Properties

Label 800.2.be.a.209.20
Level $800$
Weight $2$
Character 800.209
Analytic conductor $6.388$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,2,Mod(209,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.be (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 209.20
Character \(\chi\) \(=\) 800.209
Dual form 800.2.be.a.689.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.423859 + 1.30450i) q^{3} +(1.11400 - 1.93881i) q^{5} -0.927462i q^{7} +(0.904979 - 0.657506i) q^{9} +(-1.54449 + 2.12581i) q^{11} +(2.08531 - 1.51507i) q^{13} +(3.00137 + 0.631440i) q^{15} +(0.893539 + 0.290328i) q^{17} +(-0.336558 - 0.109354i) q^{19} +(1.20988 - 0.393113i) q^{21} +(4.22031 - 5.80876i) q^{23} +(-2.51799 - 4.31969i) q^{25} +(4.57033 + 3.32054i) q^{27} +(1.33062 - 0.432345i) q^{29} +(1.34398 - 4.13636i) q^{31} +(-3.42777 - 1.11375i) q^{33} +(-1.79818 - 1.03320i) q^{35} +(-7.47195 + 5.42869i) q^{37} +(2.86029 + 2.07812i) q^{39} +(7.67997 - 5.57982i) q^{41} +5.59241 q^{43} +(-0.266630 - 2.48705i) q^{45} +(-7.85457 + 2.55210i) q^{47} +6.13981 q^{49} +1.28868i q^{51} +(3.01052 + 9.26543i) q^{53} +(2.40098 + 5.36264i) q^{55} -0.485392i q^{57} +(2.55804 + 3.52083i) q^{59} +(-2.14775 + 2.95612i) q^{61} +(-0.609812 - 0.839334i) q^{63} +(-0.614386 - 5.73082i) q^{65} +(-0.325879 + 1.00295i) q^{67} +(9.36636 + 3.04331i) q^{69} +(-3.56365 - 10.9678i) q^{71} +(-9.25671 + 12.7408i) q^{73} +(4.56778 - 5.11566i) q^{75} +(1.97161 + 1.43246i) q^{77} +(1.73030 + 5.32530i) q^{79} +(-1.35747 + 4.17785i) q^{81} +(2.17829 - 6.70408i) q^{83} +(1.55830 - 1.40898i) q^{85} +(1.12799 + 1.55254i) q^{87} +(7.12799 + 5.17879i) q^{89} +(-1.40517 - 1.93405i) q^{91} +5.96555 q^{93} +(-0.586945 + 0.530702i) q^{95} +(1.52791 - 0.496446i) q^{97} +2.93933i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q - 30 q^{9} + 2 q^{15} - 10 q^{17} + 10 q^{23} - 6 q^{25} + 18 q^{31} - 10 q^{33} + 10 q^{39} - 10 q^{41} + 10 q^{47} - 80 q^{49} + 34 q^{55} - 60 q^{63} + 40 q^{65} - 22 q^{71} - 10 q^{73} - 14 q^{79}+ \cdots - 50 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.423859 + 1.30450i 0.244715 + 0.753155i 0.995683 + 0.0928169i \(0.0295871\pi\)
−0.750968 + 0.660338i \(0.770413\pi\)
\(4\) 0 0
\(5\) 1.11400 1.93881i 0.498198 0.867063i
\(6\) 0 0
\(7\) 0.927462i 0.350548i −0.984520 0.175274i \(-0.943919\pi\)
0.984520 0.175274i \(-0.0560811\pi\)
\(8\) 0 0
\(9\) 0.904979 0.657506i 0.301660 0.219169i
\(10\) 0 0
\(11\) −1.54449 + 2.12581i −0.465682 + 0.640956i −0.975675 0.219222i \(-0.929648\pi\)
0.509993 + 0.860179i \(0.329648\pi\)
\(12\) 0 0
\(13\) 2.08531 1.51507i 0.578362 0.420204i −0.259771 0.965670i \(-0.583647\pi\)
0.838133 + 0.545466i \(0.183647\pi\)
\(14\) 0 0
\(15\) 3.00137 + 0.631440i 0.774950 + 0.163037i
\(16\) 0 0
\(17\) 0.893539 + 0.290328i 0.216715 + 0.0704150i 0.415362 0.909656i \(-0.363655\pi\)
−0.198647 + 0.980071i \(0.563655\pi\)
\(18\) 0 0
\(19\) −0.336558 0.109354i −0.0772118 0.0250876i 0.270156 0.962816i \(-0.412925\pi\)
−0.347368 + 0.937729i \(0.612925\pi\)
\(20\) 0 0
\(21\) 1.20988 0.393113i 0.264017 0.0857843i
\(22\) 0 0
\(23\) 4.22031 5.80876i 0.879995 1.21121i −0.0964270 0.995340i \(-0.530741\pi\)
0.976422 0.215869i \(-0.0692586\pi\)
\(24\) 0 0
\(25\) −2.51799 4.31969i −0.503598 0.863938i
\(26\) 0 0
\(27\) 4.57033 + 3.32054i 0.879561 + 0.639038i
\(28\) 0 0
\(29\) 1.33062 0.432345i 0.247090 0.0802844i −0.182854 0.983140i \(-0.558533\pi\)
0.429944 + 0.902856i \(0.358533\pi\)
\(30\) 0 0
\(31\) 1.34398 4.13636i 0.241387 0.742911i −0.754823 0.655928i \(-0.772277\pi\)
0.996210 0.0869831i \(-0.0277226\pi\)
\(32\) 0 0
\(33\) −3.42777 1.11375i −0.596699 0.193879i
\(34\) 0 0
\(35\) −1.79818 1.03320i −0.303947 0.174642i
\(36\) 0 0
