Properties

Label 8001.2.a.n.1.10
Level $8001$
Weight $2$
Character 8001.1
Self dual yes
Analytic conductor $63.888$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,7,0,9,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8883066572\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5 x^{11} - 3 x^{10} + 41 x^{9} - 11 x^{8} - 123 x^{7} + 44 x^{6} + 159 x^{5} - 39 x^{4} + \cdots - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-1.17133\) of defining polynomial
Character \(\chi\) \(=\) 8001.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17133 q^{2} +2.71466 q^{4} +4.06798 q^{5} +1.00000 q^{7} +1.55176 q^{8} +8.83292 q^{10} -0.266783 q^{11} -1.09460 q^{13} +2.17133 q^{14} -2.05994 q^{16} -2.89261 q^{17} +7.39603 q^{19} +11.0432 q^{20} -0.579273 q^{22} +3.52450 q^{23} +11.5485 q^{25} -2.37673 q^{26} +2.71466 q^{28} +5.16379 q^{29} -8.51653 q^{31} -7.57633 q^{32} -6.28080 q^{34} +4.06798 q^{35} -9.79185 q^{37} +16.0592 q^{38} +6.31253 q^{40} +8.53149 q^{41} +6.33158 q^{43} -0.724225 q^{44} +7.65284 q^{46} +5.55741 q^{47} +1.00000 q^{49} +25.0755 q^{50} -2.97146 q^{52} +9.12252 q^{53} -1.08527 q^{55} +1.55176 q^{56} +11.2123 q^{58} -0.616616 q^{59} +0.338502 q^{61} -18.4922 q^{62} -12.3308 q^{64} -4.45281 q^{65} -2.27396 q^{67} -7.85245 q^{68} +8.83292 q^{70} -4.97702 q^{71} -0.185927 q^{73} -21.2613 q^{74} +20.0777 q^{76} -0.266783 q^{77} -2.63944 q^{79} -8.37981 q^{80} +18.5246 q^{82} +10.6739 q^{83} -11.7671 q^{85} +13.7479 q^{86} -0.413983 q^{88} +7.23902 q^{89} -1.09460 q^{91} +9.56782 q^{92} +12.0670 q^{94} +30.0869 q^{95} -1.68775 q^{97} +2.17133 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 7 q^{2} + 9 q^{4} + 7 q^{5} + 12 q^{7} + 15 q^{8} - 2 q^{10} + 22 q^{11} + 7 q^{14} + 7 q^{16} + 6 q^{17} - 7 q^{19} + 8 q^{20} + 13 q^{22} + 29 q^{23} + 3 q^{25} + 9 q^{28} + 22 q^{29} - 16 q^{31}+ \cdots + 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17133 1.53536 0.767680 0.640833i \(-0.221411\pi\)
0.767680 + 0.640833i \(0.221411\pi\)
\(3\) 0 0
\(4\) 2.71466 1.35733
\(5\) 4.06798 1.81926 0.909628 0.415423i \(-0.136367\pi\)
0.909628 + 0.415423i \(0.136367\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.55176 0.548630
\(9\) 0 0
\(10\) 8.83292 2.79321
\(11\) −0.266783 −0.0804381 −0.0402191 0.999191i \(-0.512806\pi\)
−0.0402191 + 0.999191i \(0.512806\pi\)
\(12\) 0 0
\(13\) −1.09460 −0.303587 −0.151794 0.988412i \(-0.548505\pi\)
−0.151794 + 0.988412i \(0.548505\pi\)
\(14\) 2.17133 0.580311
\(15\) 0 0
\(16\) −2.05994 −0.514986
\(17\) −2.89261 −0.701561 −0.350780 0.936458i \(-0.614084\pi\)
−0.350780 + 0.936458i \(0.614084\pi\)
\(18\) 0 0
\(19\) 7.39603 1.69677 0.848383 0.529383i \(-0.177577\pi\)
0.848383 + 0.529383i \(0.177577\pi\)
\(20\) 11.0432 2.46933
\(21\) 0 0
\(22\) −0.579273 −0.123501
\(23\) 3.52450 0.734909 0.367455 0.930041i \(-0.380229\pi\)
0.367455 + 0.930041i \(0.380229\pi\)
\(24\) 0 0
\(25\) 11.5485 2.30969
\(26\) −2.37673 −0.466116
\(27\) 0 0
\(28\) 2.71466 0.513022
\(29\) 5.16379 0.958893 0.479446 0.877571i \(-0.340838\pi\)
0.479446 + 0.877571i \(0.340838\pi\)
\(30\) 0 0
\(31\) −8.51653 −1.52961 −0.764807 0.644259i \(-0.777166\pi\)
−0.764807 + 0.644259i \(0.777166\pi\)
\(32\) −7.57633 −1.33932
\(33\) 0 0
\(34\) −6.28080 −1.07715
\(35\) 4.06798 0.687614
\(36\) 0 0
\(37\) −9.79185 −1.60977 −0.804885 0.593431i \(-0.797773\pi\)
−0.804885 + 0.593431i \(0.797773\pi\)
\(38\) 16.0592 2.60515
\(39\) 0 0
\(40\) 6.31253 0.998098
\(41\) 8.53149 1.33239 0.666197 0.745776i \(-0.267921\pi\)
0.666197 + 0.745776i \(0.267921\pi\)
\(42\) 0 0
\(43\) 6.33158 0.965556 0.482778 0.875743i \(-0.339628\pi\)
0.482778 + 0.875743i \(0.339628\pi\)
\(44\) −0.724225 −0.109181
\(45\) 0 0
\(46\) 7.65284 1.12835
\(47\) 5.55741 0.810631 0.405316 0.914177i \(-0.367162\pi\)
0.405316 + 0.914177i \(0.367162\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 25.0755 3.54621
\(51\) 0 0
\(52\) −2.97146 −0.412068
\(53\) 9.12252 1.25307 0.626537 0.779392i \(-0.284472\pi\)
0.626537 + 0.779392i \(0.284472\pi\)
\(54\) 0 0
\(55\) −1.08527 −0.146338
\(56\) 1.55176 0.207363
\(57\) 0 0
\(58\) 11.2123 1.47225
\(59\) −0.616616 −0.0802766 −0.0401383 0.999194i \(-0.512780\pi\)
−0.0401383 + 0.999194i \(0.512780\pi\)
\(60\) 0 0
\(61\) 0.338502 0.0433408 0.0216704 0.999765i \(-0.493102\pi\)
0.0216704 + 0.999765i \(0.493102\pi\)
\(62\) −18.4922 −2.34851
\(63\) 0 0
\(64\) −12.3308 −1.54135
\(65\) −4.45281 −0.552303
\(66\) 0 0
\(67\) −2.27396 −0.277809 −0.138904 0.990306i \(-0.544358\pi\)
