Properties

Label 8001.2.a.w.1.9
Level $8001$
Weight $2$
Character 8001.1
Self dual yes
Analytic conductor $63.888$
Analytic rank $1$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-8,0,24,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8883066572\)
Analytic rank: \(1\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} + 152 x^{17} - 274 x^{16} - 1061 x^{15} + 3125 x^{14} + 2977 x^{13} - 15474 x^{12} + \cdots + 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(0.831296\) of defining polynomial
Character \(\chi\) \(=\) 8001.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.831296 q^{2} -1.30895 q^{4} +1.71517 q^{5} +1.00000 q^{7} +2.75071 q^{8} -1.42582 q^{10} -6.30225 q^{11} +2.82193 q^{13} -0.831296 q^{14} +0.331239 q^{16} -3.67069 q^{17} +4.30307 q^{19} -2.24507 q^{20} +5.23903 q^{22} +1.07254 q^{23} -2.05818 q^{25} -2.34586 q^{26} -1.30895 q^{28} -6.99923 q^{29} +4.64341 q^{31} -5.77678 q^{32} +3.05143 q^{34} +1.71517 q^{35} +4.42007 q^{37} -3.57712 q^{38} +4.71795 q^{40} +0.227674 q^{41} +0.781819 q^{43} +8.24932 q^{44} -0.891595 q^{46} +6.94665 q^{47} +1.00000 q^{49} +1.71095 q^{50} -3.69376 q^{52} -0.313469 q^{53} -10.8095 q^{55} +2.75071 q^{56} +5.81843 q^{58} +2.11774 q^{59} -1.64281 q^{61} -3.86004 q^{62} +4.13974 q^{64} +4.84011 q^{65} -5.95221 q^{67} +4.80474 q^{68} -1.42582 q^{70} -6.51071 q^{71} +0.998203 q^{73} -3.67439 q^{74} -5.63250 q^{76} -6.30225 q^{77} -3.86107 q^{79} +0.568133 q^{80} -0.189264 q^{82} +2.10845 q^{83} -6.29587 q^{85} -0.649923 q^{86} -17.3357 q^{88} -0.415935 q^{89} +2.82193 q^{91} -1.40389 q^{92} -5.77472 q^{94} +7.38052 q^{95} -9.24065 q^{97} -0.831296 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 8 q^{2} + 24 q^{4} - 3 q^{5} + 20 q^{7} - 24 q^{8} - 8 q^{10} - 26 q^{11} - 4 q^{13} - 8 q^{14} + 24 q^{16} - 4 q^{17} + q^{19} + 2 q^{20} + q^{22} - 31 q^{23} + 27 q^{25} - 4 q^{26} + 24 q^{28}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.831296 −0.587815 −0.293907 0.955834i \(-0.594956\pi\)
−0.293907 + 0.955834i \(0.594956\pi\)
\(3\) 0 0
\(4\) −1.30895 −0.654474
\(5\) 1.71517 0.767049 0.383525 0.923531i \(-0.374710\pi\)
0.383525 + 0.923531i \(0.374710\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 2.75071 0.972524
\(9\) 0 0
\(10\) −1.42582 −0.450883
\(11\) −6.30225 −1.90020 −0.950100 0.311945i \(-0.899020\pi\)
−0.950100 + 0.311945i \(0.899020\pi\)
\(12\) 0 0
\(13\) 2.82193 0.782664 0.391332 0.920250i \(-0.372014\pi\)
0.391332 + 0.920250i \(0.372014\pi\)
\(14\) −0.831296 −0.222173
\(15\) 0 0
\(16\) 0.331239 0.0828099
\(17\) −3.67069 −0.890272 −0.445136 0.895463i \(-0.646845\pi\)
−0.445136 + 0.895463i \(0.646845\pi\)
\(18\) 0 0
\(19\) 4.30307 0.987193 0.493596 0.869691i \(-0.335682\pi\)
0.493596 + 0.869691i \(0.335682\pi\)
\(20\) −2.24507 −0.502014
\(21\) 0 0
\(22\) 5.23903 1.11697
\(23\) 1.07254 0.223639 0.111820 0.993729i \(-0.464332\pi\)
0.111820 + 0.993729i \(0.464332\pi\)
\(24\) 0 0
\(25\) −2.05818 −0.411636
\(26\) −2.34586 −0.460061
\(27\) 0 0
\(28\) −1.30895 −0.247368
\(29\) −6.99923 −1.29972 −0.649862 0.760052i \(-0.725174\pi\)
−0.649862 + 0.760052i \(0.725174\pi\)
\(30\) 0 0
\(31\) 4.64341 0.833981 0.416990 0.908911i \(-0.363085\pi\)
0.416990 + 0.908911i \(0.363085\pi\)
\(32\) −5.77678 −1.02120
\(33\) 0 0
\(34\) 3.05143 0.523315
\(35\) 1.71517 0.289917
\(36\) 0 0
\(37\) 4.42007 0.726655 0.363328 0.931661i \(-0.381641\pi\)
0.363328 + 0.931661i \(0.381641\pi\)
\(38\) −3.57712 −0.580286
\(39\) 0 0
\(40\) 4.71795 0.745974
\(41\) 0.227674 0.0355567 0.0177783 0.999842i \(-0.494341\pi\)
0.0177783 + 0.999842i \(0.494341\pi\)
\(42\) 0 0
\(43\) 0.781819 0.119226 0.0596131 0.998222i \(-0.481013\pi\)
0.0596131 + 0.998222i \(0.481013\pi\)
\(44\) 8.24932 1.24363
\(45\) 0 0
\(46\) −0.891595 −0.131459
\(47\) 6.94665 1.01327 0.506636 0.862160i \(-0.330889\pi\)
0.506636 + 0.862160i \(0.330889\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 1.71095 0.241966
\(51\) 0 0
\(52\) −3.69376 −0.512233
\(53\) −0.313469 −0.0430582 −0.0215291 0.999768i \(-0.506853\pi\)
−0.0215291 + 0.999768i \(0.506853\pi\)
\(54\) 0 0
\(55\) −10.8095 −1.45755
\(56\) 2.75071 0.367580
\(57\) 0 0
\(58\) 5.81843 0.763997
\(59\) 2.11774 0.275706 0.137853 0.990453i \(-0.455980\pi\)
0.137853 + 0.990453i \(0.455980\pi\)
\(60\) 0 0
\(61\) −1.64281 −0.210340 −0.105170 0.994454i \(-0.533539\pi\)
−0.105170 + 0.994454i \(0.533539\pi\)
\(62\) −3.86004 −0.490226
\(63\) 0 0
\(64\) 4.13974 0.517467
\(65\) 4.84011 0.600341
\(66\) 0 0
