Properties

Label 800.2.v.b.707.7
Level $800$
Weight $2$
Character 800.707
Analytic conductor $6.388$
Analytic rank $0$
Dimension $88$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,2,Mod(43,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.43"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 5, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 707.7
Character \(\chi\) \(=\) 800.707
Dual form 800.2.v.b.43.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.816290 + 1.15485i) q^{2} +(-1.28377 - 3.09930i) q^{3} +(-0.667342 - 1.88538i) q^{4} +(4.62714 + 1.04737i) q^{6} -0.906290i q^{7} +(2.72207 + 0.768338i) q^{8} +(-5.83625 + 5.83625i) q^{9} +(0.392432 + 0.947415i) q^{11} +(-4.98663 + 4.48869i) q^{12} +(1.59755 + 3.85684i) q^{13} +(1.04663 + 0.739795i) q^{14} +(-3.10931 + 2.51639i) q^{16} +(-1.95970 + 1.95970i) q^{17} +(-1.97590 - 11.5040i) q^{18} +(-0.671071 + 1.62011i) q^{19} +(-2.80886 + 1.16347i) q^{21} +(-1.41446 - 0.320166i) q^{22} +1.58299i q^{23} +(-1.11321 - 9.42287i) q^{24} +(-5.75812 - 1.30337i) q^{26} +(16.2828 + 6.74455i) q^{27} +(-1.70870 + 0.604805i) q^{28} +(-2.34560 + 5.66278i) q^{29} -4.17491i q^{31} +(-0.367943 - 5.64488i) q^{32} +(2.43253 - 2.43253i) q^{33} +(-0.663470 - 3.86284i) q^{34} +(14.8983 + 7.10877i) q^{36} +(1.45950 - 3.52354i) q^{37} +(-1.32319 - 2.09746i) q^{38} +(9.90259 - 9.90259i) q^{39} +(0.655358 + 0.655358i) q^{41} +(0.949216 - 4.19353i) q^{42} +(6.17029 + 2.55582i) q^{43} +(1.52435 - 1.37213i) q^{44} +(-1.82811 - 1.29218i) q^{46} +(-3.43714 - 3.43714i) q^{47} +(11.7907 + 6.40621i) q^{48} +6.17864 q^{49} +(8.58950 + 3.55789i) q^{51} +(6.20548 - 5.58582i) q^{52} +(-2.52411 + 6.09374i) q^{53} +(-21.0804 + 13.2986i) q^{54} +(0.696336 - 2.46698i) q^{56} +5.88270 q^{57} +(-4.62496 - 7.33128i) q^{58} +(4.29438 + 10.3675i) q^{59} +(-1.24308 - 0.514899i) q^{61} +(4.82138 + 3.40793i) q^{62} +(5.28933 + 5.28933i) q^{63} +(6.81931 + 4.18294i) q^{64} +(0.823549 + 4.79484i) q^{66} +(-10.2511 + 4.24615i) q^{67} +(5.00257 + 2.38699i) q^{68} +(4.90615 - 2.03219i) q^{69} +(5.43676 + 5.43676i) q^{71} +(-20.3709 + 11.4025i) q^{72} -5.21568 q^{73} +(2.87778 + 4.56173i) q^{74} +(3.50235 + 0.184056i) q^{76} +(0.858632 - 0.355657i) q^{77} +(3.35259 + 19.5194i) q^{78} -1.61999i q^{79} -34.3625i q^{81} +(-1.29180 + 0.221876i) q^{82} +(7.18465 - 2.97598i) q^{83} +(4.06805 + 4.51933i) q^{84} +(-7.98832 + 5.03945i) q^{86} +20.5619 q^{87} +(0.340292 + 2.88045i) q^{88} +(0.483064 + 0.483064i) q^{89} +(3.49541 - 1.44785i) q^{91} +(2.98453 - 1.05639i) q^{92} +(-12.9393 + 5.35962i) q^{93} +(6.77507 - 1.16367i) q^{94} +(-17.0228 + 8.38709i) q^{96} +(-2.63970 - 2.63970i) q^{97} +(-5.04356 + 7.13538i) q^{98} +(-7.81968 - 3.23902i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{2} + 4 q^{3} - 8 q^{6} + 16 q^{8} - 8 q^{11} + 20 q^{12} + 4 q^{13} + 16 q^{14} - 8 q^{16} - 4 q^{18} + 16 q^{19} - 8 q^{21} + 20 q^{22} - 32 q^{24} - 8 q^{26} + 16 q^{27} - 12 q^{28} + 24 q^{32}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.816290 + 1.15485i −0.577204 + 0.816600i
\(3\) −1.28377 3.09930i −0.741185 1.78938i −0.600991 0.799256i \(-0.705227\pi\)
−0.140194 0.990124i \(-0.544773\pi\)
\(4\) −0.667342 1.88538i −0.333671 0.942690i
\(5\) 0 0
\(6\) 4.62714 + 1.04737i 1.88902 + 0.427585i
\(7\) 0.906290i 0.342545i −0.985224 0.171273i \(-0.945212\pi\)
0.985224 0.171273i \(-0.0547879\pi\)
\(8\) 2.72207 + 0.768338i 0.962397 + 0.271648i
\(9\) −5.83625 + 5.83625i −1.94542 + 1.94542i
\(10\) 0 0
\(11\) 0.392432 + 0.947415i 0.118323 + 0.285656i 0.971934 0.235255i \(-0.0755924\pi\)
−0.853611 + 0.520911i \(0.825592\pi\)
\(12\) −4.98663 + 4.48869i −1.43952 + 1.29577i
\(13\) 1.59755 + 3.85684i 0.443082 + 1.06969i 0.974862 + 0.222811i \(0.0715234\pi\)
−0.531780 + 0.846883i \(0.678477\pi\)
\(14\) 1.04663 + 0.739795i 0.279722 + 0.197718i
\(15\) 0 0
\(16\) −3.10931 + 2.51639i −0.777327 + 0.629096i
\(17\) −1.95970 + 1.95970i −0.475297 + 0.475297i −0.903624 0.428327i \(-0.859103\pi\)
0.428327 + 0.903624i \(0.359103\pi\)
\(18\) −1.97590 11.5040i −0.465725 2.71153i
\(19\) −0.671071 + 1.62011i −0.153954 + 0.371678i −0.981973 0.189022i \(-0.939468\pi\)
0.828019 + 0.560701i \(0.189468\pi\)
\(20\) 0 0
\(21\) −2.80886 + 1.16347i −0.612944 + 0.253890i
\(22\) −1.41446 0.320166i −0.301563 0.0682596i
\(23\) 1.58299i 0.330076i 0.986287 + 0.165038i \(0.0527747\pi\)
−0.986287 + 0.165038i \(0.947225\pi\)
\(24\) −1.11321 9.42287i −0.227232 1.92343i
\(25\) 0 0
\(26\) −5.75812 1.30337i −1.12926 0.255611i
\(27\) 16.2828 + 6.74455i 3.13362 + 1.29799i
\(28\) −1.70870 + 0.604805i −0.322914 + 0.114297i
\(29\) −2.34560 + 5.66278i −0.435567 + 1.05155i 0.541896 + 0.840446i \(0.317707\pi\)
−0.977463 + 0.211107i \(0.932293\pi\)
\(30\) 0 0
\(31\) 4.17491i 0.749836i −0.927058 0.374918i \(-0.877671\pi\)
0.927058 0.374918i \(-0.122329\pi\)
\(32\) −0.367943 5.64488i −0.0650438 0.997882i
\(33\) 2.43253 2.43253i 0.423448 0.423448i
\(34\) −0.663470 3.86284i −0.113784 0.662471i
\(35\) 0 0
\(36\) 14.8983 + 7.10877i 2.48305 + 1.18479i
\(37\) 1.45950 3.52354i 0.239940 0.579267i −0.757336 0.653025i \(-0.773499\pi\)
0.997276 + 0.0737587i \(0.0234995\pi\)
\(38\) −1.32319 2.09746i −0.214649 0.340253i
\(39\) 9.90259 9.90259i 1.58568 1.58568i
\(40\) 0 0
\(41\) 0.655358 + 0.655358i 0.102350 + 0.102350i 0.756427 0.654078i \(-0.226943\pi\)
−0.654078 + 0.756427i \(0.726943\pi\)
\(42\) 0.949216 4.19353i 0.146467 0.647076i
\(43\) 6.17029 + 2.55582i 0.940961 + 0.389759i 0.799826 0.600232i \(-0.204925\pi\)
0.141134 + 0.989990i \(0.454925\pi\)
\(44\) 1.52435 1.37213i 0.229804 0.206857i
\(45\) 0 0
\(46\) −1.82811 1.29218i −0.269540 0.190521i
\(47\) −3.43714 3.43714i −0.501358 0.501358i 0.410502 0.911860i \(-0.365354\pi\)
−0.911860 + 0.410502i \(0.865354\pi\)
\(48\) 11.7907 + 6.40621i 1.70184 + 0.924656i
\(49\) 6.17864 0.882663
\(50\) 0 0
\(51\) 8.58950 + 3.55789i 1.20277 + 0.498204i
\(52\) 6.20548 5.58582i 0.860546 0.774615i
\(53\) −2.52411 + 6.09374i −0.346713 + 0.837040i 0.650290 + 0.759686i \(0.274647\pi\)
−0.997004 + 0.0773541i \(0.975353\pi\)
\(54\) −21.0804 + 13.2986i −2.86868 + 1.80971i
\(55\) 0 0
\(56\) 0.696336 2.46698i 0.0930519 0.329664i
\(57\) 5.88270 0.779182
\(58\) −4.62496 7.33128i −0.607287 0.962645i
\(59\) 4.29438 + 10.3675i 0.559080 + 1.34974i 0.910495 + 0.413519i \(0.135701\pi\)
−0.351415 + 0.936220i \(0.614299\pi\)
\(60\) 0 0
\(61\) −1.24308 0.514899i −0.159160 0.0659261i 0.301681 0.953409i \(-0.402452\pi\)
−0.460841 + 0.887483i \(0.652452\pi\)
\(62\) 4.82138 + 3.40793i 0.612316 + 0.432808i
\(63\) 5.28933 + 5.28933i 0.666393 + 0.666393i
\(64\) 6.81931 + 4.18294i 0.852414 + 0.522867i
\(65\) 0 0
\(66\) 0.823549 + 4.79484i 0.101372 + 0.590204i
\(67\) −10.2511 + 4.24615i −1.25237 + 0.518750i −0.907560 0.419922i \(-0.862057\pi\)
−0.344812 + 0.938672i \(0.612057\pi\)
