Properties

Label 800.2.bb.b.107.18
Level $800$
Weight $2$
Character 800.107
Analytic conductor $6.388$
Analytic rank $0$
Dimension $88$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,2,Mod(107,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 5, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.bb (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 107.18
Character \(\chi\) \(=\) 800.107
Dual form 800.2.bb.b.643.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.15485 - 0.816290i) q^{2} +(3.09930 + 1.28377i) q^{3} +(0.667342 - 1.88538i) q^{4} +(4.62714 - 1.04737i) q^{6} -0.906290 q^{7} +(-0.768338 - 2.72207i) q^{8} +(5.83625 + 5.83625i) q^{9} +(0.392432 - 0.947415i) q^{11} +(4.48869 - 4.98663i) q^{12} +(-3.85684 - 1.59755i) q^{13} +(-1.04663 + 0.739795i) q^{14} +(-3.10931 - 2.51639i) q^{16} +(1.95970 - 1.95970i) q^{17} +(11.5040 + 1.97590i) q^{18} +(0.671071 + 1.62011i) q^{19} +(-2.80886 - 1.16347i) q^{21} +(-0.320166 - 1.41446i) q^{22} -1.58299 q^{23} +(1.11321 - 9.42287i) q^{24} +(-5.75812 + 1.30337i) q^{26} +(6.74455 + 16.2828i) q^{27} +(-0.604805 + 1.70870i) q^{28} +(2.34560 + 5.66278i) q^{29} +4.17491i q^{31} +(-5.64488 - 0.367943i) q^{32} +(2.43253 - 2.43253i) q^{33} +(0.663470 - 3.86284i) q^{34} +(14.8983 - 7.10877i) q^{36} +(-3.52354 + 1.45950i) q^{37} +(2.09746 + 1.32319i) q^{38} +(-9.90259 - 9.90259i) q^{39} +(0.655358 - 0.655358i) q^{41} +(-4.19353 + 0.949216i) q^{42} +(-2.55582 - 6.17029i) q^{43} +(-1.52435 - 1.37213i) q^{44} +(-1.82811 + 1.29218i) q^{46} +(-3.43714 - 3.43714i) q^{47} +(-6.40621 - 11.7907i) q^{48} -6.17864 q^{49} +(8.58950 - 3.55789i) q^{51} +(-5.58582 + 6.20548i) q^{52} +(-6.09374 + 2.52411i) q^{53} +(21.0804 + 13.2986i) q^{54} +(0.696336 + 2.46698i) q^{56} +5.88270i q^{57} +(7.33128 + 4.62496i) q^{58} +(-4.29438 + 10.3675i) q^{59} +(-1.24308 + 0.514899i) q^{61} +(3.40793 + 4.82138i) q^{62} +(-5.28933 - 5.28933i) q^{63} +(-6.81931 + 4.18294i) q^{64} +(0.823549 - 4.79484i) q^{66} +(4.24615 - 10.2511i) q^{67} +(-2.38699 - 5.00257i) q^{68} +(-4.90615 - 2.03219i) q^{69} +(5.43676 - 5.43676i) q^{71} +(11.4025 - 20.3709i) q^{72} +5.21568i q^{73} +(-2.87778 + 4.56173i) q^{74} +(3.50235 - 0.184056i) q^{76} +(-0.355657 + 0.858632i) q^{77} +(-19.5194 - 3.35259i) q^{78} -1.61999i q^{79} +34.3625i q^{81} +(0.221876 - 1.29180i) q^{82} +(2.97598 - 7.18465i) q^{83} +(-4.06805 + 4.51933i) q^{84} +(-7.98832 - 5.03945i) q^{86} +20.5619i q^{87} +(-2.88045 - 0.340292i) q^{88} +(-0.483064 + 0.483064i) q^{89} +(3.49541 + 1.44785i) q^{91} +(-1.05639 + 2.98453i) q^{92} +(-5.35962 + 12.9393i) q^{93} +(-6.77507 - 1.16367i) q^{94} +(-17.0228 - 8.38709i) q^{96} +(-2.63970 - 2.63970i) q^{97} +(-7.13538 + 5.04356i) q^{98} +(7.81968 - 3.23902i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{2} + 4 q^{3} - 8 q^{6} + 8 q^{7} - 8 q^{8} - 8 q^{11} + 20 q^{12} + 4 q^{13} - 16 q^{14} - 8 q^{16} + 12 q^{18} - 16 q^{19} - 8 q^{21} + 20 q^{22} + 8 q^{23} + 32 q^{24} - 8 q^{26} - 8 q^{27}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15485 0.816290i 0.816600 0.577204i
\(3\) 3.09930 + 1.28377i 1.78938 + 0.741185i 0.990124 + 0.140194i \(0.0447727\pi\)
0.799256 + 0.600991i \(0.205227\pi\)
\(4\) 0.667342 1.88538i 0.333671 0.942690i
\(5\) 0 0
\(6\) 4.62714 1.04737i 1.88902 0.427585i
\(7\) −0.906290 −0.342545 −0.171273 0.985224i \(-0.554788\pi\)
−0.171273 + 0.985224i \(0.554788\pi\)
\(8\) −0.768338 2.72207i −0.271648 0.962397i
\(9\) 5.83625 + 5.83625i 1.94542 + 1.94542i
\(10\) 0 0
\(11\) 0.392432 0.947415i 0.118323 0.285656i −0.853611 0.520911i \(-0.825592\pi\)
0.971934 + 0.235255i \(0.0755924\pi\)
\(12\) 4.48869 4.98663i 1.29577 1.43952i
\(13\) −3.85684 1.59755i −1.06969 0.443082i −0.222811 0.974862i \(-0.571523\pi\)
−0.846883 + 0.531780i \(0.821523\pi\)
\(14\) −1.04663 + 0.739795i −0.279722 + 0.197718i
\(15\) 0 0
\(16\) −3.10931 2.51639i −0.777327 0.629096i
\(17\) 1.95970 1.95970i 0.475297 0.475297i −0.428327 0.903624i \(-0.640897\pi\)
0.903624 + 0.428327i \(0.140897\pi\)
\(18\) 11.5040 + 1.97590i 2.71153 + 0.465725i
\(19\) 0.671071 + 1.62011i 0.153954 + 0.371678i 0.981973 0.189022i \(-0.0605319\pi\)
−0.828019 + 0.560701i \(0.810532\pi\)
\(20\) 0 0
\(21\) −2.80886 1.16347i −0.612944 0.253890i
\(22\) −0.320166 1.41446i −0.0682596 0.301563i
\(23\) −1.58299 −0.330076 −0.165038 0.986287i \(-0.552775\pi\)
−0.165038 + 0.986287i \(0.552775\pi\)
\(24\) 1.11321 9.42287i 0.227232 1.92343i
\(25\) 0 0
\(26\) −5.75812 + 1.30337i −1.12926 + 0.255611i
\(27\) 6.74455 + 16.2828i 1.29799 + 3.13362i
\(28\) −0.604805 + 1.70870i −0.114297 + 0.322914i
\(29\) 2.34560 + 5.66278i 0.435567 + 1.05155i 0.977463 + 0.211107i \(0.0677068\pi\)
−0.541896 + 0.840446i \(0.682293\pi\)
\(30\) 0 0
\(31\) 4.17491i 0.749836i 0.927058 + 0.374918i \(0.122329\pi\)
−0.927058 + 0.374918i \(0.877671\pi\)
\(32\) −5.64488 0.367943i −0.997882 0.0650438i
\(33\) 2.43253 2.43253i 0.423448 0.423448i
\(34\) 0.663470 3.86284i 0.113784 0.662471i
\(35\) 0 0
\(36\) 14.8983 7.10877i 2.48305 1.18479i
\(37\) −3.52354 + 1.45950i −0.579267 + 0.239940i −0.653025 0.757336i \(-0.726501\pi\)
0.0737587 + 0.997276i \(0.476501\pi\)
\(38\) 2.09746 + 1.32319i 0.340253 + 0.214649i
\(39\) −9.90259 9.90259i −1.58568 1.58568i
\(40\) 0 0
\(41\) 0.655358 0.655358i 0.102350 0.102350i −0.654078 0.756427i \(-0.726943\pi\)
0.756427 + 0.654078i \(0.226943\pi\)
\(42\) −4.19353 + 0.949216i −0.647076 + 0.146467i
\(43\) −2.55582 6.17029i −0.389759 0.940961i −0.989990 0.141134i \(-0.954925\pi\)
0.600232 0.799826i \(-0.295075\pi\)
\(44\) −1.52435 1.37213i −0.229804 0.206857i
\(45\) 0 0
\(46\) −1.82811 + 1.29218i −0.269540 + 0.190521i
\(47\) −3.43714 3.43714i −0.501358 0.501358i 0.410502 0.911860i \(-0.365354\pi\)
−0.911860 + 0.410502i \(0.865354\pi\)
\(48\) −6.40621 11.7907i −0.924656 1.70184i
\(49\) −6.17864 −0.882663
\(50\) 0 0
\(51\) 8.58950 3.55789i 1.20277 0.498204i
\(52\) −5.58582 + 6.20548i −0.774615 + 0.860546i
\(53\) −6.09374 + 2.52411i −0.837040 + 0.346713i −0.759686 0.650290i \(-0.774647\pi\)
−0.0773541 + 0.997004i \(0.524647\pi\)
\(54\) 21.0804 + 13.2986i 2.86868 + 1.80971i
\(55\) 0 0
\(56\) 0.696336 + 2.46698i 0.0930519 + 0.329664i
\(57\) 5.88270i 0.779182i
\(58\) 7.33128 + 4.62496i 0.962645 + 0.607287i
\(59\) −4.29438 + 10.3675i −0.559080 + 1.34974i 0.351415 + 0.936220i \(0.385701\pi\)
−0.910495 + 0.413519i \(0.864299\pi\)
\(60\) 0 0
\(61\) −1.24308 + 0.514899i −0.159160 + 0.0659261i −0.460841 0.887483i \(-0.652452\pi\)
0.301681 + 0.953409i \(0.402452\pi\)
\(62\) 3.40793 + 4.82138i 0.432808 + 0.612316i
\(63\) −5.28933 5.28933i −0.666393 0.666393i
\(64\) −6.81931 + 4.18294i −0.852414 + 0.522867i
\(65\) 0 0
\(66\) 0.823549 4.79484i 0.101372 0.590204i
\(67\) 4.24615 10.2511i 0.518750 1.25237i −0.419922 0.907560i \(-0.637943\pi\)
0.938672 0.344812i \(-0.112057\pi\)
\(68\) −2.38699 5.00257i −0.289465 0.606650i
