Properties

Label 8001.2.a.x.1.11
Level 80018001
Weight 22
Character 8001.1
Self dual yes
Analytic conductor 63.88863.888
Analytic rank 11
Dimension 2222
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 8001=327127 8001 = 3^{2} \cdot 7 \cdot 127
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 63.888306657263.8883066572
Analytic rank: 11
Dimension: 2222
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.11
Character χ\chi == 8001.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q0.384540q21.85213q4+3.33517q5+1.00000q7+1.48130q81.28251q10+0.515399q11+0.383569q130.384540q14+3.13464q16+5.06965q173.66209q196.17717q200.198192q225.75988q23+6.12339q250.147498q261.85213q285.53042q291.26331q314.16799q321.94948q34+3.33517q351.25412q37+1.40822q38+4.94039q403.87363q4110.3608q430.954585q44+2.21491q4611.4758q47+1.00000q492.35469q500.710420q527.61321q53+1.71894q55+1.48130q56+2.12667q5810.0119q59+4.93654q61+0.485793q624.66651q64+1.27927q657.85043q679.38964q681.28251q70+10.4327q717.05406q73+0.482260q74+6.78267q76+0.515399q771.78677q79+10.4546q80+1.48957q821.60224q83+16.9082q85+3.98415q86+0.763460q888.42939q89+0.383569q91+10.6680q92+4.41291q9412.2137q95+11.4989q970.384540q98+O(q100)q-0.384540 q^{2} -1.85213 q^{4} +3.33517 q^{5} +1.00000 q^{7} +1.48130 q^{8} -1.28251 q^{10} +0.515399 q^{11} +0.383569 q^{13} -0.384540 q^{14} +3.13464 q^{16} +5.06965 q^{17} -3.66209 q^{19} -6.17717 q^{20} -0.198192 q^{22} -5.75988 q^{23} +6.12339 q^{25} -0.147498 q^{26} -1.85213 q^{28} -5.53042 q^{29} -1.26331 q^{31} -4.16799 q^{32} -1.94948 q^{34} +3.33517 q^{35} -1.25412 q^{37} +1.40822 q^{38} +4.94039 q^{40} -3.87363 q^{41} -10.3608 q^{43} -0.954585 q^{44} +2.21491 q^{46} -11.4758 q^{47} +1.00000 q^{49} -2.35469 q^{50} -0.710420 q^{52} -7.61321 q^{53} +1.71894 q^{55} +1.48130 q^{56} +2.12667 q^{58} -10.0119 q^{59} +4.93654 q^{61} +0.485793 q^{62} -4.66651 q^{64} +1.27927 q^{65} -7.85043 q^{67} -9.38964 q^{68} -1.28251 q^{70} +10.4327 q^{71} -7.05406 q^{73} +0.482260 q^{74} +6.78267 q^{76} +0.515399 q^{77} -1.78677 q^{79} +10.4546 q^{80} +1.48957 q^{82} -1.60224 q^{83} +16.9082 q^{85} +3.98415 q^{86} +0.763460 q^{88} -8.42939 q^{89} +0.383569 q^{91} +10.6680 q^{92} +4.41291 q^{94} -12.2137 q^{95} +11.4989 q^{97} -0.384540 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 22q+10q4+22q74q1010q136q1618q1934q2226q25+10q2842q3116q3436q3746q4054q4312q46+22q4922q52+56q97+O(q100) 22 q + 10 q^{4} + 22 q^{7} - 4 q^{10} - 10 q^{13} - 6 q^{16} - 18 q^{19} - 34 q^{22} - 26 q^{25} + 10 q^{28} - 42 q^{31} - 16 q^{34} - 36 q^{37} - 46 q^{40} - 54 q^{43} - 12 q^{46} + 22 q^{49} - 22 q^{52}+ \cdots - 56 q^{97}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.384540 −0.271911 −0.135956 0.990715i 0.543410π-0.543410\pi
−0.135956 + 0.990715i 0.543410π0.543410\pi
33 0 0
44 −1.85213 −0.926064
55 3.33517 1.49154 0.745768 0.666206i 0.232083π-0.232083\pi
0.745768 + 0.666206i 0.232083π0.232083\pi
66 0 0
77 1.00000 0.377964
88 1.48130 0.523718
99 0 0
1010 −1.28251 −0.405565
1111 0.515399 0.155399 0.0776993 0.996977i 0.475243π-0.475243\pi
0.0776993 + 0.996977i 0.475243π0.475243\pi
1212 0 0
1313 0.383569 0.106383 0.0531915 0.998584i 0.483061π-0.483061\pi
0.0531915 + 0.998584i 0.483061π0.483061\pi
1414 −0.384540 −0.102773
1515 0 0
1616 3.13464 0.783660
1717 5.06965 1.22957 0.614785 0.788695i 0.289243π-0.289243\pi
0.614785 + 0.788695i 0.289243π0.289243\pi
1818 0 0
1919 −3.66209 −0.840142 −0.420071 0.907491i 0.637995π-0.637995\pi
−0.420071 + 0.907491i 0.637995π0.637995\pi
2020 −6.17717 −1.38126
2121 0 0
2222 −0.198192 −0.0422546
2323 −5.75988 −1.20102 −0.600509 0.799618i 0.705035π-0.705035\pi
−0.600509 + 0.799618i 0.705035π0.705035\pi
2424 0 0
2525 6.12339 1.22468
2626 −0.147498 −0.0289267
2727 0 0
2828 −1.85213 −0.350019
2929 −5.53042 −1.02697 −0.513487 0.858097i 0.671647π-0.671647\pi
−0.513487 + 0.858097i 0.671647π0.671647\pi
3030 0 0
3131 −1.26331 −0.226897 −0.113449 0.993544i 0.536190π-0.536190\pi
−0.113449 + 0.993544i 0.536190π0.536190\pi
3232 −4.16799 −0.736804
3333 0 0
3434 −1.94948 −0.334334
3535 3.33517 0.563747
3636 0 0
3737 −1.25412 −0.206176 −0.103088 0.994672i 0.532872π-0.532872\pi
−0.103088 + 0.994672i 0.532872π0.532872\pi
3838 1.40822 0.228444
3939 0 0
4040 4.94039 0.781144
4141 −3.87363 −0.604960 −0.302480 0.953156i 0.597815π-0.597815\pi
−0.302480 + 0.953156i 0.597815π0.597815\pi
4242 0 0
4343 −10.3608 −1.58001 −0.790004 0.613101i 0.789922π-0.789922\pi
−0.790004 + 0.613101i 0.789922π0.789922\pi
4444 −0.954585 −0.143909
4545 0 0
4646 2.21491 0.326570
4747 −11.4758 −1.67392 −0.836959 0.547266i 0.815669π-0.815669\pi
−0.836959 + 0.547266i 0.815669π0.815669\pi
4848 0 0