−0.138904 + 0.990306i \(0.544358\pi\)
\(68\) −7.85245 −0.952249
\(69\) 0 0
\(70\) 8.83292 1.05574
\(71\) −4.97702 −0.590663 −0.295332 0.955395i \(-0.595430\pi\)
−0.295332 + 0.955395i \(0.595430\pi\)
\(72\) 0 0
\(73\) −0.185927 −0.0217611 −0.0108806 0.999941i \(-0.503463\pi\)
−0.0108806 + 0.999941i \(0.503463\pi\)
\(74\) −21.2613 −2.47158
\(75\) 0 0
\(76\) 20.0777 2.30307
\(77\) −0.266783 −0.0304028
\(78\) 0 0
\(79\) −2.63944 −0.296960 −0.148480 0.988915i \(-0.547438\pi\)
−0.148480 + 0.988915i \(0.547438\pi\)
\(80\) −8.37981 −0.936891
\(81\) 0 0
\(82\) 18.5246 2.04570
\(83\) 10.6739 1.17162 0.585809 0.810449i \(-0.300777\pi\)
0.585809 + 0.810449i \(0.300777\pi\)
\(84\) 0 0
\(85\) −11.7671 −1.27632
\(86\) 13.7479 1.48248
\(87\) 0 0
\(88\) −0.413983 −0.0441307
\(89\) 7.23902 0.767334 0.383667 0.923471i \(-0.374661\pi\)
0.383667 + 0.923471i \(0.374661\pi\)
\(90\) 0 0
\(91\) −1.09460 −0.114745
\(92\) 9.56782 0.997514
\(93\) 0 0
\(94\) 12.0670 1.24461
\(95\) 30.0869 3.08685
\(96\) 0 0
\(97\) −1.68775 −0.171365 −0.0856826 0.996322i \(-0.527307\pi\)
−0.0856826 + 0.996322i \(0.527307\pi\)
\(98\) 2.17133 0.219337
\(99\) 0 0
\(100\) 31.3502 3.13502
\(101\) −11.6609 −1.16030 −0.580150 0.814509i \(-0.697006\pi\)
−0.580150 + 0.814509i \(0.697006\pi\)
\(102\) 0 0
\(103\) 6.62298 0.652582 0.326291 0.945269i \(-0.394201\pi\)
0.326291 + 0.945269i \(0.394201\pi\)
\(104\) −1.69855 −0.166557
\(105\) 0 0
\(106\) 19.8080 1.92392
\(107\) −19.7612 −1.91038 −0.955191 0.295989i \(-0.904351\pi\)
−0.955191 + 0.295989i \(0.904351\pi\)
\(108\) 0 0
\(109\) −10.7124 −1.02606 −0.513030 0.858371i \(-0.671477\pi\)
−0.513030 + 0.858371i \(0.671477\pi\)
\(110\) −2.35647 −0.224681
\(111\) 0 0
\(112\) −2.05994 −0.194646
\(113\) 19.1305 1.79965 0.899823 0.436256i \(-0.143696\pi\)
0.899823 + 0.436256i \(0.143696\pi\)
\(114\) 0 0
\(115\) 14.3376 1.33699
\(116\) 14.0179 1.30153
\(117\) 0 0
\(118\) −1.33888 −0.123253
\(119\) −2.89261 −0.265165
\(120\) 0 0
\(121\) −10.9288 −0.993530
\(122\) 0.734999 0.0665437
\(123\) 0 0
\(124\) −23.1195 −2.07619
\(125\) 26.6390 2.38267
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) −11.6215 −1.02721
\(129\) 0 0
\(130\) −9.66850 −0.847984
\(131\) 12.8576 1.12337 0.561687 0.827350i \(-0.310152\pi\)
0.561687 + 0.827350i \(0.310152\pi\)
\(132\) 0 0
\(133\) 7.39603 0.641317
\(134\) −4.93752 −0.426537
\(135\) 0 0
\(136\) −4.48863 −0.384897
\(137\) 10.8694 0.928639 0.464319 0.885668i \(-0.346299\pi\)
0.464319 + 0.885668i \(0.346299\pi\)
\(138\) 0 0
\(139\) 6.51528 0.552619 0.276310 0.961069i \(-0.410888\pi\)
0.276310 + 0.961069i \(0.410888\pi\)
\(140\) 11.0432 0.933319
\(141\) 0 0
\(142\) −10.8067 −0.906880
\(143\) 0.292021 0.0244200
\(144\) 0 0
\(145\) 21.0062 1.74447
\(146\) −0.403708 −0.0334111
\(147\) 0 0
\(148\) −26.5815 −2.18499
\(149\) 18.2297 1.49344 0.746718 0.665140i \(-0.231628\pi\)
0.746718 + 0.665140i \(0.231628\pi\)
\(150\) 0 0
\(151\) 7.77110 0.632403 0.316201 0.948692i \(-0.397592\pi\)
0.316201 + 0.948692i \(0.397592\pi\)
\(152\) 11.4769 0.930896
\(153\) 0 0
\(154\) −0.579273 −0.0466792
\(155\) −34.6451 −2.78276
\(156\) 0 0
\(157\) −3.14189 −0.250750 −0.125375 0.992109i \(-0.540013\pi\)
−0.125375 + 0.992109i \(0.540013\pi\)
\(158\) −5.73108 −0.455940
\(159\) 0 0
\(160\) −30.8204 −2.43656
\(161\) 3.52450 0.277770
\(162\) 0 0
\(163\) −11.6797 −0.914825 −0.457413 0.889255i \(-0.651224\pi\)
−0.457413 + 0.889255i \(0.651224\pi\)
\(164\) 23.1601 1.80850
\(165\) 0 0
\(166\) 23.1766 1.79886
\(167\) −23.4356 −1.81350 −0.906749 0.421672i \(-0.861444\pi\)
−0.906749 + 0.421672i \(0.861444\pi\)
\(168\) 0 0
\(169\) −11.8019 −0.907835
\(170\) −25.5502 −1.95961
\(171\) 0 0
\(172\) 17.1881 1.31058
\(173\) −17.4313 −1.32528 −0.662638 0.748940i \(-0.730563\pi\)
−0.662638 + 0.748940i \(0.730563\pi\)
\(174\) 0 0
\(175\) 11.5485 0.872982
\(176\) 0.549558 0.0414245
\(177\) 0 0
\(178\) 15.7183 1.17813
\(179\) −22.0287 −1.64650 −0.823252 0.567675i \(-0.807843\pi\)
−0.823252 + 0.567675i \(0.807843\pi\)
\(180\) 0 0
\(181\) −11.2226 −0.834169 −0.417085 0.908868i \(-0.636948\pi\)
−0.417085 + 0.908868i \(0.636948\pi\)
\(182\) −2.37673 −0.176175
\(183\) 0 0
\(184\) 5.46918 0.403193
\(185\) −39.8331 −2.92858
\(186\) 0 0
\(187\) 0.771699 0.0564322
\(188\) 15.0865 1.10029
\(189\) 0 0
\(190\) 65.3285 4.73943
\(191\) −15.8615 −1.14770 −0.573848 0.818962i \(-0.694550\pi\)
−0.573848 + 0.818962i \(0.694550\pi\)
\(192\) 0 0
\(193\) −5.38815 −0.387848 −0.193924 0.981017i \(-0.562121\pi\)