\(67\) −5.95221 −0.727178 −0.363589 0.931560i \(-0.618449\pi\)
−0.363589 + 0.931560i \(0.618449\pi\)
\(68\) 4.80474 0.582660
\(69\) 0 0
\(70\) −1.42582 −0.170418
\(71\) −6.51071 −0.772679 −0.386339 0.922357i \(-0.626261\pi\)
−0.386339 + 0.922357i \(0.626261\pi\)
\(72\) 0 0
\(73\) 0.998203 0.116831 0.0584154 0.998292i \(-0.481395\pi\)
0.0584154 + 0.998292i \(0.481395\pi\)
\(74\) −3.67439 −0.427139
\(75\) 0 0
\(76\) −5.63250 −0.646092
\(77\) −6.30225 −0.718208
\(78\) 0 0
\(79\) −3.86107 −0.434404 −0.217202 0.976127i \(-0.569693\pi\)
−0.217202 + 0.976127i \(0.569693\pi\)
\(80\) 0.568133 0.0635192
\(81\) 0 0
\(82\) −0.189264 −0.0209007
\(83\) 2.10845 0.231432 0.115716 0.993282i \(-0.463084\pi\)
0.115716 + 0.993282i \(0.463084\pi\)
\(84\) 0 0
\(85\) −6.29587 −0.682883
\(86\) −0.649923 −0.0700830
\(87\) 0 0
\(88\) −17.3357 −1.84799
\(89\) −0.415935 −0.0440890 −0.0220445 0.999757i \(-0.507018\pi\)
−0.0220445 + 0.999757i \(0.507018\pi\)
\(90\) 0 0
\(91\) 2.82193 0.295819
\(92\) −1.40389 −0.146366
\(93\) 0 0
\(94\) −5.77472 −0.595616
\(95\) 7.38052 0.757225
\(96\) 0 0
\(97\) −9.24065 −0.938246 −0.469123 0.883133i \(-0.655430\pi\)
−0.469123 + 0.883133i \(0.655430\pi\)
\(98\) −0.831296 −0.0839735
\(99\) 0 0
\(100\) 2.69405 0.269405
\(101\) −13.8607 −1.37919 −0.689597 0.724193i \(-0.742213\pi\)
−0.689597 + 0.724193i \(0.742213\pi\)
\(102\) 0 0
\(103\) −15.2610 −1.50371 −0.751856 0.659327i \(-0.770841\pi\)
−0.751856 + 0.659327i \(0.770841\pi\)
\(104\) 7.76233 0.761159
\(105\) 0 0
\(106\) 0.260585 0.0253103
\(107\) −12.1395 −1.17357 −0.586786 0.809742i \(-0.699607\pi\)
−0.586786 + 0.809742i \(0.699607\pi\)
\(108\) 0 0
\(109\) 8.07430 0.773377 0.386689 0.922210i \(-0.373619\pi\)
0.386689 + 0.922210i \(0.373619\pi\)
\(110\) 8.98586 0.856768
\(111\) 0 0
\(112\) 0.331239 0.0312992
\(113\) 18.4989 1.74023 0.870115 0.492848i \(-0.164044\pi\)
0.870115 + 0.492848i \(0.164044\pi\)
\(114\) 0 0
\(115\) 1.83959 0.171542
\(116\) 9.16163 0.850636
\(117\) 0 0
\(118\) −1.76047 −0.162064
\(119\) −3.67069 −0.336491
\(120\) 0 0
\(121\) 28.7184 2.61076
\(122\) 1.36566 0.123641
\(123\) 0 0
\(124\) −6.07798 −0.545819
\(125\) −12.1060 −1.08279
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) 8.11223 0.717026
\(129\) 0 0
\(130\) −4.02356 −0.352890
\(131\) −4.26528 −0.372659 −0.186330 0.982487i \(-0.559659\pi\)
−0.186330 + 0.982487i \(0.559659\pi\)
\(132\) 0 0
\(133\) 4.30307 0.373124
\(134\) 4.94804 0.427446
\(135\) 0 0
\(136\) −10.0970 −0.865811
\(137\) −8.66409 −0.740223 −0.370112 0.928987i \(-0.620681\pi\)
−0.370112 + 0.928987i \(0.620681\pi\)
\(138\) 0 0
\(139\) −20.6701 −1.75322 −0.876609 0.481203i \(-0.840200\pi\)
−0.876609 + 0.481203i \(0.840200\pi\)
\(140\) −2.24507 −0.189743
\(141\) 0 0
\(142\) 5.41232 0.454192
\(143\) −17.7845 −1.48722
\(144\) 0 0
\(145\) −12.0049 −0.996953
\(146\) −0.829802 −0.0686749
\(147\) 0 0
\(148\) −5.78564 −0.475577
\(149\) 8.86934 0.726605 0.363302 0.931671i \(-0.381649\pi\)
0.363302 + 0.931671i \(0.381649\pi\)
\(150\) 0 0
\(151\) 1.72988 0.140776 0.0703879 0.997520i \(-0.477576\pi\)
0.0703879 + 0.997520i \(0.477576\pi\)
\(152\) 11.8365 0.960068
\(153\) 0 0
\(154\) 5.23903 0.422173
\(155\) 7.96425 0.639704
\(156\) 0 0
\(157\) 15.8721 1.26673 0.633364 0.773854i \(-0.281674\pi\)
0.633364 + 0.773854i \(0.281674\pi\)
\(158\) 3.20969 0.255349
\(159\) 0 0
\(160\) −9.90819 −0.783311
\(161\) 1.07254 0.0845277
\(162\) 0 0
\(163\) 23.4618 1.83767 0.918835 0.394642i \(-0.129131\pi\)
0.918835 + 0.394642i \(0.129131\pi\)
\(164\) −0.298013 −0.0232709
\(165\) 0 0
\(166\) −1.75274 −0.136039
\(167\) 21.8922 1.69407 0.847036 0.531535i \(-0.178385\pi\)
0.847036 + 0.531535i \(0.178385\pi\)
\(168\) 0 0
\(169\) −5.03669 −0.387438
\(170\) 5.23373 0.401408
\(171\) 0 0
\(172\) −1.02336 −0.0780305
\(173\) 2.68178 0.203892 0.101946 0.994790i \(-0.467493\pi\)
0.101946 + 0.994790i \(0.467493\pi\)
\(174\) 0 0
\(175\) −2.05818 −0.155584
\(176\) −2.08755 −0.157355
\(177\) 0 0
\(178\) 0.345765 0.0259162
\(179\) 2.96401 0.221540 0.110770 0.993846i \(-0.464668\pi\)
0.110770 + 0.993846i \(0.464668\pi\)
\(180\) 0 0
\(181\) −3.65550 −0.271711 −0.135856 0.990729i \(-0.543378\pi\)
−0.135856 + 0.990729i \(0.543378\pi\)
\(182\) −2.34586 −0.173887
\(183\) 0 0
\(184\) 2.95024 0.217495
\(185\) 7.58119 0.557380
\(186\) 0 0
\(187\) 23.1336 1.69170
\(188\) −9.09279 −0.663160
\(189\) 0 0
\(190\) −6.13539 −0.445108
\(191\) −20.0960 −1.45409 −0.727047 0.686587i \(-0.759108\pi\)
−0.727047 + 0.686587i \(0.759108\pi\)
\(192\) 0 0