\(37\) −7.47195 + 5.42869i −1.22838 + 0.892471i −0.996768 0.0803370i \(-0.974400\pi\)
−0.231613 + 0.972808i \(0.574400\pi\)
\(38\) 0 0
\(39\) 2.86029 + 2.07812i 0.458013 + 0.332766i
\(40\) 0 0
\(41\) 7.67997 5.57982i 1.19941 0.871422i 0.205183 0.978724i \(-0.434221\pi\)
0.994227 + 0.107301i \(0.0342210\pi\)
\(42\) 0 0
\(43\) 5.59241 0.852834 0.426417 0.904527i \(-0.359776\pi\)
0.426417 + 0.904527i \(0.359776\pi\)
\(44\) 0 0
\(45\) −0.266630 2.48705i −0.0397468 0.370747i
\(46\) 0 0
\(47\) −7.85457 + 2.55210i −1.14571 + 0.372263i −0.819524 0.573044i \(-0.805762\pi\)
−0.326182 + 0.945307i \(0.605762\pi\)
\(48\) 0 0
\(49\) 6.13981 0.877116
\(50\) 0 0
\(51\) 1.28868i 0.180452i
\(52\) 0 0
\(53\) 3.01052 + 9.26543i 0.413527 + 1.27270i 0.913562 + 0.406699i \(0.133320\pi\)
−0.500035 + 0.866005i \(0.666680\pi\)
\(54\) 0 0
\(55\) 2.40098 + 5.36264i 0.323748 + 0.723099i
\(56\) 0 0
\(57\) 0.485392i 0.0642918i
\(58\) 0 0
\(59\) 2.55804 + 3.52083i 0.333028 + 0.458374i 0.942389 0.334519i \(-0.108574\pi\)
−0.609361 + 0.792893i \(0.708574\pi\)
\(60\) 0 0
\(61\) −2.14775 + 2.95612i −0.274991 + 0.378492i −0.924067 0.382231i \(-0.875156\pi\)
0.649076 + 0.760724i \(0.275156\pi\)
\(62\) 0 0
\(63\) −0.609812 0.839334i −0.0768291 0.105746i
\(64\) 0 0
\(65\) −0.614386 5.73082i −0.0762052 0.710821i
\(66\) 0 0
\(67\) −0.325879 + 1.00295i −0.0398124 + 0.122530i −0.968987 0.247110i \(-0.920519\pi\)
0.929175 + 0.369640i \(0.120519\pi\)
\(68\) 0 0
\(69\) 9.36636 + 3.04331i 1.12758 + 0.366372i
\(70\) 0 0
\(71\) −3.56365 10.9678i −0.422927 1.30164i −0.904965 0.425486i \(-0.860103\pi\)
0.482038 0.876151i \(-0.339897\pi\)
\(72\) 0 0
\(73\) −9.25671 + 12.7408i −1.08342 + 1.49119i −0.227712 + 0.973729i \(0.573124\pi\)
−0.855704 + 0.517466i \(0.826876\pi\)
\(74\) 0 0
\(75\) 4.56778 5.11566i 0.527442 0.590706i
\(76\) 0 0
\(77\) 1.97161 + 1.43246i 0.224686 + 0.163244i
\(78\) 0 0
\(79\) 1.73030 + 5.32530i 0.194673 + 0.599143i 0.999980 + 0.00628500i \(0.00200059\pi\)
−0.805307 + 0.592858i \(0.797999\pi\)
\(80\) 0 0
\(81\) −1.35747 + 4.17785i −0.150830 + 0.464206i
\(82\) 0 0
\(83\) 2.17829 6.70408i 0.239098 0.735868i −0.757453 0.652889i \(-0.773557\pi\)
0.996551 0.0829787i \(-0.0264433\pi\)
\(84\) 0 0
\(85\) 1.55830 1.40898i 0.169021 0.152825i
\(86\) 0 0
\(87\) 1.12799 + 1.55254i 0.120933 + 0.166450i
\(88\) 0 0
\(89\) 7.12799 + 5.17879i 0.755566 + 0.548951i 0.897547 0.440919i \(-0.145347\pi\)
−0.141981 + 0.989869i \(0.545347\pi\)
\(90\) 0 0
\(91\) −1.40517 1.93405i −0.147302 0.202743i
\(92\) 0 0
\(93\) 5.96555 0.618598
\(94\) 0 0
\(95\) −0.586945 + 0.530702i −0.0602193 + 0.0544489i
\(96\) 0 0
\(97\) 1.52791 0.496446i 0.155135 0.0504065i −0.230420 0.973091i \(-0.574010\pi\)
0.385555 + 0.922685i \(0.374010\pi\)
\(98\) 0 0
\(99\) 2.93933i 0.295414i
\(100\) 0 0
\(101\) 7.75829i 0.771979i 0.922503 + 0.385989i \(0.126140\pi\)
−0.922503 + 0.385989i \(0.873860\pi\)
\(102\) 0 0
\(103\) −1.34359 + 0.436559i −0.132388 + 0.0430155i −0.374462 0.927242i \(-0.622172\pi\)
0.242074 + 0.970258i \(0.422172\pi\)
\(104\) 0 0
\(105\) 0.585636 2.78365i 0.0571523 0.271657i
\(106\) 0 0
\(107\) −16.9717 −1.64071 −0.820357 0.571852i \(-0.806225\pi\)
−0.820357 + 0.571852i \(0.806225\pi\)
\(108\) 0 0
\(109\) −6.86530 9.44928i −0.657577 0.905077i 0.341822 0.939765i \(-0.388956\pi\)
−0.999398 + 0.0346883i \(0.988956\pi\)
\(110\) 0 0
\(111\) −10.2488 7.44618i −0.972772 0.706760i
\(112\) 0 0
\(113\) −0.532915 0.733494i −0.0501324 0.0690013i 0.783215 0.621751i \(-0.213578\pi\)
−0.833347 + 0.552750i \(0.813578\pi\)
\(114\) 0 0
\(115\) −6.56065 14.6534i −0.611784 1.36643i
\(116\) 0 0
\(117\) 0.890998 2.74221i 0.0823728 0.253517i
\(118\) 0 0
\(119\) 0.269269 0.828724i 0.0246838 0.0759690i
\(120\) 0 0
\(121\) 1.26557 + 3.89502i 0.115052 + 0.354093i
\(122\) 0 0