−0.193924 + 0.981017i \(0.562121\pi\)
\(194\) −3.66466 −0.263107
\(195\) 0 0
\(196\) 2.71466 0.193904
\(197\) −18.3913 −1.31033 −0.655163 0.755487i \(-0.727400\pi\)
−0.655163 + 0.755487i \(0.727400\pi\)
\(198\) 0 0
\(199\) 7.96860 0.564879 0.282439 0.959285i \(-0.408856\pi\)
0.282439 + 0.959285i \(0.408856\pi\)
\(200\) 17.9204 1.26717
\(201\) 0 0
\(202\) −25.3196 −1.78148
\(203\) 5.16379 0.362427
\(204\) 0 0
\(205\) 34.7059 2.42397
\(206\) 14.3807 1.00195
\(207\) 0 0
\(208\) 2.25481 0.156343
\(209\) −1.97314 −0.136485
\(210\) 0 0
\(211\) 5.02672 0.346054 0.173027 0.984917i \(-0.444645\pi\)
0.173027 + 0.984917i \(0.444645\pi\)
\(212\) 24.7645 1.70084
\(213\) 0 0
\(214\) −42.9079 −2.93313
\(215\) 25.7567 1.75659
\(216\) 0 0
\(217\) −8.51653 −0.578140
\(218\) −23.2601 −1.57537
\(219\) 0 0
\(220\) −2.94613 −0.198628
\(221\) 3.16625 0.212985
\(222\) 0 0
\(223\) 12.5676 0.841591 0.420796 0.907156i \(-0.361751\pi\)
0.420796 + 0.907156i \(0.361751\pi\)
\(224\) −7.57633 −0.506215
\(225\) 0 0
\(226\) 41.5386 2.76310
\(227\) 8.90570 0.591092 0.295546 0.955328i \(-0.404498\pi\)
0.295546 + 0.955328i \(0.404498\pi\)
\(228\) 0 0
\(229\) −20.3430 −1.34430 −0.672151 0.740414i \(-0.734629\pi\)
−0.672151 + 0.740414i \(0.734629\pi\)
\(230\) 31.1316 2.05276
\(231\) 0 0
\(232\) 8.01297 0.526077
\(233\) 18.6982 1.22496 0.612480 0.790486i \(-0.290172\pi\)
0.612480 + 0.790486i \(0.290172\pi\)
\(234\) 0 0
\(235\) 22.6074 1.47475
\(236\) −1.67390 −0.108962
\(237\) 0 0
\(238\) −6.28080 −0.407124
\(239\) 7.69279 0.497605 0.248803 0.968554i \(-0.419963\pi\)
0.248803 + 0.968554i \(0.419963\pi\)
\(240\) 0 0
\(241\) −7.23394 −0.465979 −0.232989 0.972479i \(-0.574851\pi\)
−0.232989 + 0.972479i \(0.574851\pi\)
\(242\) −23.7301 −1.52543
\(243\) 0 0
\(244\) 0.918919 0.0588277
\(245\) 4.06798 0.259894
\(246\) 0 0
\(247\) −8.09569 −0.515116
\(248\) −13.2156 −0.839192
\(249\) 0 0
\(250\) 57.8421 3.65825
\(251\) −9.13560 −0.576634 −0.288317 0.957535i \(-0.593096\pi\)
−0.288317 + 0.957535i \(0.593096\pi\)
\(252\) 0 0
\(253\) −0.940277 −0.0591147
\(254\) 2.17133 0.136241
\(255\) 0 0
\(256\) −0.572550 −0.0357844
\(257\) −8.79482 −0.548606 −0.274303 0.961643i \(-0.588447\pi\)
−0.274303 + 0.961643i \(0.588447\pi\)
\(258\) 0 0
\(259\) −9.79185 −0.608436
\(260\) −12.0879 −0.749657
\(261\) 0 0
\(262\) 27.9181 1.72478
\(263\) 12.0332 0.742002 0.371001 0.928633i \(-0.379015\pi\)
0.371001 + 0.928633i \(0.379015\pi\)
\(264\) 0 0
\(265\) 37.1102 2.27966
\(266\) 16.0592 0.984653
\(267\) 0 0
\(268\) −6.17304 −0.377078
\(269\) −15.1620 −0.924442 −0.462221 0.886765i \(-0.652947\pi\)
−0.462221 + 0.886765i \(0.652947\pi\)
\(270\) 0 0
\(271\) −2.25603 −0.137044 −0.0685222 0.997650i \(-0.521828\pi\)
−0.0685222 + 0.997650i \(0.521828\pi\)
\(272\) 5.95861 0.361294
\(273\) 0 0
\(274\) 23.6011 1.42579
\(275\) −3.08094 −0.185787
\(276\) 0 0
\(277\) 7.93190 0.476582 0.238291 0.971194i \(-0.423413\pi\)
0.238291 + 0.971194i \(0.423413\pi\)
\(278\) 14.1468 0.848469
\(279\) 0 0
\(280\) 6.31253 0.377246
\(281\) −24.2357 −1.44578 −0.722892 0.690961i \(-0.757187\pi\)
−0.722892 + 0.690961i \(0.757187\pi\)
\(282\) 0 0
\(283\) 12.1178 0.720327 0.360163 0.932889i \(-0.382721\pi\)
0.360163 + 0.932889i \(0.382721\pi\)
\(284\) −13.5109 −0.801725
\(285\) 0 0
\(286\) 0.634072 0.0374935
\(287\) 8.53149 0.503598
\(288\) 0 0
\(289\) −8.63281 −0.507812
\(290\) 45.6114 2.67839
\(291\) 0 0
\(292\) −0.504729 −0.0295370
\(293\) −24.3421 −1.42208 −0.711039 0.703152i \(-0.751775\pi\)
−0.711039 + 0.703152i \(0.751775\pi\)
\(294\) 0 0
\(295\) −2.50838 −0.146044
\(296\) −15.1946 −0.883168
\(297\) 0 0
\(298\) 39.5827 2.29296
\(299\) −3.85791 −0.223109
\(300\) 0 0
\(301\) 6.33158 0.364946
\(302\) 16.8736 0.970966
\(303\) 0 0
\(304\) −15.2354 −0.873810
\(305\) 1.37702 0.0788480
\(306\) 0 0
\(307\) −2.64544 −0.150983 −0.0754917 0.997146i \(-0.524053\pi\)
−0.0754917 + 0.997146i \(0.524053\pi\)
\(308\) −0.724225 −0.0412666
\(309\) 0 0
\(310\) −75.2258 −4.27254
\(311\) 0.797374 0.0452149 0.0226075 0.999744i \(-0.492803\pi\)
0.0226075 + 0.999744i \(0.492803\pi\)
\(312\) 0 0
\(313\) 13.8241 0.781382 0.390691 0.920522i \(-0.372236\pi\)
0.390691 + 0.920522i \(0.372236\pi\)
\(314\) −6.82208 −0.384992
\(315\) 0 0
\(316\) −7.16517 −0.403073
\(317\) 3.66262 0.205713 0.102857 0.994696i \(-0.467202\pi\)
0.102857 + 0.994696i \(0.467202\pi\)
\(318\) 0 0
\(319\) −1.37761 −0.0771315
\(320\) −50.1614 −2.80411
\(321\) 0 0
\(322\) 7.65284 0.426476
