Properties

Label 8001.2.a.s.1.9
Level $8001$
Weight $2$
Character 8001.1
Self dual yes
Analytic conductor $63.888$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4,0,20,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8883066572\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 18 x^{14} + 83 x^{13} + 112 x^{12} - 668 x^{11} - 235 x^{10} + 2648 x^{9} + \cdots - 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 2667)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(0.284398\) of defining polynomial
Character \(\chi\) \(=\) 8001.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.284398 q^{2} -1.91912 q^{4} +3.66581 q^{5} -1.00000 q^{7} +1.11459 q^{8} -1.04255 q^{10} +2.89343 q^{11} +1.88240 q^{13} +0.284398 q^{14} +3.52125 q^{16} +5.41792 q^{17} -4.15704 q^{19} -7.03512 q^{20} -0.822888 q^{22} +4.94630 q^{23} +8.43817 q^{25} -0.535352 q^{26} +1.91912 q^{28} +6.42248 q^{29} +8.67066 q^{31} -3.23062 q^{32} -1.54085 q^{34} -3.66581 q^{35} -7.13997 q^{37} +1.18226 q^{38} +4.08588 q^{40} -3.80151 q^{41} +6.40053 q^{43} -5.55284 q^{44} -1.40672 q^{46} -6.07023 q^{47} +1.00000 q^{49} -2.39980 q^{50} -3.61255 q^{52} -3.63552 q^{53} +10.6068 q^{55} -1.11459 q^{56} -1.82654 q^{58} +7.78156 q^{59} +6.41002 q^{61} -2.46592 q^{62} -6.12371 q^{64} +6.90052 q^{65} +13.3619 q^{67} -10.3976 q^{68} +1.04255 q^{70} -8.96501 q^{71} -5.77303 q^{73} +2.03060 q^{74} +7.97785 q^{76} -2.89343 q^{77} -1.95064 q^{79} +12.9082 q^{80} +1.08114 q^{82} +8.20767 q^{83} +19.8611 q^{85} -1.82030 q^{86} +3.22499 q^{88} +0.196140 q^{89} -1.88240 q^{91} -9.49253 q^{92} +1.72637 q^{94} -15.2389 q^{95} -4.42233 q^{97} -0.284398 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} + 20 q^{4} - 5 q^{5} - 16 q^{7} - 15 q^{8} - 4 q^{10} - q^{11} + 20 q^{13} + 4 q^{14} + 32 q^{16} - 3 q^{17} + 13 q^{19} - 17 q^{20} + 13 q^{22} - 5 q^{23} + 17 q^{25} + 2 q^{26} - 20 q^{28}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.284398 −0.201100 −0.100550 0.994932i \(-0.532060\pi\)
−0.100550 + 0.994932i \(0.532060\pi\)
\(3\) 0 0
\(4\) −1.91912 −0.959559
\(5\) 3.66581 1.63940 0.819700 0.572793i \(-0.194140\pi\)
0.819700 + 0.572793i \(0.194140\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 1.11459 0.394067
\(9\) 0 0
\(10\) −1.04255 −0.329684
\(11\) 2.89343 0.872403 0.436201 0.899849i \(-0.356324\pi\)
0.436201 + 0.899849i \(0.356324\pi\)
\(12\) 0 0
\(13\) 1.88240 0.522084 0.261042 0.965327i \(-0.415934\pi\)
0.261042 + 0.965327i \(0.415934\pi\)
\(14\) 0.284398 0.0760087
\(15\) 0 0
\(16\) 3.52125 0.880312
\(17\) 5.41792 1.31404 0.657019 0.753874i \(-0.271817\pi\)
0.657019 + 0.753874i \(0.271817\pi\)
\(18\) 0 0
\(19\) −4.15704 −0.953691 −0.476845 0.878987i \(-0.658220\pi\)
−0.476845 + 0.878987i \(0.658220\pi\)
\(20\) −7.03512 −1.57310
\(21\) 0 0
\(22\) −0.822888 −0.175440
\(23\) 4.94630 1.03137 0.515687 0.856777i \(-0.327537\pi\)
0.515687 + 0.856777i \(0.327537\pi\)
\(24\) 0 0
\(25\) 8.43817 1.68763
\(26\) −0.535352 −0.104991
\(27\) 0 0
\(28\) 1.91912 0.362679
\(29\) 6.42248 1.19262 0.596312 0.802753i \(-0.296632\pi\)
0.596312 + 0.802753i \(0.296632\pi\)
\(30\) 0 0
\(31\) 8.67066 1.55730 0.778648 0.627461i \(-0.215906\pi\)
0.778648 + 0.627461i \(0.215906\pi\)
\(32\) −3.23062 −0.571098
\(33\) 0 0
\(34\) −1.54085 −0.264253
\(35\) −3.66581 −0.619635
\(36\) 0 0
\(37\) −7.13997 −1.17380 −0.586902 0.809658i \(-0.699653\pi\)
−0.586902 + 0.809658i \(0.699653\pi\)
\(38\) 1.18226 0.191787
\(39\) 0 0
\(40\) 4.08588 0.646034
\(41\) −3.80151 −0.593697 −0.296848 0.954925i \(-0.595936\pi\)
−0.296848 + 0.954925i \(0.595936\pi\)
\(42\) 0 0
\(43\) 6.40053 0.976072 0.488036 0.872823i \(-0.337713\pi\)
0.488036 + 0.872823i \(0.337713\pi\)
\(44\) −5.55284 −0.837122
\(45\) 0 0
\(46\) −1.40672 −0.207410
\(47\) −6.07023 −0.885435 −0.442717 0.896661i \(-0.645986\pi\)
−0.442717 + 0.896661i \(0.645986\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −2.39980 −0.339383
\(51\) 0 0
\(52\) −3.61255 −0.500970
\(53\) −3.63552 −0.499377 −0.249689 0.968326i \(-0.580328\pi\)
−0.249689 + 0.968326i \(0.580328\pi\)
\(54\) 0 0
\(55\) 10.6068 1.43022
\(56\) −1.11459 −0.148943
\(57\) 0 0
\(58\) −1.82654 −0.239837
\(59\) 7.78156 1.01307 0.506536 0.862219i \(-0.330926\pi\)
0.506536 + 0.862219i \(0.330926\pi\)
\(60\) 0 0
\(61\) 6.41002 0.820719 0.410360 0.911924i \(-0.365403\pi\)
0.410360 + 0.911924i \(0.365403\pi\)
\(62\) −2.46592 −0.313172
\(63\) 0 0
\(64\) −6.12371 −0.765464
\(65\) 6.90052 0.855904
\(66\) 0 0