4949 1.00000 0.142857
5050 −2.35469 −0.333003
5151 0 0
5252 −0.710420 −0.0985175
5353 −7.61321 −1.04575 −0.522877 0.852408i 0.675141π-0.675141\pi
−0.522877 + 0.852408i 0.675141π0.675141\pi
5454 0 0
5555 1.71894 0.231782
5656 1.48130 0.197947
5757 0 0
5858 2.12667 0.279246
5959 −10.0119 −1.30344 −0.651718 0.758461i 0.725952π-0.725952\pi
−0.651718 + 0.758461i 0.725952π0.725952\pi
6060 0 0
6161 4.93654 0.632059 0.316030 0.948749i 0.397650π-0.397650\pi
0.316030 + 0.948749i 0.397650π0.397650\pi
6262 0.485793 0.0616958
6363 0 0
6464 −4.66651 −0.583314
6565 1.27927 0.158674
6666 0 0
6767 −7.85043 −0.959083 −0.479542 0.877519i 0.659197π-0.659197\pi
−0.479542 + 0.877519i 0.659197π0.659197\pi
6868 −9.38964 −1.13866
6969 0 0
7070 −1.28251 −0.153289
7171 10.4327 1.23813 0.619065 0.785339i 0.287512π-0.287512\pi
0.619065 + 0.785339i 0.287512π0.287512\pi
7272 0 0
7373 −7.05406 −0.825616 −0.412808 0.910818i 0.635452π-0.635452\pi
−0.412808 + 0.910818i 0.635452π0.635452\pi
7474 0.482260 0.0560616
7575 0 0
7676 6.78267 0.778026
7777 0.515399 0.0587351
7878 0 0
7979 −1.78677 −0.201027 −0.100514 0.994936i 0.532049π-0.532049\pi
−0.100514 + 0.994936i 0.532049π0.532049\pi
8080 10.4546 1.16886
8181 0 0
8282 1.48957 0.164495
8383 −1.60224 −0.175868 −0.0879342 0.996126i 0.528027π-0.528027\pi
−0.0879342 + 0.996126i 0.528027π0.528027\pi
8484 0 0
8585 16.9082 1.83395
8686 3.98415 0.429622
8787 0 0
8888 0.763460 0.0813851
8989 −8.42939 −0.893513 −0.446757 0.894656i 0.647421π-0.647421\pi
−0.446757 + 0.894656i 0.647421π0.647421\pi
9090 0 0
9191 0.383569 0.0402090
9292 10.6680 1.11222
9393 0 0
9494 4.41291 0.455157
9595 −12.2137 −1.25310
9696 0 0
9797 11.4989 1.16753 0.583766 0.811922i 0.301578π-0.301578\pi
0.583766 + 0.811922i 0.301578π0.301578\pi
9898 −0.384540 −0.0388444
9999 0 0
100100 −11.3413 −1.13413
101101 −6.51118 −0.647886 −0.323943 0.946077i 0.605009π-0.605009\pi
−0.323943 + 0.946077i 0.605009π0.605009\pi
102102 0 0
103103 7.35590 0.724798 0.362399 0.932023i 0.381958π-0.381958\pi
0.362399 + 0.932023i 0.381958π0.381958\pi
104104 0.568181 0.0557147
105105 0 0
106106 2.92759 0.284352
107107 −0.745709 −0.0720904 −0.0360452 0.999350i 0.511476π-0.511476\pi
−0.0360452 + 0.999350i 0.511476π0.511476\pi
108108 0 0
109109 −6.40003 −0.613011 −0.306506 0.951869i 0.599160π-0.599160\pi
−0.306506 + 0.951869i 0.599160π0.599160\pi
110110 −0.661004 −0.0630242
111111 0 0
112112 3.13464 0.296195
113113 0.288023 0.0270949 0.0135475 0.999908i 0.495688π-0.495688\pi
0.0135475 + 0.999908i 0.495688π0.495688\pi
114114 0 0
115115 −19.2102 −1.79136
116116 10.2431 0.951044
117117 0 0
118118 3.84998 0.354419
119119 5.06965 0.464734
120120 0 0
121121 −10.7344 −0.975851
122122 −1.89830 −0.171864
123123 0 0
124124 2.33981 0.210121
125125 3.74670 0.335115
126126 0 0
127127 1.00000 0.0887357
128128 10.1304 0.895414
129129 0 0
130130 −0.491931 −0.0431452
131131 −15.3614 −1.34213 −0.671066 0.741398i 0.734163π-0.734163\pi
−0.671066 + 0.741398i 0.734163π0.734163\pi
132132 0 0
133133 −3.66209 −0.317544
134134 3.01881 0.260785
135135 0 0
136136 7.50967 0.643949
137137 1.99537 0.170476 0.0852380 0.996361i 0.472835π-0.472835\pi
0.0852380 + 0.996361i 0.472835π0.472835\pi
138138 0 0
139139 −16.8068 −1.42553 −0.712767 0.701401i 0.752558π-0.752558\pi
−0.712767 + 0.701401i 0.752558π0.752558\pi
140140 −6.17717 −0.522066
141141 0 0
142142 −4.01179 −0.336662
143143 0.197691 0.0165318
144144 0 0
145145 −18.4449 −1.53177
146146 2.71257 0.224494
147147 0 0
148148 2.32279 0.190933
149149 8.33107 0.682508 0.341254 0.939971i 0.389148π-0.389148\pi
0.341254 + 0.939971i 0.389148π0.389148\pi
150150 0 0
151151 −5.65737 −0.460390 −0.230195 0.973144i 0.573936π-0.573936\pi
−0.230195 + 0.973144i 0.573936π0.573936\pi
152152 −5.42466 −0.439998
153153 0 0
154154 −0.198192 −0.0159707
155155 −4.21336 −0.338425
156156 0 0
157157 17.5110 1.39753 0.698764 0.715352i 0.253734π-0.253734\pi
0.698764 + 0.715352i 0.253734π0.253734\pi
158158 0.687085 0.0546616
159159 0 0
160160 −13.9010 −1.09897
161161 −5.75988 −0.453942
162162 0 0
163163 5.81050 0.455114 0.227557 0.973765i 0.426926π-0.426926\pi
0.227557 + 0.973765i 0.426926π0.426926\pi
164164 7.17447 0.560232
165165 0 0
166166 0.616125 0.0478206
167167 8.15458 0.631020 0.315510 0.948922i 0.397824π-0.397824\pi
0.315510 + 0.948922i 0.397824π0.397824\pi
168168 0 0
169169 −12.8529 −0.988683
170170 −6.50187 −0.498671
171171 0 0
172172 19.1896 1.46319
173173 5.26477 0.400273 0.200137 0.979768i 0.435861π-0.435861\pi
0.200137 + 0.979768i 0.435861π0.435861\pi
174174 0 0
175175 6.12339 0.462885
176176 1.61559 0.121780
177177 0 0
178178 3.24144 0.242956
179179 5.90241 0.441167 0.220583 0.975368i 0.429204π-0.429204\pi