\(68\) 5.00257 + 2.38699i 0.606650 + 0.289465i
\(69\) 4.90615 2.03219i 0.590631 0.244647i
\(70\) 0 0
\(71\) 5.43676 + 5.43676i 0.645224 + 0.645224i 0.951835 0.306611i \(-0.0991949\pi\)
−0.306611 + 0.951835i \(0.599195\pi\)
\(72\) −20.3709 + 11.4025i −2.40073 + 1.34379i
\(73\) −5.21568 −0.610449 −0.305225 0.952280i \(-0.598732\pi\)
−0.305225 + 0.952280i \(0.598732\pi\)
\(74\) 2.87778 + 4.56173i 0.334535 + 0.530290i
\(75\) 0 0
\(76\) 3.50235 + 0.184056i 0.401747 + 0.0211127i
\(77\) 0.858632 0.355657i 0.0978502 0.0405309i
\(78\) 3.35259 + 19.5194i 0.379606 + 2.21013i
\(79\) 1.61999i 0.182263i −0.995839 0.0911315i \(-0.970952\pi\)
0.995839 0.0911315i \(-0.0290484\pi\)
\(80\) 0 0
\(81\) 34.3625i 3.81806i
\(82\) −1.29180 + 0.221876i −0.142655 + 0.0245021i
\(83\) 7.18465 2.97598i 0.788618 0.326656i 0.0482299 0.998836i \(-0.484642\pi\)
0.740388 + 0.672180i \(0.234642\pi\)
\(84\) 4.06805 + 4.51933i 0.443861 + 0.493100i
\(85\) 0 0
\(86\) −7.98832 + 5.03945i −0.861403 + 0.543418i
\(87\) 20.5619 2.20446
\(88\) 0.340292 + 2.88045i 0.0362753 + 0.307057i
\(89\) 0.483064 + 0.483064i 0.0512046 + 0.0512046i 0.732245 0.681041i \(-0.238472\pi\)
−0.681041 + 0.732245i \(0.738472\pi\)
\(90\) 0 0
\(91\) 3.49541 1.44785i 0.366419 0.151776i
\(92\) 2.98453 1.05639i 0.311159 0.110137i
\(93\) −12.9393 + 5.35962i −1.34174 + 0.555767i
\(94\) 6.77507 1.16367i 0.698795 0.120023i
\(95\) 0 0
\(96\) −17.0228 + 8.38709i −1.73738 + 0.856004i
\(97\) −2.63970 2.63970i −0.268021 0.268021i 0.560282 0.828302i \(-0.310693\pi\)
−0.828302 + 0.560282i \(0.810693\pi\)
\(98\) −5.04356 + 7.13538i −0.509476 + 0.720782i
\(99\) −7.81968 3.23902i −0.785908 0.325534i
\(100\) 0 0
\(101\) 4.87445 + 11.7680i 0.485026 + 1.17096i 0.957194 + 0.289447i \(0.0934715\pi\)
−0.472168 + 0.881509i \(0.656528\pi\)
\(102\) −11.1203 + 7.01529i −1.10108 + 0.694617i
\(103\) −2.63961 −0.260089 −0.130044 0.991508i \(-0.541512\pi\)
−0.130044 + 0.991508i \(0.541512\pi\)
\(104\) 1.38530 + 11.7260i 0.135840 + 1.14983i
\(105\) 0 0
\(106\) −4.97693 7.88922i −0.483402 0.766269i
\(107\) 5.10959 12.3357i 0.493963 1.19253i −0.458724 0.888579i \(-0.651693\pi\)
0.952687 0.303953i \(-0.0983067\pi\)
\(108\) 1.84985 35.2002i 0.178002 3.38714i
\(109\) −14.7005 6.08914i −1.40805 0.583233i −0.456222 0.889866i \(-0.650798\pi\)
−0.951828 + 0.306633i \(0.900798\pi\)
\(110\) 0 0
\(111\) −12.7942 −1.21437
\(112\) 2.28057 + 2.81793i 0.215494 + 0.266270i
\(113\) 0.619584 + 0.619584i 0.0582855 + 0.0582855i 0.735649 0.677363i \(-0.236877\pi\)
−0.677363 + 0.735649i \(0.736877\pi\)
\(114\) −4.80198 + 6.79361i −0.449747 + 0.636280i
\(115\) 0 0
\(116\) 12.2418 + 0.643334i 1.13662 + 0.0597321i
\(117\) −31.8332 13.1857i −2.94298 1.21902i
\(118\) −15.4784 3.50357i −1.42490 0.322530i
\(119\) 1.77606 + 1.77606i 0.162811 + 0.162811i
\(120\) 0 0
\(121\) 7.03458 7.03458i 0.639508 0.639508i
\(122\) 1.60934 1.01526i 0.145703 0.0919170i
\(123\) 1.18982 2.87248i 0.107282 0.259002i
\(124\) −7.87128 + 2.78609i −0.706862 + 0.250198i
\(125\) 0 0
\(126\) −10.4260 + 1.79074i −0.928822 + 0.159532i
\(127\) −4.08960 + 4.08960i −0.362894 + 0.362894i −0.864877 0.501984i \(-0.832604\pi\)
0.501984 + 0.864877i \(0.332604\pi\)
\(128\) −10.3972 + 4.46078i −0.918990 + 0.394281i
\(129\) 22.4046i 1.97262i
\(130\) 0 0
\(131\) −6.23750 + 15.0586i −0.544973 + 1.31568i 0.376205 + 0.926537i \(0.377229\pi\)
−0.921177 + 0.389144i \(0.872771\pi\)
\(132\) −6.20956 2.96291i −0.540473 0.257888i
\(133\) 1.46829 + 0.608184i 0.127317 + 0.0527363i
\(134\) 3.46422 15.3045i 0.299263 1.32211i
\(135\) 0 0
\(136\) −6.84015 + 3.82873i −0.586538 + 0.328311i
\(137\) 13.7858i 1.17780i 0.808205 + 0.588902i \(0.200439\pi\)
−0.808205 + 0.588902i \(0.799561\pi\)
\(138\) −1.65797 + 7.32471i −0.141136 + 0.623521i
\(139\) 5.66351 2.34590i 0.480373 0.198977i −0.129339 0.991600i \(-0.541285\pi\)
0.609711 + 0.792624i \(0.291285\pi\)
\(140\) 0 0
\(141\) −6.24021 + 15.0652i −0.525521 + 1.26872i
\(142\) −10.7166 + 1.84065i −0.899316 + 0.154464i
\(143\) −3.02709 + 3.02709i −0.253138 + 0.253138i
\(144\) 3.46045 32.8330i 0.288371 2.73608i
\(145\) 0 0
\(146\) 4.25751 6.02331i 0.352354 0.498493i
\(147\) −7.93196 19.1494i −0.654217 1.57942i
\(148\) −7.61720 0.400301i −0.626130 0.0329045i
\(149\) 0.117762 + 0.284303i 0.00964745 + 0.0232910i 0.928630 0.371008i \(-0.120988\pi\)
−0.918982 + 0.394299i \(0.870988\pi\)
\(150\) 0 0
\(151\) 2.50445 2.50445i 0.203809 0.203809i −0.597821 0.801630i \(-0.703967\pi\)
0.801630 + 0.597821i \(0.203967\pi\)
\(152\) −3.07149 + 3.89444i −0.249131 + 0.315880i
\(153\) 22.8746i 1.84930i
\(154\) −0.290163 + 1.28191i −0.0233820 + 0.103299i
\(155\) 0 0
\(156\) −25.2785 12.0617i −2.02390 0.965710i
\(157\) 8.87481 + 21.4257i 0.708287 + 1.70996i 0.704238 + 0.709964i \(0.251289\pi\)
0.00404938 + 0.999992i \(0.498711\pi\)
\(158\) 1.87084 + 1.32238i 0.148836 + 0.105203i
\(159\) 22.1267 1.75476
\(160\) 0 0
\(161\) 1.43465 0.113066
\(162\) 39.6835 + 28.0498i 3.11783 + 2.20380i
\(163\) −0.447027 1.07922i −0.0350138 0.0845309i 0.905405 0.424548i \(-0.139567\pi\)
−0.940419 + 0.340017i \(0.889567\pi\)
\(164\) 0.798250 1.67295i 0.0623328 0.130635i
\(165\) 0 0
\(166\) −2.42795 + 10.7264i −0.188446 + 0.832532i
\(167\) 1.33686i 0.103450i 0.998661 + 0.0517248i \(0.0164719\pi\)
−0.998661 + 0.0517248i \(0.983528\pi\)
\(168\) −8.53985 + 1.00889i −0.658863 + 0.0778373i
\(169\) −3.13062 + 3.13062i −0.240817 + 0.240817i
\(170\) 0 0
\(171\) −5.53882 13.3719i −0.423564 1.02257i
\(172\) 0.700991 13.3389i 0.0534501 1.01708i
\(173\) 6.30490 + 15.2214i 0.479352 + 1.15726i 0.959913 + 0.280298i \(0.0904332\pi\)
−0.480561 + 0.876962i \(0.659567\pi\)
\(174\) −16.7844 + 23.7458i −1.27242 + 1.80016i
\(175\) 0 0
\(176\) −3.60425 1.95829i −0.271681 0.147612i
\(177\) 26.6191 26.6191i 2.00081 2.00081i
\(178\) −0.952184 + 0.163545i −0.0713692 + 0.0122582i
\(179\) −3.18265 + 7.68360i −0.237883 + 0.574299i −0.997063 0.0765805i \(-0.975600\pi\)
0.759181 + 0.650880i \(0.225600\pi\)
\(180\) 0 0
\(181\) 4.55968 1.88868i 0.338919 0.140385i −0.206732 0.978398i \(-0.566283\pi\)
0.545650 + 0.838013i \(0.316283\pi\)
\(182\) −1.18123 + 5.21853i −0.0875584 + 0.386823i
\(183\) 4.51368i 0.333661i
\(184\) −1.21627 + 4.30900i −0.0896646 + 0.317664i
\(185\) 0 0
\(186\) 4.37265 19.3179i 0.320619 1.41646i
\(187\) −2.62570 1.08760i −0.192010 0.0795331i
\(188\) −4.18656 + 8.77406i −0.305336 + 0.639914i
\(189\) 6.11252 14.7569i 0.444620 1.07341i
\(190\) 0 0
\(191\) 5.55963i 0.402281i −0.979562 0.201140i \(-0.935535\pi\)
0.979562 0.201140i \(-0.0644647\pi\)
\(192\) 4.20972 26.5050i 0.303811 1.91283i
\(193\) 14.6069 14.6069i 1.05143 1.05143i 0.0528217 0.998604i \(-0.483178\pi\)
0.998604 0.0528217i \(-0.0168215\pi\)
\(194\) 5.20320 0.893688i 0.373568 0.0641631i
\(195\) 0 0
\(196\) −4.12327 11.6491i −0.294519 0.832077i