\(323\) −21.3938 −1.19038
\(324\) 0 0
\(325\) −12.6409 −0.701193
\(326\) −25.3605 −1.40459
\(327\) 0 0
\(328\) 13.2388 0.730991
\(329\) 5.55741 0.306390
\(330\) 0 0
\(331\) −21.9622 −1.20715 −0.603576 0.797306i \(-0.706258\pi\)
−0.603576 + 0.797306i \(0.706258\pi\)
\(332\) 28.9761 1.59027
\(333\) 0 0
\(334\) −50.8862 −2.78437
\(335\) −9.25044 −0.505406
\(336\) 0 0
\(337\) −13.3643 −0.728001 −0.364001 0.931399i \(-0.618589\pi\)
−0.364001 + 0.931399i \(0.618589\pi\)
\(338\) −25.6257 −1.39385
\(339\) 0 0
\(340\) −31.9436 −1.73239
\(341\) 2.27207 0.123039
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 9.82508 0.529733
\(345\) 0 0
\(346\) −37.8490 −2.03477
\(347\) −31.7118 −1.70238 −0.851190 0.524858i \(-0.824119\pi\)
−0.851190 + 0.524858i \(0.824119\pi\)
\(348\) 0 0
\(349\) −23.3455 −1.24965 −0.624827 0.780764i \(-0.714830\pi\)
−0.624827 + 0.780764i \(0.714830\pi\)
\(350\) 25.0755 1.34034
\(351\) 0 0
\(352\) 2.02124 0.107732
\(353\) −24.7534 −1.31749 −0.658746 0.752365i \(-0.728913\pi\)
−0.658746 + 0.752365i \(0.728913\pi\)
\(354\) 0 0
\(355\) −20.2464 −1.07457
\(356\) 19.6515 1.04153
\(357\) 0 0
\(358\) −47.8316 −2.52798
\(359\) 12.2004 0.643914 0.321957 0.946754i \(-0.395659\pi\)
0.321957 + 0.946754i \(0.395659\pi\)
\(360\) 0 0
\(361\) 35.7013 1.87901
\(362\) −24.3679 −1.28075
\(363\) 0 0
\(364\) −2.97146 −0.155747
\(365\) −0.756348 −0.0395890
\(366\) 0 0
\(367\) 22.1639 1.15694 0.578472 0.815702i \(-0.303649\pi\)
0.578472 + 0.815702i \(0.303649\pi\)
\(368\) −7.26027 −0.378468
\(369\) 0 0
\(370\) −86.4906 −4.49643
\(371\) 9.12252 0.473618
\(372\) 0 0
\(373\) 25.4914 1.31990 0.659948 0.751312i \(-0.270578\pi\)
0.659948 + 0.751312i \(0.270578\pi\)
\(374\) 1.67561 0.0866438
\(375\) 0 0
\(376\) 8.62376 0.444737
\(377\) −5.65229 −0.291108
\(378\) 0 0
\(379\) −17.0667 −0.876659 −0.438329 0.898814i \(-0.644430\pi\)
−0.438329 + 0.898814i \(0.644430\pi\)
\(380\) 81.6757 4.18988
\(381\) 0 0
\(382\) −34.4405 −1.76213
\(383\) −20.5994 −1.05258 −0.526291 0.850305i \(-0.676418\pi\)
−0.526291 + 0.850305i \(0.676418\pi\)
\(384\) 0 0
\(385\) −1.08527 −0.0553104
\(386\) −11.6994 −0.595486
\(387\) 0 0
\(388\) −4.58167 −0.232599
\(389\) 26.1221 1.32444 0.662221 0.749309i \(-0.269614\pi\)
0.662221 + 0.749309i \(0.269614\pi\)
\(390\) 0 0
\(391\) −10.1950 −0.515583
\(392\) 1.55176 0.0783757
\(393\) 0 0
\(394\) −39.9335 −2.01182
\(395\) −10.7372 −0.540246
\(396\) 0 0
\(397\) 17.7396 0.890324 0.445162 0.895450i \(-0.353146\pi\)
0.445162 + 0.895450i \(0.353146\pi\)
\(398\) 17.3024 0.867292
\(399\) 0 0
\(400\) −23.7892 −1.18946
\(401\) 17.5413 0.875970 0.437985 0.898982i \(-0.355692\pi\)
0.437985 + 0.898982i \(0.355692\pi\)
\(402\) 0 0
\(403\) 9.32219 0.464371
\(404\) −31.6553 −1.57491
\(405\) 0 0
\(406\) 11.2123 0.556456
\(407\) 2.61230 0.129487
\(408\) 0 0
\(409\) −24.2566 −1.19941 −0.599706 0.800220i \(-0.704716\pi\)
−0.599706 + 0.800220i \(0.704716\pi\)
\(410\) 75.3579 3.72166
\(411\) 0 0
\(412\) 17.9791 0.885768
\(413\) −0.616616 −0.0303417
\(414\) 0 0
\(415\) 43.4214 2.13147
\(416\) 8.29304 0.406600
\(417\) 0 0
\(418\) −4.28432 −0.209553
\(419\) 0.0194566 0.000950517 0 0.000475259 1.00000i \(-0.499849\pi\)
0.000475259 1.00000i \(0.499849\pi\)
\(420\) 0 0
\(421\) 25.4929 1.24245 0.621224 0.783633i \(-0.286636\pi\)
0.621224 + 0.783633i \(0.286636\pi\)
\(422\) 10.9146 0.531317
\(423\) 0 0
\(424\) 14.1560 0.687474
\(425\) −33.4052 −1.62039
\(426\) 0 0
\(427\) 0.338502 0.0163813
\(428\) −53.6448 −2.59302
\(429\) 0 0
\(430\) 55.9263 2.69700
\(431\) 13.0434 0.628280 0.314140 0.949377i \(-0.398284\pi\)
0.314140 + 0.949377i \(0.398284\pi\)
\(432\) 0 0
\(433\) −40.6553 −1.95377 −0.976884 0.213768i \(-0.931426\pi\)
−0.976884 + 0.213768i \(0.931426\pi\)
\(434\) −18.4922 −0.887653
\(435\) 0 0
\(436\) −29.0805 −1.39270
\(437\) 26.0673 1.24697
\(438\) 0 0
\(439\) −15.3630 −0.733234 −0.366617 0.930372i \(-0.619484\pi\)
−0.366617 + 0.930372i \(0.619484\pi\)
\(440\) −1.68408 −0.0802851
\(441\) 0 0
\(442\) 6.87496 0.327008
\(443\) 38.4336 1.82604 0.913019 0.407918i \(-0.133745\pi\)
0.913019 + 0.407918i \(0.133745\pi\)
\(444\) 0 0
\(445\) 29.4482 1.39598
\(446\) 27.2884 1.29215
\(447\) 0 0
\(448\) −12.3308 −0.582575
\(449\) −3.14382 −0.148366 −0.0741829 0.997245i \(-0.523635\pi\)
−0.0741829 + 0.997245i \(0.523635\pi\)
\(450\) 0 0
\(451\) −2.27606 −0.107175
\(452\) 51.9328 2.44271
\(453\) 0 0
\(454\) 19.3372 0.907539
\(455\) −4.45281 −0.208751
\(456\) 0 0
\(457\) −31.2430 −1.46148 −0.730742 0.682654i \(-0.760826\pi\)