\(67\) 13.3619 1.63242 0.816208 0.577758i \(-0.196072\pi\)
0.816208 + 0.577758i \(0.196072\pi\)
\(68\) −10.3976 −1.26090
\(69\) 0 0
\(70\) 1.04255 0.124609
\(71\) −8.96501 −1.06395 −0.531975 0.846760i \(-0.678550\pi\)
−0.531975 + 0.846760i \(0.678550\pi\)
\(72\) 0 0
\(73\) −5.77303 −0.675682 −0.337841 0.941203i \(-0.609697\pi\)
−0.337841 + 0.941203i \(0.609697\pi\)
\(74\) 2.03060 0.236052
\(75\) 0 0
\(76\) 7.97785 0.915123
\(77\) −2.89343 −0.329737
\(78\) 0 0
\(79\) −1.95064 −0.219464 −0.109732 0.993961i \(-0.534999\pi\)
−0.109732 + 0.993961i \(0.534999\pi\)
\(80\) 12.9082 1.44318
\(81\) 0 0
\(82\) 1.08114 0.119392
\(83\) 8.20767 0.900909 0.450454 0.892799i \(-0.351262\pi\)
0.450454 + 0.892799i \(0.351262\pi\)
\(84\) 0 0
\(85\) 19.8611 2.15424
\(86\) −1.82030 −0.196288
\(87\) 0 0
\(88\) 3.22499 0.343785
\(89\) 0.196140 0.0207908 0.0103954 0.999946i \(-0.496691\pi\)
0.0103954 + 0.999946i \(0.496691\pi\)
\(90\) 0 0
\(91\) −1.88240 −0.197329
\(92\) −9.49253 −0.989665
\(93\) 0 0
\(94\) 1.72637 0.178061
\(95\) −15.2389 −1.56348
\(96\) 0 0
\(97\) −4.42233 −0.449020 −0.224510 0.974472i \(-0.572078\pi\)
−0.224510 + 0.974472i \(0.572078\pi\)
\(98\) −0.284398 −0.0287286
\(99\) 0 0
\(100\) −16.1938 −1.61938
\(101\) −15.2503 −1.51746 −0.758732 0.651403i \(-0.774181\pi\)
−0.758732 + 0.651403i \(0.774181\pi\)
\(102\) 0 0
\(103\) −10.2948 −1.01437 −0.507187 0.861836i \(-0.669315\pi\)
−0.507187 + 0.861836i \(0.669315\pi\)
\(104\) 2.09811 0.205736
\(105\) 0 0
\(106\) 1.03394 0.100425
\(107\) −5.29148 −0.511546 −0.255773 0.966737i \(-0.582330\pi\)
−0.255773 + 0.966737i \(0.582330\pi\)
\(108\) 0 0
\(109\) 1.14135 0.109322 0.0546608 0.998505i \(-0.482592\pi\)
0.0546608 + 0.998505i \(0.482592\pi\)
\(110\) −3.01655 −0.287617
\(111\) 0 0
\(112\) −3.52125 −0.332727
\(113\) −5.87786 −0.552942 −0.276471 0.961022i \(-0.589165\pi\)
−0.276471 + 0.961022i \(0.589165\pi\)
\(114\) 0 0
\(115\) 18.1322 1.69084
\(116\) −12.3255 −1.14439
\(117\) 0 0
\(118\) −2.21306 −0.203729
\(119\) −5.41792 −0.496660
\(120\) 0 0
\(121\) −2.62805 −0.238913
\(122\) −1.82300 −0.165047
\(123\) 0 0
\(124\) −16.6400 −1.49432
\(125\) 12.6037 1.12731
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) 8.20281 0.725033
\(129\) 0 0
\(130\) −1.96250 −0.172122
\(131\) 8.12871 0.710209 0.355104 0.934827i \(-0.384445\pi\)
0.355104 + 0.934827i \(0.384445\pi\)
\(132\) 0 0
\(133\) 4.15704 0.360461
\(134\) −3.80011 −0.328279
\(135\) 0 0
\(136\) 6.03876 0.517820
\(137\) −19.3581 −1.65387 −0.826935 0.562297i \(-0.809918\pi\)
−0.826935 + 0.562297i \(0.809918\pi\)
\(138\) 0 0
\(139\) 9.82585 0.833417 0.416709 0.909040i \(-0.363184\pi\)
0.416709 + 0.909040i \(0.363184\pi\)
\(140\) 7.03512 0.594576
\(141\) 0 0
\(142\) 2.54963 0.213961
\(143\) 5.44660 0.455467
\(144\) 0 0
\(145\) 23.5436 1.95519
\(146\) 1.64184 0.135880
\(147\) 0 0
\(148\) 13.7024 1.12633
\(149\) 8.10651 0.664111 0.332056 0.943260i \(-0.392258\pi\)
0.332056 + 0.943260i \(0.392258\pi\)
\(150\) 0 0
\(151\) −1.16810 −0.0950590 −0.0475295 0.998870i \(-0.515135\pi\)
−0.0475295 + 0.998870i \(0.515135\pi\)
\(152\) −4.63340 −0.375819
\(153\) 0 0
\(154\) 0.822888 0.0663102
\(155\) 31.7850 2.55303
\(156\) 0 0
\(157\) 18.3308 1.46296 0.731479 0.681864i \(-0.238830\pi\)
0.731479 + 0.681864i \(0.238830\pi\)
\(158\) 0.554758 0.0441342
\(159\) 0 0
\(160\) −11.8428 −0.936259
\(161\) −4.94630 −0.389823
\(162\) 0 0
\(163\) 24.4471 1.91485 0.957423 0.288689i \(-0.0932193\pi\)
0.957423 + 0.288689i \(0.0932193\pi\)
\(164\) 7.29555 0.569687
\(165\) 0 0
\(166\) −2.33425 −0.181173
\(167\) −4.54592 −0.351774 −0.175887 0.984410i \(-0.556279\pi\)
−0.175887 + 0.984410i \(0.556279\pi\)
\(168\) 0 0
\(169\) −9.45657 −0.727429
\(170\) −5.64846 −0.433217
\(171\) 0 0
\(172\) −12.2834 −0.936599
\(173\) 6.42599 0.488559 0.244279 0.969705i \(-0.421449\pi\)
0.244279 + 0.969705i \(0.421449\pi\)
\(174\) 0 0
\(175\) −8.43817 −0.637866
\(176\) 10.1885 0.767986
\(177\) 0 0
\(178\) −0.0557818 −0.00418102
\(179\) −16.7986 −1.25559 −0.627793 0.778381i \(-0.716041\pi\)
−0.627793 + 0.778381i \(0.716041\pi\)
\(180\) 0 0
\(181\) 15.9915 1.18864 0.594318 0.804230i \(-0.297422\pi\)
0.594318 + 0.804230i \(0.297422\pi\)
\(182\) 0.535352 0.0396829
\(183\) 0 0
\(184\) 5.51310 0.406431
\(185\) −26.1738 −1.92433
\(186\) 0 0
\(187\) 15.6764 1.14637
\(188\) 11.6495 0.849627
\(189\) 0 0
\(190\) 4.33393 0.314416
\(191\) 21.5802 1.56149 0.780746 0.624849i \(-0.214839\pi\)
0.780746 + 0.624849i \(0.214839\pi\)
\(192\) 0 0