\(197\) −7.20550 + 17.3956i −0.513371 + 1.23939i 0.428540 + 0.903523i \(0.359028\pi\)
−0.941910 + 0.335864i \(0.890972\pi\)
\(198\) 10.1237 6.38656i 0.719460 0.453873i
\(199\) −12.1953 + 12.1953i −0.864499 + 0.864499i −0.991857 0.127358i \(-0.959350\pi\)
0.127358 + 0.991857i \(0.459350\pi\)
\(200\) 0 0
\(201\) 26.3201 + 26.3201i 1.85648 + 1.85648i
\(202\) −17.5692 3.97682i −1.23616 0.279808i
\(203\) 5.13212 + 2.12579i 0.360204 + 0.149202i
\(204\) 0.975831 18.5688i 0.0683218 1.30007i
\(205\) 0 0
\(206\) 2.15469 3.04835i 0.150124 0.212389i
\(207\) −9.23872 9.23872i −0.642135 0.642135i
\(208\) −14.6726 7.97203i −1.01736 0.552761i
\(209\) −1.79826 −0.124388
\(210\) 0 0
\(211\) −21.2722 8.81122i −1.46444 0.606589i −0.498854 0.866686i \(-0.666245\pi\)
−0.965583 + 0.260097i \(0.916245\pi\)
\(212\) 13.1735 + 0.692294i 0.904757 + 0.0475470i
\(213\) 9.87058 23.8297i 0.676321 1.63278i
\(214\) 10.0749 + 15.9703i 0.688704 + 1.09170i
\(215\) 0 0
\(216\) 39.1408 + 30.8698i 2.66319 + 2.10043i
\(217\) −3.78368 −0.256853
\(218\) 19.0319 12.0063i 1.28900 0.813169i
\(219\) 6.69574 + 16.1649i 0.452456 + 1.09233i
\(220\) 0 0
\(221\) −10.6890 4.42752i −0.719018 0.297827i
\(222\) 10.4437 14.7753i 0.700938 0.991653i
\(223\) 15.9419 + 15.9419i 1.06755 + 1.06755i 0.997547 + 0.0700048i \(0.0223014\pi\)
0.0700048 + 0.997547i \(0.477699\pi\)
\(224\) −5.11589 + 0.333463i −0.341820 + 0.0222804i
\(225\) 0 0
\(226\) −1.22128 + 0.209764i −0.0812386 + 0.0139533i
\(227\) 18.9290 7.84063i 1.25636 0.520401i 0.347569 0.937654i \(-0.387007\pi\)
0.908790 + 0.417253i \(0.137007\pi\)
\(228\) −3.92577 11.0911i −0.259990 0.734527i
\(229\) −23.0497 + 9.54752i −1.52317 + 0.630918i −0.978224 0.207553i \(-0.933450\pi\)
−0.544946 + 0.838471i \(0.683450\pi\)
\(230\) 0 0
\(231\) −2.20457 2.20457i −0.145050 0.145050i
\(232\) −10.7358 + 13.6123i −0.704841 + 0.893689i
\(233\) −13.5423 −0.887185 −0.443593 0.896229i \(-0.646296\pi\)
−0.443593 + 0.896229i \(0.646296\pi\)
\(234\) 41.2126 25.9991i 2.69415 1.69961i
\(235\) 0 0
\(236\) 16.6809 15.0152i 1.08584 0.977408i
\(237\) −5.02083 + 2.07969i −0.326138 + 0.135091i
\(238\) −3.50085 + 0.601296i −0.226926 + 0.0389762i
\(239\) 18.1767i 1.17575i −0.808950 0.587877i \(-0.799964\pi\)
0.808950 0.587877i \(-0.200036\pi\)
\(240\) 0 0
\(241\) 3.95583i 0.254818i 0.991850 + 0.127409i \(0.0406660\pi\)
−0.991850 + 0.127409i \(0.959334\pi\)
\(242\) 2.38161 + 13.8661i 0.153096 + 0.891348i
\(243\) −57.6513 + 23.8800i −3.69833 + 1.53190i
\(244\) −0.141223 + 2.68729i −0.00904086 + 0.172036i
\(245\) 0 0
\(246\) 2.34603 + 3.71883i 0.149578 + 0.237104i
\(247\) −7.32056 −0.465796
\(248\) 3.20774 11.3644i 0.203692 0.721639i
\(249\) −18.4469 18.4469i −1.16902 1.16902i
\(250\) 0 0
\(251\) 9.99284 4.13917i 0.630743 0.261262i −0.0443259 0.999017i \(-0.514114\pi\)
0.675069 + 0.737755i \(0.264114\pi\)
\(252\) 6.44260 13.5022i 0.405846 0.850558i
\(253\) −1.49975 + 0.621215i −0.0942882 + 0.0390555i
\(254\) −1.38456 8.06116i −0.0868753 0.505802i
\(255\) 0 0
\(256\) 3.33560 15.6484i 0.208475 0.978028i
\(257\) 6.79396 + 6.79396i 0.423795 + 0.423795i 0.886508 0.462713i \(-0.153124\pi\)
−0.462713 + 0.886508i \(0.653124\pi\)
\(258\) 25.8739 + 18.2887i 1.61084 + 1.13860i
\(259\) −3.19335 1.32273i −0.198425 0.0821903i
\(260\) 0 0
\(261\) −19.3599 46.7390i −1.19835 2.89307i
\(262\) −12.2988 19.4956i −0.759824 1.20444i
\(263\) −23.6751 −1.45987 −0.729934 0.683517i \(-0.760449\pi\)
−0.729934 + 0.683517i \(0.760449\pi\)
\(264\) 8.49050 4.75250i 0.522554 0.292496i
\(265\) 0 0
\(266\) −1.90091 + 1.19919i −0.116552 + 0.0735272i
\(267\) 0.877014 2.11730i 0.0536724 0.129577i
\(268\) 14.8466 + 16.4936i 0.906900 + 1.00751i
\(269\) 18.3200 + 7.58841i 1.11699 + 0.462674i 0.863341 0.504622i \(-0.168368\pi\)
0.253653 + 0.967295i \(0.418368\pi\)
\(270\) 0 0
\(271\) −5.20237 −0.316021 −0.158011 0.987437i \(-0.550508\pi\)
−0.158011 + 0.987437i \(0.550508\pi\)
\(272\) 1.16195 11.0247i 0.0704536 0.668469i
\(273\) −8.97461 8.97461i −0.543168 0.543168i
\(274\) −15.9205 11.2532i −0.961794 0.679833i
\(275\) 0 0
\(276\) −7.10554 7.89378i −0.427703 0.475150i
\(277\) 7.66078 + 3.17320i 0.460292 + 0.190659i 0.600765 0.799425i \(-0.294863\pi\)
−0.140474 + 0.990084i \(0.544863\pi\)
\(278\) −1.91391 + 8.45542i −0.114788 + 0.507122i
\(279\) 24.3658 + 24.3658i 1.45874 + 1.45874i
\(280\) 0 0
\(281\) 5.30131 5.30131i 0.316250 0.316250i −0.531075 0.847325i \(-0.678212\pi\)
0.847325 + 0.531075i \(0.178212\pi\)
\(282\) −12.3042 19.5041i −0.732704 1.16145i
\(283\) −3.50116 + 8.45255i −0.208122 + 0.502452i −0.993128 0.117037i \(-0.962660\pi\)
0.785005 + 0.619489i \(0.212660\pi\)
\(284\) 6.62217 13.8785i 0.392954 0.823539i
\(285\) 0 0
\(286\) −1.02484 5.96681i −0.0606003 0.352825i
\(287\) 0.593944 0.593944i 0.0350594 0.0350594i
\(288\) 35.0923 + 30.7975i 2.06783 + 1.81476i
\(289\) 9.31915i 0.548185i
\(290\) 0 0
\(291\) −4.79244 + 11.5700i −0.280938 + 0.678244i
\(292\) 3.48064 + 9.83354i 0.203689 + 0.575464i
\(293\) −0.973169 0.403100i −0.0568532 0.0235493i 0.354076 0.935217i \(-0.384796\pi\)
−0.410929 + 0.911667i \(0.634796\pi\)
\(294\) 28.5894 + 6.47129i 1.66737 + 0.377414i
\(295\) 0 0
\(296\) 6.68013 8.46993i 0.388274 0.492305i
\(297\) 18.0733i 1.04872i
\(298\) −0.424455 0.0960764i −0.0245880 0.00556556i
\(299\) −6.10533 + 2.52891i −0.353080 + 0.146251i
\(300\) 0 0
\(301\) 2.31631 5.59207i 0.133510 0.322322i
\(302\) 0.847898 + 4.93660i 0.0487910 + 0.284070i
\(303\) 30.2147 30.2147i 1.73579 1.73579i
\(304\) −1.99025 6.72609i −0.114149 0.385768i
\(305\) 0 0
\(306\) 26.4167 + 18.6723i 1.51014 + 1.06742i
\(307\) 3.83681 + 9.26288i 0.218978 + 0.528661i 0.994748 0.102356i \(-0.0326380\pi\)
−0.775769 + 0.631017i \(0.782638\pi\)
\(308\) −1.24355 1.38150i −0.0708578 0.0787184i
\(309\) 3.38866 + 8.18095i 0.192774 + 0.465398i
\(310\) 0 0
\(311\) −16.6804 + 16.6804i −0.945856 + 0.945856i −0.998608 0.0527517i \(-0.983201\pi\)
0.0527517 + 0.998608i \(0.483201\pi\)
\(312\) 34.5641 19.3470i 1.95680 1.09531i
\(313\) 18.8189i 1.06371i −0.846836 0.531854i \(-0.821496\pi\)
0.846836 0.531854i \(-0.178504\pi\)
\(314\) −31.9878 7.24052i −1.80518 0.408606i
\(315\) 0 0
\(316\) −3.05429 + 1.08109i −0.171817 + 0.0608159i
\(317\) −3.54343 8.55459i −0.199019 0.480474i 0.792589 0.609756i \(-0.208733\pi\)
−0.991608 + 0.129282i \(0.958733\pi\)
\(318\) −18.0618 + 25.5529i −1.01285 + 1.43294i
\(319\) −6.28549 −0.351920
\(320\) 0 0
\(321\) −44.7914 −2.50001
\(322\) −1.17109 + 1.65680i −0.0652621 + 0.0923296i
\(323\) −1.85983 4.49002i −0.103484 0.249832i
\(324\) −64.7864 + 22.9316i −3.59925 + 1.27398i
\(325\) 0 0
\(326\) 1.61123 + 0.364707i 0.0892380 + 0.0201993i
\(327\) 53.3782i 2.95182i
\(328\) 1.28039 + 2.28746i 0.0706978 + 0.126304i
\(329\) −3.11504 + 3.11504i −0.171738 + 0.171738i
\(330\) 0 0
\(331\) 2.48736 + 6.00502i 0.136718 + 0.330066i 0.977379 0.211496i \(-0.0678334\pi\)