\(69\) −4.90615 2.03219i −0.590631 0.244647i
\(70\) 0 0
\(71\) 5.43676 5.43676i 0.645224 0.645224i −0.306611 0.951835i \(-0.599195\pi\)
0.951835 + 0.306611i \(0.0991949\pi\)
\(72\) 11.4025 20.3709i 1.34379 2.40073i
\(73\) 5.21568i 0.610449i 0.952280 + 0.305225i \(0.0987315\pi\)
−0.952280 + 0.305225i \(0.901268\pi\)
\(74\) −2.87778 + 4.56173i −0.334535 + 0.530290i
\(75\) 0 0
\(76\) 3.50235 0.184056i 0.401747 0.0211127i
\(77\) −0.355657 + 0.858632i −0.0405309 + 0.0978502i
\(78\) −19.5194 3.35259i −2.21013 0.379606i
\(79\) 1.61999i 0.182263i −0.995839 0.0911315i \(-0.970952\pi\)
0.995839 0.0911315i \(-0.0290484\pi\)
\(80\) 0 0
\(81\) 34.3625i 3.81806i
\(82\) 0.221876 1.29180i 0.0245021 0.142655i
\(83\) 2.97598 7.18465i 0.326656 0.788618i −0.672180 0.740388i \(-0.734642\pi\)
0.998836 0.0482299i \(-0.0153580\pi\)
\(84\) −4.06805 + 4.51933i −0.443861 + 0.493100i
\(85\) 0 0
\(86\) −7.98832 5.03945i −0.861403 0.543418i
\(87\) 20.5619i 2.20446i
\(88\) −2.88045 0.340292i −0.307057 0.0362753i
\(89\) −0.483064 + 0.483064i −0.0512046 + 0.0512046i −0.732245 0.681041i \(-0.761528\pi\)
0.681041 + 0.732245i \(0.261528\pi\)
\(90\) 0 0
\(91\) 3.49541 + 1.44785i 0.366419 + 0.151776i
\(92\) −1.05639 + 2.98453i −0.110137 + 0.311159i
\(93\) −5.35962 + 12.9393i −0.555767 + 1.34174i
\(94\) −6.77507 1.16367i −0.698795 0.120023i
\(95\) 0 0
\(96\) −17.0228 8.38709i −1.73738 0.856004i
\(97\) −2.63970 2.63970i −0.268021 0.268021i 0.560282 0.828302i \(-0.310693\pi\)
−0.828302 + 0.560282i \(0.810693\pi\)
\(98\) −7.13538 + 5.04356i −0.720782 + 0.509476i
\(99\) 7.81968 3.23902i 0.785908 0.325534i
\(100\) 0 0
\(101\) 4.87445 11.7680i 0.485026 1.17096i −0.472168 0.881509i \(-0.656528\pi\)
0.957194 0.289447i \(-0.0934715\pi\)
\(102\) 7.01529 11.1203i 0.694617 1.10108i
\(103\) 2.63961i 0.260089i 0.991508 + 0.130044i \(0.0415120\pi\)
−0.991508 + 0.130044i \(0.958488\pi\)
\(104\) −1.38530 + 11.7260i −0.135840 + 1.14983i
\(105\) 0 0
\(106\) −4.97693 + 7.88922i −0.483402 + 0.766269i
\(107\) −12.3357 + 5.10959i −1.19253 + 0.493963i −0.888579 0.458724i \(-0.848307\pi\)
−0.303953 + 0.952687i \(0.598307\pi\)
\(108\) 35.2002 1.84985i 3.38714 0.178002i
\(109\) 14.7005 6.08914i 1.40805 0.583233i 0.456222 0.889866i \(-0.349202\pi\)
0.951828 + 0.306633i \(0.0992023\pi\)
\(110\) 0 0
\(111\) −12.7942 −1.21437
\(112\) 2.81793 + 2.28057i 0.266270 + 0.215494i
\(113\) −0.619584 0.619584i −0.0582855 0.0582855i 0.677363 0.735649i \(-0.263123\pi\)
−0.735649 + 0.677363i \(0.763123\pi\)
\(114\) 4.80198 + 6.79361i 0.449747 + 0.636280i
\(115\) 0 0
\(116\) 12.2418 0.643334i 1.13662 0.0597321i
\(117\) −13.1857 31.8332i −1.21902 2.94298i
\(118\) 3.50357 + 15.4784i 0.322530 + 1.42490i
\(119\) −1.77606 + 1.77606i −0.162811 + 0.162811i
\(120\) 0 0
\(121\) 7.03458 + 7.03458i 0.639508 + 0.639508i
\(122\) −1.01526 + 1.60934i −0.0919170 + 0.145703i
\(123\) 2.87248 1.18982i 0.259002 0.107282i
\(124\) 7.87128 + 2.78609i 0.706862 + 0.250198i
\(125\) 0 0
\(126\) −10.4260 1.79074i −0.928822 0.159532i
\(127\) 4.08960 4.08960i 0.362894 0.362894i −0.501984 0.864877i \(-0.667396\pi\)
0.864877 + 0.501984i \(0.167396\pi\)
\(128\) −4.46078 + 10.3972i −0.394281 + 0.918990i
\(129\) 22.4046i 1.97262i
\(130\) 0 0
\(131\) −6.23750 15.0586i −0.544973 1.31568i −0.921177 0.389144i \(-0.872771\pi\)
0.376205 0.926537i \(-0.377229\pi\)
\(132\) −2.96291 6.20956i −0.257888 0.540473i
\(133\) −0.608184 1.46829i −0.0527363 0.127317i
\(134\) −3.46422 15.3045i −0.299263 1.32211i
\(135\) 0 0
\(136\) −6.84015 3.82873i −0.586538 0.328311i
\(137\) 13.7858 1.17780 0.588902 0.808205i \(-0.299561\pi\)
0.588902 + 0.808205i \(0.299561\pi\)
\(138\) −7.32471 + 1.65797i −0.623521 + 0.141136i
\(139\) −5.66351 2.34590i −0.480373 0.198977i 0.129339 0.991600i \(-0.458715\pi\)
−0.609711 + 0.792624i \(0.708715\pi\)
\(140\) 0 0
\(141\) −6.24021 15.0652i −0.525521 1.26872i
\(142\) 1.84065 10.7166i 0.154464 0.899316i
\(143\) −3.02709 + 3.02709i −0.253138 + 0.253138i
\(144\) −3.46045 32.8330i −0.288371 2.73608i
\(145\) 0 0
\(146\) 4.25751 + 6.02331i 0.352354 + 0.498493i
\(147\) −19.1494 7.93196i −1.57942 0.654217i
\(148\) 0.400301 + 7.61720i 0.0329045 + 0.626130i
\(149\) −0.117762 + 0.284303i −0.00964745 + 0.0232910i −0.928630 0.371008i \(-0.879012\pi\)
0.918982 + 0.394299i \(0.129012\pi\)
\(150\) 0 0
\(151\) 2.50445 + 2.50445i 0.203809 + 0.203809i 0.801630 0.597821i \(-0.203967\pi\)
−0.597821 + 0.801630i \(0.703967\pi\)
\(152\) 3.89444 3.07149i 0.315880 0.249131i
\(153\) 22.8746 1.84930
\(154\) 0.290163 + 1.28191i 0.0233820 + 0.103299i
\(155\) 0 0
\(156\) −25.2785 + 12.0617i −2.02390 + 0.965710i
\(157\) 21.4257 + 8.87481i 1.70996 + 0.708287i 0.999992 + 0.00404938i \(0.00128896\pi\)
0.709964 + 0.704238i \(0.248711\pi\)
\(158\) −1.32238 1.87084i −0.105203 0.148836i
\(159\) −22.1267 −1.75476
\(160\) 0 0
\(161\) 1.43465 0.113066
\(162\) 28.0498 + 39.6835i 2.20380 + 3.11783i
\(163\) 1.07922 + 0.447027i 0.0845309 + 0.0350138i 0.424548 0.905405i \(-0.360433\pi\)
−0.340017 + 0.940419i \(0.610433\pi\)
\(164\) −0.798250 1.67295i −0.0623328 0.130635i
\(165\) 0 0
\(166\) −2.42795 10.7264i −0.188446 0.832532i
\(167\) 1.33686 0.103450 0.0517248 0.998661i \(-0.483528\pi\)
0.0517248 + 0.998661i \(0.483528\pi\)
\(168\) −1.00889 + 8.53985i −0.0778373 + 0.658863i
\(169\) 3.13062 + 3.13062i 0.240817 + 0.240817i
\(170\) 0 0
\(171\) −5.53882 + 13.3719i −0.423564 + 1.02257i
\(172\) −13.3389 + 0.700991i −1.01708 + 0.0534501i
\(173\) −15.2214 6.30490i −1.15726 0.479352i −0.280298 0.959913i \(-0.590433\pi\)
−0.876962 + 0.480561i \(0.840433\pi\)
\(174\) 16.7844 + 23.7458i 1.27242 + 1.80016i
\(175\) 0 0
\(176\) −3.60425 + 1.95829i −0.271681 + 0.147612i
\(177\) −26.6191 + 26.6191i −2.00081 + 2.00081i
\(178\) −0.163545 + 0.952184i −0.0122582 + 0.0713692i
\(179\) 3.18265 + 7.68360i 0.237883 + 0.574299i 0.997063 0.0765805i \(-0.0244002\pi\)
−0.759181 + 0.650880i \(0.774400\pi\)
\(180\) 0 0
\(181\) 4.55968 + 1.88868i 0.338919 + 0.140385i 0.545650 0.838013i \(-0.316283\pi\)
−0.206732 + 0.978398i \(0.566283\pi\)
\(182\) 5.21853 1.18123i 0.386823 0.0875584i
\(183\) −4.51368 −0.333661
\(184\) 1.21627 + 4.30900i 0.0896646 + 0.317664i
\(185\) 0 0
\(186\) 4.37265 + 19.3179i 0.320619 + 1.41646i
\(187\) −1.08760 2.62570i −0.0795331 0.192010i
\(188\) −8.77406 + 4.18656i −0.639914 + 0.305336i
\(189\) −6.11252 14.7569i −0.444620 1.07341i
\(190\) 0 0
\(191\) 5.55963i 0.402281i 0.979562 + 0.201140i \(0.0644647\pi\)
−0.979562 + 0.201140i \(0.935535\pi\)
\(192\) −26.5050 + 4.20972i −1.91283 + 0.303811i
\(193\) 14.6069 14.6069i 1.05143 1.05143i 0.0528217 0.998604i \(-0.483178\pi\)
0.998604 0.0528217i \(-0.0168215\pi\)
\(194\) −5.20320 0.893688i −0.373568 0.0641631i
\(195\) 0 0
\(196\) −4.12327 + 11.6491i −0.294519 + 0.832077i
\(197\) 17.3956 7.20550i 1.23939 0.513371i 0.335864 0.941910i \(-0.390972\pi\)