\(193\) −13.5153 −0.972851 −0.486425 0.873722i \(-0.661699\pi\)
−0.486425 + 0.873722i \(0.661699\pi\)
\(194\) 1.25770 0.0902979
\(195\) 0 0
\(196\) −1.91912 −0.137080
\(197\) −13.4193 −0.956084 −0.478042 0.878337i \(-0.658653\pi\)
−0.478042 + 0.878337i \(0.658653\pi\)
\(198\) 0 0
\(199\) −9.63107 −0.682728 −0.341364 0.939931i \(-0.610889\pi\)
−0.341364 + 0.939931i \(0.610889\pi\)
\(200\) 9.40510 0.665041
\(201\) 0 0
\(202\) 4.33717 0.305162
\(203\) −6.42248 −0.450770
\(204\) 0 0
\(205\) −13.9356 −0.973307
\(206\) 2.92782 0.203991
\(207\) 0 0
\(208\) 6.62840 0.459597
\(209\) −12.0281 −0.832003
\(210\) 0 0
\(211\) 5.69553 0.392096 0.196048 0.980594i \(-0.437189\pi\)
0.196048 + 0.980594i \(0.437189\pi\)
\(212\) 6.97699 0.479182
\(213\) 0 0
\(214\) 1.50489 0.102872
\(215\) 23.4631 1.60017
\(216\) 0 0
\(217\) −8.67066 −0.588602
\(218\) −0.324598 −0.0219846
\(219\) 0 0
\(220\) −20.3557 −1.37238
\(221\) 10.1987 0.686038
\(222\) 0 0
\(223\) −21.8851 −1.46554 −0.732768 0.680478i \(-0.761772\pi\)
−0.732768 + 0.680478i \(0.761772\pi\)
\(224\) 3.23062 0.215855
\(225\) 0 0
\(226\) 1.67165 0.111197
\(227\) 8.01519 0.531987 0.265993 0.963975i \(-0.414300\pi\)
0.265993 + 0.963975i \(0.414300\pi\)
\(228\) 0 0
\(229\) −12.6832 −0.838126 −0.419063 0.907957i \(-0.637641\pi\)
−0.419063 + 0.907957i \(0.637641\pi\)
\(230\) −5.15677 −0.340027
\(231\) 0 0
\(232\) 7.15844 0.469974
\(233\) 5.87223 0.384702 0.192351 0.981326i \(-0.438389\pi\)
0.192351 + 0.981326i \(0.438389\pi\)
\(234\) 0 0
\(235\) −22.2523 −1.45158
\(236\) −14.9337 −0.972103
\(237\) 0 0
\(238\) 1.54085 0.0998783
\(239\) −23.2627 −1.50474 −0.752369 0.658742i \(-0.771089\pi\)
−0.752369 + 0.658742i \(0.771089\pi\)
\(240\) 0 0
\(241\) −9.27487 −0.597447 −0.298723 0.954340i \(-0.596561\pi\)
−0.298723 + 0.954340i \(0.596561\pi\)
\(242\) 0.747413 0.0480455
\(243\) 0 0
\(244\) −12.3016 −0.787528
\(245\) 3.66581 0.234200
\(246\) 0 0
\(247\) −7.82522 −0.497907
\(248\) 9.66423 0.613679
\(249\) 0 0
\(250\) −3.58446 −0.226701
\(251\) −4.99183 −0.315082 −0.157541 0.987512i \(-0.550357\pi\)
−0.157541 + 0.987512i \(0.550357\pi\)
\(252\) 0 0
\(253\) 14.3118 0.899774
\(254\) 0.284398 0.0178447
\(255\) 0 0
\(256\) 9.91456 0.619660
\(257\) −2.58595 −0.161307 −0.0806535 0.996742i \(-0.525701\pi\)
−0.0806535 + 0.996742i \(0.525701\pi\)
\(258\) 0 0
\(259\) 7.13997 0.443656
\(260\) −13.2429 −0.821291
\(261\) 0 0
\(262\) −2.31179 −0.142823
\(263\) 10.0488 0.619637 0.309819 0.950796i \(-0.399732\pi\)
0.309819 + 0.950796i \(0.399732\pi\)
\(264\) 0 0
\(265\) −13.3271 −0.818679
\(266\) −1.18226 −0.0724888
\(267\) 0 0
\(268\) −25.6431 −1.56640
\(269\) 25.2677 1.54060 0.770298 0.637684i \(-0.220107\pi\)
0.770298 + 0.637684i \(0.220107\pi\)
\(270\) 0 0
\(271\) 5.90645 0.358791 0.179396 0.983777i \(-0.442586\pi\)
0.179396 + 0.983777i \(0.442586\pi\)
\(272\) 19.0778 1.15676
\(273\) 0 0
\(274\) 5.50540 0.332593
\(275\) 24.4153 1.47230
\(276\) 0 0
\(277\) 11.9163 0.715980 0.357990 0.933725i \(-0.383462\pi\)
0.357990 + 0.933725i \(0.383462\pi\)
\(278\) −2.79446 −0.167600
\(279\) 0 0
\(280\) −4.08588 −0.244178
\(281\) 2.78115 0.165910 0.0829548 0.996553i \(-0.473564\pi\)
0.0829548 + 0.996553i \(0.473564\pi\)
\(282\) 0 0
\(283\) −3.24384 −0.192826 −0.0964131 0.995341i \(-0.530737\pi\)
−0.0964131 + 0.995341i \(0.530737\pi\)
\(284\) 17.2049 1.02092
\(285\) 0 0
\(286\) −1.54900 −0.0915945
\(287\) 3.80151 0.224396
\(288\) 0 0
\(289\) 12.3539 0.726697
\(290\) −6.69576 −0.393189
\(291\) 0 0
\(292\) 11.0791 0.648357
\(293\) −13.7305 −0.802145 −0.401073 0.916046i \(-0.631362\pi\)
−0.401073 + 0.916046i \(0.631362\pi\)
\(294\) 0 0
\(295\) 28.5257 1.66083
\(296\) −7.95814 −0.462558
\(297\) 0 0
\(298\) −2.30548 −0.133553
\(299\) 9.31092 0.538464
\(300\) 0 0
\(301\) −6.40053 −0.368921
\(302\) 0.332207 0.0191164
\(303\) 0 0
\(304\) −14.6380 −0.839545
\(305\) 23.4979 1.34549
\(306\) 0 0
\(307\) 1.50941 0.0861464 0.0430732 0.999072i \(-0.486285\pi\)
0.0430732 + 0.999072i \(0.486285\pi\)
\(308\) 5.55284 0.316402
\(309\) 0 0
\(310\) −9.03960 −0.513415
\(311\) 25.9571 1.47189 0.735947 0.677040i \(-0.236737\pi\)
0.735947 + 0.677040i \(0.236737\pi\)
\(312\) 0 0
\(313\) −19.6113 −1.10850 −0.554249 0.832351i \(-0.686994\pi\)
−0.554249 + 0.832351i \(0.686994\pi\)
\(314\) −5.21325 −0.294201
\(315\) 0 0
\(316\) 3.74350 0.210588
\(317\) −6.56414 −0.368679 −0.184339 0.982863i \(-0.559015\pi\)
−0.184339 + 0.982863i \(0.559015\pi\)
\(318\) 0 0
\(319\) 18.5830 1.04045
\(320\) −22.4484 −1.25490