\(123\) 10.5341 + 7.65349i 0.949830 + 0.690092i
\(124\) 0 0
\(125\) −11.1801 + 0.0697518i −0.999981 + 0.00623879i
\(126\) 0 0
\(127\) −9.56787 + 13.1690i −0.849012 + 1.16856i 0.135068 + 0.990836i \(0.456875\pi\)
−0.984080 + 0.177728i \(0.943125\pi\)
\(128\) 0 0
\(129\) 2.37039 + 7.29531i 0.208701 + 0.642317i
\(130\) 0 0
\(131\) −15.6123 5.07274i −1.36405 0.443207i −0.466657 0.884438i \(-0.654542\pi\)
−0.897393 + 0.441231i \(0.854542\pi\)
\(132\) 0 0
\(133\) −0.101422 + 0.312145i −0.00879441 + 0.0270664i
\(134\) 0 0
\(135\) 11.5293 5.16192i 0.992282 0.444267i
\(136\) 0 0
\(137\) −13.1690 18.1256i −1.12510 1.54857i −0.797051 0.603913i \(-0.793608\pi\)
−0.328053 0.944659i \(-0.606392\pi\)
\(138\) 0 0
\(139\) 6.92525 9.53178i 0.587392 0.808475i −0.407090 0.913388i \(-0.633456\pi\)
0.994481 + 0.104913i \(0.0334564\pi\)
\(140\) 0 0
\(141\) −6.65845 9.16457i −0.560743 0.771796i
\(142\) 0 0
\(143\) 6.77299i 0.566386i
\(144\) 0 0
\(145\) 0.644081 3.06146i 0.0534880 0.254240i
\(146\) 0 0
\(147\) 2.60241 + 8.00941i 0.214643 + 0.660605i
\(148\) 0 0
\(149\) 13.3102i 1.09041i −0.838302 0.545207i \(-0.816451\pi\)
0.838302 0.545207i \(-0.183549\pi\)
\(150\) 0 0
\(151\) 21.1864 1.72412 0.862062 0.506802i \(-0.169173\pi\)
0.862062 + 0.506802i \(0.169173\pi\)
\(152\) 0 0
\(153\) 0.999527 0.324766i 0.0808069 0.0262558i
\(154\) 0 0
\(155\) −6.52241 7.21365i −0.523893 0.579414i
\(156\) 0 0
\(157\) −3.41079 −0.272211 −0.136105 0.990694i \(-0.543459\pi\)
−0.136105 + 0.990694i \(0.543459\pi\)
\(158\) 0 0
\(159\) −10.8107 + 7.85446i −0.857348 + 0.622900i
\(160\) 0 0
\(161\) −5.38740 3.91418i −0.424587 0.308480i
\(162\) 0 0
\(163\) −15.7109 + 11.4146i −1.23057 + 0.894062i −0.996933 0.0782611i \(-0.975063\pi\)
−0.233639 + 0.972324i \(0.575063\pi\)
\(164\) 0 0
\(165\) −5.97791 + 5.40509i −0.465380 + 0.420785i
\(166\) 0 0
\(167\) 2.68999 + 0.874029i 0.208157 + 0.0676344i 0.411240 0.911527i \(-0.365096\pi\)
−0.203082 + 0.979162i \(0.565096\pi\)
\(168\) 0 0
\(169\) −1.96412 + 6.04495i −0.151087 + 0.464997i
\(170\) 0 0
\(171\) −0.376479 + 0.122326i −0.0287901 + 0.00935447i
\(172\) 0 0
\(173\) −0.694928 0.504895i −0.0528344 0.0383864i 0.561055 0.827779i \(-0.310396\pi\)
−0.613889 + 0.789392i \(0.710396\pi\)
\(174\) 0 0
\(175\) −4.00635 + 2.33534i −0.302852 + 0.176535i
\(176\) 0 0
\(177\) −3.50869 + 4.82930i −0.263730 + 0.362993i
\(178\) 0 0
\(179\) 21.7579 7.06957i 1.62626 0.528404i 0.652854 0.757484i \(-0.273572\pi\)
0.973408 + 0.229079i \(0.0735715\pi\)
\(180\) 0 0
\(181\) −18.5330 6.02173i −1.37754 0.447591i −0.475683 0.879617i \(-0.657799\pi\)
−0.901862 + 0.432025i \(0.857799\pi\)
\(182\) 0 0
\(183\) −4.76661 1.54876i −0.352358 0.114488i
\(184\) 0 0
\(185\) 2.20143 + 20.5343i 0.161852 + 1.50971i
\(186\) 0 0
\(187\) −1.99725 + 1.45109i −0.146053 + 0.106114i
\(188\) 0 0
\(189\) 3.07968 4.23881i 0.224013 0.308328i
\(190\) 0 0
\(191\) −10.2038 + 7.41347i −0.738318 + 0.536420i −0.892184 0.451672i \(-0.850828\pi\)
0.153866 + 0.988092i \(0.450828\pi\)
\(192\) 0 0
\(193\) 8.48402i 0.610693i 0.952241 + 0.305347i \(0.0987723\pi\)
−0.952241 + 0.305347i \(0.901228\pi\)
\(194\) 0 0
\(195\) 7.21546 3.23053i 0.516710 0.231343i
\(196\) 0 0
\(197\) 4.55285 + 14.0122i 0.324377 + 0.998331i 0.971721 + 0.236132i \(0.0758799\pi\)
−0.647344 + 0.762198i \(0.724120\pi\)
\(198\) 0 0
\(199\) −5.70622 −0.404503 −0.202252 0.979334i \(-0.564826\pi\)
−0.202252 + 0.979334i \(0.564826\pi\)
\(200\) 0 0
\(201\) −1.44648 −0.102027
\(202\) 0 0
\(203\) −0.400983 1.23410i −0.0281435 0.0866168i
\(204\) 0 0
\(205\) −2.26271 21.1060i −0.158035 1.47411i
\(206\) 0 0
\(207\) 8.03168i 0.558240i
\(208\) 0 0
\(209\) 0.752279 0.546562i 0.0520362 0.0378065i
\(210\) 0 0
\(211\) −7.99954 + 11.0104i −0.550711 + 0.757989i −0.990108 0.140304i \(-0.955192\pi\)