0.220583 + 0.975368i 0.429204π0.429204\pi
180180 0 0
181181 16.3682 1.21664 0.608321 0.793691i 0.291843π-0.291843\pi
0.608321 + 0.793691i 0.291843π0.291843\pi
182182 −0.147498 −0.0109333
183183 0 0
184184 −8.53211 −0.628995
185185 −4.18271 −0.307519
186186 0 0
187187 2.61289 0.191074
188188 21.2547 1.55016
189189 0 0
190190 4.69667 0.340732
191191 8.17284 0.591366 0.295683 0.955286i 0.404453π-0.404453\pi
0.295683 + 0.955286i 0.404453π0.404453\pi
192192 0 0
193193 −19.2374 −1.38474 −0.692370 0.721542i 0.743433π-0.743433\pi
−0.692370 + 0.721542i 0.743433π0.743433\pi
194194 −4.42178 −0.317465
195195 0 0
196196 −1.85213 −0.132295
197197 17.2148 1.22651 0.613253 0.789886i 0.289861π-0.289861\pi
0.613253 + 0.789886i 0.289861π0.289861\pi
198198 0 0
199199 11.1830 0.792744 0.396372 0.918090i 0.370269π-0.370269\pi
0.396372 + 0.918090i 0.370269π0.370269\pi
200200 9.07057 0.641386
201201 0 0
202202 2.50381 0.176167
203203 −5.53042 −0.388160
204204 0 0
205205 −12.9192 −0.902319
206206 −2.82864 −0.197081
207207 0 0
208208 1.20235 0.0833680
209209 −1.88744 −0.130557
210210 0 0
211211 −18.2779 −1.25831 −0.629153 0.777282i 0.716598π-0.716598\pi
−0.629153 + 0.777282i 0.716598π0.716598\pi
212212 14.1006 0.968436
213213 0 0
214214 0.286755 0.0196022
215215 −34.5551 −2.35664
216216 0 0
217217 −1.26331 −0.0857590
218218 2.46107 0.166685
219219 0 0
220220 −3.18371 −0.214645
221221 1.94456 0.130805
222222 0 0
223223 −28.2048 −1.88873 −0.944365 0.328899i 0.893322π-0.893322\pi
−0.944365 + 0.328899i 0.893322π0.893322\pi
224224 −4.16799 −0.278486
225225 0 0
226226 −0.110757 −0.00736742
227227 21.6717 1.43840 0.719202 0.694801i 0.244508π-0.244508\pi
0.719202 + 0.694801i 0.244508π0.244508\pi
228228 0 0
229229 25.5347 1.68738 0.843689 0.536832i 0.180379π-0.180379\pi
0.843689 + 0.536832i 0.180379π0.180379\pi
230230 7.38710 0.487091
231231 0 0
232232 −8.19221 −0.537845
233233 23.6494 1.54932 0.774661 0.632376i 0.217920π-0.217920\pi
0.774661 + 0.632376i 0.217920π0.217920\pi
234234 0 0
235235 −38.2738 −2.49671
236236 18.5433 1.20707
237237 0 0
238238 −1.94948 −0.126366
239239 8.23753 0.532841 0.266421 0.963857i 0.414159π-0.414159\pi
0.266421 + 0.963857i 0.414159π0.414159\pi
240240 0 0
241241 0.447585 0.0288315 0.0144158 0.999896i 0.495411π-0.495411\pi
0.0144158 + 0.999896i 0.495411π0.495411\pi
242242 4.12780 0.265345
243243 0 0
244244 −9.14311 −0.585327
245245 3.33517 0.213076
246246 0 0
247247 −1.40467 −0.0893768
248248 −1.87134 −0.118830
249249 0 0
250250 −1.44076 −0.0911214
251251 8.12028 0.512547 0.256274 0.966604i 0.417505π-0.417505\pi
0.256274 + 0.966604i 0.417505π0.417505\pi
252252 0 0
253253 −2.96864 −0.186637
254254 −0.384540 −0.0241282
255255 0 0
256256 5.43746 0.339841
257257 −0.667162 −0.0416164 −0.0208082 0.999783i 0.506624π-0.506624\pi
−0.0208082 + 0.999783i 0.506624π0.506624\pi
258258 0 0
259259 −1.25412 −0.0779273
260260 −2.36937 −0.146942
261261 0 0
262262 5.90708 0.364940
263263 −24.6687 −1.52114 −0.760570 0.649256i 0.775080π-0.775080\pi
−0.760570 + 0.649256i 0.775080π0.775080\pi
264264 0 0
265265 −25.3914 −1.55978
266266 1.40822 0.0863437
267267 0 0
268268 14.5400 0.888173
269269 −20.2132 −1.23242 −0.616210 0.787582i 0.711333π-0.711333\pi
−0.616210 + 0.787582i 0.711333π0.711333\pi
270270 0 0
271271 −4.68284 −0.284462 −0.142231 0.989833i 0.545428π-0.545428\pi
−0.142231 + 0.989833i 0.545428π0.545428\pi
272272 15.8915 0.963565
273273 0 0
274274 −0.767301 −0.0463543
275275 3.15599 0.190313
276276 0 0
277277 10.2489 0.615796 0.307898 0.951419i 0.400374π-0.400374\pi
0.307898 + 0.951419i 0.400374π0.400374\pi
278278 6.46289 0.387618
279279 0 0
280280 4.94039 0.295245
281281 9.49428 0.566381 0.283191 0.959064i 0.408607π-0.408607\pi
0.283191 + 0.959064i 0.408607π0.408607\pi
282282 0 0
283283 2.56660 0.152569 0.0762844 0.997086i 0.475694π-0.475694\pi
0.0762844 + 0.997086i 0.475694π0.475694\pi
284284 −19.3227 −1.14659
285285 0 0
286286 −0.0760202 −0.00449517
287287 −3.87363 −0.228653
288288 0 0
289289 8.70134 0.511844
290290 7.09282 0.416505
291291 0 0
292292 13.0650 0.764573
293293 −11.6103 −0.678279 −0.339140 0.940736i 0.610136π-0.610136\pi
−0.339140 + 0.940736i 0.610136π0.610136\pi
294294 0 0
295295 −33.3914 −1.94412
296296 −1.85773 −0.107978
297297 0 0
298298 −3.20363 −0.185582
299299 −2.20931 −0.127768
300300 0 0
301301 −10.3608 −0.597187
302302 2.17549 0.125185
303303 0 0
304304 −11.4793 −0.658385
305305 16.4642 0.942738
306306 0 0
307307 −9.00122 −0.513727 −0.256863 0.966448i 0.582689π-0.582689\pi
−0.256863 + 0.966448i 0.582689π0.582689\pi
308308 −0.954585 −0.0543925
309309 0 0
310310 1.62021 0.0920215
311311 4.00207 0.226937 0.113468 0.993542i 0.463804π-0.463804\pi