\(321\) 0 0
\(322\) 1.40672 0.0783934
\(323\) −22.5225 −1.25319
\(324\) 0 0
\(325\) 15.8840 0.881086
\(326\) −6.95272 −0.385076
\(327\) 0 0
\(328\) −4.23713 −0.233957
\(329\) 6.07023 0.334663
\(330\) 0 0
\(331\) 6.45257 0.354666 0.177333 0.984151i \(-0.443253\pi\)
0.177333 + 0.984151i \(0.443253\pi\)
\(332\) −15.7515 −0.864475
\(333\) 0 0
\(334\) 1.29285 0.0707418
\(335\) 48.9822 2.67618
\(336\) 0 0
\(337\) −35.0026 −1.90672 −0.953358 0.301843i \(-0.902398\pi\)
−0.953358 + 0.301843i \(0.902398\pi\)
\(338\) 2.68943 0.146286
\(339\) 0 0
\(340\) −38.1157 −2.06712
\(341\) 25.0880 1.35859
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 7.13398 0.384638
\(345\) 0 0
\(346\) −1.82754 −0.0982492
\(347\) −25.6545 −1.37721 −0.688603 0.725139i \(-0.741776\pi\)
−0.688603 + 0.725139i \(0.741776\pi\)
\(348\) 0 0
\(349\) 19.5960 1.04895 0.524474 0.851426i \(-0.324262\pi\)
0.524474 + 0.851426i \(0.324262\pi\)
\(350\) 2.39980 0.128275
\(351\) 0 0
\(352\) −9.34758 −0.498228
\(353\) 0.516604 0.0274961 0.0137480 0.999905i \(-0.495624\pi\)
0.0137480 + 0.999905i \(0.495624\pi\)
\(354\) 0 0
\(355\) −32.8640 −1.74424
\(356\) −0.376415 −0.0199499
\(357\) 0 0
\(358\) 4.77749 0.252498
\(359\) 29.2134 1.54182 0.770912 0.636942i \(-0.219801\pi\)
0.770912 + 0.636942i \(0.219801\pi\)
\(360\) 0 0
\(361\) −1.71900 −0.0904736
\(362\) −4.54795 −0.239035
\(363\) 0 0
\(364\) 3.61255 0.189349
\(365\) −21.1628 −1.10771
\(366\) 0 0
\(367\) −28.1968 −1.47186 −0.735931 0.677057i \(-0.763255\pi\)
−0.735931 + 0.677057i \(0.763255\pi\)
\(368\) 17.4171 0.907932
\(369\) 0 0
\(370\) 7.44378 0.386984
\(371\) 3.63552 0.188747
\(372\) 0 0
\(373\) 33.4097 1.72989 0.864945 0.501866i \(-0.167353\pi\)
0.864945 + 0.501866i \(0.167353\pi\)
\(374\) −4.45834 −0.230535
\(375\) 0 0
\(376\) −6.76583 −0.348921
\(377\) 12.0897 0.622650
\(378\) 0 0
\(379\) −7.56506 −0.388591 −0.194296 0.980943i \(-0.562242\pi\)
−0.194296 + 0.980943i \(0.562242\pi\)
\(380\) 29.2453 1.50025
\(381\) 0 0
\(382\) −6.13739 −0.314016
\(383\) 13.9909 0.714900 0.357450 0.933932i \(-0.383646\pi\)
0.357450 + 0.933932i \(0.383646\pi\)
\(384\) 0 0
\(385\) −10.6068 −0.540571
\(386\) 3.84372 0.195640
\(387\) 0 0
\(388\) 8.48697 0.430861
\(389\) 20.1522 1.02176 0.510879 0.859653i \(-0.329320\pi\)
0.510879 + 0.859653i \(0.329320\pi\)
\(390\) 0 0
\(391\) 26.7987 1.35527
\(392\) 1.11459 0.0562953
\(393\) 0 0
\(394\) 3.81642 0.192269
\(395\) −7.15066 −0.359789
\(396\) 0 0
\(397\) 4.91282 0.246568 0.123284 0.992371i \(-0.460657\pi\)
0.123284 + 0.992371i \(0.460657\pi\)
\(398\) 2.73906 0.137297
\(399\) 0 0
\(400\) 29.7129 1.48564
\(401\) −10.2127 −0.509998 −0.254999 0.966941i \(-0.582075\pi\)
−0.254999 + 0.966941i \(0.582075\pi\)
\(402\) 0 0
\(403\) 16.3216 0.813039
\(404\) 29.2672 1.45610
\(405\) 0 0
\(406\) 1.82654 0.0906498
\(407\) −20.6590 −1.02403
\(408\) 0 0
\(409\) −23.1233 −1.14337 −0.571687 0.820472i \(-0.693711\pi\)
−0.571687 + 0.820472i \(0.693711\pi\)
\(410\) 3.96327 0.195732
\(411\) 0 0
\(412\) 19.7569 0.973352
\(413\) −7.78156 −0.382906
\(414\) 0 0
\(415\) 30.0878 1.47695
\(416\) −6.08132 −0.298161
\(417\) 0 0
\(418\) 3.42078 0.167316
\(419\) −25.5851 −1.24991 −0.624957 0.780659i \(-0.714883\pi\)
−0.624957 + 0.780659i \(0.714883\pi\)
\(420\) 0 0
\(421\) −13.6451 −0.665023 −0.332512 0.943099i \(-0.607896\pi\)
−0.332512 + 0.943099i \(0.607896\pi\)
\(422\) −1.61980 −0.0788506
\(423\) 0 0
\(424\) −4.05212 −0.196788
\(425\) 45.7173 2.21762
\(426\) 0 0
\(427\) −6.41002 −0.310203
\(428\) 10.1550 0.490859
\(429\) 0 0
\(430\) −6.67288 −0.321795
\(431\) −22.7266 −1.09470 −0.547352 0.836903i \(-0.684364\pi\)
−0.547352 + 0.836903i \(0.684364\pi\)
\(432\) 0 0
\(433\) −2.49007 −0.119665 −0.0598325 0.998208i \(-0.519057\pi\)
−0.0598325 + 0.998208i \(0.519057\pi\)
\(434\) 2.46592 0.118368
\(435\) 0 0
\(436\) −2.19039 −0.104900
\(437\) −20.5620 −0.983613
\(438\) 0 0
\(439\) 36.1038 1.72314 0.861570 0.507639i \(-0.169482\pi\)
0.861570 + 0.507639i \(0.169482\pi\)
\(440\) 11.8222 0.563602
\(441\) 0 0
\(442\) −2.90049 −0.137962
\(443\) 41.2105 1.95797 0.978984 0.203935i \(-0.0653731\pi\)
0.978984 + 0.203935i \(0.0653731\pi\)
\(444\) 0 0
\(445\) 0.719011 0.0340844
\(446\) 6.22410 0.294720
\(447\) 0 0
\(448\) 6.12371 0.289318
\(449\) 12.4015 0.585262 0.292631 0.956225i \(-0.405469\pi\)
0.292631 + 0.956225i \(0.405469\pi\)
\(450\) 0 0
\(451\) −10.9994 −0.517943
\(452\) 11.2803 0.530581
\(453\) 0 0
\(454\) −2.27951 −0.106983
\(455\) −6.90052 −0.323501
\(456\) 0 0