0.439398 + 0.898293i \(0.355192\pi\)
\(212\) 0 0
\(213\) 12.7970 9.29758i 0.876838 0.637060i
\(214\) 0 0
\(215\) 6.22997 10.8426i 0.424880 0.739461i
\(216\) 0 0
\(217\) −3.83631 1.24649i −0.260426 0.0846175i
\(218\) 0 0
\(219\) −20.5439 6.67512i −1.38823 0.451063i
\(220\) 0 0
\(221\) 2.30318 0.748347i 0.154928 0.0503393i
\(222\) 0 0
\(223\) −13.3402 + 18.3612i −0.893328 + 1.22956i 0.0792204 + 0.996857i \(0.474757\pi\)
−0.972548 + 0.232703i \(0.925243\pi\)
\(224\) 0 0
\(225\) −5.11895 2.25364i −0.341263 0.150243i
\(226\) 0 0
\(227\) 11.1188 + 8.07830i 0.737983 + 0.536176i 0.892079 0.451880i \(-0.149247\pi\)
−0.154096 + 0.988056i \(0.549247\pi\)
\(228\) 0 0
\(229\) −6.28758 + 2.04296i −0.415495 + 0.135002i −0.509302 0.860588i \(-0.670096\pi\)
0.0938071 + 0.995590i \(0.470096\pi\)
\(230\) 0 0
\(231\) −1.03296 + 3.17913i −0.0679639 + 0.209171i
\(232\) 0 0
\(233\) −13.6940 4.44945i −0.897123 0.291493i −0.176074 0.984377i \(-0.556340\pi\)
−0.721049 + 0.692884i \(0.756340\pi\)
\(234\) 0 0
\(235\) −3.80197 + 18.0716i −0.248013 + 1.17886i
\(236\) 0 0
\(237\) −6.21347 + 4.51435i −0.403608 + 0.293239i
\(238\) 0 0
\(239\) 0.520809 + 0.378390i 0.0336883 + 0.0244760i 0.604502 0.796604i \(-0.293372\pi\)
−0.570814 + 0.821080i \(0.693372\pi\)
\(240\) 0 0
\(241\) −18.0169 + 13.0900i −1.16057 + 0.843202i −0.989850 0.142118i \(-0.954609\pi\)
−0.170719 + 0.985320i \(0.554609\pi\)
\(242\) 0 0
\(243\) 10.9223 0.700668
\(244\) 0 0
\(245\) 6.83978 11.9039i 0.436977 0.760515i
\(246\) 0 0
\(247\) −0.867509 + 0.281871i −0.0551983 + 0.0179350i
\(248\) 0 0
\(249\) 9.66877 0.612734
\(250\) 0 0
\(251\) 5.01412i 0.316488i −0.987400 0.158244i \(-0.949417\pi\)
0.987400 0.158244i \(-0.0505833\pi\)
\(252\) 0 0
\(253\) 5.83009 + 17.9432i 0.366534 + 1.12808i
\(254\) 0 0
\(255\) 2.49851 + 1.43560i 0.156463 + 0.0899006i
\(256\) 0 0
\(257\) 4.08455i 0.254787i −0.991852 0.127394i \(-0.959339\pi\)
0.991852 0.127394i \(-0.0406611\pi\)
\(258\) 0 0
\(259\) 5.03490 + 6.92995i 0.312854 + 0.430606i
\(260\) 0 0
\(261\) 0.919914 1.26615i 0.0569412 0.0783729i
\(262\) 0 0
\(263\) 14.0516 + 19.3404i 0.866458 + 1.19258i 0.979991 + 0.199043i \(0.0637834\pi\)
−0.113532 + 0.993534i \(0.536217\pi\)
\(264\) 0 0
\(265\) 21.3177 + 4.48489i 1.30953 + 0.275505i
\(266\) 0 0
\(267\) −3.73448 + 11.4936i −0.228547 + 0.703395i
\(268\) 0 0
\(269\) 28.5572 + 9.27879i 1.74116 + 0.565738i 0.994986 0.100011i \(-0.0318876\pi\)
0.746176 + 0.665749i \(0.231888\pi\)
\(270\) 0 0
\(271\) −1.45987 4.49301i −0.0886807 0.272931i 0.896875 0.442285i \(-0.145832\pi\)
−0.985555 + 0.169354i \(0.945832\pi\)
\(272\) 0 0
\(273\) 1.92738 2.65281i 0.116650 0.160555i
\(274\) 0 0
\(275\) 13.0719 + 1.31896i 0.788263 + 0.0795364i
\(276\) 0 0
\(277\) 3.00568 + 2.18376i 0.180594 + 0.131209i 0.674410 0.738357i \(-0.264398\pi\)
−0.493816 + 0.869567i \(0.664398\pi\)
\(278\) 0 0
\(279\) −1.50340 4.62699i −0.0900062 0.277011i
\(280\) 0 0
\(281\) 4.25051 13.0817i 0.253564 0.780389i −0.740545 0.672006i \(-0.765433\pi\)
0.994109 0.108383i \(-0.0345673\pi\)
\(282\) 0 0
\(283\) −0.460617 + 1.41763i −0.0273808 + 0.0842695i −0.963813 0.266579i \(-0.914107\pi\)
0.936432 + 0.350848i \(0.114107\pi\)
\(284\) 0 0
\(285\) −0.941084 0.540729i −0.0557450 0.0320300i
\(286\) 0 0
\(287\) −5.17508 7.12288i −0.305475 0.420450i
\(288\) 0 0
\(289\) −13.0392 9.47351i −0.767010 0.557265i
\(290\) 0 0
\(291\) 1.29523 + 1.78273i 0.0759278 + 0.104506i
\(292\) 0 0
\(293\) −7.33412 −0.428464 −0.214232 0.976783i \(-0.568725\pi\)
−0.214232 + 0.976783i \(0.568725\pi\)
\(294\) 0 0
\(295\) 9.67590 1.03733i 0.563353 0.0603955i
\(296\) 0 0
\(297\) −14.1177 + 4.58711i −0.819191 + 0.266171i
\(298\) 0 0
\(299\) 18.5071i 1.07029i
\(300\) 0 0
\(301\) 5.18675i 0.298959i