0.903523 + 0.428540i \(0.140972\pi\)
\(198\) 6.38656 10.1237i 0.453873 0.719460i
\(199\) 12.1953 + 12.1953i 0.864499 + 0.864499i 0.991857 0.127358i \(-0.0406498\pi\)
−0.127358 + 0.991857i \(0.540650\pi\)
\(200\) 0 0
\(201\) 26.3201 26.3201i 1.85648 1.85648i
\(202\) −3.97682 17.5692i −0.279808 1.23616i
\(203\) −2.12579 5.13212i −0.149202 0.360204i
\(204\) −0.975831 18.5688i −0.0683218 1.30007i
\(205\) 0 0
\(206\) 2.15469 + 3.04835i 0.150124 + 0.212389i
\(207\) −9.23872 9.23872i −0.642135 0.642135i
\(208\) 7.97203 + 14.6726i 0.552761 + 1.01736i
\(209\) 1.79826 0.124388
\(210\) 0 0
\(211\) −21.2722 + 8.81122i −1.46444 + 0.606589i −0.965583 0.260097i \(-0.916245\pi\)
−0.498854 + 0.866686i \(0.666245\pi\)
\(212\) 0.692294 + 13.1735i 0.0475470 + 0.904757i
\(213\) 23.8297 9.87058i 1.63278 0.676321i
\(214\) −10.0749 + 15.9703i −0.688704 + 1.09170i
\(215\) 0 0
\(216\) 39.1408 30.8698i 2.66319 2.10043i
\(217\) 3.78368i 0.256853i
\(218\) 12.0063 19.0319i 0.813169 1.28900i
\(219\) −6.69574 + 16.1649i −0.452456 + 1.09233i
\(220\) 0 0
\(221\) −10.6890 + 4.42752i −0.719018 + 0.297827i
\(222\) −14.7753 + 10.4437i −0.991653 + 0.700938i
\(223\) −15.9419 15.9419i −1.06755 1.06755i −0.997547 0.0700048i \(-0.977699\pi\)
−0.0700048 0.997547i \(-0.522301\pi\)
\(224\) 5.11589 + 0.333463i 0.341820 + 0.0222804i
\(225\) 0 0
\(226\) −1.22128 0.209764i −0.0812386 0.0139533i
\(227\) −7.84063 + 18.9290i −0.520401 + 1.25636i 0.417253 + 0.908790i \(0.362993\pi\)
−0.937654 + 0.347569i \(0.887007\pi\)
\(228\) 11.0911 + 3.92577i 0.734527 + 0.259990i
\(229\) 23.0497 + 9.54752i 1.52317 + 0.630918i 0.978224 0.207553i \(-0.0665500\pi\)
0.544946 + 0.838471i \(0.316550\pi\)
\(230\) 0 0
\(231\) −2.20457 + 2.20457i −0.145050 + 0.145050i
\(232\) 13.6123 10.7358i 0.893689 0.704841i
\(233\) 13.5423i 0.887185i 0.896229 + 0.443593i \(0.146296\pi\)
−0.896229 + 0.443593i \(0.853704\pi\)
\(234\) −41.2126 25.9991i −2.69415 1.69961i
\(235\) 0 0
\(236\) 16.6809 + 15.0152i 1.08584 + 0.977408i
\(237\) 2.07969 5.02083i 0.135091 0.326138i
\(238\) −0.601296 + 3.50085i −0.0389762 + 0.226926i
\(239\) 18.1767i 1.17575i −0.808950 0.587877i \(-0.799964\pi\)
0.808950 0.587877i \(-0.200036\pi\)
\(240\) 0 0
\(241\) 3.95583i 0.254818i −0.991850 0.127409i \(-0.959334\pi\)
0.991850 0.127409i \(-0.0406660\pi\)
\(242\) 13.8661 + 2.38161i 0.891348 + 0.153096i
\(243\) −23.8800 + 57.6513i −1.53190 + 3.69833i
\(244\) 0.141223 + 2.68729i 0.00904086 + 0.172036i
\(245\) 0 0
\(246\) 2.34603 3.71883i 0.149578 0.237104i
\(247\) 7.32056i 0.465796i
\(248\) 11.3644 3.20774i 0.721639 0.203692i
\(249\) 18.4469 18.4469i 1.16902 1.16902i
\(250\) 0 0
\(251\) 9.99284 + 4.13917i 0.630743 + 0.261262i 0.675069 0.737755i \(-0.264114\pi\)
−0.0443259 + 0.999017i \(0.514114\pi\)
\(252\) −13.5022 + 6.44260i −0.850558 + 0.405846i
\(253\) −0.621215 + 1.49975i −0.0390555 + 0.0942882i
\(254\) 1.38456 8.06116i 0.0868753 0.505802i
\(255\) 0 0
\(256\) 3.33560 + 15.6484i 0.208475 + 0.978028i
\(257\) 6.79396 + 6.79396i 0.423795 + 0.423795i 0.886508 0.462713i \(-0.153124\pi\)
−0.462713 + 0.886508i \(0.653124\pi\)
\(258\) −18.2887 25.8739i −1.13860 1.61084i
\(259\) 3.19335 1.32273i 0.198425 0.0821903i
\(260\) 0 0
\(261\) −19.3599 + 46.7390i −1.19835 + 2.89307i
\(262\) −19.4956 12.2988i −1.20444 0.759824i
\(263\) 23.6751i 1.45987i 0.683517 + 0.729934i \(0.260449\pi\)
−0.683517 + 0.729934i \(0.739551\pi\)
\(264\) −8.49050 4.75250i −0.522554 0.292496i
\(265\) 0 0
\(266\) −1.90091 1.19919i −0.116552 0.0735272i
\(267\) −2.11730 + 0.877014i −0.129577 + 0.0536724i
\(268\) −16.4936 14.8466i −1.00751 0.906900i
\(269\) −18.3200 + 7.58841i −1.11699 + 0.462674i −0.863341 0.504622i \(-0.831632\pi\)
−0.253653 + 0.967295i \(0.581632\pi\)
\(270\) 0 0
\(271\) −5.20237 −0.316021 −0.158011 0.987437i \(-0.550508\pi\)
−0.158011 + 0.987437i \(0.550508\pi\)
\(272\) −11.0247 + 1.16195i −0.668469 + 0.0704536i
\(273\) 8.97461 + 8.97461i 0.543168 + 0.543168i
\(274\) 15.9205 11.2532i 0.961794 0.679833i
\(275\) 0 0
\(276\) −7.10554 + 7.89378i −0.427703 + 0.475150i
\(277\) 3.17320 + 7.66078i 0.190659 + 0.460292i 0.990084 0.140474i \(-0.0448626\pi\)
−0.799425 + 0.600765i \(0.794863\pi\)
\(278\) −8.45542 + 1.91391i −0.507122 + 0.114788i
\(279\) −24.3658 + 24.3658i −1.45874 + 1.45874i
\(280\) 0 0
\(281\) 5.30131 + 5.30131i 0.316250 + 0.316250i 0.847325 0.531075i \(-0.178212\pi\)
−0.531075 + 0.847325i \(0.678212\pi\)
\(282\) −19.5041 12.3042i −1.16145 0.732704i
\(283\) −8.45255 + 3.50116i −0.502452 + 0.208122i −0.619489 0.785005i \(-0.712660\pi\)
0.117037 + 0.993128i \(0.462660\pi\)
\(284\) −6.62217 13.8785i −0.392954 0.823539i
\(285\) 0 0
\(286\) −1.02484 + 5.96681i −0.0606003 + 0.352825i
\(287\) −0.593944 + 0.593944i −0.0350594 + 0.0350594i
\(288\) −30.7975 35.0923i −1.81476 2.06783i
\(289\) 9.31915i 0.548185i
\(290\) 0 0
\(291\) −4.79244 11.5700i −0.280938 0.678244i
\(292\) 9.83354 + 3.48064i 0.575464 + 0.203689i
\(293\) 0.403100 + 0.973169i 0.0235493 + 0.0568532i 0.935217 0.354076i \(-0.115204\pi\)
−0.911667 + 0.410929i \(0.865204\pi\)
\(294\) −28.5894 + 6.47129i −1.66737 + 0.377414i
\(295\) 0 0
\(296\) 6.68013 + 8.46993i 0.388274 + 0.492305i
\(297\) 18.0733 1.04872
\(298\) 0.0960764 + 0.424455i 0.00556556 + 0.0245880i
\(299\) 6.10533 + 2.52891i 0.353080 + 0.146251i
\(300\) 0 0
\(301\) 2.31631 + 5.59207i 0.133510 + 0.322322i
\(302\) 4.93660 + 0.847898i 0.284070 + 0.0487910i
\(303\) 30.2147 30.2147i 1.73579 1.73579i
\(304\) 1.99025 6.72609i 0.114149 0.385768i
\(305\) 0 0
\(306\) 26.4167 18.6723i 1.51014 1.06742i
\(307\) 9.26288 + 3.83681i 0.528661 + 0.218978i 0.631017 0.775769i \(-0.282638\pi\)
−0.102356 + 0.994748i \(0.532638\pi\)
\(308\) 1.38150 + 1.24355i 0.0787184 + 0.0708578i
\(309\) −3.38866 + 8.18095i −0.192774 + 0.465398i
\(310\) 0 0
\(311\) −16.6804 16.6804i −0.945856 0.945856i 0.0527517 0.998608i \(-0.483201\pi\)
−0.998608 + 0.0527517i \(0.983201\pi\)
\(312\) −19.3470 + 34.5641i −1.09531 + 1.95680i
\(313\) 18.8189 1.06371 0.531854 0.846836i \(-0.321496\pi\)
0.531854 + 0.846836i \(0.321496\pi\)
\(314\) 31.9878 7.24052i 1.80518 0.408606i
\(315\) 0 0
\(316\) −3.05429 1.08109i −0.171817 0.0608159i
\(317\) −8.55459 3.54343i −0.480474 0.199019i 0.129282 0.991608i \(-0.458733\pi\)
−0.609756 + 0.792589i \(0.708733\pi\)
\(318\) −25.5529 + 18.0618i −1.43294 + 1.01285i
\(319\) 6.28549 0.351920
\(320\) 0 0
\(321\) −44.7914 −2.50001
\(322\) 1.65680 1.17109i 0.0923296 0.0652621i
\(323\) 4.49002 + 1.85983i 0.249832 + 0.103484i
\(324\) 64.7864 + 22.9316i 3.59925 + 1.27398i
\(325\) 0 0
\(326\) 1.61123 0.364707i 0.0892380 0.0201993i
\(327\) 53.3782 2.95182
\(328\) −2.28746 1.28039i −0.126304 0.0706978i
\(329\) 3.11504 + 3.11504i 0.171738 + 0.171738i
\(330\) 0 0
\(331\) 2.48736 6.00502i 0.136718 0.330066i −0.840661 0.541561i \(-0.817833\pi\)
0.977379 + 0.211496i \(0.0678334\pi\)