\(457\) 0.710700 0.0332451 0.0166226 0.999862i \(-0.494709\pi\)
0.0166226 + 0.999862i \(0.494709\pi\)
\(458\) 3.60707 0.168547
\(459\) 0 0
\(460\) −34.7978 −1.62246
\(461\) −35.3687 −1.64728 −0.823642 0.567110i \(-0.808061\pi\)
−0.823642 + 0.567110i \(0.808061\pi\)
\(462\) 0 0
\(463\) 34.5748 1.60683 0.803413 0.595423i \(-0.203015\pi\)
0.803413 + 0.595423i \(0.203015\pi\)
\(464\) 22.6151 1.04988
\(465\) 0 0
\(466\) −1.67005 −0.0773637
\(467\) 3.12852 0.144771 0.0723853 0.997377i \(-0.476939\pi\)
0.0723853 + 0.997377i \(0.476939\pi\)
\(468\) 0 0
\(469\) −13.3619 −0.616996
\(470\) 6.32853 0.291913
\(471\) 0 0
\(472\) 8.67326 0.399219
\(473\) 18.5195 0.851528
\(474\) 0 0
\(475\) −35.0778 −1.60948
\(476\) 10.3976 0.476574
\(477\) 0 0
\(478\) 6.61587 0.302603
\(479\) −19.1146 −0.873368 −0.436684 0.899615i \(-0.643847\pi\)
−0.436684 + 0.899615i \(0.643847\pi\)
\(480\) 0 0
\(481\) −13.4403 −0.612824
\(482\) 2.63776 0.120147
\(483\) 0 0
\(484\) 5.04353 0.229251
\(485\) −16.2114 −0.736123
\(486\) 0 0
\(487\) 37.2169 1.68646 0.843230 0.537552i \(-0.180651\pi\)
0.843230 + 0.537552i \(0.180651\pi\)
\(488\) 7.14455 0.323419
\(489\) 0 0
\(490\) −1.04255 −0.0470976
\(491\) 14.3956 0.649664 0.324832 0.945772i \(-0.394692\pi\)
0.324832 + 0.945772i \(0.394692\pi\)
\(492\) 0 0
\(493\) 34.7965 1.56715
\(494\) 2.22548 0.100129
\(495\) 0 0
\(496\) 30.5315 1.37091
\(497\) 8.96501 0.402136
\(498\) 0 0
\(499\) 30.4124 1.36145 0.680723 0.732541i \(-0.261666\pi\)
0.680723 + 0.732541i \(0.261666\pi\)
\(500\) −24.1879 −1.08172
\(501\) 0 0
\(502\) 1.41967 0.0633629
\(503\) −17.2114 −0.767419 −0.383710 0.923454i \(-0.625354\pi\)
−0.383710 + 0.923454i \(0.625354\pi\)
\(504\) 0 0
\(505\) −55.9048 −2.48773
\(506\) −4.07025 −0.180945
\(507\) 0 0
\(508\) 1.91912 0.0851471
\(509\) −0.686999 −0.0304507 −0.0152253 0.999884i \(-0.504847\pi\)
−0.0152253 + 0.999884i \(0.504847\pi\)
\(510\) 0 0
\(511\) 5.77303 0.255384
\(512\) −19.2253 −0.849647
\(513\) 0 0
\(514\) 0.735440 0.0324389
\(515\) −37.7387 −1.66297
\(516\) 0 0
\(517\) −17.5638 −0.772456
\(518\) −2.03060 −0.0892193
\(519\) 0 0
\(520\) 7.69126 0.337284
\(521\) −8.77448 −0.384417 −0.192209 0.981354i \(-0.561565\pi\)
−0.192209 + 0.981354i \(0.561565\pi\)
\(522\) 0 0
\(523\) 32.2063 1.40828 0.704142 0.710059i \(-0.251332\pi\)
0.704142 + 0.710059i \(0.251332\pi\)
\(524\) −15.5999 −0.681487
\(525\) 0 0
\(526\) −2.85787 −0.124609
\(527\) 46.9769 2.04635
\(528\) 0 0
\(529\) 1.46589 0.0637343
\(530\) 3.79021 0.164636
\(531\) 0 0
\(532\) −7.97785 −0.345884
\(533\) −7.15597 −0.309959
\(534\) 0 0
\(535\) −19.3976 −0.838629
\(536\) 14.8931 0.643282
\(537\) 0 0
\(538\) −7.18608 −0.309814
\(539\) 2.89343 0.124629
\(540\) 0 0
\(541\) 17.3738 0.746957 0.373478 0.927639i \(-0.378165\pi\)
0.373478 + 0.927639i \(0.378165\pi\)
\(542\) −1.67978 −0.0721529
\(543\) 0 0
\(544\) −17.5032 −0.750445
\(545\) 4.18398 0.179222
\(546\) 0 0
\(547\) 35.7583 1.52891 0.764457 0.644674i \(-0.223007\pi\)
0.764457 + 0.644674i \(0.223007\pi\)
\(548\) 37.1504 1.58699
\(549\) 0 0
\(550\) −6.94366 −0.296079
\(551\) −26.6985 −1.13740
\(552\) 0 0
\(553\) 1.95064 0.0829495
\(554\) −3.38897 −0.143984
\(555\) 0 0
\(556\) −18.8570 −0.799713
\(557\) −27.9404 −1.18387 −0.591936 0.805985i \(-0.701636\pi\)
−0.591936 + 0.805985i \(0.701636\pi\)
\(558\) 0 0
\(559\) 12.0484 0.509592
\(560\) −12.9082 −0.545472
\(561\) 0 0
\(562\) −0.790955 −0.0333644
\(563\) 27.3336 1.15197 0.575987 0.817459i \(-0.304618\pi\)
0.575987 + 0.817459i \(0.304618\pi\)
\(564\) 0 0
\(565\) −21.5471 −0.906494
\(566\) 0.922542 0.0387774
\(567\) 0 0
\(568\) −9.99232 −0.419268
\(569\) −16.5911 −0.695536 −0.347768 0.937581i \(-0.613060\pi\)
−0.347768 + 0.937581i \(0.613060\pi\)
\(570\) 0 0
\(571\) −2.71786 −0.113739 −0.0568694 0.998382i \(-0.518112\pi\)
−0.0568694 + 0.998382i \(0.518112\pi\)
\(572\) −10.4527 −0.437048
\(573\) 0 0
\(574\) −1.08114 −0.0451261
\(575\) 41.7377 1.74058
\(576\) 0 0
\(577\) 27.9955 1.16547 0.582733 0.812663i \(-0.301983\pi\)
0.582733 + 0.812663i \(0.301983\pi\)
\(578\) −3.51342 −0.146139
\(579\) 0 0
\(580\) −45.1829 −1.87612
\(581\) −8.20767 −0.340512
\(582\) 0 0
\(583\) −10.5191 −0.435658
\(584\) −6.43457 −0.266264
\(585\) 0 0
\(586\) 3.90494 0.161311
\(587\) 36.2581 1.49653 0.748266 0.663399i \(-0.230887\pi\)
0.748266 + 0.663399i \(0.230887\pi\)
\(588\) 0 0
\(589\) −36.0443 −1.48518
\(590\) −8.11267 −0.333993
\(591\) 0 0
\(592\) −25.1416 −1.03331
\(593\) 20.6633 0.848538 0.424269 0.905536i \(-0.360531\pi\)