\(302\) 0 0
\(303\) −10.1207 + 3.28842i −0.581420 + 0.188915i
\(304\) 0 0
\(305\) 3.33876 + 7.45721i 0.191177 + 0.426998i
\(306\) 0 0
\(307\) 3.91344 0.223352 0.111676 0.993745i \(-0.464378\pi\)
0.111676 + 0.993745i \(0.464378\pi\)
\(308\) 0 0
\(309\) −1.13899 1.56768i −0.0647947 0.0891822i
\(310\) 0 0
\(311\) −5.35582 3.89123i −0.303701 0.220652i 0.425488 0.904964i \(-0.360102\pi\)
−0.729189 + 0.684312i \(0.760102\pi\)
\(312\) 0 0
\(313\) 12.0592 + 16.5981i 0.681628 + 0.938180i 0.999952 0.00980162i \(-0.00312000\pi\)
−0.318324 + 0.947982i \(0.603120\pi\)
\(314\) 0 0
\(315\) −2.30664 + 0.247289i −0.129965 + 0.0139332i
\(316\) 0 0
\(317\) 1.53918 4.73712i 0.0864492 0.266063i −0.898482 0.439011i \(-0.855329\pi\)
0.984931 + 0.172947i \(0.0553290\pi\)
\(318\) 0 0
\(319\) −1.13605 + 3.49640i −0.0636065 + 0.195761i
\(320\) 0 0
\(321\) −7.19359 22.1396i −0.401507 1.23571i
\(322\) 0 0
\(323\) −0.268979 0.195425i −0.0149664 0.0108737i
\(324\) 0 0
\(325\) −11.7954 5.19298i −0.654292 0.288055i
\(326\) 0 0
\(327\) 9.41669 12.9610i 0.520744 0.716743i
\(328\) 0 0
\(329\) 2.36698 + 7.28481i 0.130496 + 0.401625i
\(330\) 0 0
\(331\) −18.8854 6.13623i −1.03803 0.337278i −0.260072 0.965589i \(-0.583746\pi\)
−0.777962 + 0.628311i \(0.783746\pi\)
\(332\) 0 0
\(333\) −3.19256 + 9.82570i −0.174951 + 0.538445i
\(334\) 0 0
\(335\) 1.58151 + 1.74911i 0.0864069 + 0.0955641i
\(336\) 0 0
\(337\) 8.18761 + 11.2693i 0.446007 + 0.613876i 0.971534 0.236901i \(-0.0761317\pi\)
−0.525527 + 0.850777i \(0.676132\pi\)
\(338\) 0 0
\(339\) 0.730965 1.00609i 0.0397005 0.0546431i
\(340\) 0 0
\(341\) 6.71734 + 9.24562i 0.363764 + 0.500679i
\(342\) 0 0
\(343\) 12.1867i 0.658019i
\(344\) 0 0
\(345\) 16.3346 14.7693i 0.879424 0.795155i
\(346\) 0 0
\(347\) −0.983057 3.02554i −0.0527733 0.162419i 0.921196 0.389098i \(-0.127213\pi\)
−0.973970 + 0.226679i \(0.927213\pi\)
\(348\) 0 0
\(349\) 17.7286i 0.948990i 0.880258 + 0.474495i \(0.157369\pi\)
−0.880258 + 0.474495i \(0.842631\pi\)
\(350\) 0 0
\(351\) 14.5614 0.777231
\(352\) 0 0
\(353\) 23.9311 7.77568i 1.27372 0.413858i 0.407358 0.913269i \(-0.366450\pi\)
0.866365 + 0.499411i \(0.166450\pi\)
\(354\) 0 0
\(355\) −25.2344 5.30891i −1.33930 0.281768i
\(356\) 0 0
\(357\) 1.19520 0.0632569
\(358\) 0 0
\(359\) 24.3831 17.7154i 1.28689 0.934983i 0.287156 0.957884i \(-0.407290\pi\)
0.999738 + 0.0229013i \(0.00729034\pi\)
\(360\) 0 0
\(361\) −15.2700 11.0943i −0.803685 0.583911i
\(362\) 0 0
\(363\) −4.54465 + 3.30188i −0.238532 + 0.173304i
\(364\) 0 0
\(365\) 14.3899 + 32.1403i 0.753204 + 1.68230i
\(366\) 0 0
\(367\) −6.38802 2.07559i −0.333452 0.108345i 0.137506 0.990501i \(-0.456091\pi\)
−0.470957 + 0.882156i \(0.656091\pi\)
\(368\) 0 0
\(369\) 3.28144 10.0992i 0.170825 0.525746i
\(370\) 0 0
\(371\) 8.59333 2.79214i 0.446144 0.144961i
\(372\) 0 0
\(373\) −19.6096 14.2472i −1.01535 0.737692i −0.0500223 0.998748i \(-0.515929\pi\)
−0.965324 + 0.261056i \(0.915929\pi\)
\(374\) 0 0
\(375\) −4.82978 14.5549i −0.249409 0.751614i
\(376\) 0 0
\(377\) 2.11973 2.91755i 0.109171 0.150262i
\(378\) 0 0
\(379\) 7.74403 2.51619i 0.397784 0.129248i −0.103292 0.994651i \(-0.532938\pi\)
0.501076 + 0.865403i \(0.332938\pi\)
\(380\) 0 0
\(381\) −21.2345 6.89950i −1.08788 0.353472i
\(382\) 0 0
\(383\) −8.59217 2.79177i −0.439040 0.142653i 0.0811529 0.996702i \(-0.474140\pi\)
−0.520192 + 0.854049i \(0.674140\pi\)
\(384\) 0 0
\(385\) 4.97365 2.22682i 0.253481 0.113489i
\(386\) 0 0
\(387\) 5.06101 3.67704i 0.257266 0.186914i
\(388\) 0 0
\(389\) 7.45733 10.2641i 0.378102 0.520412i −0.576979 0.816759i \(-0.695768\pi\)
0.955080 + 0.296347i \(0.0957685\pi\)
\(390\) 0 0
\(391\) 5.45746 3.96507i 0.275995 0.200522i
\(392\) 0 0
\(393\) 22.5164i 1.13580i
\(394\) 0 0