−0.840661 + 0.541561i \(0.817833\pi\)
\(332\) −10.4055 11.5598i −0.571074 0.634426i
\(333\) 12.0463 + 29.0823i 0.660132 + 1.59370i
\(334\) −1.54387 1.09127i −0.0844769 0.0597115i
\(335\) 0 0
\(336\) 5.80588 10.6858i 0.316737 0.582956i
\(337\) −18.5988 + 18.5988i −1.01314 + 1.01314i −0.0132301 + 0.999912i \(0.504211\pi\)
−0.999912 + 0.0132301i \(0.995789\pi\)
\(338\) −1.05989 6.17088i −0.0576506 0.335652i
\(339\) 1.12487 2.71568i 0.0610946 0.147495i
\(340\) 0 0
\(341\) 3.95537 1.63837i 0.214195 0.0887226i
\(342\) 19.9638 + 4.51885i 1.07952 + 0.244351i
\(343\) 11.9437i 0.644897i
\(344\) 14.8322 + 11.6980i 0.799700 + 0.630713i
\(345\) 0 0
\(346\) −22.7250 5.14386i −1.22170 0.276535i
\(347\) −7.77311 3.21973i −0.417283 0.172844i 0.164156 0.986434i \(-0.447510\pi\)
−0.581439 + 0.813590i \(0.697510\pi\)
\(348\) −13.7218 38.7669i −0.735566 2.07812i
\(349\) −6.91854 + 16.7028i −0.370341 + 0.894082i 0.623352 + 0.781942i \(0.285771\pi\)
−0.993692 + 0.112140i \(0.964229\pi\)
\(350\) 0 0
\(351\) 73.5749i 3.92714i
\(352\) 5.20364 2.56382i 0.277355 0.136652i
\(353\) −16.1883 + 16.1883i −0.861617 + 0.861617i −0.991526 0.129909i \(-0.958532\pi\)
0.129909 + 0.991526i \(0.458532\pi\)
\(354\) 9.01208 + 52.4699i 0.478987 + 2.78874i
\(355\) 0 0
\(356\) 0.588389 1.23313i 0.0311846 0.0653556i
\(357\) 3.22447 7.78457i 0.170657 0.412003i
\(358\) −6.27542 9.94752i −0.331666 0.525743i
\(359\) −4.49159 + 4.49159i −0.237057 + 0.237057i −0.815630 0.578573i \(-0.803610\pi\)
0.578573 + 0.815630i \(0.303610\pi\)
\(360\) 0 0
\(361\) 11.2606 + 11.2606i 0.592664 + 0.592664i
\(362\) −1.54088 + 6.80745i −0.0809871 + 0.357792i
\(363\) −30.8331 12.7715i −1.61832 0.670328i
\(364\) −5.06237 5.62397i −0.265341 0.294776i
\(365\) 0 0
\(366\) −5.21260 3.68447i −0.272467 0.192590i
\(367\) −4.32797 4.32797i −0.225918 0.225918i 0.585067 0.810985i \(-0.301068\pi\)
−0.810985 + 0.585067i \(0.801068\pi\)
\(368\) −3.98341 4.92200i −0.207650 0.256577i
\(369\) −7.64966 −0.398226
\(370\) 0 0
\(371\) 5.52269 + 2.28757i 0.286724 + 0.118765i
\(372\) 18.7398 + 20.8187i 0.971616 + 1.07940i
\(373\) −0.872108 + 2.10545i −0.0451560 + 0.109016i −0.944848 0.327509i \(-0.893791\pi\)
0.899692 + 0.436525i \(0.143791\pi\)
\(374\) 3.39934 2.14448i 0.175776 0.110889i
\(375\) 0 0
\(376\) −6.71524 11.9970i −0.346312 0.618699i
\(377\) −25.5877 −1.31783
\(378\) 12.0524 + 19.1049i 0.619909 + 0.982652i
\(379\) −12.3034 29.7030i −0.631982 1.52574i −0.837128 0.547008i \(-0.815767\pi\)
0.205146 0.978731i \(-0.434233\pi\)
\(380\) 0 0
\(381\) 17.9250 + 7.42478i 0.918326 + 0.380383i
\(382\) 6.42052 + 4.53827i 0.328502 + 0.232198i
\(383\) 16.7729 + 16.7729i 0.857057 + 0.857057i 0.990990 0.133933i \(-0.0427608\pi\)
−0.133933 + 0.990990i \(0.542761\pi\)
\(384\) 27.1729 + 26.4973i 1.38666 + 1.35219i
\(385\) 0 0
\(386\) 4.94526 + 28.7921i 0.251707 + 1.46548i
\(387\) −50.9278 + 21.0950i −2.58880 + 1.07232i
\(388\) −3.21525 + 6.73841i −0.163230 + 0.342091i
\(389\) 22.8738 9.47462i 1.15975 0.480382i 0.281955 0.959428i \(-0.409017\pi\)
0.877790 + 0.479045i \(0.159017\pi\)
\(390\) 0 0
\(391\) −3.10218 3.10218i −0.156884 0.156884i
\(392\) 16.8187 + 4.74728i 0.849472 + 0.239774i
\(393\) 54.6787 2.75818
\(394\) −14.2075 22.5211i −0.715764 1.13460i
\(395\) 0 0
\(396\) −0.888374 + 16.9046i −0.0446425 + 0.849488i
\(397\) 15.3133 6.34300i 0.768555 0.318346i 0.0362680 0.999342i \(-0.488453\pi\)
0.732287 + 0.680996i \(0.238453\pi\)
\(398\) −4.12879 24.0385i −0.206957 1.20494i
\(399\) 5.33142i 0.266905i
\(400\) 0 0
\(401\) 12.2631i 0.612389i 0.951969 + 0.306195i \(0.0990558\pi\)
−0.951969 + 0.306195i \(0.900944\pi\)
\(402\) −51.8806 + 8.91087i −2.58757 + 0.444434i
\(403\) 16.1019 6.66964i 0.802095 0.332238i
\(404\) 18.9341 17.0434i 0.942009 0.847943i
\(405\) 0 0
\(406\) −6.64427 + 4.19155i −0.329749 + 0.208023i
\(407\) 3.91101 0.193861
\(408\) 20.6475 + 16.2844i 1.02221 + 0.806200i
\(409\) −15.5820 15.5820i −0.770479 0.770479i 0.207711 0.978190i \(-0.433399\pi\)
−0.978190 + 0.207711i \(0.933399\pi\)
\(410\) 0 0
\(411\) 42.7264 17.6978i 2.10754 0.872970i
\(412\) 1.76153 + 4.97667i 0.0867842 + 0.245183i
\(413\) 9.39600 3.89195i 0.462347 0.191510i
\(414\) 18.2108 3.12783i 0.895011 0.153725i
\(415\) 0 0
\(416\) 21.1836 10.4371i 1.03861 0.511720i
\(417\) −14.5413 14.5413i −0.712090 0.712090i
\(418\) 1.46790 2.07672i 0.0717975 0.101576i
\(419\) 27.6906 + 11.4698i 1.35278 + 0.560338i 0.937064 0.349158i \(-0.113532\pi\)
0.415712 + 0.909496i \(0.363532\pi\)
\(420\) 0 0
\(421\) 10.5101 + 25.3736i 0.512231 + 1.23663i 0.942582 + 0.333973i \(0.108390\pi\)
−0.430352 + 0.902661i \(0.641610\pi\)
\(422\) 27.5399 17.3736i 1.34062 0.845733i
\(423\) 40.1200 1.95070
\(424\) −11.5529 + 14.6482i −0.561056 + 0.711380i
\(425\) 0 0
\(426\) 19.4624 + 30.8509i 0.942955 + 1.49473i
\(427\) −0.466648 + 1.12659i −0.0225827 + 0.0545194i
\(428\) −26.6672 1.40142i −1.28901 0.0677403i
\(429\) 13.2679 + 5.49576i 0.640583 + 0.265338i
\(430\) 0 0
\(431\) 11.3673 0.547542 0.273771 0.961795i \(-0.411729\pi\)
0.273771 + 0.961795i \(0.411729\pi\)
\(432\) −67.6001 + 20.0029i −3.25241 + 0.962390i
\(433\) −16.2533 16.2533i −0.781085 0.781085i 0.198929 0.980014i \(-0.436254\pi\)
−0.980014 + 0.198929i \(0.936254\pi\)
\(434\) 3.08858 4.36957i 0.148256 0.209746i
\(435\) 0 0
\(436\) −1.67008 + 31.7795i −0.0799825 + 1.52196i
\(437\) −2.56461 1.06230i −0.122682 0.0508165i
\(438\) −24.1337 5.46272i −1.15315 0.261019i
\(439\) −24.2793 24.2793i −1.15879 1.15879i −0.984737 0.174052i \(-0.944314\pi\)
−0.174052 0.984737i \(-0.555686\pi\)
\(440\) 0 0
\(441\) −36.0601 + 36.0601i −1.71715 + 1.71715i
\(442\) 13.8384 8.72999i 0.658225 0.415243i
\(443\) −8.53951 + 20.6162i −0.405724 + 0.979505i 0.580525 + 0.814242i \(0.302847\pi\)
−0.986250 + 0.165263i \(0.947153\pi\)
\(444\) 8.53808 + 24.1218i 0.405200 + 1.14477i
\(445\) 0 0
\(446\) −31.4237 + 5.39726i −1.48796 + 0.255568i
\(447\) 0.729960 0.729960i 0.0345259 0.0345259i
\(448\) 3.79095 6.18027i 0.179106 0.291990i
\(449\) 1.60758i 0.0758663i −0.999280 0.0379332i \(-0.987923\pi\)
0.999280 0.0379332i \(-0.0120774\pi\)
\(450\) 0 0
\(451\) −0.363712 + 0.878079i −0.0171265 + 0.0413471i
\(452\) 0.754676 1.58162i 0.0354970 0.0743933i
\(453\) −10.9772 4.54689i −0.515752 0.213631i
\(454\) −6.39679 + 28.2603i −0.300216 + 1.32632i
\(455\) 0 0
\(456\) 16.0131 + 4.51990i 0.749882 + 0.211664i
\(457\) 4.76573i 0.222932i 0.993768 + 0.111466i \(0.0355545\pi\)
−0.993768 + 0.111466i \(0.964445\pi\)
\(458\) 7.78935 34.4125i 0.363973 1.60799i
\(459\) −45.1267 + 18.6921i −2.10633 + 0.872472i
\(460\) 0 0
\(461\) 1.89178 4.56715i 0.0881088 0.212714i −0.873683 0.486496i \(-0.838275\pi\)
0.961792 + 0.273782i \(0.0882748\pi\)
\(462\) 4.34551 0.746374i 0.202172 0.0347244i
\(463\) 12.2119 12.2119i 0.567536 0.567536i −0.363901 0.931437i \(-0.618555\pi\)
0.931437 + 0.363901i \(0.118555\pi\)