0.424269 + 0.905536i \(0.360531\pi\)
\(594\) 0 0
\(595\) −19.8611 −0.814224
\(596\) −15.5573 −0.637254
\(597\) 0 0
\(598\) −2.64801 −0.108285
\(599\) −42.3558 −1.73061 −0.865305 0.501246i \(-0.832875\pi\)
−0.865305 + 0.501246i \(0.832875\pi\)
\(600\) 0 0
\(601\) −12.4973 −0.509776 −0.254888 0.966971i \(-0.582039\pi\)
−0.254888 + 0.966971i \(0.582039\pi\)
\(602\) 1.82030 0.0741900
\(603\) 0 0
\(604\) 2.24173 0.0912147
\(605\) −9.63393 −0.391675
\(606\) 0 0
\(607\) −33.9932 −1.37974 −0.689871 0.723932i \(-0.742333\pi\)
−0.689871 + 0.723932i \(0.742333\pi\)
\(608\) 13.4298 0.544651
\(609\) 0 0
\(610\) −6.68277 −0.270578
\(611\) −11.4266 −0.462271
\(612\) 0 0
\(613\) 41.5833 1.67953 0.839766 0.542948i \(-0.182692\pi\)
0.839766 + 0.542948i \(0.182692\pi\)
\(614\) −0.429273 −0.0173240
\(615\) 0 0
\(616\) −3.22499 −0.129939
\(617\) −20.4430 −0.823005 −0.411503 0.911409i \(-0.634996\pi\)
−0.411503 + 0.911409i \(0.634996\pi\)
\(618\) 0 0
\(619\) 34.4729 1.38558 0.692791 0.721139i \(-0.256381\pi\)
0.692791 + 0.721139i \(0.256381\pi\)
\(620\) −60.9991 −2.44978
\(621\) 0 0
\(622\) −7.38216 −0.295998
\(623\) −0.196140 −0.00785817
\(624\) 0 0
\(625\) 4.01184 0.160473
\(626\) 5.57743 0.222919
\(627\) 0 0
\(628\) −35.1790 −1.40379
\(629\) −38.6838 −1.54242
\(630\) 0 0
\(631\) 42.8278 1.70495 0.852473 0.522771i \(-0.175102\pi\)
0.852473 + 0.522771i \(0.175102\pi\)
\(632\) −2.17416 −0.0864835
\(633\) 0 0
\(634\) 1.86683 0.0741414
\(635\) −3.66581 −0.145473
\(636\) 0 0
\(637\) 1.88240 0.0745834
\(638\) −5.28498 −0.209234
\(639\) 0 0
\(640\) 30.0700 1.18862
\(641\) 2.54643 0.100578 0.0502889 0.998735i \(-0.483986\pi\)
0.0502889 + 0.998735i \(0.483986\pi\)
\(642\) 0 0
\(643\) −7.78508 −0.307014 −0.153507 0.988148i \(-0.549057\pi\)
−0.153507 + 0.988148i \(0.549057\pi\)
\(644\) 9.49253 0.374058
\(645\) 0 0
\(646\) 6.40537 0.252016
\(647\) −27.6341 −1.08641 −0.543205 0.839600i \(-0.682789\pi\)
−0.543205 + 0.839600i \(0.682789\pi\)
\(648\) 0 0
\(649\) 22.5154 0.883807
\(650\) −4.51739 −0.177186
\(651\) 0 0
\(652\) −46.9169 −1.83741
\(653\) 35.9520 1.40691 0.703454 0.710741i \(-0.251640\pi\)
0.703454 + 0.710741i \(0.251640\pi\)
\(654\) 0 0
\(655\) 29.7983 1.16432
\(656\) −13.3861 −0.522638
\(657\) 0 0
\(658\) −1.72637 −0.0673007
\(659\) 15.3056 0.596222 0.298111 0.954531i \(-0.403644\pi\)
0.298111 + 0.954531i \(0.403644\pi\)
\(660\) 0 0
\(661\) 11.6672 0.453801 0.226900 0.973918i \(-0.427141\pi\)
0.226900 + 0.973918i \(0.427141\pi\)
\(662\) −1.83510 −0.0713233
\(663\) 0 0
\(664\) 9.14819 0.355019
\(665\) 15.2389 0.590940
\(666\) 0 0
\(667\) 31.7675 1.23004
\(668\) 8.72416 0.337548
\(669\) 0 0
\(670\) −13.9305 −0.538181
\(671\) 18.5470 0.715998
\(672\) 0 0
\(673\) 39.0480 1.50519 0.752594 0.658484i \(-0.228802\pi\)
0.752594 + 0.658484i \(0.228802\pi\)
\(674\) 9.95470 0.383441
\(675\) 0 0
\(676\) 18.1483 0.698010
\(677\) −6.62387 −0.254576 −0.127288 0.991866i \(-0.540627\pi\)
−0.127288 + 0.991866i \(0.540627\pi\)
\(678\) 0 0
\(679\) 4.42233 0.169714
\(680\) 22.1370 0.848914
\(681\) 0 0
\(682\) −7.13498 −0.273212
\(683\) 13.6588 0.522639 0.261320 0.965252i \(-0.415842\pi\)
0.261320 + 0.965252i \(0.415842\pi\)
\(684\) 0 0
\(685\) −70.9630 −2.71136
\(686\) 0.284398 0.0108584
\(687\) 0 0
\(688\) 22.5379 0.859248
\(689\) −6.84350 −0.260717
\(690\) 0 0
\(691\) −42.2624 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(692\) −12.3322 −0.468801
\(693\) 0 0
\(694\) 7.29610 0.276956
\(695\) 36.0197 1.36630
\(696\) 0 0
\(697\) −20.5963 −0.780140
\(698\) −5.57307 −0.210944
\(699\) 0 0
\(700\) 16.1938 0.612069
\(701\) −38.9352 −1.47056 −0.735281 0.677763i \(-0.762950\pi\)
−0.735281 + 0.677763i \(0.762950\pi\)
\(702\) 0 0
\(703\) 29.6812 1.11945
\(704\) −17.7185 −0.667793
\(705\) 0 0
\(706\) −0.146921 −0.00552946
\(707\) 15.2503 0.573548
\(708\) 0 0
\(709\) 0.580801 0.0218125 0.0109062 0.999941i \(-0.496528\pi\)
0.0109062 + 0.999941i \(0.496528\pi\)
\(710\) 9.34648 0.350767
\(711\) 0 0
\(712\) 0.218615 0.00819296
\(713\) 42.8877 1.60616
\(714\) 0 0
\(715\) 19.9662 0.746693
\(716\) 32.2385 1.20481
\(717\) 0 0
\(718\) −8.30824 −0.310061
\(719\) −4.96075 −0.185005 −0.0925025 0.995712i \(-0.529487\pi\)
−0.0925025 + 0.995712i \(0.529487\pi\)
\(720\) 0 0
\(721\) 10.2948 0.383397
\(722\) 0.488880 0.0181942
\(723\) 0 0
\(724\) −30.6895 −1.14057
\(725\) 54.1940 2.01271
\(726\) 0 0
\(727\) 8.47781 0.314425 0.157212 0.987565i \(-0.449749\pi\)
0.157212 + 0.987565i \(0.449749\pi\)