\(395\) 12.2523 + 2.57769i 0.616481 + 0.129698i
\(396\) 0 0
\(397\) 4.22625 + 13.0071i 0.212109 + 0.652805i 0.999346 + 0.0361546i \(0.0115109\pi\)
−0.787237 + 0.616651i \(0.788489\pi\)
\(398\) 0 0
\(399\) −0.450183 −0.0225373
\(400\) 0 0
\(401\) 34.7894 1.73730 0.868649 0.495428i \(-0.164989\pi\)
0.868649 + 0.495428i \(0.164989\pi\)
\(402\) 0 0
\(403\) −3.46424 10.6618i −0.172566 0.531103i
\(404\) 0 0
\(405\) 6.58785 + 7.28602i 0.327353 + 0.362045i
\(406\) 0 0
\(407\) 24.2685i 1.20295i
\(408\) 0 0
\(409\) −13.3846 + 9.72446i −0.661824 + 0.480843i −0.867278 0.497823i \(-0.834133\pi\)
0.205454 + 0.978667i \(0.434133\pi\)
\(410\) 0 0
\(411\) 18.0631 24.8617i 0.890985 1.22634i
\(412\) 0 0
\(413\) 3.26544 2.37248i 0.160682 0.116742i
\(414\) 0 0
\(415\) −10.5713 11.6917i −0.518926 0.573921i
\(416\) 0 0
\(417\) 15.3696 + 4.99387i 0.752651 + 0.244551i
\(418\) 0 0
\(419\) 2.26155 + 0.734822i 0.110484 + 0.0358984i 0.363737 0.931502i \(-0.381501\pi\)
−0.253253 + 0.967400i \(0.581501\pi\)
\(420\) 0 0
\(421\) 5.82497 1.89265i 0.283892 0.0922420i −0.163610 0.986525i \(-0.552314\pi\)
0.447502 + 0.894283i \(0.352314\pi\)
\(422\) 0 0
\(423\) −5.43020 + 7.47402i −0.264025 + 0.363399i
\(424\) 0 0
\(425\) −0.995791 4.59086i −0.0483030 0.222689i
\(426\) 0 0
\(427\) 2.74169 + 1.99195i 0.132680 + 0.0963974i
\(428\) 0 0
\(429\) −8.83539 + 2.87079i −0.426577 + 0.138603i
\(430\) 0 0
\(431\) −9.67194 + 29.7672i −0.465881 + 1.43383i 0.391990 + 0.919970i \(0.371787\pi\)
−0.857871 + 0.513865i \(0.828213\pi\)
\(432\) 0 0
\(433\) 14.1827 + 4.60823i 0.681575 + 0.221457i 0.629285 0.777175i \(-0.283348\pi\)
0.0522905 + 0.998632i \(0.483348\pi\)
\(434\) 0 0
\(435\) 4.26668 0.457419i 0.204572 0.0219316i
\(436\) 0 0
\(437\) −2.05559 + 1.49348i −0.0983324 + 0.0714426i
\(438\) 0 0
\(439\) 26.3874 + 19.1715i 1.25940 + 0.915008i 0.998728 0.0504195i \(-0.0160558\pi\)
0.260672 + 0.965427i \(0.416056\pi\)
\(440\) 0 0
\(441\) 5.55640 4.03696i 0.264591 0.192236i
\(442\) 0 0
\(443\) 24.4310 1.16075 0.580375 0.814349i \(-0.302906\pi\)
0.580375 + 0.814349i \(0.302906\pi\)
\(444\) 0 0
\(445\) 17.9813 8.05065i 0.852396 0.381637i
\(446\) 0 0
\(447\) 17.3632 5.64164i 0.821251 0.266841i
\(448\) 0 0
\(449\) −11.0987 −0.523780 −0.261890 0.965098i \(-0.584346\pi\)
−0.261890 + 0.965098i \(0.584346\pi\)
\(450\) 0 0
\(451\) 24.9442i 1.17457i
\(452\) 0 0
\(453\) 8.98004 + 27.6377i 0.421919 + 1.29853i
\(454\) 0 0
\(455\) −5.31512 + 0.569820i −0.249177 + 0.0267136i
\(456\) 0 0
\(457\) 10.7162i 0.501281i −0.968080 0.250641i \(-0.919359\pi\)
0.968080 0.250641i \(-0.0806412\pi\)
\(458\) 0 0
\(459\) 3.11972 + 4.29393i 0.145616 + 0.200423i
\(460\) 0 0
\(461\) −9.05653 + 12.4652i −0.421804 + 0.580564i −0.966048 0.258363i \(-0.916817\pi\)
0.544243 + 0.838927i \(0.316817\pi\)
\(462\) 0 0
\(463\) 1.08285 + 1.49042i 0.0503245 + 0.0692657i 0.833438 0.552614i \(-0.186369\pi\)
−0.783113 + 0.621879i \(0.786369\pi\)
\(464\) 0 0
\(465\) 6.64565 11.5661i 0.308184 0.536364i
\(466\) 0 0
\(467\) 6.50123 20.0087i 0.300841 0.925894i −0.680355 0.732883i \(-0.738174\pi\)
0.981196 0.193012i \(-0.0618255\pi\)
\(468\) 0 0
\(469\) 0.930200 + 0.302240i 0.0429527 + 0.0139562i
\(470\) 0 0
\(471\) −1.44569 4.44939i −0.0666140 0.205017i
\(472\) 0 0
\(473\) −8.63743 + 11.8884i −0.397150 + 0.546630i
\(474\) 0 0
\(475\) 0.375073 + 1.72918i 0.0172095 + 0.0793403i
\(476\) 0 0
\(477\) 8.81653 + 6.40558i 0.403681 + 0.293292i
\(478\) 0 0
\(479\) −0.641151 1.97326i −0.0292949 0.0901606i 0.935340 0.353750i \(-0.115094\pi\)
−0.964635 + 0.263589i \(0.915094\pi\)
\(480\) 0 0
\(481\) −7.35651 + 22.6410i −0.335428 + 1.03234i
\(482\) 0 0
\(483\) 2.82256 8.68694i 0.128431 0.395270i
\(484\) 0 0
\(485\) 0.739576 3.51537i 0.0335824 0.159625i
\(486\) 0 0