\(193\) −19.2213 −1.38358 −0.691791 0.722098i \(-0.743178\pi\)
−0.691791 + 0.722098i \(0.743178\pi\)
\(194\) 7.68171 0.551515
\(195\) 0 0
\(196\) −1.30895 −0.0934963
\(197\) −22.2096 −1.58237 −0.791183 0.611579i \(-0.790535\pi\)
−0.791183 + 0.611579i \(0.790535\pi\)
\(198\) 0 0
\(199\) 12.3056 0.872323 0.436162 0.899868i \(-0.356338\pi\)
0.436162 + 0.899868i \(0.356338\pi\)
\(200\) −5.66146 −0.400326
\(201\) 0 0
\(202\) 11.5224 0.810711
\(203\) −6.99923 −0.491250
\(204\) 0 0
\(205\) 0.390500 0.0272737
\(206\) 12.6864 0.883904
\(207\) 0 0
\(208\) 0.934736 0.0648123
\(209\) −27.1190 −1.87586
\(210\) 0 0
\(211\) −3.25081 −0.223795 −0.111897 0.993720i \(-0.535693\pi\)
−0.111897 + 0.993720i \(0.535693\pi\)
\(212\) 0.410314 0.0281805
\(213\) 0 0
\(214\) 10.0915 0.689842
\(215\) 1.34096 0.0914524
\(216\) 0 0
\(217\) 4.64341 0.315215
\(218\) −6.71213 −0.454603
\(219\) 0 0
\(220\) 14.1490 0.953926
\(221\) −10.3584 −0.696784
\(222\) 0 0
\(223\) −14.5106 −0.971705 −0.485852 0.874041i \(-0.661491\pi\)
−0.485852 + 0.874041i \(0.661491\pi\)
\(224\) −5.77678 −0.385978
\(225\) 0 0
\(226\) −15.3781 −1.02293
\(227\) −12.5720 −0.834435 −0.417218 0.908807i \(-0.636995\pi\)
−0.417218 + 0.908807i \(0.636995\pi\)
\(228\) 0 0
\(229\) −9.51965 −0.629076 −0.314538 0.949245i \(-0.601850\pi\)
−0.314538 + 0.949245i \(0.601850\pi\)
\(230\) −1.52924 −0.100835
\(231\) 0 0
\(232\) −19.2529 −1.26401
\(233\) 2.10048 0.137607 0.0688036 0.997630i \(-0.478082\pi\)
0.0688036 + 0.997630i \(0.478082\pi\)
\(234\) 0 0
\(235\) 11.9147 0.777230
\(236\) −2.77201 −0.180442
\(237\) 0 0
\(238\) 3.05143 0.197795
\(239\) 3.60174 0.232977 0.116489 0.993192i \(-0.462836\pi\)
0.116489 + 0.993192i \(0.462836\pi\)
\(240\) 0 0
\(241\) −19.2665 −1.24106 −0.620532 0.784181i \(-0.713083\pi\)
−0.620532 + 0.784181i \(0.713083\pi\)
\(242\) −23.8735 −1.53464
\(243\) 0 0
\(244\) 2.15035 0.137662
\(245\) 1.71517 0.109578
\(246\) 0 0
\(247\) 12.1430 0.772640
\(248\) 12.7727 0.811066
\(249\) 0 0
\(250\) 10.0637 0.636482
\(251\) 18.2768 1.15362 0.576811 0.816877i \(-0.304297\pi\)
0.576811 + 0.816877i \(0.304297\pi\)
\(252\) 0 0
\(253\) −6.75940 −0.424960
\(254\) 0.831296 0.0521601
\(255\) 0 0
\(256\) −15.0231 −0.938946
\(257\) 15.6453 0.975927 0.487963 0.872864i \(-0.337740\pi\)
0.487963 + 0.872864i \(0.337740\pi\)
\(258\) 0 0
\(259\) 4.42007 0.274650
\(260\) −6.33545 −0.392908
\(261\) 0 0
\(262\) 3.54571 0.219055
\(263\) −3.88781 −0.239733 −0.119866 0.992790i \(-0.538247\pi\)
−0.119866 + 0.992790i \(0.538247\pi\)
\(264\) 0 0
\(265\) −0.537653 −0.0330278
\(266\) −3.57712 −0.219328
\(267\) 0 0
\(268\) 7.79113 0.475919
\(269\) 26.5902 1.62123 0.810615 0.585579i \(-0.199133\pi\)
0.810615 + 0.585579i \(0.199133\pi\)
\(270\) 0 0
\(271\) −12.0907 −0.734460 −0.367230 0.930130i \(-0.619694\pi\)
−0.367230 + 0.930130i \(0.619694\pi\)
\(272\) −1.21588 −0.0737233
\(273\) 0 0
\(274\) 7.20242 0.435114
\(275\) 12.9712 0.782190
\(276\) 0 0
\(277\) 16.1812 0.972237 0.486118 0.873893i \(-0.338412\pi\)
0.486118 + 0.873893i \(0.338412\pi\)
\(278\) 17.1830 1.03057
\(279\) 0 0
\(280\) 4.71795 0.281952
\(281\) −18.9746 −1.13193 −0.565964 0.824430i \(-0.691496\pi\)
−0.565964 + 0.824430i \(0.691496\pi\)
\(282\) 0 0
\(283\) −14.0476 −0.835045 −0.417522 0.908667i \(-0.637101\pi\)
−0.417522 + 0.908667i \(0.637101\pi\)
\(284\) 8.52217 0.505698
\(285\) 0 0
\(286\) 14.7842 0.874209
\(287\) 0.227674 0.0134392
\(288\) 0 0
\(289\) −3.52606 −0.207415
\(290\) 9.97962 0.586024
\(291\) 0 0
\(292\) −1.30660 −0.0764627
\(293\) −5.69187 −0.332523 −0.166261 0.986082i \(-0.553170\pi\)
−0.166261 + 0.986082i \(0.553170\pi\)
\(294\) 0 0
\(295\) 3.63229 0.211480
\(296\) 12.1583 0.706690
\(297\) 0 0
\(298\) −7.37305 −0.427109
\(299\) 3.02663 0.175034
\(300\) 0 0
\(301\) 0.781819 0.0450633
\(302\) −1.43804 −0.0827501
\(303\) 0 0
\(304\) 1.42535 0.0817493
\(305\) −2.81770 −0.161341
\(306\) 0 0
\(307\) −28.1042 −1.60399 −0.801995 0.597331i \(-0.796228\pi\)
−0.801995 + 0.597331i \(0.796228\pi\)
\(308\) 8.24932 0.470049
\(309\) 0 0
\(310\) −6.62065 −0.376028
\(311\) −10.5342 −0.597341 −0.298671 0.954356i \(-0.596543\pi\)
−0.298671 + 0.954356i \(0.596543\pi\)
\(312\) 0 0
\(313\) −10.0212 −0.566434 −0.283217 0.959056i \(-0.591402\pi\)
−0.283217 + 0.959056i \(0.591402\pi\)
\(314\) −13.1944 −0.744601
\(315\) 0 0
\(316\) 5.05394 0.284306
\(317\) −7.70845 −0.432950 −0.216475 0.976288i \(-0.569456\pi\)
−0.216475 + 0.976288i \(0.569456\pi\)
\(318\) 0 0
\(319\) 44.1109 2.46974
\(320\) 7.10037 0.396923
\(321\) 0 0
\(322\) −0.891595 −0.0496866