0.113468 + 0.993542i 0.463804π0.463804\pi
312312 0 0
313313 −5.90161 −0.333578 −0.166789 0.985993i 0.553340π-0.553340\pi
−0.166789 + 0.985993i 0.553340π0.553340\pi
314314 −6.73368 −0.380004
315315 0 0
316316 3.30933 0.186164
317317 4.98975 0.280252 0.140126 0.990134i 0.455249π-0.455249\pi
0.140126 + 0.990134i 0.455249π0.455249\pi
318318 0 0
319319 −2.85037 −0.159590
320320 −15.5636 −0.870034
321321 0 0
322322 2.21491 0.123432
323323 −18.5655 −1.03301
324324 0 0
325325 2.34874 0.130285
326326 −2.23437 −0.123750
327327 0 0
328328 −5.73801 −0.316829
329329 −11.4758 −0.632681
330330 0 0
331331 32.1337 1.76623 0.883114 0.469159i 0.155443π-0.155443\pi
0.883114 + 0.469159i 0.155443π0.155443\pi
332332 2.96755 0.162865
333333 0 0
334334 −3.13577 −0.171581
335335 −26.1826 −1.43051
336336 0 0
337337 −0.613743 −0.0334327 −0.0167163 0.999860i 0.505321π-0.505321\pi
−0.0167163 + 0.999860i 0.505321π0.505321\pi
338338 4.94245 0.268834
339339 0 0
340340 −31.3161 −1.69835
341341 −0.651108 −0.0352595
342342 0 0
343343 1.00000 0.0539949
344344 −15.3475 −0.827480
345345 0 0
346346 −2.02452 −0.108839
347347 −18.8505 −1.01195 −0.505975 0.862548i 0.668867π-0.668867\pi
−0.505975 + 0.862548i 0.668867π0.668867\pi
348348 0 0
349349 −16.9302 −0.906255 −0.453128 0.891446i 0.649692π-0.649692\pi
−0.453128 + 0.891446i 0.649692π0.649692\pi
350350 −2.35469 −0.125863
351351 0 0
352352 −2.14818 −0.114498
353353 25.1141 1.33669 0.668343 0.743853i 0.267004π-0.267004\pi
0.668343 + 0.743853i 0.267004π0.267004\pi
354354 0 0
355355 34.7948 1.84672
356356 15.6123 0.827451
357357 0 0
358358 −2.26971 −0.119958
359359 31.2366 1.64860 0.824301 0.566151i 0.191568π-0.191568\pi
0.824301 + 0.566151i 0.191568π0.191568\pi
360360 0 0
361361 −5.58906 −0.294161
362362 −6.29425 −0.330819
363363 0 0
364364 −0.710420 −0.0372361
365365 −23.5265 −1.23144
366366 0 0
367367 10.1840 0.531601 0.265800 0.964028i 0.414364π-0.414364\pi
0.265800 + 0.964028i 0.414364π0.414364\pi
368368 −18.0551 −0.941190
369369 0 0
370370 1.60842 0.0836179
371371 −7.61321 −0.395258
372372 0 0
373373 37.5615 1.94486 0.972431 0.233192i 0.0749170π-0.0749170\pi
0.972431 + 0.233192i 0.0749170π0.0749170\pi
374374 −1.00476 −0.0519550
375375 0 0
376376 −16.9991 −0.876661
377377 −2.12130 −0.109253
378378 0 0
379379 −15.0663 −0.773903 −0.386951 0.922100i 0.626472π-0.626472\pi
−0.386951 + 0.922100i 0.626472π0.626472\pi
380380 22.6214 1.16045
381381 0 0
382382 −3.14279 −0.160799
383383 30.0842 1.53723 0.768615 0.639711i 0.220946π-0.220946\pi
0.768615 + 0.639711i 0.220946π0.220946\pi
384384 0 0
385385 1.71894 0.0876055
386386 7.39757 0.376526
387387 0 0
388388 −21.2974 −1.08121
389389 24.7463 1.25469 0.627343 0.778743i 0.284142π-0.284142\pi
0.627343 + 0.778743i 0.284142π0.284142\pi
390390 0 0
391391 −29.2006 −1.47674
392392 1.48130 0.0748169
393393 0 0
394394 −6.61980 −0.333501
395395 −5.95919 −0.299839
396396 0 0
397397 −15.2008 −0.762907 −0.381453 0.924388i 0.624576π-0.624576\pi
−0.381453 + 0.924388i 0.624576π0.624576\pi
398398 −4.30032 −0.215556
399399 0 0
400400 19.1946 0.959730
401401 16.0162 0.799811 0.399906 0.916556i 0.369043π-0.369043\pi
0.399906 + 0.916556i 0.369043π0.369043\pi
402402 0 0
403403 −0.484567 −0.0241380
404404 12.0595 0.599984
405405 0 0
406406 2.12667 0.105545
407407 −0.646373 −0.0320395
408408 0 0
409409 −18.5824 −0.918842 −0.459421 0.888219i 0.651943π-0.651943\pi
−0.459421 + 0.888219i 0.651943π0.651943\pi
410410 4.96797 0.245351
411411 0 0
412412 −13.6241 −0.671210
413413 −10.0119 −0.492653
414414 0 0
415415 −5.34374 −0.262314
416416 −1.59871 −0.0783834
417417 0 0
418418 0.725797 0.0354999
419419 27.6284 1.34974 0.674869 0.737938i 0.264200π-0.264200\pi
0.674869 + 0.737938i 0.264200π0.264200\pi
420420 0 0
421421 −3.81539 −0.185951 −0.0929753 0.995668i 0.529638π-0.529638\pi
−0.0929753 + 0.995668i 0.529638π0.529638\pi
422422 7.02861 0.342147
423423 0 0
424424 −11.2774 −0.547681
425425 31.0434 1.50583
426426 0 0
427427 4.93654 0.238896
428428 1.38115 0.0667603
429429 0 0
430430 13.2878 0.640796
431431 5.14646 0.247896 0.123948 0.992289i 0.460444π-0.460444\pi
0.123948 + 0.992289i 0.460444π0.460444\pi
432432 0 0
433433 −27.3715 −1.31539 −0.657695 0.753285i 0.728468π-0.728468\pi
−0.657695 + 0.753285i 0.728468π0.728468\pi
434434 0.485793 0.0233188
435435 0 0
436436 11.8537 0.567688
437437 21.0932 1.00903
438438 0 0
439439 −28.0636 −1.33940 −0.669700 0.742631i 0.733577π-0.733577\pi
−0.669700 + 0.742631i 0.733577π0.733577\pi
440440 2.54627 0.121389
441441 0 0
442442 −0.747763 −0.0355674
443443 −26.9119 −1.27862 −0.639311 0.768948i 0.720780π-0.720780\pi
−0.639311 + 0.768948i 0.720780π0.720780\pi
444444 0 0