\(728\) −2.09811 −0.0777610
\(729\) 0 0
\(730\) 6.01868 0.222761
\(731\) 34.6776 1.28260
\(732\) 0 0
\(733\) −1.31188 −0.0484553 −0.0242276 0.999706i \(-0.507713\pi\)
−0.0242276 + 0.999706i \(0.507713\pi\)
\(734\) 8.01913 0.295991
\(735\) 0 0
\(736\) −15.9796 −0.589016
\(737\) 38.6618 1.42413
\(738\) 0 0
\(739\) 0.732368 0.0269406 0.0134703 0.999909i \(-0.495712\pi\)
0.0134703 + 0.999909i \(0.495712\pi\)
\(740\) 50.2305 1.84651
\(741\) 0 0
\(742\) −1.03394 −0.0379570
\(743\) −4.48518 −0.164545 −0.0822726 0.996610i \(-0.526218\pi\)
−0.0822726 + 0.996610i \(0.526218\pi\)
\(744\) 0 0
\(745\) 29.7169 1.08874
\(746\) −9.50168 −0.347881
\(747\) 0 0
\(748\) −30.0848 −1.10001
\(749\) 5.29148 0.193346
\(750\) 0 0
\(751\) 42.4145 1.54773 0.773864 0.633352i \(-0.218321\pi\)
0.773864 + 0.633352i \(0.218321\pi\)
\(752\) −21.3748 −0.779459
\(753\) 0 0
\(754\) −3.43828 −0.125215
\(755\) −4.28205 −0.155840
\(756\) 0 0
\(757\) −19.0296 −0.691642 −0.345821 0.938301i \(-0.612400\pi\)
−0.345821 + 0.938301i \(0.612400\pi\)
\(758\) 2.15149 0.0781457
\(759\) 0 0
\(760\) −16.9852 −0.616117
\(761\) 4.59091 0.166420 0.0832102 0.996532i \(-0.473483\pi\)
0.0832102 + 0.996532i \(0.473483\pi\)
\(762\) 0 0
\(763\) −1.14135 −0.0413197
\(764\) −41.4150 −1.49834
\(765\) 0 0
\(766\) −3.97898 −0.143766
\(767\) 14.6480 0.528909
\(768\) 0 0
\(769\) −12.1471 −0.438037 −0.219019 0.975721i \(-0.570286\pi\)
−0.219019 + 0.975721i \(0.570286\pi\)
\(770\) 3.01655 0.108709
\(771\) 0 0
\(772\) 25.9374 0.933507
\(773\) −30.0148 −1.07956 −0.539778 0.841807i \(-0.681492\pi\)
−0.539778 + 0.841807i \(0.681492\pi\)
\(774\) 0 0
\(775\) 73.1644 2.62814
\(776\) −4.92909 −0.176944
\(777\) 0 0
\(778\) −5.73126 −0.205476
\(779\) 15.8031 0.566203
\(780\) 0 0
\(781\) −25.9396 −0.928194
\(782\) −7.62150 −0.272544
\(783\) 0 0
\(784\) 3.52125 0.125759
\(785\) 67.1973 2.39837
\(786\) 0 0
\(787\) −38.4452 −1.37042 −0.685211 0.728344i \(-0.740290\pi\)
−0.685211 + 0.728344i \(0.740290\pi\)
\(788\) 25.7532 0.917419
\(789\) 0 0
\(790\) 2.03364 0.0723536
\(791\) 5.87786 0.208993
\(792\) 0 0
\(793\) 12.0662 0.428484
\(794\) −1.39720 −0.0495847
\(795\) 0 0
\(796\) 18.4832 0.655118
\(797\) −36.2045 −1.28243 −0.641214 0.767362i \(-0.721569\pi\)
−0.641214 + 0.767362i \(0.721569\pi\)
\(798\) 0 0
\(799\) −32.8880 −1.16350
\(800\) −27.2605 −0.963804
\(801\) 0 0
\(802\) 2.90448 0.102561
\(803\) −16.7039 −0.589467
\(804\) 0 0
\(805\) −18.1322 −0.639076
\(806\) −4.64185 −0.163502
\(807\) 0 0
\(808\) −16.9979 −0.597983
\(809\) 4.38270 0.154088 0.0770438 0.997028i \(-0.475452\pi\)
0.0770438 + 0.997028i \(0.475452\pi\)
\(810\) 0 0
\(811\) 10.5122 0.369133 0.184566 0.982820i \(-0.440912\pi\)
0.184566 + 0.982820i \(0.440912\pi\)
\(812\) 12.3255 0.432540
\(813\) 0 0
\(814\) 5.87539 0.205932
\(815\) 89.6185 3.13920
\(816\) 0 0
\(817\) −26.6073 −0.930871
\(818\) 6.57623 0.229932
\(819\) 0 0
\(820\) 26.7441 0.933945
\(821\) −2.32555 −0.0811623 −0.0405812 0.999176i \(-0.512921\pi\)
−0.0405812 + 0.999176i \(0.512921\pi\)
\(822\) 0 0
\(823\) −12.2091 −0.425581 −0.212790 0.977098i \(-0.568255\pi\)
−0.212790 + 0.977098i \(0.568255\pi\)
\(824\) −11.4745 −0.399732
\(825\) 0 0
\(826\) 2.21306 0.0770023
\(827\) 35.3401 1.22890 0.614448 0.788958i \(-0.289379\pi\)
0.614448 + 0.788958i \(0.289379\pi\)
\(828\) 0 0
\(829\) −38.3442 −1.33175 −0.665875 0.746063i \(-0.731942\pi\)
−0.665875 + 0.746063i \(0.731942\pi\)
\(830\) −8.55691 −0.297015
\(831\) 0 0
\(832\) −11.5273 −0.399636
\(833\) 5.41792 0.187720
\(834\) 0 0
\(835\) −16.6645 −0.576699
\(836\) 23.0834 0.798355
\(837\) 0 0
\(838\) 7.27636 0.251358
\(839\) 24.1433 0.833521 0.416760 0.909016i \(-0.363165\pi\)
0.416760 + 0.909016i \(0.363165\pi\)
\(840\) 0 0
\(841\) 12.2482 0.422353
\(842\) 3.88065 0.133736
\(843\) 0 0
\(844\) −10.9304 −0.376240
\(845\) −34.6660 −1.19255
\(846\) 0 0
\(847\) 2.62805 0.0903008
\(848\) −12.8016 −0.439607
\(849\) 0 0
\(850\) −13.0019 −0.445963
\(851\) −35.3164 −1.21063
\(852\) 0 0
\(853\) 17.0066 0.582294 0.291147 0.956678i \(-0.405963\pi\)
0.291147 + 0.956678i \(0.405963\pi\)
\(854\) 1.82300 0.0623818
\(855\) 0 0
\(856\) −5.89783 −0.201584
\(857\) −20.6638 −0.705862 −0.352931 0.935649i \(-0.614815\pi\)
−0.352931 + 0.935649i \(0.614815\pi\)
\(858\) 0 0
\(859\) −5.64045 −0.192450 −0.0962248 0.995360i \(-0.530677\pi\)
−0.0962248 + 0.995360i \(0.530677\pi\)
\(860\) −45.0285 −1.53546
\(861\) 0 0
\(862\) 6.46342 0.220145
\(863\) −40.7214 −1.38617 −0.693086 0.720855i \(-0.743749\pi\)