\(323\) −15.7952 −0.878870
\(324\) 0 0
\(325\) −5.80804 −0.322172
\(326\) −19.5037 −1.08021
\(327\) 0 0
\(328\) 0.626265 0.0345797
\(329\) 6.94665 0.382981
\(330\) 0 0
\(331\) 12.1205 0.666201 0.333100 0.942891i \(-0.391905\pi\)
0.333100 + 0.942891i \(0.391905\pi\)
\(332\) −2.75985 −0.151466
\(333\) 0 0
\(334\) −18.1989 −0.995801
\(335\) −10.2091 −0.557781
\(336\) 0 0
\(337\) −24.2692 −1.32203 −0.661013 0.750374i \(-0.729873\pi\)
−0.661013 + 0.750374i \(0.729873\pi\)
\(338\) 4.18698 0.227742
\(339\) 0 0
\(340\) 8.24096 0.446929
\(341\) −29.2639 −1.58473
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 2.15056 0.115950
\(345\) 0 0
\(346\) −2.22935 −0.119851
\(347\) −13.9889 −0.750962 −0.375481 0.926830i \(-0.622522\pi\)
−0.375481 + 0.926830i \(0.622522\pi\)
\(348\) 0 0
\(349\) −9.95992 −0.533142 −0.266571 0.963815i \(-0.585891\pi\)
−0.266571 + 0.963815i \(0.585891\pi\)
\(350\) 1.71095 0.0914544
\(351\) 0 0
\(352\) 36.4068 1.94049
\(353\) 31.6257 1.68327 0.841633 0.540050i \(-0.181595\pi\)
0.841633 + 0.540050i \(0.181595\pi\)
\(354\) 0 0
\(355\) −11.1670 −0.592682
\(356\) 0.544437 0.0288551
\(357\) 0 0
\(358\) −2.46396 −0.130225
\(359\) 22.5955 1.19255 0.596274 0.802781i \(-0.296647\pi\)
0.596274 + 0.802781i \(0.296647\pi\)
\(360\) 0 0
\(361\) −0.483568 −0.0254510
\(362\) 3.03880 0.159716
\(363\) 0 0
\(364\) −3.69376 −0.193606
\(365\) 1.71209 0.0896150
\(366\) 0 0
\(367\) 5.28894 0.276081 0.138040 0.990427i \(-0.455920\pi\)
0.138040 + 0.990427i \(0.455920\pi\)
\(368\) 0.355266 0.0185195
\(369\) 0 0
\(370\) −6.30221 −0.327636
\(371\) −0.313469 −0.0162745
\(372\) 0 0
\(373\) 20.0442 1.03785 0.518925 0.854820i \(-0.326333\pi\)
0.518925 + 0.854820i \(0.326333\pi\)
\(374\) −19.2309 −0.994404
\(375\) 0 0
\(376\) 19.1082 0.985432
\(377\) −19.7514 −1.01725
\(378\) 0 0
\(379\) 14.6363 0.751817 0.375909 0.926657i \(-0.377331\pi\)
0.375909 + 0.926657i \(0.377331\pi\)
\(380\) −9.66071 −0.495584
\(381\) 0 0
\(382\) 16.7057 0.854738
\(383\) −37.2043 −1.90105 −0.950525 0.310649i \(-0.899454\pi\)
−0.950525 + 0.310649i \(0.899454\pi\)
\(384\) 0 0
\(385\) −10.8095 −0.550901
\(386\) 15.9786 0.813290
\(387\) 0 0
\(388\) 12.0955 0.614057
\(389\) −28.9147 −1.46603 −0.733016 0.680212i \(-0.761888\pi\)
−0.733016 + 0.680212i \(0.761888\pi\)
\(390\) 0 0
\(391\) −3.93695 −0.199100
\(392\) 2.75071 0.138932
\(393\) 0 0
\(394\) 18.4627 0.930138
\(395\) −6.62240 −0.333209
\(396\) 0 0
\(397\) −35.2847 −1.77089 −0.885445 0.464744i \(-0.846146\pi\)
−0.885445 + 0.464744i \(0.846146\pi\)
\(398\) −10.2296 −0.512765
\(399\) 0 0
\(400\) −0.681750 −0.0340875
\(401\) 20.6780 1.03261 0.516305 0.856405i \(-0.327307\pi\)
0.516305 + 0.856405i \(0.327307\pi\)
\(402\) 0 0
\(403\) 13.1034 0.652726
\(404\) 18.1430 0.902647
\(405\) 0 0
\(406\) 5.81843 0.288764
\(407\) −27.8564 −1.38079
\(408\) 0 0
\(409\) 25.3476 1.25336 0.626679 0.779278i \(-0.284414\pi\)
0.626679 + 0.779278i \(0.284414\pi\)
\(410\) −0.324621 −0.0160319
\(411\) 0 0
\(412\) 19.9759 0.984141
\(413\) 2.11774 0.104207
\(414\) 0 0
\(415\) 3.61636 0.177520
\(416\) −16.3017 −0.799257
\(417\) 0 0
\(418\) 22.5439 1.10266
\(419\) 2.32255 0.113464 0.0567320 0.998389i \(-0.481932\pi\)
0.0567320 + 0.998389i \(0.481932\pi\)
\(420\) 0 0
\(421\) 36.8840 1.79762 0.898809 0.438341i \(-0.144434\pi\)
0.898809 + 0.438341i \(0.144434\pi\)
\(422\) 2.70238 0.131550
\(423\) 0 0
\(424\) −0.862262 −0.0418751
\(425\) 7.55493 0.366468
\(426\) 0 0
\(427\) −1.64281 −0.0795011
\(428\) 15.8900 0.768072
\(429\) 0 0
\(430\) −1.11473 −0.0537571
\(431\) 18.3720 0.884946 0.442473 0.896782i \(-0.354101\pi\)
0.442473 + 0.896782i \(0.354101\pi\)
\(432\) 0 0
\(433\) 12.1349 0.583164 0.291582 0.956546i \(-0.405818\pi\)
0.291582 + 0.956546i \(0.405818\pi\)
\(434\) −3.86004 −0.185288
\(435\) 0 0
\(436\) −10.5688 −0.506155
\(437\) 4.61520 0.220775
\(438\) 0 0
\(439\) −5.10805 −0.243794 −0.121897 0.992543i \(-0.538898\pi\)
−0.121897 + 0.992543i \(0.538898\pi\)
\(440\) −29.7337 −1.41750
\(441\) 0 0
\(442\) 8.61092 0.409580
\(443\) −2.48478 −0.118055 −0.0590277 0.998256i \(-0.518800\pi\)
−0.0590277 + 0.998256i \(0.518800\pi\)
\(444\) 0 0
\(445\) −0.713400 −0.0338184
\(446\) 12.0626 0.571182
\(447\) 0 0
\(448\) 4.13974 0.195584
\(449\) 38.9469 1.83802 0.919010 0.394234i \(-0.128990\pi\)
0.919010 + 0.394234i \(0.128990\pi\)
\(450\) 0 0
\(451\) −1.43486 −0.0675648
\(452\) −24.2141 −1.13894
\(453\) 0 0
\(454\) 10.4511 0.490493
\(455\) 4.84011 0.226908
\(456\) 0 0
\(457\) −13.5198 −0.632431 −0.316216 0.948687i \(-0.602412\pi\)