\(464\) −6.95655 23.5098i −0.322950 1.09141i
\(465\) 0 0
\(466\) 11.0544 15.6393i 0.512087 0.724475i
\(467\) −6.11934 14.7734i −0.283169 0.683631i 0.716737 0.697344i \(-0.245635\pi\)
−0.999906 + 0.0137126i \(0.995635\pi\)
\(468\) −3.61649 + 68.8170i −0.167172 + 3.18107i
\(469\) 3.84824 + 9.29047i 0.177695 + 0.428994i
\(470\) 0 0
\(471\) 55.0113 55.0113i 2.53479 2.53479i
\(472\) 3.72382 + 31.5207i 0.171402 + 1.45086i
\(473\) 6.84881i 0.314909i
\(474\) 1.69672 7.49592i 0.0779330 0.344299i
\(475\) 0 0
\(476\) 2.16330 4.53377i 0.0991548 0.207805i
\(477\) −20.8333 50.2960i −0.953890 2.30289i
\(478\) 20.9913 + 14.8375i 0.960121 + 0.678650i
\(479\) −28.6370 −1.30846 −0.654229 0.756297i \(-0.727007\pi\)
−0.654229 + 0.756297i \(0.727007\pi\)
\(480\) 0 0
\(481\) 15.9214 0.725951
\(482\) −4.56838 3.22910i −0.208084 0.147082i
\(483\) −1.84176 4.44639i −0.0838028 0.202318i
\(484\) −17.9573 8.56838i −0.816242 0.389472i
\(485\) 0 0
\(486\) 19.4825 86.0714i 0.883744 3.90428i
\(487\) 25.7000i 1.16458i −0.812982 0.582289i \(-0.802157\pi\)
0.812982 0.582289i \(-0.197843\pi\)
\(488\) −2.98812 2.35669i −0.135266 0.106683i
\(489\) −2.77094 + 2.77094i −0.125306 + 0.125306i
\(490\) 0 0
\(491\) −1.37835 3.32764i −0.0622042 0.150174i 0.889721 0.456505i \(-0.150899\pi\)
−0.951925 + 0.306330i \(0.900899\pi\)
\(492\) −6.20972 0.326335i −0.279956 0.0147123i
\(493\) −6.50068 15.6940i −0.292776 0.706824i
\(494\) 5.97570 8.45413i 0.268859 0.380369i
\(495\) 0 0
\(496\) 10.5057 + 12.9811i 0.471719 + 0.582868i
\(497\) 4.92728 4.92728i 0.221019 0.221019i
\(498\) 36.3613 6.24532i 1.62939 0.279860i
\(499\) 10.7030 25.8393i 0.479131 1.15673i −0.480885 0.876783i \(-0.659685\pi\)
0.960017 0.279942i \(-0.0903153\pi\)
\(500\) 0 0
\(501\) 4.14333 1.71623i 0.185111 0.0766753i
\(502\) −3.37695 + 14.9190i −0.150721 + 0.665866i
\(503\) 28.9180i 1.28939i −0.764440 0.644695i \(-0.776985\pi\)
0.764440 0.644695i \(-0.223015\pi\)
\(504\) 10.3339 + 18.4619i 0.460310 + 0.822359i
\(505\) 0 0
\(506\) 0.506819 2.23907i 0.0225309 0.0995387i
\(507\) 13.7217 + 5.68372i 0.609403 + 0.252423i
\(508\) 10.4396 + 4.98129i 0.463183 + 0.221009i
\(509\) −13.3736 + 32.2866i −0.592772 + 1.43108i 0.288042 + 0.957618i \(0.406996\pi\)
−0.880815 + 0.473461i \(0.843004\pi\)
\(510\) 0 0
\(511\) 4.72692i 0.209106i
\(512\) 15.3487 + 16.6258i 0.678325 + 0.734762i
\(513\) −21.8538 + 21.8538i −0.964869 + 0.964869i
\(514\) −13.3918 + 2.30014i −0.590688 + 0.101455i
\(515\) 0 0
\(516\) −42.2413 + 14.9516i −1.85957 + 0.658206i
\(517\) 1.90755 4.60524i 0.0838940 0.202538i
\(518\) 4.13425 2.60810i 0.181648 0.114593i
\(519\) 39.0815 39.0815i 1.71549 1.71549i
\(520\) 0 0
\(521\) 7.57884 + 7.57884i 0.332035 + 0.332035i 0.853359 0.521324i \(-0.174562\pi\)
−0.521324 + 0.853359i \(0.674562\pi\)
\(522\) 69.7796 + 15.7948i 3.05417 + 0.691320i
\(523\) −10.4923 4.34605i −0.458796 0.190039i 0.141301 0.989967i \(-0.454871\pi\)
−0.600097 + 0.799927i \(0.704871\pi\)
\(524\) 32.5538 + 1.71077i 1.42212 + 0.0747355i
\(525\) 0 0
\(526\) 19.3257 27.3411i 0.842642 1.19213i
\(527\) 8.18157 + 8.18157i 0.356395 + 0.356395i
\(528\) −1.44230 + 13.6846i −0.0627681 + 0.595548i
\(529\) 20.4941 0.891050
\(530\) 0 0
\(531\) −85.5707 35.4445i −3.71345 1.53816i
\(532\) 0.166808 3.17414i 0.00723206 0.137617i
\(533\) −1.48064 + 3.57458i −0.0641336 + 0.154832i
\(534\) 1.72926 + 2.74115i 0.0748324 + 0.118621i
\(535\) 0 0
\(536\) −31.1667 + 3.68199i −1.34620 + 0.159038i
\(537\) 27.8996 1.20395
\(538\) −23.7179 + 14.9625i −1.02255 + 0.645079i
\(539\) 2.42470 + 5.85373i 0.104439 + 0.252138i
\(540\) 0 0
\(541\) 11.7217 + 4.85528i 0.503955 + 0.208745i 0.620153 0.784481i \(-0.287071\pi\)
−0.116198 + 0.993226i \(0.537071\pi\)
\(542\) 4.24664 6.00793i 0.182409 0.258063i
\(543\) −11.7072 11.7072i −0.502403 0.502403i
\(544\) 11.7833 + 10.3412i 0.505206 + 0.443375i
\(545\) 0 0
\(546\) 17.6902 3.03842i 0.757070 0.130032i
\(547\) 29.6855 12.2962i 1.26926 0.525746i 0.356522 0.934287i \(-0.383962\pi\)
0.912740 + 0.408541i \(0.133962\pi\)
\(548\) 25.9915 9.19987i 1.11030 0.392999i
\(549\) 10.2600 4.24983i 0.437886 0.181378i
\(550\) 0 0
\(551\) −7.60026 7.60026i −0.323782 0.323782i
\(552\) 14.9163 1.76219i 0.634879 0.0750038i
\(553\) −1.46818 −0.0624333
\(554\) −9.91798 + 6.25678i −0.421374 + 0.265825i
\(555\) 0 0
\(556\) −8.20241 9.11234i −0.347860 0.386449i
\(557\) −29.9952 + 12.4244i −1.27094 + 0.526440i −0.913250 0.407400i \(-0.866435\pi\)
−0.357689 + 0.933841i \(0.616435\pi\)
\(558\) −48.0283 + 8.24922i −2.03320 + 0.349217i
\(559\) 27.8809i 1.17923i
\(560\) 0 0
\(561\) 9.53404i 0.402528i
\(562\) 1.79480 + 10.4496i 0.0757089 + 0.440790i
\(563\) 0.586068 0.242757i 0.0246998 0.0102310i −0.370299 0.928912i \(-0.620745\pi\)
0.394999 + 0.918681i \(0.370745\pi\)
\(564\) 32.5680 + 1.71152i 1.37136 + 0.0720680i
\(565\) 0 0
\(566\) −6.90344 10.9430i −0.290173 0.459970i
\(567\) −31.1424 −1.30786
\(568\) 10.6220 + 18.9765i 0.445688 + 0.796236i
\(569\) 0.0516248 + 0.0516248i 0.00216422 + 0.00216422i 0.708188 0.706024i \(-0.249513\pi\)
−0.706024 + 0.708188i \(0.749513\pi\)
\(570\) 0 0
\(571\) −23.4324 + 9.70604i −0.980617 + 0.406185i −0.814654 0.579947i \(-0.803073\pi\)
−0.165963 + 0.986132i \(0.553073\pi\)
\(572\) 7.72732 + 3.68711i 0.323096 + 0.154166i
\(573\) −17.2309 + 7.13729i −0.719833 + 0.298164i
\(574\) 0.201084 + 1.17074i 0.00839308 + 0.0488659i
\(575\) 0 0
\(576\) −64.2119 + 15.3866i −2.67550 + 0.641107i
\(577\) −0.380039 0.380039i −0.0158212 0.0158212i 0.699152 0.714973i \(-0.253561\pi\)
−0.714973 + 0.699152i \(0.753561\pi\)
\(578\) −10.7622 7.60713i −0.447648 0.316415i
\(579\) −64.0229 26.5192i −2.66070 1.10210i
\(580\) 0 0
\(581\) −2.69710 6.51137i −0.111894 0.270137i
\(582\) −9.44952 14.9790i −0.391695 0.620899i
\(583\) −6.76384 −0.280130
\(584\) −14.1974 4.00740i −0.587494 0.165828i
\(585\) 0 0
\(586\) 1.25991 0.794815i 0.0520463 0.0328335i
\(587\) 15.6574 37.8003i 0.646250 1.56019i −0.171858 0.985122i \(-0.554977\pi\)
0.818108 0.575065i \(-0.195023\pi\)
\(588\) −30.8106 + 27.7340i −1.27061 + 1.14373i
\(589\) 6.76380 + 2.80166i 0.278698 + 0.115440i
\(590\) 0 0
\(591\) 63.1644 2.59824
\(592\) 4.32856 + 14.6284i 0.177903 + 0.601225i
\(593\) 22.6847 + 22.6847i 0.931549 + 0.931549i 0.997803 0.0662543i \(-0.0211048\pi\)
−0.0662543 + 0.997803i \(0.521105\pi\)
\(594\) −20.8719 14.7531i −0.856386 0.605326i
\(595\) 0 0
\(596\) 0.457431 0.411754i 0.0187371 0.0168661i
\(597\) 53.4526 + 22.1408i 2.18767 + 0.906162i
\(598\) 2.06321 9.11504i 0.0843710 0.372742i
\(599\) 17.4180 + 17.4180i 0.711682 + 0.711682i 0.966887 0.255205i \(-0.0821430\pi\)
−0.255205 + 0.966887i \(0.582143\pi\)
\(600\) 0 0
\(601\) 24.9826 24.9826i 1.01906 1.01906i 0.0192475 0.999815i \(-0.493873\pi\)
0.999815 0.0192475i \(-0.00612705\pi\)
\(602\) 4.56720 + 7.23973i 0.186145 + 0.295070i