\(332\) −11.5598 10.4055i −0.634426 0.571074i
\(333\) −29.0823 12.0463i −1.59370 0.660132i
\(334\) 1.54387 1.09127i 0.0844769 0.0597115i
\(335\) 0 0
\(336\) 5.80588 + 10.6858i 0.316737 + 0.582956i
\(337\) 18.5988 18.5988i 1.01314 1.01314i 0.0132301 0.999912i \(-0.495789\pi\)
0.999912 0.0132301i \(-0.00421140\pi\)
\(338\) 6.17088 + 1.05989i 0.335652 + 0.0576506i
\(339\) −1.12487 2.71568i −0.0610946 0.147495i
\(340\) 0 0
\(341\) 3.95537 + 1.63837i 0.214195 + 0.0887226i
\(342\) 4.51885 + 19.9638i 0.244351 + 1.07952i
\(343\) 11.9437 0.644897
\(344\) −14.8322 + 11.6980i −0.799700 + 0.630713i
\(345\) 0 0
\(346\) −22.7250 + 5.14386i −1.22170 + 0.276535i
\(347\) −3.21973 7.77311i −0.172844 0.417283i 0.813590 0.581439i \(-0.197510\pi\)
−0.986434 + 0.164156i \(0.947510\pi\)
\(348\) 38.7669 + 13.7218i 2.07812 + 0.735566i
\(349\) 6.91854 + 16.7028i 0.370341 + 0.894082i 0.993692 + 0.112140i \(0.0357706\pi\)
−0.623352 + 0.781942i \(0.714229\pi\)
\(350\) 0 0
\(351\) 73.5749i 3.92714i
\(352\) −2.56382 + 5.20364i −0.136652 + 0.277355i
\(353\) −16.1883 + 16.1883i −0.861617 + 0.861617i −0.991526 0.129909i \(-0.958532\pi\)
0.129909 + 0.991526i \(0.458532\pi\)
\(354\) −9.01208 + 52.4699i −0.478987 + 2.78874i
\(355\) 0 0
\(356\) 0.588389 + 1.23313i 0.0311846 + 0.0653556i
\(357\) −7.78457 + 3.22447i −0.412003 + 0.170657i
\(358\) 9.94752 + 6.27542i 0.525743 + 0.331666i
\(359\) 4.49159 + 4.49159i 0.237057 + 0.237057i 0.815630 0.578573i \(-0.196390\pi\)
−0.578573 + 0.815630i \(0.696390\pi\)
\(360\) 0 0
\(361\) 11.2606 11.2606i 0.592664 0.592664i
\(362\) 6.80745 1.54088i 0.357792 0.0809871i
\(363\) 12.7715 + 30.8331i 0.670328 + 1.61832i
\(364\) 5.06237 5.62397i 0.265341 0.294776i
\(365\) 0 0
\(366\) −5.21260 + 3.68447i −0.272467 + 0.192590i
\(367\) −4.32797 4.32797i −0.225918 0.225918i 0.585067 0.810985i \(-0.301068\pi\)
−0.810985 + 0.585067i \(0.801068\pi\)
\(368\) 4.92200 + 3.98341i 0.256577 + 0.207650i
\(369\) 7.64966 0.398226
\(370\) 0 0
\(371\) 5.52269 2.28757i 0.286724 0.118765i
\(372\) 20.8187 + 18.7398i 1.07940 + 0.971616i
\(373\) −2.10545 + 0.872108i −0.109016 + 0.0451560i −0.436525 0.899692i \(-0.643791\pi\)
0.327509 + 0.944848i \(0.393791\pi\)
\(374\) −3.39934 2.14448i −0.175776 0.110889i
\(375\) 0 0
\(376\) −6.71524 + 11.9970i −0.346312 + 0.618699i
\(377\) 25.5877i 1.31783i
\(378\) −19.1049 12.0524i −0.982652 0.619909i
\(379\) 12.3034 29.7030i 0.631982 1.52574i −0.205146 0.978731i \(-0.565767\pi\)
0.837128 0.547008i \(-0.184233\pi\)
\(380\) 0 0
\(381\) 17.9250 7.42478i 0.918326 0.380383i
\(382\) 4.53827 + 6.42052i 0.232198 + 0.328502i
\(383\) −16.7729 16.7729i −0.857057 0.857057i 0.133933 0.990990i \(-0.457239\pi\)
−0.990990 + 0.133933i \(0.957239\pi\)
\(384\) −27.1729 + 26.4973i −1.38666 + 1.35219i
\(385\) 0 0
\(386\) 4.94526 28.7921i 0.251707 1.46548i
\(387\) 21.0950 50.9278i 1.07232 2.58880i
\(388\) −6.73841 + 3.21525i −0.342091 + 0.163230i
\(389\) −22.8738 9.47462i −1.15975 0.480382i −0.281955 0.959428i \(-0.590983\pi\)
−0.877790 + 0.479045i \(0.840983\pi\)
\(390\) 0 0
\(391\) −3.10218 + 3.10218i −0.156884 + 0.156884i
\(392\) 4.74728 + 16.8187i 0.239774 + 0.849472i
\(393\) 54.6787i 2.75818i
\(394\) 14.2075 22.5211i 0.715764 1.13460i
\(395\) 0 0
\(396\) −0.888374 16.9046i −0.0446425 0.849488i
\(397\) −6.34300 + 15.3133i −0.318346 + 0.768555i 0.680996 + 0.732287i \(0.261547\pi\)
−0.999342 + 0.0362680i \(0.988453\pi\)
\(398\) 24.0385 + 4.12879i 1.20494 + 0.206957i
\(399\) 5.33142i 0.266905i
\(400\) 0 0
\(401\) 12.2631i 0.612389i −0.951969 0.306195i \(-0.900944\pi\)
0.951969 0.306195i \(-0.0990558\pi\)
\(402\) 8.91087 51.8806i 0.444434 2.58757i
\(403\) 6.66964 16.1019i 0.332238 0.802095i
\(404\) −18.9341 17.0434i −0.942009 0.847943i
\(405\) 0 0
\(406\) −6.64427 4.19155i −0.329749 0.208023i
\(407\) 3.91101i 0.193861i
\(408\) −16.2844 20.6475i −0.806200 1.02221i
\(409\) 15.5820 15.5820i 0.770479 0.770479i −0.207711 0.978190i \(-0.566601\pi\)
0.978190 + 0.207711i \(0.0666014\pi\)
\(410\) 0 0
\(411\) 42.7264 + 17.6978i 2.10754 + 0.872970i
\(412\) 4.97667 + 1.76153i 0.245183 + 0.0867842i
\(413\) 3.89195 9.39600i 0.191510 0.462347i
\(414\) −18.2108 3.12783i −0.895011 0.153725i
\(415\) 0 0
\(416\) 21.1836 + 10.4371i 1.03861 + 0.511720i
\(417\) −14.5413 14.5413i −0.712090 0.712090i
\(418\) 2.07672 1.46790i 0.101576 0.0717975i
\(419\) −27.6906 + 11.4698i −1.35278 + 0.560338i −0.937064 0.349158i \(-0.886468\pi\)
−0.415712 + 0.909496i \(0.636468\pi\)
\(420\) 0 0
\(421\) 10.5101 25.3736i 0.512231 1.23663i −0.430352 0.902661i \(-0.641610\pi\)
0.942582 0.333973i \(-0.108390\pi\)
\(422\) −17.3736 + 27.5399i −0.845733 + 1.34062i
\(423\) 40.1200i 1.95070i
\(424\) 11.5529 + 14.6482i 0.561056 + 0.711380i
\(425\) 0 0
\(426\) 19.4624 30.8509i 0.942955 1.49473i
\(427\) 1.12659 0.466648i 0.0545194 0.0225827i
\(428\) 1.40142 + 26.6672i 0.0677403 + 1.28901i
\(429\) −13.2679 + 5.49576i −0.640583 + 0.265338i
\(430\) 0 0
\(431\) 11.3673 0.547542 0.273771 0.961795i \(-0.411729\pi\)
0.273771 + 0.961795i \(0.411729\pi\)
\(432\) 20.0029 67.6001i 0.962390 3.25241i
\(433\) 16.2533 + 16.2533i 0.781085 + 0.781085i 0.980014 0.198929i \(-0.0637462\pi\)
−0.198929 + 0.980014i \(0.563746\pi\)
\(434\) −3.08858 4.36957i −0.148256 0.209746i
\(435\) 0 0
\(436\) −1.67008 31.7795i −0.0799825 1.52196i
\(437\) −1.06230 2.56461i −0.0508165 0.122682i
\(438\) 5.46272 + 24.1337i 0.261019 + 1.15315i
\(439\) 24.2793 24.2793i 1.15879 1.15879i 0.174052 0.984737i \(-0.444314\pi\)
0.984737 0.174052i \(-0.0556860\pi\)
\(440\) 0 0
\(441\) −36.0601 36.0601i −1.71715 1.71715i
\(442\) −8.72999 + 13.8384i −0.415243 + 0.658225i
\(443\) −20.6162 + 8.53951i −0.979505 + 0.405724i −0.814242 0.580525i \(-0.802847\pi\)
−0.165263 + 0.986250i \(0.552847\pi\)
\(444\) −8.53808 + 24.1218i −0.405200 + 1.14477i
\(445\) 0 0
\(446\) −31.4237 5.39726i −1.48796 0.255568i
\(447\) −0.729960 + 0.729960i −0.0345259 + 0.0345259i
\(448\) 6.18027 3.79095i 0.291990 0.179106i
\(449\) 1.60758i 0.0758663i −0.999280 0.0379332i \(-0.987923\pi\)
0.999280 0.0379332i \(-0.0120774\pi\)
\(450\) 0 0
\(451\) −0.363712 0.878079i −0.0171265 0.0413471i
\(452\) −1.58162 + 0.754676i −0.0743933 + 0.0354970i
\(453\) 4.54689 + 10.9772i 0.213631 + 0.515752i
\(454\) 6.39679 + 28.2603i 0.300216 + 1.32632i
\(455\) 0 0
\(456\) 16.0131 4.51990i 0.749882 0.211664i
\(457\) 4.76573 0.222932 0.111466 0.993768i \(-0.464445\pi\)
0.111466 + 0.993768i \(0.464445\pi\)
\(458\) 34.4125 7.78935i 1.60799 0.363973i
\(459\) 45.1267 + 18.6921i 2.10633 + 0.872472i
\(460\) 0 0
\(461\) 1.89178 + 4.56715i 0.0881088 + 0.212714i 0.961792 0.273782i \(-0.0882748\pi\)
−0.873683 + 0.486496i \(0.838275\pi\)
\(462\) −0.746374 + 4.34551i −0.0347244 + 0.202172i
\(463\) 12.2119 12.2119i 0.567536 0.567536i −0.363901 0.931437i \(-0.618555\pi\)
0.931437 + 0.363901i \(0.118555\pi\)