−0.316216 + 0.948687i \(0.602412\pi\)
\(458\) 7.91364 0.369780
\(459\) 0 0
\(460\) −2.40792 −0.112270
\(461\) 29.9460 1.39472 0.697362 0.716719i \(-0.254357\pi\)
0.697362 + 0.716719i \(0.254357\pi\)
\(462\) 0 0
\(463\) −1.16296 −0.0540472 −0.0270236 0.999635i \(-0.508603\pi\)
−0.0270236 + 0.999635i \(0.508603\pi\)
\(464\) −2.31842 −0.107630
\(465\) 0 0
\(466\) −1.74612 −0.0808875
\(467\) −27.9120 −1.29161 −0.645806 0.763502i \(-0.723478\pi\)
−0.645806 + 0.763502i \(0.723478\pi\)
\(468\) 0 0
\(469\) −5.95221 −0.274847
\(470\) −9.90464 −0.456867
\(471\) 0 0
\(472\) 5.82529 0.268131
\(473\) −4.92722 −0.226554
\(474\) 0 0
\(475\) −8.85649 −0.406364
\(476\) 4.80474 0.220225
\(477\) 0 0
\(478\) −2.99411 −0.136947
\(479\) −28.8892 −1.31998 −0.659990 0.751275i \(-0.729439\pi\)
−0.659990 + 0.751275i \(0.729439\pi\)
\(480\) 0 0
\(481\) 12.4731 0.568727
\(482\) 16.0161 0.729515
\(483\) 0 0
\(484\) −37.5909 −1.70868
\(485\) −15.8493 −0.719681
\(486\) 0 0
\(487\) −24.6580 −1.11736 −0.558681 0.829383i \(-0.688692\pi\)
−0.558681 + 0.829383i \(0.688692\pi\)
\(488\) −4.51890 −0.204561
\(489\) 0 0
\(490\) −1.42582 −0.0644118
\(491\) 6.48797 0.292798 0.146399 0.989226i \(-0.453232\pi\)
0.146399 + 0.989226i \(0.453232\pi\)
\(492\) 0 0
\(493\) 25.6920 1.15711
\(494\) −10.0944 −0.454169
\(495\) 0 0
\(496\) 1.53808 0.0690618
\(497\) −6.51071 −0.292045
\(498\) 0 0
\(499\) 4.08922 0.183059 0.0915293 0.995802i \(-0.470824\pi\)
0.0915293 + 0.995802i \(0.470824\pi\)
\(500\) 15.8461 0.708660
\(501\) 0 0
\(502\) −15.1934 −0.678117
\(503\) −31.7289 −1.41472 −0.707361 0.706852i \(-0.750114\pi\)
−0.707361 + 0.706852i \(0.750114\pi\)
\(504\) 0 0
\(505\) −23.7736 −1.05791
\(506\) 5.61906 0.249798
\(507\) 0 0
\(508\) 1.30895 0.0580752
\(509\) −3.38619 −0.150090 −0.0750450 0.997180i \(-0.523910\pi\)
−0.0750450 + 0.997180i \(0.523910\pi\)
\(510\) 0 0
\(511\) 0.998203 0.0441579
\(512\) −3.73579 −0.165100
\(513\) 0 0
\(514\) −13.0059 −0.573664
\(515\) −26.1753 −1.15342
\(516\) 0 0
\(517\) −43.7795 −1.92542
\(518\) −3.67439 −0.161443
\(519\) 0 0
\(520\) 13.3137 0.583846
\(521\) −42.3641 −1.85601 −0.928004 0.372571i \(-0.878476\pi\)
−0.928004 + 0.372571i \(0.878476\pi\)
\(522\) 0 0
\(523\) −35.2029 −1.53932 −0.769658 0.638456i \(-0.779573\pi\)
−0.769658 + 0.638456i \(0.779573\pi\)
\(524\) 5.58303 0.243896
\(525\) 0 0
\(526\) 3.23192 0.140918
\(527\) −17.0445 −0.742470
\(528\) 0 0
\(529\) −21.8497 −0.949985
\(530\) 0.446949 0.0194142
\(531\) 0 0
\(532\) −5.63250 −0.244200
\(533\) 0.642480 0.0278289
\(534\) 0 0
\(535\) −20.8214 −0.900187
\(536\) −16.3728 −0.707198
\(537\) 0 0
\(538\) −22.1043 −0.952983
\(539\) −6.30225 −0.271457
\(540\) 0 0
\(541\) −24.2460 −1.04241 −0.521207 0.853430i \(-0.674518\pi\)
−0.521207 + 0.853430i \(0.674518\pi\)
\(542\) 10.0510 0.431727
\(543\) 0 0
\(544\) 21.2048 0.909147
\(545\) 13.8488 0.593218
\(546\) 0 0
\(547\) 13.6074 0.581809 0.290905 0.956752i \(-0.406044\pi\)
0.290905 + 0.956752i \(0.406044\pi\)
\(548\) 11.3408 0.484457
\(549\) 0 0
\(550\) −10.7829 −0.459783
\(551\) −30.1182 −1.28308
\(552\) 0 0
\(553\) −3.86107 −0.164189
\(554\) −13.4514 −0.571495
\(555\) 0 0
\(556\) 27.0561 1.14744
\(557\) 10.8155 0.458266 0.229133 0.973395i \(-0.426411\pi\)
0.229133 + 0.973395i \(0.426411\pi\)
\(558\) 0 0
\(559\) 2.20624 0.0933141
\(560\) 0.568133 0.0240080
\(561\) 0 0
\(562\) 15.7735 0.665364
\(563\) −32.0424 −1.35043 −0.675213 0.737623i \(-0.735948\pi\)
−0.675213 + 0.737623i \(0.735948\pi\)
\(564\) 0 0
\(565\) 31.7288 1.33484
\(566\) 11.6777 0.490852
\(567\) 0 0
\(568\) −17.9091 −0.751449
\(569\) −29.8595 −1.25178 −0.625888 0.779913i \(-0.715263\pi\)
−0.625888 + 0.779913i \(0.715263\pi\)
\(570\) 0 0
\(571\) −41.1937 −1.72390 −0.861951 0.506992i \(-0.830757\pi\)
−0.861951 + 0.506992i \(0.830757\pi\)
\(572\) 23.2790 0.973345
\(573\) 0 0
\(574\) −0.189264 −0.00789973
\(575\) −2.20747 −0.0920579
\(576\) 0 0
\(577\) −4.05530 −0.168824 −0.0844121 0.996431i \(-0.526901\pi\)
−0.0844121 + 0.996431i \(0.526901\pi\)
\(578\) 2.93120 0.121922
\(579\) 0 0
\(580\) 15.7138 0.652480
\(581\) 2.10845 0.0874732
\(582\) 0 0
\(583\) 1.97556 0.0818192
\(584\) 2.74577 0.113621
\(585\) 0 0
\(586\) 4.73163 0.195462
\(587\) 2.36252 0.0975118 0.0487559 0.998811i \(-0.484474\pi\)
0.0487559 + 0.998811i \(0.484474\pi\)
\(588\) 0 0
\(589\) 19.9809 0.823300
\(590\) −3.01950 −0.124311
\(591\) 0 0
\(592\) 1.46410 0.0601742
\(593\) −3.17018 −0.130184 −0.0650918 0.997879i \(-0.520734\pi\)
−0.0650918 + 0.997879i \(0.520734\pi\)