−0.730742 + 0.682654i \(0.760826\pi\)
\(458\) −44.1713 −2.06399
\(459\) 0 0
\(460\) 38.9217 1.81473
\(461\) −14.2643 −0.664356 −0.332178 0.943217i \(-0.607784\pi\)
−0.332178 + 0.943217i \(0.607784\pi\)
\(462\) 0 0
\(463\) 7.98993 0.371324 0.185662 0.982614i \(-0.440557\pi\)
0.185662 + 0.982614i \(0.440557\pi\)
\(464\) −10.6371 −0.493816
\(465\) 0 0
\(466\) 40.5999 1.88076
\(467\) 3.20601 0.148357 0.0741783 0.997245i \(-0.476367\pi\)
0.0741783 + 0.997245i \(0.476367\pi\)
\(468\) 0 0
\(469\) −2.27396 −0.105002
\(470\) 49.0881 2.26427
\(471\) 0 0
\(472\) −0.956840 −0.0440421
\(473\) −1.68916 −0.0776675
\(474\) 0 0
\(475\) 85.4128 3.91901
\(476\) −7.85245 −0.359916
\(477\) 0 0
\(478\) 16.7036 0.764003
\(479\) 21.4255 0.978957 0.489478 0.872015i \(-0.337187\pi\)
0.489478 + 0.872015i \(0.337187\pi\)
\(480\) 0 0
\(481\) 10.7182 0.488706
\(482\) −15.7072 −0.715445
\(483\) 0 0
\(484\) −29.6680 −1.34855
\(485\) −6.86574 −0.311757
\(486\) 0 0
\(487\) 14.0036 0.634563 0.317282 0.948331i \(-0.397230\pi\)
0.317282 + 0.948331i \(0.397230\pi\)
\(488\) 0.525274 0.0237780
\(489\) 0 0
\(490\) 8.83292 0.399030
\(491\) −8.07691 −0.364506 −0.182253 0.983252i \(-0.558339\pi\)
−0.182253 + 0.983252i \(0.558339\pi\)
\(492\) 0 0
\(493\) −14.9368 −0.672722
\(494\) −17.5784 −0.790889
\(495\) 0 0
\(496\) 17.5436 0.787729
\(497\) −4.97702 −0.223250
\(498\) 0 0
\(499\) 9.80189 0.438793 0.219396 0.975636i \(-0.429591\pi\)
0.219396 + 0.975636i \(0.429591\pi\)
\(500\) 72.3159 3.23407
\(501\) 0 0
\(502\) −19.8364 −0.885340
\(503\) −30.8833 −1.37702 −0.688508 0.725229i \(-0.741734\pi\)
−0.688508 + 0.725229i \(0.741734\pi\)
\(504\) 0 0
\(505\) −47.4362 −2.11088
\(506\) −2.04165 −0.0907623
\(507\) 0 0
\(508\) 2.71466 0.120444
\(509\) 34.3483 1.52246 0.761231 0.648481i \(-0.224595\pi\)
0.761231 + 0.648481i \(0.224595\pi\)
\(510\) 0 0
\(511\) −0.185927 −0.00822493
\(512\) 21.9999 0.972266
\(513\) 0 0
\(514\) −19.0964 −0.842307
\(515\) 26.9422 1.18721
\(516\) 0 0
\(517\) −1.48262 −0.0652057
\(518\) −21.2613 −0.934168
\(519\) 0 0
\(520\) −6.90969 −0.303010
\(521\) −26.3782 −1.15565 −0.577824 0.816161i \(-0.696098\pi\)
−0.577824 + 0.816161i \(0.696098\pi\)
\(522\) 0 0
\(523\) 29.7002 1.29870 0.649350 0.760490i \(-0.275041\pi\)
0.649350 + 0.760490i \(0.275041\pi\)
\(524\) 34.9040 1.52479
\(525\) 0 0
\(526\) 26.1281 1.13924
\(527\) 24.6350 1.07312
\(528\) 0 0
\(529\) −10.5779 −0.459909
\(530\) 80.5784 3.50010
\(531\) 0 0
\(532\) 20.0777 0.870479
\(533\) −9.33856 −0.404498
\(534\) 0 0
\(535\) −80.3880 −3.47548
\(536\) −3.52865 −0.152414
\(537\) 0 0
\(538\) −32.9216 −1.41935
\(539\) −0.266783 −0.0114912
\(540\) 0 0
\(541\) −22.7056 −0.976190 −0.488095 0.872790i \(-0.662308\pi\)
−0.488095 + 0.872790i \(0.662308\pi\)
\(542\) −4.89859 −0.210412
\(543\) 0 0
\(544\) 21.9154 0.939613
\(545\) −43.5778 −1.86667
\(546\) 0 0
\(547\) 5.19459 0.222105 0.111052 0.993815i \(-0.464578\pi\)
0.111052 + 0.993815i \(0.464578\pi\)
\(548\) 29.5068 1.26047
\(549\) 0 0
\(550\) −6.68972 −0.285251
\(551\) 38.1916 1.62702
\(552\) 0 0
\(553\) −2.63944 −0.112240
\(554\) 17.2227 0.731724
\(555\) 0 0
\(556\) 17.6868 0.750086
\(557\) −8.33926 −0.353346 −0.176673 0.984270i \(-0.556533\pi\)
−0.176673 + 0.984270i \(0.556533\pi\)
\(558\) 0 0
\(559\) −6.93054 −0.293131
\(560\) −8.37981 −0.354111
\(561\) 0 0
\(562\) −52.6237 −2.21980
\(563\) −28.1811 −1.18769 −0.593846 0.804579i \(-0.702391\pi\)
−0.593846 + 0.804579i \(0.702391\pi\)
\(564\) 0 0
\(565\) 77.8225 3.27402
\(566\) 26.3116 1.10596
\(567\) 0 0
\(568\) −7.72313 −0.324055
\(569\) 9.87355 0.413921 0.206960 0.978349i \(-0.433643\pi\)
0.206960 + 0.978349i \(0.433643\pi\)
\(570\) 0 0
\(571\) −1.17178 −0.0490373 −0.0245187 0.999699i \(-0.507805\pi\)
−0.0245187 + 0.999699i \(0.507805\pi\)
\(572\) 0.792736 0.0331460
\(573\) 0 0
\(574\) 18.5246 0.773204
\(575\) 40.7026 1.69741
\(576\) 0 0
\(577\) 25.1076 1.04524 0.522621 0.852565i \(-0.324954\pi\)
0.522621 + 0.852565i \(0.324954\pi\)
\(578\) −18.7447 −0.779675
\(579\) 0 0
\(580\) 57.0247 2.36782
\(581\) 10.6739 0.442830
\(582\) 0 0
\(583\) −2.43373 −0.100795
\(584\) −0.288514 −0.0119388
\(585\) 0 0
\(586\) −52.8546 −2.18340
\(587\) −38.7751 −1.60042 −0.800210 0.599720i \(-0.795279\pi\)
−0.800210 + 0.599720i \(0.795279\pi\)
\(588\) 0 0
\(589\) −62.9885 −2.59540
\(590\) −5.44652 −0.224230
\(591\) 0 0
\(592\) 20.1706 0.829009
\(593\) 20.4344 0.839141 0.419571 0.907723i \(-0.362181\pi\)
0.419571 + 0.907723i \(0.362181\pi\)