445445 −28.1135 −1.33271
446446 10.8459 0.513567
447447 0 0
448448 −4.66651 −0.220472
449449 5.82666 0.274977 0.137488 0.990503i 0.456097π-0.456097\pi
0.137488 + 0.990503i 0.456097π0.456097\pi
450450 0 0
451451 −1.99647 −0.0940099
452452 −0.533456 −0.0250917
453453 0 0
454454 −8.33366 −0.391118
455455 1.27927 0.0599731
456456 0 0
457457 −22.6300 −1.05859 −0.529293 0.848439i 0.677543π-0.677543\pi
−0.529293 + 0.848439i 0.677543π0.677543\pi
458458 −9.81911 −0.458817
459459 0 0
460460 35.5798 1.65892
461461 2.86588 0.133478 0.0667388 0.997770i 0.478741π-0.478741\pi
0.0667388 + 0.997770i 0.478741π0.478741\pi
462462 0 0
463463 −1.76337 −0.0819508 −0.0409754 0.999160i 0.513047π-0.513047\pi
−0.0409754 + 0.999160i 0.513047π0.513047\pi
464464 −17.3359 −0.804798
465465 0 0
466466 −9.09415 −0.421278
467467 −36.8967 −1.70738 −0.853688 0.520785i 0.825639π-0.825639\pi
−0.853688 + 0.520785i 0.825639π0.825639\pi
468468 0 0
469469 −7.85043 −0.362499
470470 14.7178 0.678882
471471 0 0
472472 −14.8306 −0.682634
473473 −5.33995 −0.245531
474474 0 0
475475 −22.4244 −1.02890
476476 −9.38964 −0.430374
477477 0 0
478478 −3.16766 −0.144885
479479 −21.8419 −0.997984 −0.498992 0.866607i 0.666296π-0.666296\pi
−0.498992 + 0.866607i 0.666296π0.666296\pi
480480 0 0
481481 −0.481043 −0.0219337
482482 −0.172115 −0.00783961
483483 0 0
484484 19.8814 0.903701
485485 38.3507 1.74142
486486 0 0
487487 20.5914 0.933084 0.466542 0.884499i 0.345500π-0.345500\pi
0.466542 + 0.884499i 0.345500π0.345500\pi
488488 7.31249 0.331021
489489 0 0
490490 −1.28251 −0.0579379
491491 15.3723 0.693742 0.346871 0.937913i 0.387244π-0.387244\pi
0.346871 + 0.937913i 0.387244π0.387244\pi
492492 0 0
493493 −28.0373 −1.26274
494494 0.540151 0.0243026
495495 0 0
496496 −3.96002 −0.177810
497497 10.4327 0.467969
498498 0 0
499499 −3.82462 −0.171214 −0.0856068 0.996329i 0.527283π-0.527283\pi
−0.0856068 + 0.996329i 0.527283π0.527283\pi
500500 −6.93937 −0.310338
501501 0 0
502502 −3.12258 −0.139367
503503 −7.01316 −0.312701 −0.156351 0.987702i 0.549973π-0.549973\pi
−0.156351 + 0.987702i 0.549973π0.549973\pi
504504 0 0
505505 −21.7159 −0.966345
506506 1.14156 0.0507486
507507 0 0
508508 −1.85213 −0.0821749
509509 −0.628790 −0.0278706 −0.0139353 0.999903i 0.504436π-0.504436\pi
−0.0139353 + 0.999903i 0.504436π0.504436\pi
510510 0 0
511511 −7.05406 −0.312053
512512 −22.3518 −0.987820
513513 0 0
514514 0.256551 0.0113160
515515 24.5332 1.08106
516516 0 0
517517 −5.91461 −0.260124
518518 0.482260 0.0211893
519519 0 0
520520 1.89498 0.0831005
521521 −8.64677 −0.378822 −0.189411 0.981898i 0.560658π-0.560658\pi
−0.189411 + 0.981898i 0.560658π0.560658\pi
522522 0 0
523523 14.1272 0.617741 0.308870 0.951104i 0.400049π-0.400049\pi
0.308870 + 0.951104i 0.400049π0.400049\pi
524524 28.4513 1.24290
525525 0 0
526526 9.48613 0.413615
527527 −6.40453 −0.278986
528528 0 0
529529 10.1763 0.442446
530530 9.76401 0.424122
531531 0 0
532532 6.78267 0.294066
533533 −1.48581 −0.0643575
534534 0 0
535535 −2.48707 −0.107525
536536 −11.6288 −0.502289
537537 0 0
538538 7.77279 0.335109
539539 0.515399 0.0221998
540540 0 0
541541 7.29682 0.313715 0.156857 0.987621i 0.449864π-0.449864\pi
0.156857 + 0.987621i 0.449864π0.449864\pi
542542 1.80074 0.0773484
543543 0 0
544544 −21.1303 −0.905953
545545 −21.3452 −0.914328
546546 0 0
547547 22.6540 0.968614 0.484307 0.874898i 0.339072π-0.339072\pi
0.484307 + 0.874898i 0.339072π0.339072\pi
548548 −3.69568 −0.157872
549549 0 0
550550 −1.21360 −0.0517483
551551 20.2529 0.862804
552552 0 0
553553 −1.78677 −0.0759812
554554 −3.94111 −0.167442
555555 0 0
556556 31.1283 1.32014
557557 4.61204 0.195418 0.0977092 0.995215i 0.468849π-0.468849\pi
0.0977092 + 0.995215i 0.468849π0.468849\pi
558558 0 0
559559 −3.97409 −0.168086
560560 10.4546 0.441786
561561 0 0
562562 −3.65093 −0.154005
563563 7.01174 0.295509 0.147755 0.989024i 0.452795π-0.452795\pi
0.147755 + 0.989024i 0.452795π0.452795\pi
564564 0 0
565565 0.960608 0.0404131
566566 −0.986963 −0.0414852
567567 0 0
568568 15.4539 0.648432
569569 26.5515 1.11310 0.556548 0.830815i 0.312125π-0.312125\pi
0.556548 + 0.830815i 0.312125π0.312125\pi
570570 0 0
571571 −39.3223 −1.64559 −0.822794 0.568340i 0.807586π-0.807586\pi
−0.822794 + 0.568340i 0.807586π0.807586\pi
572572 −0.366149 −0.0153095
573573 0 0
574574 1.48957 0.0621734
575575 −35.2700 −1.47086
576576 0 0
577577 −12.1039 −0.503894 −0.251947 0.967741i 0.581071π-0.581071\pi
−0.251947 + 0.967741i 0.581071π0.581071\pi
578578 −3.34602 −0.139176
579579 0 0
580580 34.1624 1.41852
581581 −1.60224 −0.0664720
582582 0 0
583583 −3.92384 −0.162509
584584 −10.4492 −0.432390
585585 0 0
586586 4.46462 0.184432