\(594\) 0 0
\(595\) −6.29587 −0.258105
\(596\) −11.6095 −0.475544
\(597\) 0 0
\(598\) −2.51602 −0.102888
\(599\) −13.0217 −0.532050 −0.266025 0.963966i \(-0.585710\pi\)
−0.266025 + 0.963966i \(0.585710\pi\)
\(600\) 0 0
\(601\) 10.0547 0.410139 0.205069 0.978747i \(-0.434258\pi\)
0.205069 + 0.978747i \(0.434258\pi\)
\(602\) −0.649923 −0.0264889
\(603\) 0 0
\(604\) −2.26433 −0.0921341
\(605\) 49.2570 2.00258
\(606\) 0 0
\(607\) −34.1582 −1.38644 −0.693219 0.720727i \(-0.743808\pi\)
−0.693219 + 0.720727i \(0.743808\pi\)
\(608\) −24.8579 −1.00812
\(609\) 0 0
\(610\) 2.34235 0.0948388
\(611\) 19.6030 0.793051
\(612\) 0 0
\(613\) −11.3482 −0.458349 −0.229175 0.973385i \(-0.573603\pi\)
−0.229175 + 0.973385i \(0.573603\pi\)
\(614\) 23.3629 0.942849
\(615\) 0 0
\(616\) −17.3357 −0.698475
\(617\) −37.2169 −1.49830 −0.749149 0.662402i \(-0.769537\pi\)
−0.749149 + 0.662402i \(0.769537\pi\)
\(618\) 0 0
\(619\) −1.53605 −0.0617392 −0.0308696 0.999523i \(-0.509828\pi\)
−0.0308696 + 0.999523i \(0.509828\pi\)
\(620\) −10.4248 −0.418670
\(621\) 0 0
\(622\) 8.75706 0.351126
\(623\) −0.415935 −0.0166641
\(624\) 0 0
\(625\) −10.4730 −0.418920
\(626\) 8.33061 0.332958
\(627\) 0 0
\(628\) −20.7757 −0.829040
\(629\) −16.2247 −0.646921
\(630\) 0 0
\(631\) 19.8102 0.788633 0.394316 0.918975i \(-0.370981\pi\)
0.394316 + 0.918975i \(0.370981\pi\)
\(632\) −10.6207 −0.422468
\(633\) 0 0
\(634\) 6.40800 0.254494
\(635\) −1.71517 −0.0680646
\(636\) 0 0
\(637\) 2.82193 0.111809
\(638\) −36.6692 −1.45175
\(639\) 0 0
\(640\) 13.9139 0.549994
\(641\) 12.7864 0.505032 0.252516 0.967593i \(-0.418742\pi\)
0.252516 + 0.967593i \(0.418742\pi\)
\(642\) 0 0
\(643\) −9.72685 −0.383589 −0.191795 0.981435i \(-0.561431\pi\)
−0.191795 + 0.981435i \(0.561431\pi\)
\(644\) −1.40389 −0.0553212
\(645\) 0 0
\(646\) 13.1305 0.516613
\(647\) −43.0173 −1.69118 −0.845592 0.533829i \(-0.820753\pi\)
−0.845592 + 0.533829i \(0.820753\pi\)
\(648\) 0 0
\(649\) −13.3465 −0.523896
\(650\) 4.82820 0.189378
\(651\) 0 0
\(652\) −30.7103 −1.20271
\(653\) −6.94865 −0.271922 −0.135961 0.990714i \(-0.543412\pi\)
−0.135961 + 0.990714i \(0.543412\pi\)
\(654\) 0 0
\(655\) −7.31570 −0.285848
\(656\) 0.0754145 0.00294444
\(657\) 0 0
\(658\) −5.77472 −0.225122
\(659\) 29.5240 1.15009 0.575046 0.818121i \(-0.304984\pi\)
0.575046 + 0.818121i \(0.304984\pi\)
\(660\) 0 0
\(661\) −17.4148 −0.677355 −0.338678 0.940902i \(-0.609980\pi\)
−0.338678 + 0.940902i \(0.609980\pi\)
\(662\) −10.0757 −0.391603
\(663\) 0 0
\(664\) 5.79974 0.225074
\(665\) 7.38052 0.286204
\(666\) 0 0
\(667\) −7.50694 −0.290670
\(668\) −28.6558 −1.10873
\(669\) 0 0
\(670\) 8.48675 0.327872
\(671\) 10.3534 0.399689
\(672\) 0 0
\(673\) −39.6379 −1.52793 −0.763965 0.645258i \(-0.776750\pi\)
−0.763965 + 0.645258i \(0.776750\pi\)
\(674\) 20.1749 0.777107
\(675\) 0 0
\(676\) 6.59276 0.253568
\(677\) 25.3837 0.975574 0.487787 0.872963i \(-0.337804\pi\)
0.487787 + 0.872963i \(0.337804\pi\)
\(678\) 0 0
\(679\) −9.24065 −0.354624
\(680\) −17.3181 −0.664120
\(681\) 0 0
\(682\) 24.3270 0.931528
\(683\) −8.40979 −0.321792 −0.160896 0.986971i \(-0.551438\pi\)
−0.160896 + 0.986971i \(0.551438\pi\)
\(684\) 0 0
\(685\) −14.8604 −0.567788
\(686\) −0.831296 −0.0317390
\(687\) 0 0
\(688\) 0.258969 0.00987311
\(689\) −0.884587 −0.0337001
\(690\) 0 0
\(691\) −22.9450 −0.872868 −0.436434 0.899736i \(-0.643759\pi\)
−0.436434 + 0.899736i \(0.643759\pi\)
\(692\) −3.51031 −0.133442
\(693\) 0 0
\(694\) 11.6289 0.441427
\(695\) −35.4529 −1.34480
\(696\) 0 0
\(697\) −0.835719 −0.0316551
\(698\) 8.27964 0.313389
\(699\) 0 0
\(700\) 2.69405 0.101825
\(701\) −0.256451 −0.00968603 −0.00484301 0.999988i \(-0.501542\pi\)
−0.00484301 + 0.999988i \(0.501542\pi\)
\(702\) 0 0
\(703\) 19.0199 0.717349
\(704\) −26.0897 −0.983291
\(705\) 0 0
\(706\) −26.2903 −0.989448
\(707\) −13.8607 −0.521287
\(708\) 0 0
\(709\) −19.5392 −0.733811 −0.366906 0.930258i \(-0.619583\pi\)
−0.366906 + 0.930258i \(0.619583\pi\)
\(710\) 9.28307 0.348387
\(711\) 0 0
\(712\) −1.14412 −0.0428776
\(713\) 4.98023 0.186511
\(714\) 0 0
\(715\) −30.5036 −1.14077
\(716\) −3.87973 −0.144992
\(717\) 0 0
\(718\) −18.7836 −0.700997
\(719\) −10.9444 −0.408156 −0.204078 0.978955i \(-0.565420\pi\)
−0.204078 + 0.978955i \(0.565420\pi\)
\(720\) 0 0
\(721\) −15.2610 −0.568350
\(722\) 0.401988 0.0149604
\(723\) 0 0
\(724\) 4.78486 0.177828
\(725\) 14.4057 0.535013
\(726\) 0 0
\(727\) 9.91038 0.367556 0.183778 0.982968i \(-0.441167\pi\)
0.183778 + 0.982968i \(0.441167\pi\)
\(728\) 7.76233 0.287691