\(594\) 0 0
\(595\) −11.7671 −0.482403
\(596\) 49.4875 2.02709
\(597\) 0 0
\(598\) −8.37679 −0.342553
\(599\) 22.0441 0.900697 0.450349 0.892853i \(-0.351300\pi\)
0.450349 + 0.892853i \(0.351300\pi\)
\(600\) 0 0
\(601\) −18.9878 −0.774529 −0.387265 0.921969i \(-0.626580\pi\)
−0.387265 + 0.921969i \(0.626580\pi\)
\(602\) 13.7479 0.560323
\(603\) 0 0
\(604\) 21.0959 0.858379
\(605\) −44.4583 −1.80749
\(606\) 0 0
\(607\) −17.1567 −0.696370 −0.348185 0.937426i \(-0.613202\pi\)
−0.348185 + 0.937426i \(0.613202\pi\)
\(608\) −56.0347 −2.27251
\(609\) 0 0
\(610\) 2.98996 0.121060
\(611\) −6.08314 −0.246097
\(612\) 0 0
\(613\) −13.2983 −0.537113 −0.268557 0.963264i \(-0.586547\pi\)
−0.268557 + 0.963264i \(0.586547\pi\)
\(614\) −5.74412 −0.231814
\(615\) 0 0
\(616\) −0.413983 −0.0166799
\(617\) 35.2566 1.41938 0.709688 0.704516i \(-0.248836\pi\)
0.709688 + 0.704516i \(0.248836\pi\)
\(618\) 0 0
\(619\) 22.7663 0.915054 0.457527 0.889196i \(-0.348735\pi\)
0.457527 + 0.889196i \(0.348735\pi\)
\(620\) −94.0496 −3.77712
\(621\) 0 0
\(622\) 1.73136 0.0694212
\(623\) 7.23902 0.290025
\(624\) 0 0
\(625\) 50.6248 2.02499
\(626\) 30.0166 1.19970
\(627\) 0 0
\(628\) −8.52917 −0.340351
\(629\) 28.3240 1.12935
\(630\) 0 0
\(631\) −12.5247 −0.498599 −0.249299 0.968426i \(-0.580200\pi\)
−0.249299 + 0.968426i \(0.580200\pi\)
\(632\) −4.09577 −0.162921
\(633\) 0 0
\(634\) 7.95275 0.315844
\(635\) 4.06798 0.161433
\(636\) 0 0
\(637\) −1.09460 −0.0433696
\(638\) −2.99125 −0.118425
\(639\) 0 0
\(640\) −47.2762 −1.86875
\(641\) 36.6628 1.44810 0.724048 0.689750i \(-0.242280\pi\)
0.724048 + 0.689750i \(0.242280\pi\)
\(642\) 0 0
\(643\) −18.0203 −0.710653 −0.355326 0.934742i \(-0.615630\pi\)
−0.355326 + 0.934742i \(0.615630\pi\)
\(644\) 9.56782 0.377025
\(645\) 0 0
\(646\) −46.4530 −1.82767
\(647\) 3.01516 0.118538 0.0592691 0.998242i \(-0.481123\pi\)
0.0592691 + 0.998242i \(0.481123\pi\)
\(648\) 0 0
\(649\) 0.164503 0.00645730
\(650\) −27.4476 −1.07658
\(651\) 0 0
\(652\) −31.7064 −1.24172
\(653\) −15.6743 −0.613384 −0.306692 0.951809i \(-0.599222\pi\)
−0.306692 + 0.951809i \(0.599222\pi\)
\(654\) 0 0
\(655\) 52.3045 2.04371
\(656\) −17.5744 −0.686164
\(657\) 0 0
\(658\) 12.0670 0.470419
\(659\) 39.3096 1.53128 0.765642 0.643267i \(-0.222421\pi\)
0.765642 + 0.643267i \(0.222421\pi\)
\(660\) 0 0
\(661\) 25.0184 0.973101 0.486551 0.873652i \(-0.338255\pi\)
0.486551 + 0.873652i \(0.338255\pi\)
\(662\) −47.6871 −1.85341
\(663\) 0 0
\(664\) 16.5634 0.642785
\(665\) 30.0869 1.16672
\(666\) 0 0
\(667\) 18.1998 0.704699
\(668\) −63.6195 −2.46151
\(669\) 0 0
\(670\) −20.0857 −0.775980
\(671\) −0.0903067 −0.00348625
\(672\) 0 0
\(673\) 14.3099 0.551605 0.275803 0.961214i \(-0.411056\pi\)
0.275803 + 0.961214i \(0.411056\pi\)
\(674\) −29.0183 −1.11774
\(675\) 0 0
\(676\) −32.0380 −1.23223
\(677\) −16.2084 −0.622941 −0.311471 0.950256i \(-0.600822\pi\)
−0.311471 + 0.950256i \(0.600822\pi\)
\(678\) 0 0
\(679\) −1.68775 −0.0647700
\(680\) −18.2597 −0.700227
\(681\) 0 0
\(682\) 4.93340 0.188910
\(683\) 34.6189 1.32465 0.662327 0.749215i \(-0.269569\pi\)
0.662327 + 0.749215i \(0.269569\pi\)
\(684\) 0 0
\(685\) 44.2167 1.68943
\(686\) 2.17133 0.0829016
\(687\) 0 0
\(688\) −13.0427 −0.497248
\(689\) −9.98550 −0.380417
\(690\) 0 0
\(691\) −32.8805 −1.25083 −0.625416 0.780291i \(-0.715071\pi\)
−0.625416 + 0.780291i \(0.715071\pi\)
\(692\) −47.3200 −1.79884
\(693\) 0 0
\(694\) −68.8567 −2.61377
\(695\) 26.5040 1.00536
\(696\) 0 0
\(697\) −24.6783 −0.934756
\(698\) −50.6906 −1.91867
\(699\) 0 0
\(700\) 31.3502 1.18492
\(701\) −15.9695 −0.603160 −0.301580 0.953441i \(-0.597514\pi\)
−0.301580 + 0.953441i \(0.597514\pi\)
\(702\) 0 0
\(703\) −72.4208 −2.73140
\(704\) 3.28965 0.123983
\(705\) 0 0
\(706\) −53.7478 −2.02283
\(707\) −11.6609 −0.438552
\(708\) 0 0
\(709\) 51.9366 1.95052 0.975261 0.221058i \(-0.0709509\pi\)
0.975261 + 0.221058i \(0.0709509\pi\)
\(710\) −43.9616 −1.64985
\(711\) 0 0
\(712\) 11.2332 0.420982
\(713\) −30.0165 −1.12413
\(714\) 0 0
\(715\) 1.18793 0.0444262
\(716\) −59.8005 −2.23485
\(717\) 0 0
\(718\) 26.4911 0.988639
\(719\) 46.3028 1.72680 0.863402 0.504516i \(-0.168329\pi\)
0.863402 + 0.504516i \(0.168329\pi\)
\(720\) 0 0
\(721\) 6.62298 0.246653
\(722\) 77.5191 2.88496
\(723\) 0 0
\(724\) −30.4655 −1.13224
\(725\) 59.6339 2.21475
\(726\) 0 0
\(727\) 6.67972 0.247737 0.123868 0.992299i \(-0.460470\pi\)
0.123868 + 0.992299i \(0.460470\pi\)
\(728\) −1.69855 −0.0629526
\(729\) 0 0