\(603\) 35.0465 84.6096i 1.42720 3.44557i
\(604\) −6.39315 3.05051i −0.260134 0.124123i
\(605\) 0 0
\(606\) 10.2294 + 59.5573i 0.415541 + 2.41935i
\(607\) −12.3157 + 12.3157i −0.499877 + 0.499877i −0.911400 0.411522i \(-0.864997\pi\)
0.411522 + 0.911400i \(0.364997\pi\)
\(608\) 9.39222 + 3.19200i 0.380905 + 0.129453i
\(609\) 18.6350i 0.755128i
\(610\) 0 0
\(611\) 7.76547 18.7475i 0.314157 0.758443i
\(612\) −43.1273 + 15.2652i −1.74332 + 0.617059i
\(613\) −7.01389 2.90525i −0.283288 0.117342i 0.236515 0.971628i \(-0.423995\pi\)
−0.519803 + 0.854286i \(0.673995\pi\)
\(614\) −13.8292 3.13027i −0.558100 0.126327i
\(615\) 0 0
\(616\) 2.61052 0.308403i 0.105181 0.0124259i
\(617\) 10.1074i 0.406909i −0.979084 0.203455i \(-0.934783\pi\)
0.979084 0.203455i \(-0.0652170\pi\)
\(618\) −12.2139 2.76464i −0.491314 0.111210i
\(619\) 43.7508 18.1222i 1.75849 0.728392i 0.761739 0.647884i \(-0.224346\pi\)
0.996754 0.0805075i \(-0.0256541\pi\)
\(620\) 0 0
\(621\) −10.6765 + 25.7755i −0.428435 + 1.03433i
\(622\) −5.64725 32.8792i −0.226434 1.31834i
\(623\) 0.437795 0.437795i 0.0175399 0.0175399i
\(624\) −5.87147 + 55.7089i −0.235047 + 2.23014i
\(625\) 0 0
\(626\) 21.7330 + 15.3617i 0.868624 + 0.613976i
\(627\) 2.30856 + 5.57335i 0.0921949 + 0.222578i
\(628\) 34.4730 31.0306i 1.37562 1.23826i
\(629\) 4.04490 + 9.76526i 0.161281 + 0.389367i
\(630\) 0 0
\(631\) 11.1608 11.1608i 0.444306 0.444306i −0.449150 0.893456i \(-0.648273\pi\)
0.893456 + 0.449150i \(0.148273\pi\)
\(632\) 1.24470 4.40972i 0.0495115 0.175409i
\(633\) 77.2403i 3.07003i
\(634\) 12.7717 + 2.89091i 0.507229 + 0.114813i
\(635\) 0 0
\(636\) −14.7661 41.7172i −0.585513 1.65419i
\(637\) 9.87071 + 23.8300i 0.391092 + 0.944179i
\(638\) 5.13078 7.25878i 0.203130 0.287378i
\(639\) −63.4606 −2.51046
\(640\) 0 0
\(641\) 8.01643 0.316630 0.158315 0.987389i \(-0.449394\pi\)
0.158315 + 0.987389i \(0.449394\pi\)
\(642\) 36.5627 51.7272i 1.44302 2.04151i
\(643\) −4.41795 10.6659i −0.174227 0.420621i 0.812510 0.582947i \(-0.198100\pi\)
−0.986737 + 0.162326i \(0.948100\pi\)
\(644\) −0.957399 2.70485i −0.0377268 0.106586i
\(645\) 0 0
\(646\) 6.70345 + 1.51734i 0.263744 + 0.0596990i
\(647\) 5.34896i 0.210289i −0.994457 0.105145i \(-0.966469\pi\)
0.994457 0.105145i \(-0.0335305\pi\)
\(648\) 26.4020 93.5372i 1.03717 3.67449i
\(649\) −8.13711 + 8.13711i −0.319410 + 0.319410i
\(650\) 0 0
\(651\) 4.85737 + 11.7267i 0.190375 + 0.459607i
\(652\) −1.73642 + 1.56302i −0.0680033 + 0.0612127i
\(653\) −2.98939 7.21702i −0.116984 0.282424i 0.854532 0.519399i \(-0.173844\pi\)
−0.971516 + 0.236975i \(0.923844\pi\)
\(654\) −61.6436 43.5721i −2.41046 1.70380i
\(655\) 0 0
\(656\) −3.68684 0.388577i −0.143947 0.0151714i
\(657\) 30.4400 30.4400i 1.18758 1.18758i
\(658\) −1.05462 6.14017i −0.0411134 0.239369i
\(659\) 15.6674 37.8244i 0.610314 1.47343i −0.252343 0.967638i \(-0.581201\pi\)
0.862657 0.505790i \(-0.168799\pi\)
\(660\) 0 0
\(661\) 12.8189 5.30974i 0.498596 0.206525i −0.119190 0.992871i \(-0.538030\pi\)
0.617786 + 0.786346i \(0.288030\pi\)
\(662\) −8.96529 2.02932i −0.348446 0.0788716i
\(663\) 38.8122i 1.50734i
\(664\) 21.8437 2.58058i 0.847698 0.100146i
\(665\) 0 0
\(666\) −43.4188 9.82796i −1.68245 0.380826i
\(667\) −8.96412 3.71306i −0.347092 0.143770i
\(668\) 2.52049 0.892145i 0.0975208 0.0345181i
\(669\) 28.9430 69.8746i 1.11900 2.70151i
\(670\) 0 0
\(671\) 1.37977i 0.0532655i
\(672\) 7.60113 + 15.4276i 0.293220 + 0.595132i
\(673\) 10.5543 10.5543i 0.406839 0.406839i −0.473796 0.880635i \(-0.657117\pi\)
0.880635 + 0.473796i \(0.157117\pi\)
\(674\) −6.29676 36.6608i −0.242542 1.41212i
\(675\) 0 0
\(676\) 7.99160 + 3.81321i 0.307369 + 0.146662i
\(677\) 2.04241 4.93081i 0.0784961 0.189506i −0.879760 0.475419i \(-0.842297\pi\)
0.958256 + 0.285912i \(0.0922966\pi\)
\(678\) 2.21797 + 3.51583i 0.0851806 + 0.135025i
\(679\) −2.39233 + 2.39233i −0.0918092 + 0.0918092i
\(680\) 0 0
\(681\) −48.6009 48.6009i −1.86239 1.86239i
\(682\) −1.33666 + 5.90523i −0.0511835 + 0.226123i
\(683\) 45.2713 + 18.7520i 1.73226 + 0.717525i 0.999306 + 0.0372447i \(0.0118581\pi\)
0.732952 + 0.680280i \(0.238142\pi\)
\(684\) −21.5148 + 19.3664i −0.822639 + 0.740493i
\(685\) 0 0
\(686\) 13.7931 + 9.74949i 0.526623 + 0.372237i
\(687\) 59.1812 + 59.1812i 2.25790 + 2.25790i
\(688\) −25.6168 + 7.58001i −0.976630 + 0.288985i
\(689\) −27.5350 −1.04900
\(690\) 0 0
\(691\) −8.69376 3.60107i −0.330726 0.136991i 0.211141 0.977456i \(-0.432282\pi\)
−0.541867 + 0.840464i \(0.682282\pi\)
\(692\) 24.4905 22.0450i 0.930990 0.838025i
\(693\) −2.93549 + 7.08690i −0.111510 + 0.269209i
\(694\) 10.0634 6.34852i 0.382002 0.240987i
\(695\) 0 0
\(696\) 55.9708 + 15.7985i 2.12157 + 0.598839i
\(697\) −2.56861 −0.0972930
\(698\) −13.6417 21.6242i −0.516345 0.818488i
\(699\) 17.3852 + 41.9716i 0.657569 + 1.58751i
\(700\) 0 0
\(701\) −44.3758 18.3811i −1.67605 0.694243i −0.676926 0.736051i \(-0.736688\pi\)
−0.999126 + 0.0418077i \(0.986688\pi\)
\(702\) −84.9677 60.0584i −3.20690 2.26676i
\(703\) 4.72909 + 4.72909i 0.178361 + 0.178361i
\(704\) −1.28686 + 8.10224i −0.0485003 + 0.305364i
\(705\) 0 0
\(706\) −5.48067 31.9094i −0.206268 1.20093i
\(707\) 10.6652 4.41766i 0.401105 0.166143i
\(708\) −67.9511 32.4230i −2.55376 1.21853i
\(709\) 41.9278 17.3671i 1.57463 0.652234i 0.587081 0.809528i \(-0.300277\pi\)
0.987552 + 0.157294i \(0.0502772\pi\)
\(710\) 0 0
\(711\) 9.45466 + 9.45466i 0.354578 + 0.354578i
\(712\) 0.943776 + 1.68609i 0.0353695 + 0.0631888i
\(713\) 6.60883 0.247503
\(714\) 6.35788 + 10.0782i 0.237938 + 0.377169i
\(715\) 0 0
\(716\) 16.6104 + 0.872914i 0.620760 + 0.0326223i
\(717\) −56.3350 + 23.3347i −2.10387 + 0.871452i
\(718\) −1.52066 8.85354i −0.0567505 0.330411i
\(719\) 3.82423i 0.142620i −0.997454 0.0713099i \(-0.977282\pi\)
0.997454 0.0713099i \(-0.0227179\pi\)
\(720\) 0 0
\(721\) 2.39225i 0.0890922i
\(722\) −22.1962 + 3.81236i −0.826057 + 0.141881i
\(723\) 12.2603 5.07838i 0.455965 0.188867i
\(724\) −6.60375 7.33634i −0.245427 0.272653i
\(725\) 0 0
\(726\) 39.9178 25.1822i 1.48149 0.934600i
\(727\) 15.0951 0.559846 0.279923 0.960022i \(-0.409691\pi\)
0.279923 + 0.960022i \(0.409691\pi\)
\(728\) 10.6272 1.25548i 0.393870 0.0465313i
\(729\) 75.1282 + 75.1282i 2.78253 + 2.78253i
\(730\) 0 0
\(731\) −17.1006 + 7.08328i −0.632487 + 0.261985i
\(732\) 8.50999 3.01217i 0.314538 0.111333i
\(733\) −43.3702 + 17.9645i −1.60191 + 0.663534i −0.991685 0.128691i \(-0.958922\pi\)
−0.610228 + 0.792226i \(0.708922\pi\)
\(734\) 8.53101 1.46526i 0.314885 0.0540839i
\(735\) 0 0
\(736\) 8.93577 0.582450i 0.329377 0.0214694i
\(737\) −8.04573 8.04573i −0.296368 0.296368i
\(738\) 6.24434 8.83419i 0.229857 0.325191i
\(739\) −19.0295 7.88226i −0.700010 0.289954i 0.00415371 0.999991i \(-0.498678\pi\)
−0.704164 + 0.710038i \(0.748678\pi\)
\(740\) 0 0
\(741\) 9.39792 + 22.6886i 0.345241 + 0.833486i