\(729\) 0 0
\(730\) −1.42325 −0.0526770
\(731\) −2.86981 −0.106144
\(732\) 0 0
\(733\) −16.0686 −0.593509 −0.296754 0.954954i \(-0.595904\pi\)
−0.296754 + 0.954954i \(0.595904\pi\)
\(734\) −4.39667 −0.162284
\(735\) 0 0
\(736\) −6.19581 −0.228381
\(737\) 37.5123 1.38178
\(738\) 0 0
\(739\) −3.90553 −0.143667 −0.0718336 0.997417i \(-0.522885\pi\)
−0.0718336 + 0.997417i \(0.522885\pi\)
\(740\) −9.92338 −0.364791
\(741\) 0 0
\(742\) 0.260585 0.00956638
\(743\) 0.181845 0.00667125 0.00333562 0.999994i \(-0.498938\pi\)
0.00333562 + 0.999994i \(0.498938\pi\)
\(744\) 0 0
\(745\) 15.2125 0.557342
\(746\) −16.6627 −0.610063
\(747\) 0 0
\(748\) −30.2807 −1.10717
\(749\) −12.1395 −0.443568
\(750\) 0 0
\(751\) −44.8201 −1.63551 −0.817755 0.575567i \(-0.804782\pi\)
−0.817755 + 0.575567i \(0.804782\pi\)
\(752\) 2.30100 0.0839089
\(753\) 0 0
\(754\) 16.4192 0.597953
\(755\) 2.96705 0.107982
\(756\) 0 0
\(757\) 34.7956 1.26467 0.632334 0.774696i \(-0.282097\pi\)
0.632334 + 0.774696i \(0.282097\pi\)
\(758\) −12.1671 −0.441929
\(759\) 0 0
\(760\) 20.3017 0.736420
\(761\) 48.7895 1.76862 0.884310 0.466900i \(-0.154629\pi\)
0.884310 + 0.466900i \(0.154629\pi\)
\(762\) 0 0
\(763\) 8.07430 0.292309
\(764\) 26.3046 0.951667
\(765\) 0 0
\(766\) 30.9277 1.11746
\(767\) 5.97611 0.215785
\(768\) 0 0
\(769\) 26.8710 0.968993 0.484497 0.874793i \(-0.339003\pi\)
0.484497 + 0.874793i \(0.339003\pi\)
\(770\) 8.98586 0.323828
\(771\) 0 0
\(772\) 25.1597 0.905518
\(773\) 9.79444 0.352282 0.176141 0.984365i \(-0.443639\pi\)
0.176141 + 0.984365i \(0.443639\pi\)
\(774\) 0 0
\(775\) −9.55696 −0.343296
\(776\) −25.4184 −0.912467
\(777\) 0 0
\(778\) 24.0366 0.861755
\(779\) 0.979696 0.0351013
\(780\) 0 0
\(781\) 41.0321 1.46824
\(782\) 3.27277 0.117034
\(783\) 0 0
\(784\) 0.331239 0.0118300
\(785\) 27.2233 0.971642
\(786\) 0 0
\(787\) −35.8458 −1.27777 −0.638883 0.769304i \(-0.720603\pi\)
−0.638883 + 0.769304i \(0.720603\pi\)
\(788\) 29.0712 1.03562
\(789\) 0 0
\(790\) 5.50517 0.195865
\(791\) 18.4989 0.657745
\(792\) 0 0
\(793\) −4.63590 −0.164626
\(794\) 29.3320 1.04096
\(795\) 0 0
\(796\) −16.1074 −0.570913
\(797\) 35.2094 1.24718 0.623590 0.781752i \(-0.285673\pi\)
0.623590 + 0.781752i \(0.285673\pi\)
\(798\) 0 0
\(799\) −25.4990 −0.902088
\(800\) 11.8897 0.420363
\(801\) 0 0
\(802\) −17.1895 −0.606984
\(803\) −6.29093 −0.222002
\(804\) 0 0
\(805\) 1.83959 0.0648369
\(806\) −10.8928 −0.383682
\(807\) 0 0
\(808\) −38.1269 −1.34130
\(809\) −31.3378 −1.10178 −0.550889 0.834579i \(-0.685711\pi\)
−0.550889 + 0.834579i \(0.685711\pi\)
\(810\) 0 0
\(811\) 8.40960 0.295301 0.147650 0.989040i \(-0.452829\pi\)
0.147650 + 0.989040i \(0.452829\pi\)
\(812\) 9.16163 0.321510
\(813\) 0 0
\(814\) 23.1569 0.811649
\(815\) 40.2411 1.40958
\(816\) 0 0
\(817\) 3.36422 0.117699
\(818\) −21.0713 −0.736742
\(819\) 0 0
\(820\) −0.511144 −0.0178499
\(821\) 37.1830 1.29769 0.648847 0.760919i \(-0.275251\pi\)
0.648847 + 0.760919i \(0.275251\pi\)
\(822\) 0 0
\(823\) 38.4266 1.33947 0.669733 0.742602i \(-0.266409\pi\)
0.669733 + 0.742602i \(0.266409\pi\)
\(824\) −41.9787 −1.46240
\(825\) 0 0
\(826\) −1.76047 −0.0612544
\(827\) −19.1887 −0.667255 −0.333627 0.942705i \(-0.608273\pi\)
−0.333627 + 0.942705i \(0.608273\pi\)
\(828\) 0 0
\(829\) −16.9870 −0.589984 −0.294992 0.955500i \(-0.595317\pi\)
−0.294992 + 0.955500i \(0.595317\pi\)
\(830\) −3.00626 −0.104349
\(831\) 0 0
\(832\) 11.6821 0.405003
\(833\) −3.67069 −0.127182
\(834\) 0 0
\(835\) 37.5490 1.29944
\(836\) 35.4974 1.22770
\(837\) 0 0
\(838\) −1.93073 −0.0666958
\(839\) 50.1822 1.73248 0.866241 0.499626i \(-0.166529\pi\)
0.866241 + 0.499626i \(0.166529\pi\)
\(840\) 0 0
\(841\) 19.9893 0.689285
\(842\) −30.6615 −1.05667
\(843\) 0 0
\(844\) 4.25513 0.146468
\(845\) −8.63880 −0.297184
\(846\) 0 0
\(847\) 28.7184 0.986775
\(848\) −0.103833 −0.00356564
\(849\) 0 0
\(850\) −6.28038 −0.215415
\(851\) 4.74069 0.162509
\(852\) 0 0
\(853\) −13.6028 −0.465750 −0.232875 0.972507i \(-0.574813\pi\)
−0.232875 + 0.972507i \(0.574813\pi\)
\(854\) 1.36566 0.0467319
\(855\) 0 0
\(856\) −33.3923 −1.14133
\(857\) 7.98670 0.272820 0.136410 0.990652i \(-0.456443\pi\)
0.136410 + 0.990652i \(0.456443\pi\)
\(858\) 0 0
\(859\) −56.8903 −1.94107 −0.970537 0.240954i \(-0.922540\pi\)
−0.970537 + 0.240954i \(0.922540\pi\)
\(860\) −1.75524 −0.0598532
\(861\) 0 0
\(862\) −15.2725 −0.520185
\(863\) −24.5638 −0.836160 −0.418080 0.908410i \(-0.637297\pi\)
−0.418080 + 0.908410i \(0.637297\pi\)
\(864\) 0 0
\(865\) 4.59972 0.156395