\(487\) −2.86770 3.94704i −0.129948 0.178858i 0.739085 0.673612i \(-0.235258\pi\)
−0.869033 + 0.494754i \(0.835258\pi\)
\(488\) 0 0
\(489\) −21.5496 15.6567i −0.974507 0.708021i
\(490\) 0 0
\(491\) 11.2000 + 15.4154i 0.505447 + 0.695688i 0.983143 0.182837i \(-0.0585280\pi\)
−0.477696 + 0.878525i \(0.658528\pi\)
\(492\) 0 0
\(493\) 1.31448 0.0592013
\(494\) 0 0
\(495\) 5.69881 + 3.27442i 0.256142 + 0.147174i
\(496\) 0 0
\(497\) −10.1722 + 3.30515i −0.456286 + 0.148256i
\(498\) 0 0
\(499\) 12.8562i 0.575522i 0.957702 + 0.287761i \(0.0929108\pi\)
−0.957702 + 0.287761i \(0.907089\pi\)
\(500\) 0 0
\(501\) 3.87956i 0.173326i
\(502\) 0 0
\(503\) 23.8717 7.75639i 1.06439 0.345840i 0.276088 0.961132i \(-0.410962\pi\)
0.788299 + 0.615292i \(0.210962\pi\)
\(504\) 0 0
\(505\) 15.0419 + 8.64277i 0.669354 + 0.384598i
\(506\) 0 0
\(507\) −8.71817 −0.387188
\(508\) 0 0
\(509\) −7.89183 10.8622i −0.349799 0.481457i 0.597472 0.801890i \(-0.296172\pi\)
−0.947271 + 0.320432i \(0.896172\pi\)
\(510\) 0 0
\(511\) 11.8166 + 8.58525i 0.522735 + 0.379789i
\(512\) 0 0
\(513\) −1.17507 1.61734i −0.0518805 0.0714074i
\(514\) 0 0
\(515\) −0.650360 + 3.09130i −0.0286583 + 0.136219i
\(516\) 0 0
\(517\) 6.70603 20.6390i 0.294931 0.907704i
\(518\) 0 0
\(519\) 0.364086 1.12054i 0.0159816 0.0491862i
\(520\) 0 0
\(521\) −7.91688 24.3656i −0.346845 1.06748i −0.960589 0.277973i \(-0.910337\pi\)
0.613744 0.789505i \(-0.289663\pi\)
\(522\) 0 0
\(523\) 21.7366 + 15.7926i 0.950476 + 0.690562i 0.950919 0.309438i \(-0.100141\pi\)
−0.000443114 1.00000i \(0.500141\pi\)
\(524\) 0 0
\(525\) −4.74458 4.23644i −0.207071 0.184894i
\(526\) 0 0
\(527\) 2.40180 3.30580i 0.104624 0.144003i
\(528\) 0 0
\(529\) −8.82326 27.1552i −0.383620 1.18066i
\(530\) 0 0
\(531\) 4.62994 + 1.50436i 0.200922 + 0.0652836i
\(532\) 0 0
\(533\) 7.56132 23.2714i 0.327517 1.00799i
\(534\) 0 0
\(535\) −18.9065 + 32.9049i −0.817400 + 1.42260i
\(536\) 0 0
\(537\) 18.4446 + 25.3867i 0.795941 + 1.09552i
\(538\) 0 0
\(539\) −9.48290 + 13.0521i −0.408457 + 0.562193i
\(540\) 0 0
\(541\) 11.1415 + 15.3350i 0.479011 + 0.659302i 0.978314 0.207125i \(-0.0664108\pi\)
−0.499304 + 0.866427i \(0.666411\pi\)
\(542\) 0 0
\(543\) 26.7287i 1.14704i
\(544\) 0 0
\(545\) −25.9684 + 2.78400i −1.11236 + 0.119253i
\(546\) 0 0
\(547\) −4.69413 14.4470i −0.200706 0.617711i −0.999862 0.0165870i \(-0.994720\pi\)
0.799156 0.601124i \(-0.205280\pi\)
\(548\) 0 0
\(549\) 4.08738i 0.174445i
\(550\) 0 0
\(551\) −0.495110 −0.0210924
\(552\) 0 0
\(553\) 4.93902 1.60478i 0.210028 0.0682424i
\(554\) 0 0
\(555\) −25.8540 + 11.5754i −1.09744 + 0.491349i
\(556\) 0 0
\(557\) −1.85471 −0.0785867 −0.0392933 0.999228i \(-0.512511\pi\)
−0.0392933 + 0.999228i \(0.512511\pi\)
\(558\) 0 0
\(559\) 11.6619 8.47288i 0.493247 0.358365i
\(560\) 0 0
\(561\) −2.73950 1.99036i −0.115662 0.0840331i
\(562\) 0 0
\(563\) −30.3261 + 22.0332i −1.27809 + 0.928587i −0.999494 0.0318207i \(-0.989869\pi\)
−0.278597 + 0.960408i \(0.589869\pi\)
\(564\) 0 0
\(565\) −2.01578 + 0.216106i −0.0848044 + 0.00909164i
\(566\) 0 0
\(567\) 3.87480 + 1.25900i 0.162726 + 0.0528730i
\(568\) 0 0
\(569\) −8.05065 + 24.7774i −0.337501 + 1.03872i 0.627976 + 0.778233i \(0.283884\pi\)
−0.965477 + 0.260488i \(0.916116\pi\)
\(570\) 0 0
\(571\) 31.4963 10.2338i 1.31808 0.428270i 0.436244 0.899828i \(-0.356308\pi\)
0.881835 + 0.471558i \(0.156308\pi\)
\(572\) 0 0
\(573\) −13.9958 10.1686i −0.584685 0.424798i
\(574\) 0 0
\(575\) −35.7187 3.60405i −1.48957 0.150299i
\(576\) 0 0
\(577\) −10.2228 + 14.0705i −0.425580 + 0.585761i −0.966932 0.255035i \(-0.917913\pi\)
0.541351 + 0.840796i \(0.317913\pi\)
\(578\) 0 0
\(579\) −11.0674 + 3.59603i −0.459947 + 0.149446i
\(580\) 0 0
\(581\) −6.21778 2.02028i −0.257957 0.0838153i
\(582\) 0 0