\(730\) −1.64228 −0.0607834
\(731\) −18.3148 −0.677397
\(732\) 0 0
\(733\) 15.1702 0.560322 0.280161 0.959953i \(-0.409612\pi\)
0.280161 + 0.959953i \(0.409612\pi\)
\(734\) 48.1250 1.77633
\(735\) 0 0
\(736\) −26.7028 −0.984277
\(737\) 0.606655 0.0223464
\(738\) 0 0
\(739\) −19.5460 −0.719012 −0.359506 0.933143i \(-0.617055\pi\)
−0.359506 + 0.933143i \(0.617055\pi\)
\(740\) −108.133 −3.97505
\(741\) 0 0
\(742\) 19.8080 0.727173
\(743\) 16.3241 0.598873 0.299437 0.954116i \(-0.403201\pi\)
0.299437 + 0.954116i \(0.403201\pi\)
\(744\) 0 0
\(745\) 74.1581 2.71694
\(746\) 55.3502 2.02651
\(747\) 0 0
\(748\) 2.09490 0.0765972
\(749\) −19.7612 −0.722057
\(750\) 0 0
\(751\) 28.2667 1.03147 0.515734 0.856749i \(-0.327519\pi\)
0.515734 + 0.856749i \(0.327519\pi\)
\(752\) −11.4479 −0.417464
\(753\) 0 0
\(754\) −12.2730 −0.446955
\(755\) 31.6127 1.15050
\(756\) 0 0
\(757\) 2.87807 0.104605 0.0523026 0.998631i \(-0.483344\pi\)
0.0523026 + 0.998631i \(0.483344\pi\)
\(758\) −37.0574 −1.34599
\(759\) 0 0
\(760\) 46.6876 1.69354
\(761\) −42.4595 −1.53915 −0.769577 0.638554i \(-0.779533\pi\)
−0.769577 + 0.638554i \(0.779533\pi\)
\(762\) 0 0
\(763\) −10.7124 −0.387814
\(764\) −43.0585 −1.55780
\(765\) 0 0
\(766\) −44.7281 −1.61609
\(767\) 0.674948 0.0243709
\(768\) 0 0
\(769\) −31.3519 −1.13058 −0.565289 0.824893i \(-0.691235\pi\)
−0.565289 + 0.824893i \(0.691235\pi\)
\(770\) −2.35647 −0.0849214
\(771\) 0 0
\(772\) −14.6270 −0.526437
\(773\) 16.4511 0.591705 0.295852 0.955234i \(-0.404396\pi\)
0.295852 + 0.955234i \(0.404396\pi\)
\(774\) 0 0
\(775\) −98.3529 −3.53294
\(776\) −2.61899 −0.0940161
\(777\) 0 0
\(778\) 56.7196 2.03350
\(779\) 63.0991 2.26076
\(780\) 0 0
\(781\) 1.32778 0.0475118
\(782\) −22.1367 −0.791606
\(783\) 0 0
\(784\) −2.05994 −0.0735694
\(785\) −12.7812 −0.456179
\(786\) 0 0
\(787\) −3.60308 −0.128436 −0.0642180 0.997936i \(-0.520455\pi\)
−0.0642180 + 0.997936i \(0.520455\pi\)
\(788\) −49.9261 −1.77855
\(789\) 0 0
\(790\) −23.3139 −0.829472
\(791\) 19.1305 0.680202
\(792\) 0 0
\(793\) −0.370524 −0.0131577
\(794\) 38.5184 1.36697
\(795\) 0 0
\(796\) 21.6320 0.766727
\(797\) −14.5000 −0.513617 −0.256809 0.966462i \(-0.582671\pi\)
−0.256809 + 0.966462i \(0.582671\pi\)
\(798\) 0 0
\(799\) −16.0754 −0.568707
\(800\) −87.4950 −3.09341
\(801\) 0 0
\(802\) 38.0878 1.34493
\(803\) 0.0496022 0.00175042
\(804\) 0 0
\(805\) 14.3376 0.505334
\(806\) 20.2415 0.712977
\(807\) 0 0
\(808\) −18.0949 −0.636575
\(809\) −11.3513 −0.399090 −0.199545 0.979889i \(-0.563946\pi\)
−0.199545 + 0.979889i \(0.563946\pi\)
\(810\) 0 0
\(811\) 20.8018 0.730452 0.365226 0.930919i \(-0.380992\pi\)
0.365226 + 0.930919i \(0.380992\pi\)
\(812\) 14.0179 0.491933
\(813\) 0 0
\(814\) 5.67216 0.198809
\(815\) −47.5128 −1.66430
\(816\) 0 0
\(817\) 46.8285 1.63832
\(818\) −52.6690 −1.84153
\(819\) 0 0
\(820\) 94.2148 3.29012
\(821\) 13.7513 0.479922 0.239961 0.970782i \(-0.422865\pi\)
0.239961 + 0.970782i \(0.422865\pi\)
\(822\) 0 0
\(823\) −31.4826 −1.09741 −0.548707 0.836015i \(-0.684880\pi\)
−0.548707 + 0.836015i \(0.684880\pi\)
\(824\) 10.2773 0.358026
\(825\) 0 0
\(826\) −1.33888 −0.0465854
\(827\) −23.3852 −0.813183 −0.406592 0.913610i \(-0.633283\pi\)
−0.406592 + 0.913610i \(0.633283\pi\)
\(828\) 0 0
\(829\) 8.95837 0.311137 0.155569 0.987825i \(-0.450279\pi\)
0.155569 + 0.987825i \(0.450279\pi\)
\(830\) 94.2821 3.27258
\(831\) 0 0
\(832\) 13.4973 0.467934
\(833\) −2.89261 −0.100223
\(834\) 0 0
\(835\) −95.3354 −3.29922
\(836\) −5.35639 −0.185255
\(837\) 0 0
\(838\) 0.0422466 0.00145939
\(839\) −41.7392 −1.44100 −0.720498 0.693457i \(-0.756087\pi\)
−0.720498 + 0.693457i \(0.756087\pi\)
\(840\) 0 0
\(841\) −2.33522 −0.0805249
\(842\) 55.3534 1.90760
\(843\) 0 0
\(844\) 13.6458 0.469709
\(845\) −48.0097 −1.65158
\(846\) 0 0
\(847\) −10.9288 −0.375519
\(848\) −18.7919 −0.645315
\(849\) 0 0
\(850\) −72.5336 −2.48788
\(851\) −34.5114 −1.18303
\(852\) 0 0
\(853\) 18.1287 0.620716 0.310358 0.950620i \(-0.399551\pi\)
0.310358 + 0.950620i \(0.399551\pi\)
\(854\) 0.734999 0.0251512
\(855\) 0 0
\(856\) −30.6646 −1.04809
\(857\) 30.3642 1.03722 0.518610 0.855011i \(-0.326450\pi\)
0.518610 + 0.855011i \(0.326450\pi\)
\(858\) 0 0
\(859\) 16.0016 0.545968 0.272984 0.962019i \(-0.411989\pi\)
0.272984 + 0.962019i \(0.411989\pi\)
\(860\) 69.9208 2.38428
\(861\) 0 0
\(862\) 28.3215 0.964635
\(863\) −39.0527 −1.32937 −0.664684 0.747124i \(-0.731434\pi\)
−0.664684 + 0.747124i \(0.731434\pi\)
\(864\) 0 0