\(866\) −10.0877 −0.342792
\(867\) 0 0
\(868\) −6.07798 −0.206300
\(869\) 24.3334 0.825455
\(870\) 0 0
\(871\) −16.7967 −0.569135
\(872\) 22.2101 0.752128
\(873\) 0 0
\(874\) −3.83660 −0.129775
\(875\) −12.1060 −0.409258
\(876\) 0 0
\(877\) −10.2102 −0.344775 −0.172387 0.985029i \(-0.555148\pi\)
−0.172387 + 0.985029i \(0.555148\pi\)
\(878\) 4.24630 0.143306
\(879\) 0 0
\(880\) −3.58052 −0.120699
\(881\) −55.4646 −1.86865 −0.934325 0.356423i \(-0.883996\pi\)
−0.934325 + 0.356423i \(0.883996\pi\)
\(882\) 0 0
\(883\) −44.3327 −1.49191 −0.745957 0.665994i \(-0.768008\pi\)
−0.745957 + 0.665994i \(0.768008\pi\)
\(884\) 13.5586 0.456027
\(885\) 0 0
\(886\) 2.06558 0.0693947
\(887\) −1.91326 −0.0642410 −0.0321205 0.999484i \(-0.510226\pi\)
−0.0321205 + 0.999484i \(0.510226\pi\)
\(888\) 0 0
\(889\) −1.00000 −0.0335389
\(890\) 0.593047 0.0198790
\(891\) 0 0
\(892\) 18.9937 0.635955
\(893\) 29.8919 1.00029
\(894\) 0 0
\(895\) 5.08378 0.169932
\(896\) 8.11223 0.271010
\(897\) 0 0
\(898\) −32.3764 −1.08042
\(899\) −32.5003 −1.08395
\(900\) 0 0
\(901\) 1.15064 0.0383335
\(902\) 1.19279 0.0397156
\(903\) 0 0
\(904\) 50.8852 1.69242
\(905\) −6.26982 −0.208416
\(906\) 0 0
\(907\) 22.8392 0.758362 0.379181 0.925322i \(-0.376206\pi\)
0.379181 + 0.925322i \(0.376206\pi\)
\(908\) 16.4561 0.546116
\(909\) 0 0
\(910\) −4.02356 −0.133380
\(911\) −41.8099 −1.38522 −0.692612 0.721310i \(-0.743540\pi\)
−0.692612 + 0.721310i \(0.743540\pi\)
\(912\) 0 0
\(913\) −13.2880 −0.439768
\(914\) 11.2390 0.371753
\(915\) 0 0
\(916\) 12.4607 0.411714
\(917\) −4.26528 −0.140852
\(918\) 0 0
\(919\) 24.2427 0.799692 0.399846 0.916582i \(-0.369064\pi\)
0.399846 + 0.916582i \(0.369064\pi\)
\(920\) 5.06018 0.166829
\(921\) 0 0
\(922\) −24.8940 −0.819839
\(923\) −18.3728 −0.604747
\(924\) 0 0
\(925\) −9.09729 −0.299117
\(926\) 0.966761 0.0317697
\(927\) 0 0
\(928\) 40.4331 1.32728
\(929\) −46.8694 −1.53774 −0.768868 0.639407i \(-0.779180\pi\)
−0.768868 + 0.639407i \(0.779180\pi\)
\(930\) 0 0
\(931\) 4.30307 0.141028
\(932\) −2.74942 −0.0900603
\(933\) 0 0
\(934\) 23.2031 0.759228
\(935\) 39.6781 1.29761
\(936\) 0 0
\(937\) −16.9803 −0.554722 −0.277361 0.960766i \(-0.589460\pi\)
−0.277361 + 0.960766i \(0.589460\pi\)
\(938\) 4.94804 0.161559
\(939\) 0 0
\(940\) −15.5957 −0.508676
\(941\) 5.11076 0.166606 0.0833030 0.996524i \(-0.473453\pi\)
0.0833030 + 0.996524i \(0.473453\pi\)
\(942\) 0 0
\(943\) 0.244188 0.00795187
\(944\) 0.701478 0.0228312
\(945\) 0 0
\(946\) 4.09598 0.133172
\(947\) 43.6068 1.41703 0.708516 0.705695i \(-0.249365\pi\)
0.708516 + 0.705695i \(0.249365\pi\)
\(948\) 0 0
\(949\) 2.81686 0.0914393
\(950\) 7.36236 0.238867
\(951\) 0 0
\(952\) −10.0970 −0.327246
\(953\) 12.1825 0.394628 0.197314 0.980340i \(-0.436778\pi\)
0.197314 + 0.980340i \(0.436778\pi\)
\(954\) 0 0
\(955\) −34.4681 −1.11536
\(956\) −4.71449 −0.152477
\(957\) 0 0
\(958\) 24.0154 0.775903
\(959\) −8.66409 −0.279778
\(960\) 0 0
\(961\) −9.43876 −0.304476
\(962\) −10.3689 −0.334306
\(963\) 0 0
\(964\) 25.2188 0.812244
\(965\) −32.9679 −1.06128
\(966\) 0 0
\(967\) −37.5746 −1.20832 −0.604159 0.796864i \(-0.706491\pi\)
−0.604159 + 0.796864i \(0.706491\pi\)
\(968\) 78.9961 2.53903
\(969\) 0 0
\(970\) 13.1755 0.423039
\(971\) −12.7002 −0.407568 −0.203784 0.979016i \(-0.565324\pi\)
−0.203784 + 0.979016i \(0.565324\pi\)
\(972\) 0 0
\(973\) −20.6701 −0.662654
\(974\) 20.4981 0.656801
\(975\) 0 0
\(976\) −0.544163 −0.0174182
\(977\) 26.7450 0.855649 0.427825 0.903862i \(-0.359280\pi\)
0.427825 + 0.903862i \(0.359280\pi\)
\(978\) 0 0
\(979\) 2.62133 0.0837779
\(980\) −2.24507 −0.0717162
\(981\) 0 0
\(982\) −5.39342 −0.172111
\(983\) 33.7781 1.07735 0.538677 0.842512i \(-0.318924\pi\)
0.538677 + 0.842512i \(0.318924\pi\)
\(984\) 0 0
\(985\) −38.0933 −1.21375
\(986\) −21.3576 −0.680166
\(987\) 0 0
\(988\) −15.8945 −0.505672
\(989\) 0.838530 0.0266637
\(990\) 0 0
\(991\) −59.6306 −1.89423 −0.947114 0.320898i \(-0.896015\pi\)
−0.947114 + 0.320898i \(0.896015\pi\)
\(992\) −26.8240 −0.851662
\(993\) 0 0
\(994\) 5.41232 0.171668
\(995\) 21.1063 0.669115
\(996\) 0 0
\(997\) −24.9160 −0.789099 −0.394550 0.918875i \(-0.629099\pi\)
−0.394550 + 0.918875i \(0.629099\pi\)
\(998\) −3.39935 −0.107605
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8001.2.a.w.1.9 20
3.2 odd 2 889.2.a.d.1.12 20
21.20 even 2 6223.2.a.l.1.12 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.d.1.12 20 3.2 odd 2
6223.2.a.l.1.12 20 21.20 even 2
8001.2.a.w.1.9 20 1.1 even 1 trivial