\(742\) −7.14992 + 4.51054i −0.262482 + 0.165587i
\(743\) 17.8922 0.656401 0.328201 0.944608i \(-0.393558\pi\)
0.328201 + 0.944608i \(0.393558\pi\)
\(744\) −39.3396 + 4.64753i −1.44226 + 0.170387i
\(745\) 0 0
\(746\) −1.71958 2.72581i −0.0629585 0.0997991i
\(747\) −24.5629 + 59.3000i −0.898708 + 2.16967i
\(748\) −0.298299 + 5.67624i −0.0109069 + 0.207544i
\(749\) −11.1797 4.63077i −0.408496 0.169205i
\(750\) 0 0
\(751\) −26.7884 −0.977522 −0.488761 0.872418i \(-0.662551\pi\)
−0.488761 + 0.872418i \(0.662551\pi\)
\(752\) 19.3363 + 2.03796i 0.705122 + 0.0743167i
\(753\) −25.6570 25.6570i −0.934994 0.934994i
\(754\) 20.8869 29.5498i 0.760658 1.07614i
\(755\) 0 0
\(756\) −31.9015 1.67650i −1.16025 0.0609736i
\(757\) 36.1520 + 14.9747i 1.31397 + 0.544264i 0.926040 0.377426i \(-0.123191\pi\)
0.387929 + 0.921689i \(0.373191\pi\)
\(758\) 44.3455 + 10.0377i 1.61070 + 0.364586i
\(759\) 3.85066 + 3.85066i 0.139770 + 0.139770i
\(760\) 0 0
\(761\) −7.36989 + 7.36989i −0.267158 + 0.267158i −0.827954 0.560796i \(-0.810495\pi\)
0.560796 + 0.827954i \(0.310495\pi\)
\(762\) −23.2065 + 14.6399i −0.840682 + 0.530346i
\(763\) −5.51852 + 13.3229i −0.199784 + 0.482321i
\(764\) −10.4820 + 3.71017i −0.379226 + 0.134229i
\(765\) 0 0
\(766\) −33.0618 + 5.67860i −1.19457 + 0.205176i
\(767\) −33.1254 + 33.1254i −1.19609 + 1.19609i
\(768\) −52.7813 + 9.75099i −1.90458 + 0.351858i
\(769\) 5.73423i 0.206782i −0.994641 0.103391i \(-0.967031\pi\)
0.994641 0.103391i \(-0.0329692\pi\)
\(770\) 0 0
\(771\) 12.3346 29.7784i 0.444220 1.07244i
\(772\) −37.2873 17.7917i −1.34200 0.640338i
\(773\) −36.8844 15.2780i −1.32664 0.549513i −0.396946 0.917842i \(-0.629930\pi\)
−0.929695 + 0.368329i \(0.879930\pi\)
\(774\) 17.2104 76.0334i 0.618613 2.73296i
\(775\) 0 0
\(776\) −5.15726 9.21361i −0.185135 0.330749i
\(777\) 11.5952i 0.415976i
\(778\) −7.72988 + 34.1497i −0.277130 + 1.22433i
\(779\) −1.50154 + 0.621959i −0.0537983 + 0.0222840i
\(780\) 0 0
\(781\) −3.01731 + 7.28442i −0.107968 + 0.260657i
\(782\) 6.11482 1.05027i 0.218666 0.0375574i
\(783\) −76.3859 + 76.3859i −2.72981 + 2.72981i
\(784\) −19.2113 + 15.5478i −0.686118 + 0.555280i
\(785\) 0 0
\(786\) −44.6337 + 63.1456i −1.59203 + 2.25233i
\(787\) 1.55921 + 3.76428i 0.0555800 + 0.134182i 0.949230 0.314582i \(-0.101864\pi\)
−0.893650 + 0.448764i \(0.851864\pi\)
\(788\) 37.6059 + 1.97627i 1.33965 + 0.0704018i
\(789\) 30.3934 + 73.3761i 1.08203 + 2.61226i
\(790\) 0 0
\(791\) 0.561522 0.561522i 0.0199654 0.0199654i
\(792\) −18.7970 14.8250i −0.667924 0.526783i
\(793\) 5.61692i 0.199463i
\(794\) −5.17494 + 22.8623i −0.183652 + 0.811353i
\(795\) 0 0
\(796\) 31.1311 + 14.8543i 1.10341 + 0.526496i
\(797\) −10.2363 24.7126i −0.362588 0.875365i −0.994920 0.100667i \(-0.967902\pi\)
0.632332 0.774697i \(-0.282098\pi\)
\(798\) 6.15698 + 4.35199i 0.217955 + 0.154059i
\(799\) 13.4715 0.476588
\(800\) 0 0
\(801\) −5.63856 −0.199229
\(802\) −14.1620 10.0102i −0.500077 0.353474i
\(803\) −2.04680 4.94141i −0.0722300 0.174379i
\(804\) 32.0589 67.1880i 1.13063 2.36954i
\(805\) 0 0
\(806\) −5.44143 + 24.0396i −0.191666 + 0.846760i
\(807\) 66.5210i 2.34165i
\(808\) 4.22682 + 35.7784i 0.148699 + 1.25868i
\(809\) 14.6573 14.6573i 0.515322 0.515322i −0.400831 0.916152i \(-0.631278\pi\)
0.916152 + 0.400831i \(0.131278\pi\)
\(810\) 0 0
\(811\) 11.3438 + 27.3863i 0.398333 + 0.961661i 0.988062 + 0.154060i \(0.0492348\pi\)
−0.589728 + 0.807602i \(0.700765\pi\)
\(812\) 0.583047 11.0946i 0.0204609 0.389345i
\(813\) 6.67864 + 16.1237i 0.234230 + 0.565482i
\(814\) −3.19252 + 4.51662i −0.111898 + 0.158307i
\(815\) 0 0
\(816\) −35.6604 + 10.5519i −1.24836 + 0.369391i
\(817\) −8.28140 + 8.28140i −0.289730 + 0.289730i
\(818\) 30.7142 5.27539i 1.07390 0.184450i
\(819\) −11.9501 + 28.8501i −0.417570 + 1.00810i
\(820\) 0 0
\(821\) −32.4192 + 13.4285i −1.13144 + 0.468657i −0.868269 0.496093i \(-0.834767\pi\)
−0.263168 + 0.964750i \(0.584767\pi\)
\(822\) −14.4388 + 63.7890i −0.503611 + 2.22490i
\(823\) 18.1415i 0.632373i −0.948697 0.316187i \(-0.897597\pi\)
0.948697 0.316187i \(-0.102403\pi\)
\(824\) −7.18521 2.02812i −0.250309 0.0706527i
\(825\) 0 0
\(826\) −3.17525 + 14.0279i −0.110481 + 0.488093i
\(827\) −33.7217 13.9680i −1.17262 0.485714i −0.290561 0.956857i \(-0.593842\pi\)
−0.882057 + 0.471142i \(0.843842\pi\)
\(828\) −11.2531 + 23.5839i −0.391072 + 0.819596i
\(829\) −11.3256 + 27.3423i −0.393353 + 0.949637i 0.595852 + 0.803094i \(0.296815\pi\)
−0.989204 + 0.146543i \(0.953185\pi\)
\(830\) 0 0
\(831\) 27.8167i 0.964950i
\(832\) −5.23868 + 32.9834i −0.181618 + 1.14350i
\(833\) −12.1083 + 12.1083i −0.419527 + 0.419527i
\(834\) 28.6629 4.92306i 0.992514 0.170472i
\(835\) 0 0
\(836\) 1.20006 + 3.39041i 0.0415048 + 0.117260i
\(837\) 28.1579 67.9792i 0.973279 2.34970i
\(838\) −35.8495 + 22.6157i −1.23840 + 0.781247i
\(839\) −21.4869 + 21.4869i −0.741811 + 0.741811i −0.972926 0.231116i \(-0.925762\pi\)
0.231116 + 0.972926i \(0.425762\pi\)
\(840\) 0 0
\(841\) −6.05918 6.05918i −0.208937 0.208937i
\(842\) −37.8819 8.57467i −1.30550 0.295503i
\(843\) −23.2360 9.62467i −0.800291 0.331491i
\(844\) −2.41668 + 45.9862i −0.0831854 + 1.58291i
\(845\) 0 0
\(846\) −32.7496 + 46.3325i −1.12595 + 1.59294i
\(847\) −6.37537 6.37537i −0.219060 0.219060i
\(848\) −7.48597 25.2990i −0.257069 0.868770i
\(849\) 30.6916 1.05333
\(850\) 0 0
\(851\) 5.57772 + 2.31037i 0.191202 + 0.0791984i
\(852\) −51.5150 2.70723i −1.76488 0.0927481i
\(853\) 15.3415 37.0377i 0.525283 1.26815i −0.409300 0.912400i \(-0.634227\pi\)
0.934583 0.355746i \(-0.115773\pi\)
\(854\) −0.920116 1.45853i −0.0314857 0.0499098i
\(855\) 0 0
\(856\) 23.3866 29.6526i 0.799338 1.01350i
\(857\) 47.3694 1.61811 0.809055 0.587733i \(-0.199980\pi\)
0.809055 + 0.587733i \(0.199980\pi\)
\(858\) −17.1773 + 10.8363i −0.586422 + 0.369946i
\(859\) 5.28829 + 12.7671i 0.180434 + 0.435607i 0.988056 0.154094i \(-0.0492458\pi\)
−0.807622 + 0.589700i \(0.799246\pi\)
\(860\) 0 0
\(861\) −2.60330 1.07832i −0.0887201 0.0367491i
\(862\) −9.27898 + 13.1275i −0.316043 + 0.447123i
\(863\) −12.9803 12.9803i −0.441853 0.441853i 0.450781 0.892634i \(-0.351145\pi\)
−0.892634 + 0.450781i \(0.851145\pi\)
\(864\) 32.0810 94.3959i 1.09142 3.21142i
\(865\) 0 0
\(866\) 32.0375 5.50268i 1.08868 0.186989i
\(867\) 28.8828 11.9637i 0.980912 0.406307i
\(868\) 2.52501 + 7.13366i 0.0857043 + 0.242132i
\(869\) 1.53480 0.635736i 0.0520646 0.0215659i
\(870\) 0 0
\(871\) −32.7534 32.7534i −1.10981 1.10981i
\(872\) −35.3372 27.8700i −1.19667 0.943796i
\(873\) 30.8119 1.04282
\(874\) 3.32026 2.09459i 0.112309 0.0708506i
\(875\) 0 0
\(876\) 26.0087 23.4116i 0.878752 0.791003i
\(877\) 41.9560 17.3787i 1.41675 0.586838i 0.462710 0.886510i \(-0.346877\pi\)
0.954042 + 0.299672i \(0.0968773\pi\)
\(878\) 47.8578 8.21993i 1.61512 0.277409i
\(879\) 3.53363i 0.119186i
