# Properties

 Label 8016.2.f Level 8016 Weight 2 Character orbit f Rep. character $$\chi_{8016}(4009,\cdot)$$ Character field $$\Q$$ Dimension 0 Newform subspaces 0 Sturm bound 2688 Trace bound 0

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$8016 = 2^{4} \cdot 3 \cdot 167$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8016.f (of order $$2$$ and degree $$1$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$8$$ Character field: $$\Q$$ Newform subspaces: $$0$$ Sturm bound: $$2688$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(8016, [\chi])$$.

Total New Old
Modular forms 1352 0 1352
Cusp forms 1336 0 1336
Eisenstein series 16 0 16

## Decomposition of $$S_{2}^{\mathrm{old}}(8016, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(8016, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(24, [\chi])$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(1336, [\chi])$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(4008, [\chi])$$$$^{\oplus 2}$$

## Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database