\(464\) 6.95655 23.5098i 0.322950 1.09141i
\(465\) 0 0
\(466\) 11.0544 + 15.6393i 0.512087 + 0.724475i
\(467\) −14.7734 6.11934i −0.683631 0.283169i 0.0137126 0.999906i \(-0.495635\pi\)
−0.697344 + 0.716737i \(0.745635\pi\)
\(468\) −68.8170 + 3.61649i −3.18107 + 0.167172i
\(469\) −3.84824 + 9.29047i −0.177695 + 0.428994i
\(470\) 0 0
\(471\) 55.0113 + 55.0113i 2.53479 + 2.53479i
\(472\) 31.5207 + 3.72382i 1.45086 + 0.171402i
\(473\) −6.84881 −0.314909
\(474\) −1.69672 7.49592i −0.0779330 0.344299i
\(475\) 0 0
\(476\) 2.16330 + 4.53377i 0.0991548 + 0.207805i
\(477\) −50.2960 20.8333i −2.30289 0.953890i
\(478\) −14.8375 20.9913i −0.678650 0.960121i
\(479\) 28.6370 1.30846 0.654229 0.756297i \(-0.272993\pi\)
0.654229 + 0.756297i \(0.272993\pi\)
\(480\) 0 0
\(481\) 15.9214 0.725951
\(482\) −3.22910 4.56838i −0.147082 0.208084i
\(483\) 4.44639 + 1.84176i 0.202318 + 0.0838028i
\(484\) 17.9573 8.56838i 0.816242 0.389472i
\(485\) 0 0
\(486\) 19.4825 + 86.0714i 0.883744 + 3.90428i
\(487\) −25.7000 −1.16458 −0.582289 0.812982i \(-0.697843\pi\)
−0.582289 + 0.812982i \(0.697843\pi\)
\(488\) 2.35669 + 2.98812i 0.106683 + 0.135266i
\(489\) 2.77094 + 2.77094i 0.125306 + 0.125306i
\(490\) 0 0
\(491\) −1.37835 + 3.32764i −0.0622042 + 0.150174i −0.951925 0.306330i \(-0.900899\pi\)
0.889721 + 0.456505i \(0.150899\pi\)
\(492\) −0.326335 6.20972i −0.0147123 0.279956i
\(493\) 15.6940 + 6.50068i 0.706824 + 0.292776i
\(494\) −5.97570 8.45413i −0.268859 0.380369i
\(495\) 0 0
\(496\) 10.5057 12.9811i 0.471719 0.582868i
\(497\) −4.92728 + 4.92728i −0.221019 + 0.221019i
\(498\) 6.24532 36.3613i 0.279860 1.62939i
\(499\) −10.7030 25.8393i −0.479131 1.15673i −0.960017 0.279942i \(-0.909685\pi\)
0.480885 0.876783i \(-0.340315\pi\)
\(500\) 0 0
\(501\) 4.14333 + 1.71623i 0.185111 + 0.0766753i
\(502\) 14.9190 3.37695i 0.665866 0.150721i
\(503\) 28.9180 1.28939 0.644695 0.764440i \(-0.276985\pi\)
0.644695 + 0.764440i \(0.276985\pi\)
\(504\) −10.3339 + 18.4619i −0.460310 + 0.822359i
\(505\) 0 0
\(506\) 0.506819 + 2.23907i 0.0225309 + 0.0995387i
\(507\) 5.68372 + 13.7217i 0.252423 + 0.609403i
\(508\) −4.98129 10.4396i −0.221009 0.463183i
\(509\) 13.3736 + 32.2866i 0.592772 + 1.43108i 0.880815 + 0.473461i \(0.156996\pi\)
−0.288042 + 0.957618i \(0.593004\pi\)
\(510\) 0 0
\(511\) 4.72692i 0.209106i
\(512\) 16.6258 + 15.3487i 0.734762 + 0.678325i
\(513\) −21.8538 + 21.8538i −0.964869 + 0.964869i
\(514\) 13.3918 + 2.30014i 0.590688 + 0.101455i
\(515\) 0 0
\(516\) −42.2413 14.9516i −1.85957 0.658206i
\(517\) −4.60524 + 1.90755i −0.202538 + 0.0838940i
\(518\) 2.60810 4.13425i 0.114593 0.181648i
\(519\) −39.0815 39.0815i −1.71549 1.71549i
\(520\) 0 0
\(521\) 7.57884 7.57884i 0.332035 0.332035i −0.521324 0.853359i \(-0.674562\pi\)
0.853359 + 0.521324i \(0.174562\pi\)
\(522\) 15.7948 + 69.7796i 0.691320 + 3.05417i
\(523\) 4.34605 + 10.4923i 0.190039 + 0.458796i 0.989967 0.141301i \(-0.0451286\pi\)
−0.799927 + 0.600097i \(0.795129\pi\)
\(524\) −32.5538 + 1.71077i −1.42212 + 0.0747355i
\(525\) 0 0
\(526\) 19.3257 + 27.3411i 0.842642 + 1.19213i
\(527\) 8.18157 + 8.18157i 0.356395 + 0.356395i
\(528\) −13.6846 + 1.44230i −0.595548 + 0.0627681i
\(529\) −20.4941 −0.891050
\(530\) 0 0
\(531\) −85.5707 + 35.4445i −3.71345 + 1.53816i
\(532\) −3.17414 + 0.166808i −0.137617 + 0.00723206i
\(533\) −3.57458 + 1.48064i −0.154832 + 0.0641336i
\(534\) −1.72926 + 2.74115i −0.0748324 + 0.118621i
\(535\) 0 0
\(536\) −31.1667 3.68199i −1.34620 0.159038i
\(537\) 27.8996i 1.20395i
\(538\) −14.9625 + 23.7179i −0.645079 + 1.02255i
\(539\) −2.42470 + 5.85373i −0.104439 + 0.252138i
\(540\) 0 0
\(541\) 11.7217 4.85528i 0.503955 0.208745i −0.116198 0.993226i \(-0.537071\pi\)
0.620153 + 0.784481i \(0.287071\pi\)
\(542\) −6.00793 + 4.24664i −0.258063 + 0.182409i
\(543\) 11.7072 + 11.7072i 0.502403 + 0.502403i
\(544\) −11.7833 + 10.3412i −0.505206 + 0.443375i
\(545\) 0 0
\(546\) 17.6902 + 3.03842i 0.757070 + 0.130032i
\(547\) −12.2962 + 29.6855i −0.525746 + 1.26926i 0.408541 + 0.912740i \(0.366038\pi\)
−0.934287 + 0.356522i \(0.883962\pi\)
\(548\) 9.19987 25.9915i 0.392999 1.11030i
\(549\) −10.2600 4.24983i −0.437886 0.181378i
\(550\) 0 0
\(551\) −7.60026 + 7.60026i −0.323782 + 0.323782i
\(552\) −1.76219 + 14.9163i −0.0750038 + 0.634879i
\(553\) 1.46818i 0.0624333i
\(554\) 9.91798 + 6.25678i 0.421374 + 0.265825i
\(555\) 0 0
\(556\) −8.20241 + 9.11234i −0.347860 + 0.386449i
\(557\) 12.4244 29.9952i 0.526440 1.27094i −0.407400 0.913250i \(-0.633565\pi\)
0.933841 0.357689i \(-0.116435\pi\)
\(558\) −8.24922 + 48.0283i −0.349217 + 2.03320i
\(559\) 27.8809i 1.17923i
\(560\) 0 0
\(561\) 9.53404i 0.402528i
\(562\) 10.4496 + 1.79480i 0.440790 + 0.0757089i
\(563\) 0.242757 0.586068i 0.0102310 0.0246998i −0.918681 0.394999i \(-0.870745\pi\)
0.928912 + 0.370299i \(0.120745\pi\)
\(564\) −32.5680 + 1.71152i −1.37136 + 0.0720680i
\(565\) 0 0
\(566\) −6.90344 + 10.9430i −0.290173 + 0.459970i
\(567\) 31.1424i 1.30786i
\(568\) −18.9765 10.6220i −0.796236 0.445688i
\(569\) −0.0516248 + 0.0516248i −0.00216422 + 0.00216422i −0.708188 0.706024i \(-0.750487\pi\)
0.706024 + 0.708188i \(0.250487\pi\)
\(570\) 0 0
\(571\) −23.4324 9.70604i −0.980617 0.406185i −0.165963 0.986132i \(-0.553073\pi\)
−0.814654 + 0.579947i \(0.803073\pi\)
\(572\) 3.68711 + 7.72732i 0.154166 + 0.323096i
\(573\) −7.13729 + 17.2309i −0.298164 + 0.719833i
\(574\) −0.201084 + 1.17074i −0.00839308 + 0.0488659i
\(575\) 0 0
\(576\) −64.2119 15.3866i −2.67550 0.641107i
\(577\) −0.380039 0.380039i −0.0158212 0.0158212i 0.699152 0.714973i \(-0.253561\pi\)
−0.714973 + 0.699152i \(0.753561\pi\)
\(578\) 7.60713 + 10.7622i 0.316415 + 0.447648i
\(579\) 64.0229 26.5192i 2.66070 1.10210i
\(580\) 0 0
\(581\) −2.69710 + 6.51137i −0.111894 + 0.270137i
\(582\) −14.9790 9.44952i −0.620899 0.391695i
\(583\) 6.76384i 0.280130i
\(584\) 14.1974 4.00740i 0.587494 0.165828i
\(585\) 0 0
\(586\) 1.25991 + 0.794815i 0.0520463 + 0.0328335i
\(587\) −37.8003 + 15.6574i −1.56019 + 0.646250i −0.985122 0.171858i \(-0.945023\pi\)
−0.575065 + 0.818108i \(0.695023\pi\)
\(588\) −27.7340 + 30.8106i −1.14373 + 1.27061i
\(589\) −6.76380 + 2.80166i −0.278698 + 0.115440i
\(590\) 0 0
\(591\) 63.1644 2.59824
\(592\) 14.6284 + 4.32856i 0.601225 + 0.177903i
\(593\) −22.6847 22.6847i −0.931549 0.931549i 0.0662543 0.997803i \(-0.478895\pi\)
−0.997803 + 0.0662543i \(0.978895\pi\)
\(594\) 20.8719 14.7531i 0.856386 0.605326i
\(595\) 0 0
\(596\) 0.457431 + 0.411754i 0.0187371 + 0.0168661i
\(597\) 22.1408 + 53.4526i 0.906162 + 2.18767i
\(598\) 9.11504 2.06321i 0.372742 0.0843710i
\(599\) −17.4180 + 17.4180i −0.711682 + 0.711682i −0.966887 0.255205i \(-0.917857\pi\)
0.255205 + 0.966887i \(0.417857\pi\)
\(600\) 0 0
\(601\) 24.9826 + 24.9826i 1.01906 + 1.01906i 0.999815 + 0.0192475i \(0.00612705\pi\)
0.0192475 + 0.999815i \(0.493873\pi\)