587587 −8.91072 −0.367785 −0.183892 0.982946i 0.558870π-0.558870\pi
−0.183892 + 0.982946i 0.558870π0.558870\pi
588588 0 0
589589 4.62636 0.190626
590590 12.8403 0.528628
591591 0 0
592592 −3.93122 −0.161572
593593 −17.2992 −0.710392 −0.355196 0.934792i 0.615586π-0.615586\pi
−0.355196 + 0.934792i 0.615586π0.615586\pi
594594 0 0
595595 16.9082 0.693167
596596 −15.4302 −0.632047
597597 0 0
598598 0.849571 0.0347415
599599 −22.9576 −0.938024 −0.469012 0.883192i 0.655390π-0.655390\pi
−0.469012 + 0.883192i 0.655390π0.655390\pi
600600 0 0
601601 25.7556 1.05059 0.525297 0.850919i 0.323954π-0.323954\pi
0.525297 + 0.850919i 0.323954π0.323954\pi
602602 3.98415 0.162382
603603 0 0
604604 10.4782 0.426351
605605 −35.8010 −1.45552
606606 0 0
607607 −23.7127 −0.962470 −0.481235 0.876592i 0.659812π-0.659812\pi
−0.481235 + 0.876592i 0.659812π0.659812\pi
608608 15.2636 0.619020
609609 0 0
610610 −6.33116 −0.256341
611611 −4.40177 −0.178076
612612 0 0
613613 −4.91662 −0.198580 −0.0992902 0.995059i 0.531657π-0.531657\pi
−0.0992902 + 0.995059i 0.531657π0.531657\pi
614614 3.46133 0.139688
615615 0 0
616616 0.763460 0.0307607
617617 −32.2646 −1.29892 −0.649461 0.760395i 0.725006π-0.725006\pi
−0.649461 + 0.760395i 0.725006π0.725006\pi
618618 0 0
619619 −16.7286 −0.672379 −0.336189 0.941794i 0.609138π-0.609138\pi
−0.336189 + 0.941794i 0.609138π0.609138\pi
620620 7.80368 0.313403
621621 0 0
622622 −1.53896 −0.0617066
623623 −8.42939 −0.337716
624624 0 0
625625 −18.1211 −0.724842
626626 2.26941 0.0907037
627627 0 0
628628 −32.4326 −1.29420
629629 −6.35796 −0.253508
630630 0 0
631631 6.40569 0.255007 0.127503 0.991838i 0.459304π-0.459304\pi
0.127503 + 0.991838i 0.459304π0.459304\pi
632632 −2.64674 −0.105282
633633 0 0
634634 −1.91876 −0.0762037
635635 3.33517 0.132352
636636 0 0
637637 0.383569 0.0151976
638638 1.09608 0.0433944
639639 0 0
640640 33.7868 1.33554
641641 −5.69431 −0.224912 −0.112456 0.993657i 0.535872π-0.535872\pi
−0.112456 + 0.993657i 0.535872π0.535872\pi
642642 0 0
643643 −37.9909 −1.49821 −0.749107 0.662449i 0.769517π-0.769517\pi
−0.749107 + 0.662449i 0.769517π0.769517\pi
644644 10.6680 0.420380
645645 0 0
646646 7.13920 0.280888
647647 −26.7420 −1.05133 −0.525667 0.850690i 0.676184π-0.676184\pi
−0.525667 + 0.850690i 0.676184π0.676184\pi
648648 0 0
649649 −5.16011 −0.202552
650650 −0.903187 −0.0354259
651651 0 0
652652 −10.7618 −0.421465
653653 45.1353 1.76628 0.883140 0.469109i 0.155425π-0.155425\pi
0.883140 + 0.469109i 0.155425π0.155425\pi
654654 0 0
655655 −51.2329 −2.00184
656656 −12.1424 −0.474083
657657 0 0
658658 4.41291 0.172033
659659 18.8007 0.732372 0.366186 0.930542i 0.380663π-0.380663\pi
0.366186 + 0.930542i 0.380663π0.380663\pi
660660 0 0
661661 −11.7878 −0.458493 −0.229246 0.973368i 0.573626π-0.573626\pi
−0.229246 + 0.973368i 0.573626π0.573626\pi
662662 −12.3567 −0.480257
663663 0 0
664664 −2.37339 −0.0921055
665665 −12.2137 −0.473628
666666 0 0
667667 31.8546 1.23342
668668 −15.1033 −0.584365
669669 0 0
670670 10.0683 0.388971
671671 2.54429 0.0982211
672672 0 0
673673 −20.9627 −0.808054 −0.404027 0.914747i 0.632390π-0.632390\pi
−0.404027 + 0.914747i 0.632390π0.632390\pi
674674 0.236009 0.00909072
675675 0 0
676676 23.8052 0.915584
677677 −5.81638 −0.223542 −0.111771 0.993734i 0.535652π-0.535652\pi
−0.111771 + 0.993734i 0.535652π0.535652\pi
678678 0 0
679679 11.4989 0.441286
680680 25.0460 0.960472
681681 0 0
682682 0.250377 0.00958744
683683 31.0134 1.18670 0.593348 0.804946i 0.297806π-0.297806\pi
0.593348 + 0.804946i 0.297806π0.297806\pi
684684 0 0
685685 6.65491 0.254271
686686 −0.384540 −0.0146818
687687 0 0
688688 −32.4774 −1.23819
689689 −2.92019 −0.111251
690690 0 0
691691 3.18940 0.121330 0.0606652 0.998158i 0.480678π-0.480678\pi
0.0606652 + 0.998158i 0.480678π0.480678\pi
692692 −9.75103 −0.370679
693693 0 0
694694 7.24879 0.275160
695695 −56.0536 −2.12623
696696 0 0
697697 −19.6380 −0.743841
698698 6.51036 0.246421
699699 0 0
700700 −11.3413 −0.428661
701701 −29.7208 −1.12254 −0.561269 0.827633i 0.689687π-0.689687\pi
−0.561269 + 0.827633i 0.689687π0.689687\pi
702702 0 0
703703 4.59271 0.173217
704704 −2.40512 −0.0906462
705705 0 0
706706 −9.65737 −0.363460
707707 −6.51118 −0.244878
708708 0 0
709709 38.3780 1.44132 0.720659 0.693290i 0.243840π-0.243840\pi
0.720659 + 0.693290i 0.243840π0.243840\pi
710710 −13.3800 −0.502143
711711 0 0
712712 −12.4864 −0.467949
713713 7.27651 0.272508
714714 0 0
715715 0.659335 0.0246577
716716 −10.9320 −0.408549
717717 0 0
718718 −12.0117 −0.448273
719719 −1.89887 −0.0708159 −0.0354079 0.999373i 0.511273π-0.511273\pi
−0.0354079 + 0.999373i 0.511273π0.511273\pi
720720 0 0
721721 7.35590 0.273948