\(865\) −70.9101 −2.41102
\(866\) −88.2759 −2.99974
\(867\) 0 0
\(868\) −23.1195 −0.784726
\(869\) 0.704157 0.0238869
\(870\) 0 0
\(871\) 2.48908 0.0843392
\(872\) −16.6230 −0.562927
\(873\) 0 0
\(874\) 56.6006 1.91455
\(875\) 26.6390 0.900564
\(876\) 0 0
\(877\) 53.1728 1.79552 0.897758 0.440488i \(-0.145195\pi\)
0.897758 + 0.440488i \(0.145195\pi\)
\(878\) −33.3580 −1.12578
\(879\) 0 0
\(880\) 2.23559 0.0753617
\(881\) 23.5411 0.793120 0.396560 0.918009i \(-0.370204\pi\)
0.396560 + 0.918009i \(0.370204\pi\)
\(882\) 0 0
\(883\) −35.3002 −1.18795 −0.593973 0.804485i \(-0.702441\pi\)
−0.593973 + 0.804485i \(0.702441\pi\)
\(884\) 8.59529 0.289091
\(885\) 0 0
\(886\) 83.4520 2.80362
\(887\) 22.2206 0.746094 0.373047 0.927812i \(-0.378313\pi\)
0.373047 + 0.927812i \(0.378313\pi\)
\(888\) 0 0
\(889\) 1.00000 0.0335389
\(890\) 63.9416 2.14333
\(891\) 0 0
\(892\) 34.1169 1.14232
\(893\) 41.1028 1.37545
\(894\) 0 0
\(895\) −89.6125 −2.99541
\(896\) −11.6215 −0.388248
\(897\) 0 0
\(898\) −6.82625 −0.227795
\(899\) −43.9776 −1.46674
\(900\) 0 0
\(901\) −26.3879 −0.879108
\(902\) −4.94206 −0.164553
\(903\) 0 0
\(904\) 29.6859 0.987339
\(905\) −45.6533 −1.51757
\(906\) 0 0
\(907\) 13.3732 0.444050 0.222025 0.975041i \(-0.428733\pi\)
0.222025 + 0.975041i \(0.428733\pi\)
\(908\) 24.1760 0.802307
\(909\) 0 0
\(910\) −9.66850 −0.320508
\(911\) 37.2407 1.23384 0.616919 0.787026i \(-0.288381\pi\)
0.616919 + 0.787026i \(0.288381\pi\)
\(912\) 0 0
\(913\) −2.84763 −0.0942428
\(914\) −67.8387 −2.24390
\(915\) 0 0
\(916\) −55.2243 −1.82466
\(917\) 12.8576 0.424596
\(918\) 0 0
\(919\) 48.0271 1.58427 0.792134 0.610347i \(-0.208970\pi\)
0.792134 + 0.610347i \(0.208970\pi\)
\(920\) 22.2485 0.733511
\(921\) 0 0
\(922\) −30.9725 −1.02003
\(923\) 5.44784 0.179318
\(924\) 0 0
\(925\) −113.081 −3.71808
\(926\) 17.3488 0.570115
\(927\) 0 0
\(928\) −39.1226 −1.28426
\(929\) 38.7188 1.27032 0.635161 0.772379i \(-0.280934\pi\)
0.635161 + 0.772379i \(0.280934\pi\)
\(930\) 0 0
\(931\) 7.39603 0.242395
\(932\) 50.7593 1.66268
\(933\) 0 0
\(934\) 6.96130 0.227781
\(935\) 3.13926 0.102665
\(936\) 0 0
\(937\) −49.3544 −1.61234 −0.806168 0.591686i \(-0.798462\pi\)
−0.806168 + 0.591686i \(0.798462\pi\)
\(938\) −4.93752 −0.161216
\(939\) 0 0
\(940\) 61.3715 2.00172
\(941\) 6.75627 0.220248 0.110124 0.993918i \(-0.464875\pi\)
0.110124 + 0.993918i \(0.464875\pi\)
\(942\) 0 0
\(943\) 30.0692 0.979189
\(944\) 1.27019 0.0413413
\(945\) 0 0
\(946\) −3.66771 −0.119248
\(947\) −22.6244 −0.735193 −0.367596 0.929985i \(-0.619819\pi\)
−0.367596 + 0.929985i \(0.619819\pi\)
\(948\) 0 0
\(949\) 0.203516 0.00660640
\(950\) 185.459 6.01709
\(951\) 0 0
\(952\) −4.48863 −0.145477
\(953\) 13.5093 0.437608 0.218804 0.975769i \(-0.429785\pi\)
0.218804 + 0.975769i \(0.429785\pi\)
\(954\) 0 0
\(955\) −64.5242 −2.08795
\(956\) 20.8833 0.675415
\(957\) 0 0
\(958\) 46.5218 1.50305
\(959\) 10.8694 0.350992
\(960\) 0 0
\(961\) 41.5313 1.33972
\(962\) 23.2726 0.750339
\(963\) 0 0
\(964\) −19.6377 −0.632487
\(965\) −21.9189 −0.705594
\(966\) 0 0
\(967\) −44.4063 −1.42801 −0.714006 0.700140i \(-0.753121\pi\)
−0.714006 + 0.700140i \(0.753121\pi\)
\(968\) −16.9589 −0.545080
\(969\) 0 0
\(970\) −14.9078 −0.478660
\(971\) −15.5017 −0.497474 −0.248737 0.968571i \(-0.580016\pi\)
−0.248737 + 0.968571i \(0.580016\pi\)
\(972\) 0 0
\(973\) 6.51528 0.208870
\(974\) 30.4064 0.974283
\(975\) 0 0
\(976\) −0.697296 −0.0223199
\(977\) −51.7424 −1.65539 −0.827693 0.561181i \(-0.810347\pi\)
−0.827693 + 0.561181i \(0.810347\pi\)
\(978\) 0 0
\(979\) −1.93125 −0.0617229
\(980\) 11.0432 0.352762
\(981\) 0 0
\(982\) −17.5376 −0.559647
\(983\) −2.48511 −0.0792627 −0.0396313 0.999214i \(-0.512618\pi\)
−0.0396313 + 0.999214i \(0.512618\pi\)
\(984\) 0 0
\(985\) −74.8155 −2.38382
\(986\) −32.4328 −1.03287
\(987\) 0 0
\(988\) −21.9770 −0.699183
\(989\) 22.3156 0.709596
\(990\) 0 0
\(991\) 49.1615 1.56167 0.780833 0.624740i \(-0.214795\pi\)
0.780833 + 0.624740i \(0.214795\pi\)
\(992\) 64.5240 2.04864
\(993\) 0 0
\(994\) −10.8067 −0.342769
\(995\) 32.4161 1.02766
\(996\) 0 0
\(997\) −14.0846 −0.446063 −0.223032 0.974811i \(-0.571595\pi\)
−0.223032 + 0.974811i \(0.571595\pi\)
\(998\) 21.2831 0.673705
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8001.2.a.n.1.10 12
3.2 odd 2 889.2.a.a.1.3 12
21.20 even 2 6223.2.a.i.1.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.a.1.3 12 3.2 odd 2
6223.2.a.i.1.3 12 21.20 even 2
8001.2.a.n.1.10 12 1.1 even 1 trivial