\(602\) 7.23973 + 4.56720i 0.295070 + 0.186145i
\(603\) 84.6096 35.0465i 3.44557 1.42720i
\(604\) 6.39315 3.05051i 0.260134 0.124123i
\(605\) 0 0
\(606\) 10.2294 59.5573i 0.415541 2.41935i
\(607\) 12.3157 12.3157i 0.499877 0.499877i −0.411522 0.911400i \(-0.635003\pi\)
0.911400 + 0.411522i \(0.135003\pi\)
\(608\) −3.19200 9.39222i −0.129453 0.380905i
\(609\) 18.6350i 0.755128i
\(610\) 0 0
\(611\) 7.76547 + 18.7475i 0.314157 + 0.758443i
\(612\) 15.2652 43.1273i 0.617059 1.74332i
\(613\) 2.90525 + 7.01389i 0.117342 + 0.283288i 0.971628 0.236515i \(-0.0760052\pi\)
−0.854286 + 0.519803i \(0.826005\pi\)
\(614\) 13.8292 3.13027i 0.558100 0.126327i
\(615\) 0 0
\(616\) 2.61052 + 0.308403i 0.105181 + 0.0124259i
\(617\) −10.1074 −0.406909 −0.203455 0.979084i \(-0.565217\pi\)
−0.203455 + 0.979084i \(0.565217\pi\)
\(618\) 2.76464 + 12.2139i 0.111210 + 0.491314i
\(619\) −43.7508 18.1222i −1.75849 0.728392i −0.996754 0.0805075i \(-0.974346\pi\)
−0.761739 0.647884i \(-0.775654\pi\)
\(620\) 0 0
\(621\) −10.6765 25.7755i −0.428435 1.03433i
\(622\) −32.8792 5.64725i −1.31834 0.226434i
\(623\) 0.437795 0.437795i 0.0175399 0.0175399i
\(624\) 5.87147 + 55.7089i 0.235047 + 2.23014i
\(625\) 0 0
\(626\) 21.7330 15.3617i 0.868624 0.613976i
\(627\) 5.57335 + 2.30856i 0.222578 + 0.0921949i
\(628\) 31.0306 34.4730i 1.23826 1.37562i
\(629\) −4.04490 + 9.76526i −0.161281 + 0.389367i
\(630\) 0 0
\(631\) 11.1608 + 11.1608i 0.444306 + 0.444306i 0.893456 0.449150i \(-0.148273\pi\)
−0.449150 + 0.893456i \(0.648273\pi\)
\(632\) −4.40972 + 1.24470i −0.175409 + 0.0495115i
\(633\) −77.2403 −3.07003
\(634\) −12.7717 + 2.89091i −0.507229 + 0.114813i
\(635\) 0 0
\(636\) −14.7661 + 41.7172i −0.585513 + 1.65419i
\(637\) 23.8300 + 9.87071i 0.944179 + 0.391092i
\(638\) 7.25878 5.13078i 0.287378 0.203130i
\(639\) 63.4606 2.51046
\(640\) 0 0
\(641\) 8.01643 0.316630 0.158315 0.987389i \(-0.449394\pi\)
0.158315 + 0.987389i \(0.449394\pi\)
\(642\) −51.7272 + 36.5627i −2.04151 + 1.44302i
\(643\) 10.6659 + 4.41795i 0.420621 + 0.174227i 0.582947 0.812510i \(-0.301900\pi\)
−0.162326 + 0.986737i \(0.551900\pi\)
\(644\) 0.957399 2.70485i 0.0377268 0.106586i
\(645\) 0 0
\(646\) 6.70345 1.51734i 0.263744 0.0596990i
\(647\) −5.34896 −0.210289 −0.105145 0.994457i \(-0.533531\pi\)
−0.105145 + 0.994457i \(0.533531\pi\)
\(648\) 93.5372 26.4020i 3.67449 1.03717i
\(649\) 8.13711 + 8.13711i 0.319410 + 0.319410i
\(650\) 0 0
\(651\) 4.85737 11.7267i 0.190375 0.459607i
\(652\) 1.56302 1.73642i 0.0612127 0.0680033i
\(653\) 7.21702 + 2.98939i 0.282424 + 0.116984i 0.519399 0.854532i \(-0.326156\pi\)
−0.236975 + 0.971516i \(0.576156\pi\)
\(654\) 61.6436 43.5721i 2.41046 1.70380i
\(655\) 0 0
\(656\) −3.68684 + 0.388577i −0.143947 + 0.0151714i
\(657\) −30.4400 + 30.4400i −1.18758 + 1.18758i
\(658\) 6.14017 + 1.05462i 0.239369 + 0.0411134i
\(659\) −15.6674 37.8244i −0.610314 1.47343i −0.862657 0.505790i \(-0.831201\pi\)
0.252343 0.967638i \(-0.418799\pi\)
\(660\) 0 0
\(661\) 12.8189 + 5.30974i 0.498596 + 0.206525i 0.617786 0.786346i \(-0.288030\pi\)
−0.119190 + 0.992871i \(0.538030\pi\)
\(662\) −2.02932 8.96529i −0.0788716 0.348446i
\(663\) −38.8122 −1.50734
\(664\) −21.8437 2.58058i −0.847698 0.100146i
\(665\) 0 0
\(666\) −43.4188 + 9.82796i −1.68245 + 0.380826i
\(667\) −3.71306 8.96412i −0.143770 0.347092i
\(668\) 0.892145 2.52049i 0.0345181 0.0975208i
\(669\) −28.9430 69.8746i −1.11900 2.70151i
\(670\) 0 0
\(671\) 1.37977i 0.0532655i
\(672\) 15.4276 + 7.60113i 0.595132 + 0.293220i
\(673\) 10.5543 10.5543i 0.406839 0.406839i −0.473796 0.880635i \(-0.657117\pi\)
0.880635 + 0.473796i \(0.157117\pi\)
\(674\) 6.29676 36.6608i 0.242542 1.41212i
\(675\) 0 0
\(676\) 7.99160 3.81321i 0.307369 0.146662i
\(677\) −4.93081 + 2.04241i −0.189506 + 0.0784961i −0.475419 0.879760i \(-0.657703\pi\)
0.285912 + 0.958256i \(0.407703\pi\)
\(678\) −3.51583 2.21797i −0.135025 0.0851806i
\(679\) 2.39233 + 2.39233i 0.0918092 + 0.0918092i
\(680\) 0 0
\(681\) −48.6009 + 48.6009i −1.86239 + 1.86239i
\(682\) 5.90523 1.33666i 0.226123 0.0511835i
\(683\) −18.7520 45.2713i −0.717525 1.73226i −0.680280 0.732952i \(-0.738142\pi\)
−0.0372447 0.999306i \(-0.511858\pi\)
\(684\) 21.5148 + 19.3664i 0.822639 + 0.740493i
\(685\) 0 0
\(686\) 13.7931 9.74949i 0.526623 0.372237i
\(687\) 59.1812 + 59.1812i 2.25790 + 2.25790i
\(688\) −7.58001 + 25.6168i −0.288985 + 0.976630i
\(689\) 27.5350 1.04900
\(690\) 0 0
\(691\) −8.69376 + 3.60107i −0.330726 + 0.136991i −0.541867 0.840464i \(-0.682282\pi\)
0.211141 + 0.977456i \(0.432282\pi\)
\(692\) −22.0450 + 24.4905i −0.838025 + 0.930990i
\(693\) −7.08690 + 2.93549i −0.269209 + 0.111510i
\(694\) −10.0634 6.34852i −0.382002 0.240987i
\(695\) 0 0
\(696\) 55.9708 15.7985i 2.12157 0.598839i
\(697\) 2.56861i 0.0972930i
\(698\) 21.6242 + 13.6417i 0.818488 + 0.516345i
\(699\) −17.3852 + 41.9716i −0.657569 + 1.58751i
\(700\) 0 0
\(701\) −44.3758 + 18.3811i −1.67605 + 0.694243i −0.999126 0.0418077i \(-0.986688\pi\)
−0.676926 + 0.736051i \(0.736688\pi\)
\(702\) −60.0584 84.9677i −2.26676 3.20690i
\(703\) −4.72909 4.72909i −0.178361 0.178361i
\(704\) 1.28686 + 8.10224i 0.0485003 + 0.305364i
\(705\) 0 0
\(706\) −5.48067 + 31.9094i −0.206268 + 1.20093i
\(707\) −4.41766 + 10.6652i −0.166143 + 0.401105i
\(708\) 32.4230 + 67.9511i 1.21853 + 2.55376i
\(709\) −41.9278 17.3671i −1.57463 0.652234i −0.587081 0.809528i \(-0.699723\pi\)
−0.987552 + 0.157294i \(0.949723\pi\)
\(710\) 0 0
\(711\) 9.45466 9.45466i 0.354578 0.354578i
\(712\) 1.68609 + 0.943776i 0.0631888 + 0.0353695i
\(713\) 6.60883i 0.247503i
\(714\) −6.35788 + 10.0782i −0.237938 + 0.377169i
\(715\) 0 0
\(716\) 16.6104 0.872914i 0.620760 0.0326223i
\(717\) 23.3347 56.3350i 0.871452 2.10387i
\(718\) 8.85354 + 1.52066i 0.330411 + 0.0567505i
\(719\) 3.82423i 0.142620i −0.997454 0.0713099i \(-0.977282\pi\)
0.997454 0.0713099i \(-0.0227179\pi\)
\(720\) 0 0
\(721\) 2.39225i 0.0890922i
\(722\) 3.81236 22.1962i 0.141881 0.826057i
\(723\) 5.07838 12.2603i 0.188867 0.455965i
\(724\) 6.60375 7.33634i 0.245427 0.272653i
\(725\) 0 0
\(726\) 39.9178 + 25.1822i 1.48149 + 0.934600i
\(727\) 15.0951i 0.559846i 0.960022 + 0.279923i \(0.0903090\pi\)
−0.960022 + 0.279923i \(0.909691\pi\)
\(728\) 1.25548 10.6272i 0.0465313 0.393870i
\(729\) −75.1282 + 75.1282i −2.78253 + 2.78253i
\(730\) 0 0
\(731\) −17.1006 7.08328i −0.632487 0.261985i
\(732\) −3.01217 + 8.50999i −0.111333 + 0.314538i
\(733\) −17.9645 + 43.3702i −0.663534 + 1.60191i 0.128691 + 0.991685i \(0.458922\pi\)
−0.792226 + 0.610228i \(0.791078\pi\)
\(734\) −8.53101 1.46526i −0.314885 0.0540839i
\(735\) 0 0
\(736\) 8.93577 + 0.582450i 0.329377 + 0.0214694i
\(737\) −8.04573 8.04573i −0.296368 0.296368i
\(738\) 8.83419 6.24434i 0.325191 0.229857i
\(739\) 19.0295 7.88226i 0.700010 0.289954i −0.00415371 0.999991i \(-0.501322\pi\)