722722 2.14922 0.0799857
723723 0 0
724724 −30.3161 −1.12669
725725 −33.8649 −1.25771
726726 0 0
727727 −53.3979 −1.98042 −0.990210 0.139588i 0.955422π-0.955422\pi
−0.990210 + 0.139588i 0.955422π0.955422\pi
728728 0.568181 0.0210582
729729 0 0
730730 9.04690 0.334841
731731 −52.5257 −1.94273
732732 0 0
733733 −7.30289 −0.269738 −0.134869 0.990863i 0.543061π-0.543061\pi
−0.134869 + 0.990863i 0.543061π0.543061\pi
734734 −3.91616 −0.144548
735735 0 0
736736 24.0072 0.884915
737737 −4.04610 −0.149040
738738 0 0
739739 45.1757 1.66182 0.830908 0.556410i 0.187822π-0.187822\pi
0.830908 + 0.556410i 0.187822π0.187822\pi
740740 7.74692 0.284783
741741 0 0
742742 2.92759 0.107475
743743 −16.4803 −0.604605 −0.302302 0.953212i 0.597755π-0.597755\pi
−0.302302 + 0.953212i 0.597755π0.597755\pi
744744 0 0
745745 27.7856 1.01799
746746 −14.4439 −0.528829
747747 0 0
748748 −4.83941 −0.176946
749749 −0.745709 −0.0272476
750750 0 0
751751 52.4513 1.91398 0.956988 0.290126i 0.0936974π-0.0936974\pi
0.956988 + 0.290126i 0.0936974π0.0936974\pi
752752 −35.9725 −1.31178
753753 0 0
754754 0.815726 0.0297070
755755 −18.8683 −0.686689
756756 0 0
757757 −8.28967 −0.301293 −0.150647 0.988588i 0.548136π-0.548136\pi
−0.150647 + 0.988588i 0.548136π0.548136\pi
758758 5.79359 0.210433
759759 0 0
760760 −18.0922 −0.656272
761761 −22.2851 −0.807833 −0.403917 0.914796i 0.632351π-0.632351\pi
−0.403917 + 0.914796i 0.632351π0.632351\pi
762762 0 0
763763 −6.40003 −0.231696
764764 −15.1371 −0.547643
765765 0 0
766766 −11.5686 −0.417990
767767 −3.84025 −0.138664
768768 0 0
769769 4.88525 0.176167 0.0880833 0.996113i 0.471926π-0.471926\pi
0.0880833 + 0.996113i 0.471926π0.471926\pi
770770 −0.661004 −0.0238209
771771 0 0
772772 35.6302 1.28236
773773 −0.798838 −0.0287322 −0.0143661 0.999897i 0.504573π-0.504573\pi
−0.0143661 + 0.999897i 0.504573π0.504573\pi
774774 0 0
775775 −7.73573 −0.277876
776776 17.0333 0.611458
777777 0 0
778778 −9.51594 −0.341163
779779 14.1856 0.508252
780780 0 0
781781 5.37699 0.192404
782782 11.2288 0.401541
783783 0 0
784784 3.13464 0.111951
785785 58.4022 2.08446
786786 0 0
787787 1.43503 0.0511534 0.0255767 0.999673i 0.491858π-0.491858\pi
0.0255767 + 0.999673i 0.491858π0.491858\pi
788788 −31.8841 −1.13582
789789 0 0
790790 2.29155 0.0815297
791791 0.288023 0.0102409
792792 0 0
793793 1.89351 0.0672403
794794 5.84532 0.207443
795795 0 0
796796 −20.7124 −0.734132
797797 −17.4604 −0.618480 −0.309240 0.950984i 0.600075π-0.600075\pi
−0.309240 + 0.950984i 0.600075π0.600075\pi
798798 0 0
799799 −58.1783 −2.05820
800800 −25.5222 −0.902348
801801 0 0
802802 −6.15888 −0.217478
803803 −3.63566 −0.128300
804804 0 0
805805 −19.2102 −0.677071
806806 0.186335 0.00656339
807807 0 0
808808 −9.64500 −0.339310
809809 21.1752 0.744481 0.372241 0.928136i 0.378590π-0.378590\pi
0.372241 + 0.928136i 0.378590π0.378590\pi
810810 0 0
811811 52.3113 1.83690 0.918448 0.395541i 0.129443π-0.129443\pi
0.918448 + 0.395541i 0.129443π0.129443\pi
812812 10.2431 0.359461
813813 0 0
814814 0.248556 0.00871190
815815 19.3790 0.678818
816816 0 0
817817 37.9423 1.32743
818818 7.14569 0.249843
819819 0 0
820820 23.9281 0.835606
821821 41.4667 1.44720 0.723599 0.690220i 0.242486π-0.242486\pi
0.723599 + 0.690220i 0.242486π0.242486\pi
822822 0 0
823823 −49.0058 −1.70824 −0.854118 0.520079i 0.825902π-0.825902\pi
−0.854118 + 0.520079i 0.825902π0.825902\pi
824824 10.8963 0.379590
825825 0 0
826826 3.84998 0.133958
827827 −7.16803 −0.249257 −0.124628 0.992203i 0.539774π-0.539774\pi
−0.124628 + 0.992203i 0.539774π0.539774\pi
828828 0 0
829829 27.7807 0.964865 0.482433 0.875933i 0.339753π-0.339753\pi
0.482433 + 0.875933i 0.339753π0.339753\pi
830830 2.05488 0.0713261
831831 0 0
832832 −1.78993 −0.0620547
833833 5.06965 0.175653
834834 0 0
835835 27.1969 0.941189
836836 3.49578 0.120904
837837 0 0
838838 −10.6243 −0.367009
839839 −20.0605 −0.692565 −0.346283 0.938130i 0.612556π-0.612556\pi
−0.346283 + 0.938130i 0.612556π0.612556\pi
840840 0 0
841841 1.58560 0.0546758
842842 1.46717 0.0505620
843843 0 0
844844 33.8531 1.16527
845845 −42.8666 −1.47466
846846 0 0
847847 −10.7344 −0.368837
848848 −23.8647 −0.819516
849849 0 0
850850 −11.9375 −0.409451
851851 7.22359 0.247622
852852 0 0
853853 −24.9589 −0.854577 −0.427288 0.904115i 0.640531π-0.640531\pi
−0.427288 + 0.904115i 0.640531π0.640531\pi
854854 −1.89830 −0.0649584
855855 0 0
856856 −1.10462 −0.0377550
857857 29.4234 1.00508 0.502541 0.864553i 0.332398π-0.332398\pi
0.502541 + 0.864553i 0.332398π0.332398\pi
858858 0 0
859859 −16.2218 −0.553479 −0.276740 0.960945i 0.589254π-0.589254\pi
−0.276740 + 0.960945i 0.589254π0.589254\pi
860860 64.0005 2.18240
861861 0 0