−0.693086 + 0.720855i \(0.743749\pi\)
\(864\) 0 0
\(865\) 23.5565 0.800944
\(866\) 0.708171 0.0240646
\(867\) 0 0
\(868\) 16.6400 0.564799
\(869\) −5.64404 −0.191461
\(870\) 0 0
\(871\) 25.1525 0.852258
\(872\) 1.27214 0.0430801
\(873\) 0 0
\(874\) 5.84780 0.197805
\(875\) −12.6037 −0.426082
\(876\) 0 0
\(877\) 36.1198 1.21968 0.609840 0.792525i \(-0.291234\pi\)
0.609840 + 0.792525i \(0.291234\pi\)
\(878\) −10.2679 −0.346523
\(879\) 0 0
\(880\) 37.3491 1.25904
\(881\) 47.4231 1.59773 0.798863 0.601513i \(-0.205435\pi\)
0.798863 + 0.601513i \(0.205435\pi\)
\(882\) 0 0
\(883\) −27.5922 −0.928551 −0.464276 0.885691i \(-0.653685\pi\)
−0.464276 + 0.885691i \(0.653685\pi\)
\(884\) −19.5725 −0.658294
\(885\) 0 0
\(886\) −11.7202 −0.393748
\(887\) −34.4617 −1.15711 −0.578556 0.815643i \(-0.696384\pi\)
−0.578556 + 0.815643i \(0.696384\pi\)
\(888\) 0 0
\(889\) 1.00000 0.0335389
\(890\) −0.204485 −0.00685437
\(891\) 0 0
\(892\) 42.0001 1.40627
\(893\) 25.2342 0.844431
\(894\) 0 0
\(895\) −61.5804 −2.05841
\(896\) −8.20281 −0.274037
\(897\) 0 0
\(898\) −3.52696 −0.117696
\(899\) 55.6871 1.85727
\(900\) 0 0
\(901\) −19.6970 −0.656201
\(902\) 3.12822 0.104158
\(903\) 0 0
\(904\) −6.55141 −0.217897
\(905\) 58.6217 1.94865
\(906\) 0 0
\(907\) −49.9156 −1.65742 −0.828711 0.559677i \(-0.810925\pi\)
−0.828711 + 0.559677i \(0.810925\pi\)
\(908\) −15.3821 −0.510473
\(909\) 0 0
\(910\) 1.96250 0.0650562
\(911\) 14.2520 0.472191 0.236096 0.971730i \(-0.424132\pi\)
0.236096 + 0.971730i \(0.424132\pi\)
\(912\) 0 0
\(913\) 23.7483 0.785955
\(914\) −0.202122 −0.00668560
\(915\) 0 0
\(916\) 24.3405 0.804231
\(917\) −8.12871 −0.268434
\(918\) 0 0
\(919\) 50.6386 1.67041 0.835207 0.549936i \(-0.185348\pi\)
0.835207 + 0.549936i \(0.185348\pi\)
\(920\) 20.2100 0.666304
\(921\) 0 0
\(922\) 10.0588 0.331269
\(923\) −16.8757 −0.555471
\(924\) 0 0
\(925\) −60.2483 −1.98095
\(926\) −9.83301 −0.323133
\(927\) 0 0
\(928\) −20.7486 −0.681106
\(929\) 13.4169 0.440195 0.220097 0.975478i \(-0.429362\pi\)
0.220097 + 0.975478i \(0.429362\pi\)
\(930\) 0 0
\(931\) −4.15704 −0.136242
\(932\) −11.2695 −0.369145
\(933\) 0 0
\(934\) −0.889746 −0.0291134
\(935\) 57.4667 1.87936
\(936\) 0 0
\(937\) 28.6008 0.934349 0.467174 0.884165i \(-0.345272\pi\)
0.467174 + 0.884165i \(0.345272\pi\)
\(938\) 3.80011 0.124078
\(939\) 0 0
\(940\) 42.7048 1.39288
\(941\) 17.9194 0.584154 0.292077 0.956395i \(-0.405654\pi\)
0.292077 + 0.956395i \(0.405654\pi\)
\(942\) 0 0
\(943\) −18.8034 −0.612324
\(944\) 27.4008 0.891820
\(945\) 0 0
\(946\) −5.26692 −0.171242
\(947\) 45.2544 1.47057 0.735285 0.677758i \(-0.237048\pi\)
0.735285 + 0.677758i \(0.237048\pi\)
\(948\) 0 0
\(949\) −10.8672 −0.352763
\(950\) 9.97608 0.323667
\(951\) 0 0
\(952\) −6.03876 −0.195717
\(953\) −26.0590 −0.844135 −0.422067 0.906564i \(-0.638695\pi\)
−0.422067 + 0.906564i \(0.638695\pi\)
\(954\) 0 0
\(955\) 79.1091 2.55991
\(956\) 44.6438 1.44388
\(957\) 0 0
\(958\) 5.43616 0.175634
\(959\) 19.3581 0.625104
\(960\) 0 0
\(961\) 44.1803 1.42517
\(962\) 3.82239 0.123239
\(963\) 0 0
\(964\) 17.7996 0.573285
\(965\) −49.5444 −1.59489
\(966\) 0 0
\(967\) 37.1768 1.19553 0.597763 0.801673i \(-0.296056\pi\)
0.597763 + 0.801673i \(0.296056\pi\)
\(968\) −2.92920 −0.0941480
\(969\) 0 0
\(970\) 4.61051 0.148034
\(971\) 10.6319 0.341194 0.170597 0.985341i \(-0.445430\pi\)
0.170597 + 0.985341i \(0.445430\pi\)
\(972\) 0 0
\(973\) −9.82585 −0.315002
\(974\) −10.5844 −0.339147
\(975\) 0 0
\(976\) 22.5713 0.722489
\(977\) −34.6940 −1.10996 −0.554979 0.831864i \(-0.687274\pi\)
−0.554979 + 0.831864i \(0.687274\pi\)
\(978\) 0 0
\(979\) 0.567517 0.0181379
\(980\) −7.03512 −0.224729
\(981\) 0 0
\(982\) −4.09409 −0.130648
\(983\) 29.1744 0.930518 0.465259 0.885175i \(-0.345961\pi\)
0.465259 + 0.885175i \(0.345961\pi\)
\(984\) 0 0
\(985\) −49.1925 −1.56740
\(986\) −9.89606 −0.315155
\(987\) 0 0
\(988\) 15.0175 0.477771
\(989\) 31.6590 1.00670
\(990\) 0 0
\(991\) −37.4717 −1.19033 −0.595163 0.803605i \(-0.702913\pi\)
−0.595163 + 0.803605i \(0.702913\pi\)
\(992\) −28.0116 −0.889369
\(993\) 0 0
\(994\) −2.54963 −0.0808695
\(995\) −35.3057 −1.11927
\(996\) 0 0
\(997\) −20.6670 −0.654530 −0.327265 0.944933i \(-0.606127\pi\)
−0.327265 + 0.944933i \(0.606127\pi\)
\(998\) −8.64924 −0.273787
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8001.2.a.s.1.9 16
3.2 odd 2 2667.2.a.n.1.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.n.1.8 16 3.2 odd 2
8001.2.a.s.1.9 16 1.1 even 1 trivial