33480.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.12.c.f 4
3.b odd 2 1 inner 81.12.c.f 4
9.c even 3 1 27.12.a.b 2
9.c even 3 1 inner 81.12.c.f 4
9.d odd 6 1 27.12.a.b 2
9.d odd 6 1 inner 81.12.c.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.12.a.b 2 9.c even 3 1
27.12.a.b 2 9.d odd 6 1
81.12.c.f 4 1.a even 1 1 trivial
81.12.c.f 4 3.b odd 2 1 inner
81.12.c.f 4 9.c even 3 1 inner
81.12.c.f 4 9.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 3348T_{2}^{2} + 11209104 \) acting on \(S_{12}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 3348 T^{2} + 11209104 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 112091040000 \) Copy content Toggle raw display
$7$ \( (T^{2} - 50071 T + 2507105041)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 93\!\cdots\!24 \) Copy content Toggle raw display
$13$ \( (T^{2} + \cdots + 1079772452641)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 34086703146192)^{2} \) Copy content Toggle raw display
$19$ \( (T + 579301)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots + 79\!\cdots\!04)^{2} \) Copy content Toggle raw display
$37$ \( (T + 566931913)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 32\!\cdots\!24 \) Copy content Toggle raw display
$43$ \( (T^{2} + \cdots + 15\!\cdots\!64)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 71\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( (T^{2} - 23\!\cdots\!52)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 14\!\cdots\!84 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 12\!\cdots\!69)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + \cdots + 16\!\cdots\!41)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 49\!\cdots\!12)^{2} \) Copy content Toggle raw display
$73$ \( (T + 31135508287)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 38\!\cdots\!25)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 54\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( (T^{2} - 27\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 10\!\cdots\!41)^{2} \) Copy content Toggle raw display
show more
show less