862862 −1.97902 −0.0674057
863863 −51.4795 −1.75238 −0.876191 0.481963i 0.839924π-0.839924\pi
−0.876191 + 0.481963i 0.839924π0.839924\pi
864864 0 0
865865 17.5589 0.597022
866866 10.5254 0.357669
867867 0 0
868868 2.33981 0.0794184
869869 −0.920899 −0.0312394
870870 0 0
871871 −3.01119 −0.102030
872872 −9.48035 −0.321045
873873 0 0
874874 −8.11120 −0.274366
875875 3.74670 0.126661
876876 0 0
877877 17.3199 0.584851 0.292426 0.956288i 0.405538π-0.405538\pi
0.292426 + 0.956288i 0.405538π0.405538\pi
878878 10.7916 0.364198
879879 0 0
880880 5.38827 0.181639
881881 −30.6844 −1.03379 −0.516893 0.856050i 0.672911π-0.672911\pi
−0.516893 + 0.856050i 0.672911π0.672911\pi
882882 0 0
883883 −10.9184 −0.367433 −0.183717 0.982979i 0.558813π-0.558813\pi
−0.183717 + 0.982979i 0.558813π0.558813\pi
884884 −3.60158 −0.121134
885885 0 0
886886 10.3487 0.347671
887887 −29.2574 −0.982369 −0.491184 0.871056i 0.663436π-0.663436\pi
−0.491184 + 0.871056i 0.663436π0.663436\pi
888888 0 0
889889 1.00000 0.0335389
890890 10.8108 0.362378
891891 0 0
892892 52.2388 1.74909
893893 42.0255 1.40633
894894 0 0
895895 19.6856 0.658016
896896 10.1304 0.338435
897897 0 0
898898 −2.24058 −0.0747693
899899 6.98664 0.233017
900900 0 0
901901 −38.5963 −1.28583
902902 0.767722 0.0255623
903903 0 0
904904 0.426649 0.0141901
905905 54.5910 1.81466
906906 0 0
907907 26.4871 0.879489 0.439745 0.898123i 0.355069π-0.355069\pi
0.439745 + 0.898123i 0.355069π0.355069\pi
908908 −40.1388 −1.33205
909909 0 0
910910 −0.491931 −0.0163074
911911 −19.5456 −0.647574 −0.323787 0.946130i 0.604956π-0.604956\pi
−0.323787 + 0.946130i 0.604956π0.604956\pi
912912 0 0
913913 −0.825791 −0.0273297
914914 8.70214 0.287841
915915 0 0
916916 −47.2935 −1.56262
917917 −15.3614 −0.507278
918918 0 0
919919 −20.5054 −0.676410 −0.338205 0.941073i 0.609820π-0.609820\pi
−0.338205 + 0.941073i 0.609820π0.609820\pi
920920 −28.4561 −0.938169
921921 0 0
922922 −1.10205 −0.0362940
923923 4.00165 0.131716
924924 0 0
925925 −7.67947 −0.252500
926926 0.678087 0.0222833
927927 0 0
928928 23.0508 0.756679
929929 −9.40768 −0.308656 −0.154328 0.988020i 0.549321π-0.549321\pi
−0.154328 + 0.988020i 0.549321π0.549321\pi
930930 0 0
931931 −3.66209 −0.120020
932932 −43.8017 −1.43477
933933 0 0
934934 14.1883 0.464254
935935 8.71445 0.284993
936936 0 0
937937 −13.5377 −0.442258 −0.221129 0.975245i 0.570974π-0.570974\pi
−0.221129 + 0.975245i 0.570974π0.570974\pi
938938 3.01881 0.0985676
939939 0 0
940940 70.8880 2.31211
941941 −27.9975 −0.912694 −0.456347 0.889802i 0.650842π-0.650842\pi
−0.456347 + 0.889802i 0.650842π0.650842\pi
942942 0 0
943943 22.3117 0.726568
944944 −31.3836 −1.02145
945945 0 0
946946 2.05343 0.0667626
947947 25.3791 0.824711 0.412356 0.911023i 0.364706π-0.364706\pi
0.412356 + 0.911023i 0.364706π0.364706\pi
948948 0 0
949949 −2.70572 −0.0878315
950950 8.62310 0.279770
951951 0 0
952952 7.50967 0.243390
953953 34.6314 1.12182 0.560911 0.827876i 0.310451π-0.310451\pi
0.560911 + 0.827876i 0.310451π0.310451\pi
954954 0 0
955955 27.2578 0.882043
956956 −15.2570 −0.493445
957957 0 0
958958 8.39911 0.271363
959959 1.99537 0.0644339
960960 0 0
961961 −29.4040 −0.948518
962962 0.184980 0.00596400
963963 0 0
964964 −0.828986 −0.0266998
965965 −64.1602 −2.06539
966966 0 0
967967 −39.7563 −1.27848 −0.639239 0.769008i 0.720750π-0.720750\pi
−0.639239 + 0.769008i 0.720750π0.720750\pi
968968 −15.9008 −0.511071
969969 0 0
970970 −14.7474 −0.473510
971971 6.25687 0.200793 0.100396 0.994948i 0.467989π-0.467989\pi
0.100396 + 0.994948i 0.467989π0.467989\pi
972972 0 0
973973 −16.8068 −0.538801
974974 −7.91822 −0.253716
975975 0 0
976976 15.4743 0.495319
977977 −31.5360 −1.00893 −0.504463 0.863433i 0.668310π-0.668310\pi
−0.504463 + 0.863433i 0.668310π0.668310\pi
978978 0 0
979979 −4.34450 −0.138851
980980 −6.17717 −0.197323
981981 0 0
982982 −5.91127 −0.188636
983983 28.0672 0.895204 0.447602 0.894233i 0.352278π-0.352278\pi
0.447602 + 0.894233i 0.352278π0.352278\pi
984984 0 0
985985 57.4145 1.82938
986986 10.7815 0.343352
987987 0 0
988988 2.60162 0.0827687
989989 59.6771 1.89762
990990 0 0
991991 13.0091 0.413246 0.206623 0.978421i 0.433753π-0.433753\pi
0.206623 + 0.978421i 0.433753π0.433753\pi
992992 5.26546 0.167179
993993 0 0
994994 −4.01179 −0.127246
995995 37.2973 1.18241
996996 0 0
997997 13.4874 0.427152 0.213576 0.976926i 0.431489π-0.431489\pi
0.213576 + 0.976926i 0.431489π0.431489\pi
998998 1.47072 0.0465549
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8001.2.a.x.1.11 22
3.2 odd 2 inner 8001.2.a.x.1.12 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8001.2.a.x.1.11 22 1.1 even 1 trivial
8001.2.a.x.1.12 yes 22 3.2 odd 2 inner