\(880\) 0 0
\(881\) 17.7034i 0.596441i −0.954497 0.298221i \(-0.903607\pi\)
0.954497 0.298221i \(-0.0963931\pi\)
\(882\) −12.2084 71.0794i −0.411078 2.39337i
\(883\) −30.7304 + 12.7290i −1.03416 + 0.428363i −0.834213 0.551443i \(-0.814077\pi\)
−0.199948 + 0.979806i \(0.564077\pi\)
\(884\) −1.21435 + 23.1074i −0.0408429 + 0.777187i
\(885\) 0 0
\(886\) −16.8378 26.6906i −0.565678 0.896689i
\(887\) −44.9270 −1.50850 −0.754250 0.656588i \(-0.771999\pi\)
−0.754250 + 0.656588i \(0.771999\pi\)
\(888\) −34.8266 9.83024i −1.16870 0.329881i
\(889\) 3.70636 + 3.70636i 0.124307 + 0.124307i
\(890\) 0 0
\(891\) 32.5556 13.4850i 1.09065 0.451763i
\(892\) 19.4179 40.6953i 0.650159 1.36258i
\(893\) 7.87510 3.26197i 0.263530 0.109158i
\(894\) 0.247133 + 1.43885i 0.00826537 + 0.0481224i
\(895\) 0 0
\(896\) 4.04275 + 9.42286i 0.135059 + 0.314796i
\(897\) 15.6757 + 15.6757i 0.523396 + 0.523396i
\(898\) 1.85651 + 1.31225i 0.0619524 + 0.0437903i
\(899\) 23.6416 + 9.79267i 0.788492 + 0.326604i
\(900\) 0 0
\(901\) −6.99541 16.8884i −0.233051 0.562634i
\(902\) −0.717152 1.13680i −0.0238785 0.0378512i
\(903\) −20.3051 −0.675711
\(904\) 1.21050 + 2.16260i 0.0402606 + 0.0719270i
\(905\) 0 0
\(906\) 14.2115 8.96535i 0.472145 0.297854i
\(907\) −10.4809 + 25.3031i −0.348012 + 0.840176i 0.648842 + 0.760923i \(0.275254\pi\)
−0.996855 + 0.0792532i \(0.974746\pi\)
\(908\) −27.4147 30.4559i −0.909787 1.01071i
\(909\) −97.1293 40.2323i −3.22158 1.33442i
\(910\) 0 0
\(911\) −33.7228 −1.11729 −0.558643 0.829408i \(-0.688678\pi\)
−0.558643 + 0.829408i \(0.688678\pi\)
\(912\) −18.2911 + 14.8031i −0.605679 + 0.490181i
\(913\) 5.63897 + 5.63897i 0.186623 + 0.186623i
\(914\) −5.50369 3.89022i −0.182046 0.128677i
\(915\) 0 0
\(916\) 33.3828 + 37.0861i 1.10300 + 1.22536i
\(917\) 13.6475 + 5.65298i 0.450680 + 0.186678i
\(918\) 15.2500 67.3726i 0.503324 2.22363i
\(919\) −33.1256 33.1256i −1.09271 1.09271i −0.995238 0.0974735i \(-0.968924\pi\)
−0.0974735 0.995238i \(-0.531076\pi\)
\(920\) 0 0
\(921\) 23.7828 23.7828i 0.783671 0.783671i
\(922\) 3.73012 + 5.91283i 0.122845 + 0.194729i
\(923\) −12.2832 + 29.6542i −0.404306 + 0.976080i
\(924\) −2.68525 + 5.62766i −0.0883383 + 0.185136i
\(925\) 0 0
\(926\) 4.13443 + 24.0714i 0.135866 + 0.791034i
\(927\) 15.4055 15.4055i 0.505981 0.505981i
\(928\) 32.8288 + 11.1570i 1.07766 + 0.366248i
\(929\) 32.2191i 1.05708i −0.848910 0.528538i \(-0.822740\pi\)
0.848910 0.528538i \(-0.177260\pi\)
\(930\) 0 0
\(931\) −4.14630 + 10.0101i −0.135890 + 0.328067i
\(932\) 9.03734 + 25.5324i 0.296028 + 0.836340i
\(933\) 73.1111 + 30.2836i 2.39355 + 0.991441i
\(934\) 22.0562 + 4.99247i 0.721700 + 0.163359i
\(935\) 0 0
\(936\) −76.5210 60.3511i −2.50117 1.97264i
\(937\) 11.5426i 0.377080i −0.982066 0.188540i \(-0.939625\pi\)
0.982066 0.188540i \(-0.0603755\pi\)
\(938\) −13.8704 3.13959i −0.452883 0.102511i
\(939\) −58.3254 + 24.1592i −1.90338 + 0.788405i
\(940\) 0 0
\(941\) −19.3222 + 46.6478i −0.629885 + 1.52068i 0.209881 + 0.977727i \(0.432692\pi\)
−0.839765 + 0.542949i \(0.817308\pi\)
\(942\) 18.6245 + 108.435i 0.606818 + 3.53300i
\(943\) −1.03742 + 1.03742i −0.0337831 + 0.0337831i
\(944\) −39.4413 21.4296i −1.28370 0.697474i
\(945\) 0 0
\(946\) −7.90932 5.59061i −0.257154 0.181766i
\(947\) 1.03442 + 2.49731i 0.0336141 + 0.0811516i 0.939795 0.341738i \(-0.111016\pi\)
−0.906181 + 0.422890i \(0.861016\pi\)
\(948\) 7.27162 + 8.07829i 0.236171 + 0.262371i
\(949\) −8.33233 20.1160i −0.270479 0.652994i
\(950\) 0 0
\(951\) −21.9643 + 21.9643i −0.712240 + 0.712240i
\(952\) 3.46993 + 6.19916i 0.112461 + 0.200916i
\(953\) 29.5188i 0.956208i −0.878303 0.478104i \(-0.841324\pi\)
0.878303 0.478104i \(-0.158676\pi\)
\(954\) 75.0901 + 16.9968i 2.43113 + 0.550293i
\(955\) 0 0
\(956\) −34.2700 + 12.1301i −1.10837 + 0.392315i
\(957\) 8.06913 + 19.4806i 0.260838 + 0.629719i
\(958\) 23.3761 33.0713i 0.755247 1.06849i
\(959\) 12.4940 0.403451
\(960\) 0 0
\(961\) 13.5701 0.437747
\(962\) −12.9964 + 18.3867i −0.419022 + 0.592812i
\(963\) 42.1731 + 101.815i 1.35901 + 3.28094i
\(964\) 7.45824 2.63989i 0.240214 0.0850252i
\(965\) 0 0
\(966\) 6.63831 + 1.50260i 0.213584 + 0.0483453i
\(967\) 48.1906i 1.54971i −0.632141 0.774853i \(-0.717824\pi\)
0.632141 0.774853i \(-0.282176\pi\)
\(968\) 24.5536 13.7437i 0.789181 0.441739i
\(969\) −11.5283 + 11.5283i −0.370343 + 0.370343i
\(970\) 0 0
\(971\) −9.00286 21.7348i −0.288916 0.697504i 0.711069 0.703123i \(-0.248212\pi\)
−0.999984 + 0.00561859i \(0.998212\pi\)
\(972\) 83.4960 + 92.7585i 2.67813 + 2.97523i
\(973\) −2.12607 5.13278i −0.0681586 0.164549i
\(974\) 29.6796 + 20.9787i 0.950995 + 0.672200i
\(975\) 0 0
\(976\) 5.16080 1.52708i 0.165193 0.0488806i
\(977\) −1.22028 + 1.22028i −0.0390403 + 0.0390403i −0.726357 0.687317i \(-0.758788\pi\)
0.687317 + 0.726357i \(0.258788\pi\)
\(978\) −0.938120 5.46190i −0.0299978 0.174652i
\(979\) −0.268092 + 0.647231i −0.00856825 + 0.0206856i
\(980\) 0 0
\(981\) 121.333 50.2579i 3.87388 1.60461i
\(982\) 4.96805 + 1.12453i 0.158537 + 0.0358852i
\(983\) 28.8147i 0.919047i −0.888166 0.459524i \(-0.848020\pi\)
0.888166 0.459524i \(-0.151980\pi\)
\(984\) 5.44580 6.90490i 0.173606 0.220120i
\(985\) 0 0
\(986\) 23.4306 + 5.30359i 0.746184 + 0.168901i
\(987\) 13.6534 + 5.65544i 0.434594 + 0.180015i
\(988\) 4.88532 + 13.8020i 0.155423 + 0.439101i
\(989\) −4.04583 + 9.76750i −0.128650 + 0.310588i
\(990\) 0 0
\(991\) 13.7444i 0.436605i 0.975881 + 0.218303i \(0.0700520\pi\)
−0.975881 + 0.218303i \(0.929948\pi\)
\(992\) −23.5668 + 1.53613i −0.748248 + 0.0487722i
\(993\) 15.4181 15.4181i 0.489280 0.489280i
\(994\) 1.66816 + 9.71234i 0.0529110 + 0.308057i
\(995\) 0 0
\(996\) −22.4690 + 47.0897i −0.711957 + 1.49210i
\(997\) −7.72310 + 18.6452i −0.244593 + 0.590499i −0.997728 0.0673660i \(-0.978540\pi\)
0.753135 + 0.657865i \(0.228540\pi\)
\(998\) 21.1037 + 33.4527i 0.668025 + 1.05893i
\(999\) 47.5294 47.5294i 1.50376 1.50376i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.v.b.707.7 88
5.2 odd 4 160.2.ba.a.3.5 yes 88
5.3 odd 4 800.2.bb.b.643.18 88
5.4 even 2 160.2.u.a.67.16 yes 88
20.7 even 4 640.2.ba.a.303.22 88
20.19 odd 2 640.2.u.a.47.1 88
32.11 odd 8 800.2.bb.b.107.18 88
160.43 even 8 inner 800.2.v.b.43.7 88
160.107 even 8 160.2.u.a.43.16 88
160.117 odd 8 640.2.u.a.463.1 88
160.139 odd 8 160.2.ba.a.107.5 yes 88
160.149 even 8 640.2.ba.a.207.22 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.2.u.a.43.16 88 160.107 even 8
160.2.u.a.67.16 yes 88 5.4 even 2
160.2.ba.a.3.5 yes 88 5.2 odd 4
160.2.ba.a.107.5 yes 88 160.139 odd 8
640.2.u.a.47.1 88 20.19 odd 2
640.2.u.a.463.1 88 160.117 odd 8
640.2.ba.a.207.22 88 160.149 even 8
640.2.ba.a.303.22 88 20.7 even 4
800.2.v.b.43.7 88 160.43 even 8 inner
800.2.v.b.707.7 88 1.1 even 1 trivial
800.2.bb.b.107.18 88 32.11 odd 8
800.2.bb.b.643.18 88 5.3 odd 4