0.704164 + 0.710038i \(0.251322\pi\)
\(740\) 0 0
\(741\) 9.39792 22.6886i 0.345241 0.833486i
\(742\) 4.51054 7.14992i 0.165587 0.262482i
\(743\) 17.8922i 0.656401i −0.944608 0.328201i \(-0.893558\pi\)
0.944608 0.328201i \(-0.106442\pi\)
\(744\) 39.3396 + 4.64753i 1.44226 + 0.170387i
\(745\) 0 0
\(746\) −1.71958 + 2.72581i −0.0629585 + 0.0997991i
\(747\) 59.3000 24.5629i 2.16967 0.898708i
\(748\) −5.67624 + 0.298299i −0.207544 + 0.0109069i
\(749\) 11.1797 4.63077i 0.408496 0.169205i
\(750\) 0 0
\(751\) −26.7884 −0.977522 −0.488761 0.872418i \(-0.662551\pi\)
−0.488761 + 0.872418i \(0.662551\pi\)
\(752\) 2.03796 + 19.3363i 0.0743167 + 0.705122i
\(753\) 25.6570 + 25.6570i 0.934994 + 0.934994i
\(754\) −20.8869 29.5498i −0.760658 1.07614i
\(755\) 0 0
\(756\) −31.9015 + 1.67650i −1.16025 + 0.0609736i
\(757\) 14.9747 + 36.1520i 0.544264 + 1.31397i 0.921689 + 0.387929i \(0.126809\pi\)
−0.377426 + 0.926040i \(0.623191\pi\)
\(758\) −10.0377 44.3455i −0.364586 1.61070i
\(759\) −3.85066 + 3.85066i −0.139770 + 0.139770i
\(760\) 0 0
\(761\) −7.36989 7.36989i −0.267158 0.267158i 0.560796 0.827954i \(-0.310495\pi\)
−0.827954 + 0.560796i \(0.810495\pi\)
\(762\) 14.6399 23.2065i 0.530346 0.840682i
\(763\) −13.3229 + 5.51852i −0.482321 + 0.199784i
\(764\) 10.4820 + 3.71017i 0.379226 + 0.134229i
\(765\) 0 0
\(766\) −33.0618 5.67860i −1.19457 0.205176i
\(767\) 33.1254 33.1254i 1.19609 1.19609i
\(768\) −9.75099 + 52.7813i −0.351858 + 1.90458i
\(769\) 5.73423i 0.206782i −0.994641 0.103391i \(-0.967031\pi\)
0.994641 0.103391i \(-0.0329692\pi\)
\(770\) 0 0
\(771\) 12.3346 + 29.7784i 0.444220 + 1.07244i
\(772\) −17.7917 37.2873i −0.640338 1.34200i
\(773\) 15.2780 + 36.8844i 0.549513 + 1.32664i 0.917842 + 0.396946i \(0.129930\pi\)
−0.368329 + 0.929695i \(0.620070\pi\)
\(774\) −17.2104 76.0334i −0.618613 2.73296i
\(775\) 0 0
\(776\) −5.15726 + 9.21361i −0.185135 + 0.330749i
\(777\) 11.5952 0.415976
\(778\) −34.1497 + 7.72988i −1.22433 + 0.277130i
\(779\) 1.50154 + 0.621959i 0.0537983 + 0.0222840i
\(780\) 0 0
\(781\) −3.01731 7.28442i −0.107968 0.260657i
\(782\) −1.05027 + 6.11482i −0.0375574 + 0.218666i
\(783\) −76.3859 + 76.3859i −2.72981 + 2.72981i
\(784\) 19.2113 + 15.5478i 0.686118 + 0.555280i
\(785\) 0 0
\(786\) −44.6337 63.1456i −1.59203 2.25233i
\(787\) 3.76428 + 1.55921i 0.134182 + 0.0555800i 0.448764 0.893650i \(-0.351864\pi\)
−0.314582 + 0.949230i \(0.601864\pi\)
\(788\) −1.97627 37.6059i −0.0704018 1.33965i
\(789\) −30.3934 + 73.3761i −1.08203 + 2.61226i
\(790\) 0 0
\(791\) 0.561522 + 0.561522i 0.0199654 + 0.0199654i
\(792\) −14.8250 18.7970i −0.526783 0.667924i
\(793\) 5.61692 0.199463
\(794\) 5.17494 + 22.8623i 0.183652 + 0.811353i
\(795\) 0 0
\(796\) 31.1311 14.8543i 1.10341 0.526496i
\(797\) −24.7126 10.2363i −0.875365 0.362588i −0.100667 0.994920i \(-0.532098\pi\)
−0.774697 + 0.632332i \(0.782098\pi\)
\(798\) −4.35199 6.15698i −0.154059 0.217955i
\(799\) −13.4715 −0.476588
\(800\) 0 0
\(801\) −5.63856 −0.199229
\(802\) −10.0102 14.1620i −0.353474 0.500077i
\(803\) 4.94141 + 2.04680i 0.174379 + 0.0722300i
\(804\) −32.0589 67.1880i −1.13063 2.36954i
\(805\) 0 0
\(806\) −5.44143 24.0396i −0.191666 0.846760i
\(807\) −66.5210 −2.34165
\(808\) −35.7784 4.22682i −1.25868 0.148699i
\(809\) −14.6573 14.6573i −0.515322 0.515322i 0.400831 0.916152i \(-0.368722\pi\)
−0.916152 + 0.400831i \(0.868722\pi\)
\(810\) 0 0
\(811\) 11.3438 27.3863i 0.398333 0.961661i −0.589728 0.807602i \(-0.700765\pi\)
0.988062 0.154060i \(-0.0492348\pi\)
\(812\) −11.0946 + 0.583047i −0.389345 + 0.0204609i
\(813\) −16.1237 6.67864i −0.565482 0.234230i
\(814\) 3.19252 + 4.51662i 0.111898 + 0.158307i
\(815\) 0 0
\(816\) −35.6604 10.5519i −1.24836 0.369391i
\(817\) 8.28140 8.28140i 0.289730 0.289730i
\(818\) 5.27539 30.7142i 0.184450 1.07390i
\(819\) 11.9501 + 28.8501i 0.417570 + 1.00810i
\(820\) 0 0
\(821\) −32.4192 13.4285i −1.13144 0.468657i −0.263168 0.964750i \(-0.584767\pi\)
−0.868269 + 0.496093i \(0.834767\pi\)
\(822\) 63.7890 14.4388i 2.22490 0.503611i
\(823\) 18.1415 0.632373 0.316187 0.948697i \(-0.397597\pi\)
0.316187 + 0.948697i \(0.397597\pi\)
\(824\) 7.18521 2.02812i 0.250309 0.0706527i
\(825\) 0 0
\(826\) −3.17525 14.0279i −0.110481 0.488093i
\(827\) −13.9680 33.7217i −0.485714 1.17262i −0.956857 0.290561i \(-0.906158\pi\)
0.471142 0.882057i \(-0.343842\pi\)
\(828\) −23.5839 + 11.2531i −0.819596 + 0.391072i
\(829\) 11.3256 + 27.3423i 0.393353 + 0.949637i 0.989204 + 0.146543i \(0.0468146\pi\)
−0.595852 + 0.803094i \(0.703185\pi\)
\(830\) 0 0
\(831\) 27.8167i 0.964950i
\(832\) 32.9834 5.23868i 1.14350 0.181618i
\(833\) −12.1083 + 12.1083i −0.419527 + 0.419527i
\(834\) −28.6629 4.92306i −0.992514 0.170472i
\(835\) 0 0
\(836\) 1.20006 3.39041i 0.0415048 0.117260i
\(837\) −67.9792 + 28.1579i −2.34970 + 0.973279i
\(838\) −22.6157 + 35.8495i −0.781247 + 1.23840i
\(839\) 21.4869 + 21.4869i 0.741811 + 0.741811i 0.972926 0.231116i \(-0.0742376\pi\)
−0.231116 + 0.972926i \(0.574238\pi\)
\(840\) 0 0
\(841\) −6.05918 + 6.05918i −0.208937 + 0.208937i
\(842\) −8.57467 37.8819i −0.295503 1.30550i
\(843\) 9.62467 + 23.2360i 0.331491 + 0.800291i
\(844\) 2.41668 + 45.9862i 0.0831854 + 1.58291i
\(845\) 0 0
\(846\) −32.7496 46.3325i −1.12595 1.59294i
\(847\) −6.37537 6.37537i −0.219060 0.219060i
\(848\) 25.2990 + 7.48597i 0.868770 + 0.257069i
\(849\) −30.6916 −1.05333
\(850\) 0 0
\(851\) 5.57772 2.31037i 0.191202 0.0791984i
\(852\) −2.70723 51.5150i −0.0927481 1.76488i
\(853\) 37.0377 15.3415i 1.26815 0.525283i 0.355746 0.934583i \(-0.384227\pi\)
0.912400 + 0.409300i \(0.134227\pi\)
\(854\) 0.920116 1.45853i 0.0314857 0.0499098i
\(855\) 0 0
\(856\) 23.3866 + 29.6526i 0.799338 + 1.01350i
\(857\) 47.3694i 1.61811i 0.587733 + 0.809055i \(0.300020\pi\)
−0.587733 + 0.809055i \(0.699980\pi\)
\(858\) −10.8363 + 17.1773i −0.369946 + 0.586422i
\(859\) −5.28829 + 12.7671i −0.180434 + 0.435607i −0.988056 0.154094i \(-0.950754\pi\)
0.807622 + 0.589700i \(0.200754\pi\)
\(860\) 0 0
\(861\) −2.60330 + 1.07832i −0.0887201 + 0.0367491i
\(862\) 13.1275 9.27898i 0.447123 0.316043i
\(863\) 12.9803 + 12.9803i 0.441853 + 0.441853i 0.892634 0.450781i \(-0.148855\pi\)
−0.450781 + 0.892634i \(0.648855\pi\)
\(864\) −32.0810 94.3959i −1.09142 3.21142i
\(865\) 0 0
\(866\) 32.0375 + 5.50268i 1.08868 + 0.186989i
\(867\) −11.9637 + 28.8828i −0.406307 + 0.980912i
\(868\) −7.13366 2.52501i −0.242132 0.0857043i
\(869\) −1.53480 0.635736i −0.0520646 0.0215659i
\(870\) 0 0
\(871\) −32.7534 + 32.7534i −1.10981 + 1.10981i
\(872\) −27.8700 35.3372i −0.943796 1.19667i
\(873\) 30.8119i 1.04282i
\(874\) −3.32026 2.09459i −0.112309 0.0708506i
\(875\) 0 0
\(876\) 26.0087 + 23.4116i 0.878752 + 0.791003i
\(877\) −17.3787 + 41.9560i −0.586838 + 1.41675i 0.299672 + 0.954042i \(0.403123\pi\)
−0.886510 + 0.462710i \(0.846877\pi\)
\(878\) 8.21993 47.8578i 0.277409 1.61512i
\(879\) 3.53363i 0.119186i
\(880\) 0 0
\(881\) 17.7034i 0.596441i 0.954497 + 0.298221i \(0.0963931\pi\)
−0.954497 + 0.298221i \(0.903607\pi\)
\(882\) −71.0794 12.2084i −2.39337 0.411078i
\(883\) −12.7290 + 30.7304i −0.428363 + 1.03416i 0.551443 + 0.834213i \(0.314077\pi\)
−0.979806 + 0.199948i \(0.935923\pi\)
\(884\) 1.21435 + 23.1074i 0.0408429 + 0.777187i
\(885\) 0 0
\(886\) −16.8378 + 26.6906i −0.565678 + 0.896689i
\(887\) 44.9270i 1.50850i −0.656588 0.754250i \(-0.728001\pi\)
0.656588 0.754250i \(-0.271999\pi\)
\(888\) 9.83024 + 34.8266i 0.329881 + 1.16870i
\(889\) −3.70636 + 3.70636i −0.124307 + 0.124307i
\(890\) 0 0
\(891\) 32.5556 + 13.4850i 1.09065 + 0.451763i
\(892\) −40.6953 + 19.4179i −1.36258 + 0.650159i
\(893\) 3.26197 7.87510i 0.109158 0.263530i
\(894\) −0.247133 + 1.43885i −0.00826537 + 0.0481224i
\(895\) 0 0
\(896\) 4.04275 9.42286i 0.135059 0.314796i
\(897\) 15.6757 + 15.6757i 0.523396 + 0.523396i
\(898\) −1.31225 1.85651i −0.0437903 0.0619524i
\(899\) −23.6416 + 9.79267i −0.788492 + 0.326604i
\(900\) 0 0
\(901\) −6.99541 + 16.8884i −0.233051 + 0.562634i
\(902\) −1.13680 0.717152i −0.0378512 0.0238785i
\(903\) 20.3051i 0.675711i
\(904\) −1.21050 + 2.16260i −0.0402606 + 0.0719270i
\(905\) 0 0
\(906\) 14.2115 + 8.96535i 0.472145 + 0.297854i
\(907\) 25.3031 10.4809i 0.840176 0.348012i 0.0792532 0.996855i \(-0.474746\pi\)
0.760923 + 0.648842i \(0.224746\pi\)
\(908\) 30.4559 + 27.4147i 1.01071 + 0.909787i
\(909\) 97.1293 40.2323i 3.22158 1.33442i
\(910\) 0 0
\(911\) −33.7228 −1.11729 −0.558643 0.829408i \(-0.688678\pi\)
−0.558643 + 0.829408i \(0.688678\pi\)
\(912\) 14.8031 18.2911i 0.490181 0.605679i
\(913\) −5.63897 5.63897i −0.186623 0.186623i
\(914\) 5.50369 3.89022i 0.182046 0.128677i
\(915\) 0 0
\(916\) 33.3828 37.0861i 1.10300 1.22536i
\(917\) 5.65298 + 13.6475i 0.186678 + 0.450680i
\(918\) 67.3726 15.2500i 2.22363 0.503324i
\(919\) 33.1256 33.1256i 1.09271 1.09271i 0.0974735 0.995238i \(-0.468924\pi\)
0.995238 0.0974735i \(-0.0310761\pi\)
\(920\) 0 0
\(921\) 23.7828 + 23.7828i 0.783671 + 0.783671i
\(922\) 5.91283 + 3.73012i 0.194729 + 0.122845i
\(923\) −29.6542 + 12.2832i −0.976080 + 0.404306i
\(924\) 2.68525 + 5.62766i 0.0883383 + 0.185136i
\(925\) 0 0
\(926\) 4.13443 24.0714i 0.135866 0.791034i
\(927\) −15.4055 + 15.4055i −0.505981 + 0.505981i
\(928\) −11.1570 32.8288i −0.366248 1.07766i
\(929\) 32.2191i 1.05708i −0.848910 0.528538i \(-0.822740\pi\)
0.848910 0.528538i \(-0.177260\pi\)
\(930\) 0 0
\(931\) −4.14630 10.0101i −0.135890 0.328067i
\(932\) 25.5324 + 9.03734i 0.836340 + 0.296028i
\(933\) −30.2836 73.1111i −0.991441 2.39355i
\(934\) −22.0562 + 4.99247i −0.721700 + 0.163359i
\(935\) 0 0
\(936\) −76.5210 + 60.3511i −2.50117 + 1.97264i
\(937\) −11.5426 −0.377080 −0.188540 0.982066i \(-0.560375\pi\)
−0.188540 + 0.982066i \(0.560375\pi\)
\(938\) 3.13959 + 13.8704i 0.102511 + 0.452883i
\(939\) 58.3254 + 24.1592i 1.90338 + 0.788405i
\(940\) 0 0
\(941\) −19.3222 46.6478i −0.629885 1.52068i −0.839765 0.542949i \(-0.817308\pi\)
0.209881 0.977727i \(-0.432692\pi\)
\(942\) 108.435 + 18.6245i 3.53300 + 0.606818i
\(943\) −1.03742 + 1.03742i −0.0337831 + 0.0337831i
\(944\) 39.4413 21.4296i 1.28370 0.697474i
\(945\) 0 0
\(946\) −7.90932 + 5.59061i −0.257154 + 0.181766i
\(947\) 2.49731 + 1.03442i 0.0811516 + 0.0336141i 0.422890 0.906181i \(-0.361016\pi\)
−0.341738 + 0.939795i \(0.611016\pi\)
\(948\) −8.07829 7.27162i −0.262371 0.236171i
\(949\) 8.33233 20.1160i 0.270479 0.652994i
\(950\) 0 0
\(951\) −21.9643 21.9643i −0.712240 0.712240i
\(952\) 6.19916 + 3.46993i 0.200916 + 0.112461i
\(953\) 29.5188 0.956208 0.478104 0.878303i \(-0.341324\pi\)
0.478104 + 0.878303i \(0.341324\pi\)
\(954\) −75.0901 + 16.9968i −2.43113 + 0.550293i
\(955\) 0 0
\(956\) −34.2700 12.1301i −1.10837 0.392315i
\(957\) 19.4806 + 8.06913i 0.629719 + 0.260838i
\(958\) 33.0713 23.3761i 1.06849 0.755247i
\(959\) −12.4940 −0.403451
\(960\) 0 0
\(961\) 13.5701 0.437747
\(962\) 18.3867 12.9964i 0.592812 0.419022i
\(963\) −101.815 42.1731i −3.28094 1.35901i
\(964\) −7.45824 2.63989i −0.240214 0.0850252i
\(965\) 0 0
\(966\) 6.63831 1.50260i 0.213584 0.0483453i
\(967\) −48.1906 −1.54971 −0.774853 0.632141i \(-0.782176\pi\)
−0.774853 + 0.632141i \(0.782176\pi\)
\(968\) 13.7437 24.5536i 0.441739 0.789181i
\(969\) 11.5283 + 11.5283i 0.370343 + 0.370343i
\(970\) 0 0
\(971\) −9.00286 + 21.7348i −0.288916 + 0.697504i −0.999984 0.00561859i \(-0.998212\pi\)
0.711069 + 0.703123i \(0.248212\pi\)
\(972\) 92.7585 + 83.4960i 2.97523 + 2.67813i
\(973\) 5.13278 + 2.12607i 0.164549 + 0.0681586i
\(974\) −29.6796 + 20.9787i −0.950995 + 0.672200i
\(975\) 0 0
\(976\) 5.16080 + 1.52708i 0.165193 + 0.0488806i
\(977\) 1.22028 1.22028i 0.0390403 0.0390403i −0.687317 0.726357i \(-0.741212\pi\)
0.726357 + 0.687317i \(0.241212\pi\)
\(978\) 5.46190 + 0.938120i 0.174652 + 0.0299978i
\(979\) 0.268092 + 0.647231i 0.00856825 + 0.0206856i
\(980\) 0 0
\(981\) 121.333 + 50.2579i 3.87388 + 1.60461i
\(982\) 1.12453 + 4.96805i 0.0358852 + 0.158537i
\(983\) 28.8147 0.919047 0.459524 0.888166i \(-0.348020\pi\)
0.459524 + 0.888166i \(0.348020\pi\)
\(984\) −5.44580 6.90490i −0.173606 0.220120i
\(985\) 0 0
\(986\) 23.4306 5.30359i 0.746184 0.168901i
\(987\) 5.65544 + 13.6534i 0.180015 + 0.434594i
\(988\) −13.8020 4.88532i −0.439101 0.155423i
\(989\) 4.04583 + 9.76750i 0.128650 + 0.310588i
\(990\) 0 0
\(991\) 13.7444i 0.436605i −0.975881 0.218303i \(-0.929948\pi\)
0.975881 0.218303i \(-0.0700520\pi\)
\(992\) 1.53613 23.5668i 0.0487722 0.748248i
\(993\) 15.4181 15.4181i 0.489280 0.489280i
\(994\) −1.66816 + 9.71234i −0.0529110 + 0.308057i
\(995\) 0 0
\(996\) −22.4690 47.0897i −0.711957 1.49210i
\(997\) 18.6452 7.72310i 0.590499 0.244593i −0.0673660 0.997728i \(-0.521460\pi\)
0.657865 + 0.753135i \(0.271460\pi\)
\(998\) −33.4527 21.1037i −1.05893 0.668025i
\(999\) −47.5294 47.5294i −1.50376 1.50376i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.bb.b.107.18 88
5.2 odd 4 160.2.u.a.43.16 88
5.3 odd 4 800.2.v.b.43.7 88
5.4 even 2 160.2.ba.a.107.5 yes 88
20.7 even 4 640.2.u.a.463.1 88
20.19 odd 2 640.2.ba.a.207.22 88
32.3 odd 8 800.2.v.b.707.7 88
160.3 even 8 inner 800.2.bb.b.643.18 88
160.29 even 8 640.2.u.a.47.1 88
160.67 even 8 160.2.ba.a.3.5 yes 88
160.99 odd 8 160.2.u.a.67.16 yes 88
160.157 odd 8 640.2.ba.a.303.22 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.2.u.a.43.16 88 5.2 odd 4
160.2.u.a.67.16 yes 88 160.99 odd 8
160.2.ba.a.3.5 yes 88 160.67 even 8
160.2.ba.a.107.5 yes 88 5.4 even 2
640.2.u.a.47.1 88 160.29 even 8
640.2.u.a.463.1 88 20.7 even 4
640.2.ba.a.207.22 88 20.19 odd 2
640.2.ba.a.303.22 88 160.157 odd 8
800.2.v.b.43.7 88 5.3 odd 4
800.2.v.b.707.7 88 32.3 odd 8
800.2.bb.b.107.18 88 1.1 even 1 trivial
800.2.bb.b.643.18 88 160.3 even 8 inner