\(583\) −24.3463 7.91058i −1.00832 0.327623i
\(584\) 0 0
\(585\) −4.32405 4.78231i −0.178778 0.197724i
\(586\) 0 0
\(587\) −27.1271 + 19.7090i −1.11965 + 0.813476i −0.984157 0.177301i \(-0.943263\pi\)
−0.135497 + 0.990778i \(0.543263\pi\)
\(588\) 0 0
\(589\) −0.904658 + 1.24515i −0.0372758 + 0.0513057i
\(590\) 0 0
\(591\) −16.3492 + 11.8784i −0.672518 + 0.488613i
\(592\) 0 0
\(593\) 19.5523i 0.802917i −0.915877 0.401458i \(-0.868503\pi\)
0.915877 0.401458i \(-0.131497\pi\)
\(594\) 0 0
\(595\) −1.30677 1.44526i −0.0535725 0.0592500i
\(596\) 0 0
\(597\) −2.41863 7.44379i −0.0989880 0.304654i
\(598\) 0 0
\(599\) 15.7131 0.642018 0.321009 0.947076i \(-0.395978\pi\)
0.321009 + 0.947076i \(0.395978\pi\)
\(600\) 0 0
\(601\) 44.4894 1.81476 0.907380 0.420310i \(-0.138079\pi\)
0.907380 + 0.420310i \(0.138079\pi\)
\(602\) 0 0
\(603\) 0.364533 + 1.12192i 0.0148449 + 0.0456880i
\(604\) 0 0
\(605\) 8.96157 + 1.88537i 0.364340 + 0.0766512i
\(606\) 0 0
\(607\) 21.4173i 0.869301i 0.900599 + 0.434651i \(0.143128\pi\)
−0.900599 + 0.434651i \(0.856872\pi\)
\(608\) 0 0
\(609\) 1.43993 1.04617i 0.0583488 0.0423929i
\(610\) 0 0
\(611\) −12.5126 + 17.2221i −0.506206 + 0.696733i
\(612\) 0 0
\(613\) 1.93251 1.40405i 0.0780532 0.0567090i −0.548074 0.836430i \(-0.684639\pi\)
0.626128 + 0.779721i \(0.284639\pi\)
\(614\) 0 0
\(615\) 26.5737 11.8977i 1.07156 0.479760i
\(616\) 0 0
\(617\) 9.76545 + 3.17299i 0.393142 + 0.127740i 0.498915 0.866651i \(-0.333732\pi\)
−0.105773 + 0.994390i \(0.533732\pi\)
\(618\) 0 0
\(619\) −22.9711 7.46375i −0.923285 0.299994i −0.191471 0.981498i \(-0.561326\pi\)
−0.731814 + 0.681505i \(0.761326\pi\)
\(620\) 0 0
\(621\) 38.5764 12.5342i 1.54802 0.502982i
\(622\) 0 0
\(623\) 4.80313 6.61094i 0.192433 0.264862i
\(624\) 0 0
\(625\) −12.3195 + 21.7539i −0.492779 + 0.870155i
\(626\) 0 0
\(627\) 1.03185 + 0.749685i 0.0412082 + 0.0299395i
\(628\) 0 0
\(629\) −8.25258 + 2.68143i −0.329052 + 0.106915i
\(630\) 0 0
\(631\) −5.14314 + 15.8289i −0.204745 + 0.630140i 0.794979 + 0.606637i \(0.207482\pi\)
−0.999724 + 0.0235031i \(0.992518\pi\)
\(632\) 0 0
\(633\) −17.7538 5.76856i −0.705650 0.229280i
\(634\) 0 0
\(635\) 14.8737 + 33.2207i 0.590243 + 1.31832i
\(636\) 0 0
\(637\) 12.8034 9.30224i 0.507290 0.368568i
\(638\) 0 0
\(639\) −10.4364 7.58250i −0.412858 0.299959i
\(640\) 0 0
\(641\) −11.9869 + 8.70898i −0.473454 + 0.343984i −0.798786 0.601616i \(-0.794524\pi\)
0.325332 + 0.945600i \(0.394524\pi\)
\(642\) 0 0
\(643\) −17.1919 −0.677981 −0.338990 0.940790i \(-0.610085\pi\)
−0.338990 + 0.940790i \(0.610085\pi\)
\(644\) 0 0
\(645\) 16.7849 + 3.53127i 0.660904 + 0.139044i
\(646\) 0 0
\(647\) 7.49201 2.43430i 0.294541 0.0957023i −0.158019 0.987436i \(-0.550511\pi\)
0.452560 + 0.891734i \(0.350511\pi\)
\(648\) 0 0
\(649\) −11.4355 −0.448882
\(650\) 0 0
\(651\) 5.53282i 0.216848i
\(652\) 0 0
\(653\) −11.8930 36.6029i −0.465409 1.43238i −0.858467 0.512869i \(-0.828583\pi\)
0.393057 0.919514i \(-0.371417\pi\)
\(654\) 0 0
\(655\) −27.2272 + 24.6182i −1.06386 + 0.961914i
\(656\) 0 0
\(657\) 17.6165i 0.687284i
\(658\) 0 0
\(659\) 20.8965 + 28.7616i 0.814013 + 1.12039i 0.990692 + 0.136124i \(0.0434646\pi\)
−0.176679 + 0.984269i \(0.556535\pi\)
\(660\) 0 0
\(661\) 17.1104 23.5504i 0.665516 0.916005i −0.334132 0.942526i \(-0.608443\pi\)
0.999648 + 0.0265217i \(0.00844310\pi\)
\(662\) 0 0
\(663\) 1.95244 + 2.68731i 0.0758266 + 0.104366i
\(664\) 0 0
\(665\) 0.492206 + 0.544370i 0.0190869 + 0.0211097i
\(666\) 0 0
\(667\) 3.10424 9.55387i 0.120197 0.369927i
\(668\) 0 0
\(669\) −29.6067 9.61979i −1.14466 0.371923i
\(670\) 0 0
\(671\) −2.96697 9.13141i −0.114539 0.352514i
\(672\) 0 0
\(673\) −1.94169 + 2.67251i −0.0748467 + 0.103018i −0.844799 0.535084i \(-0.820280\pi\)
0.769952 + 0.638102i \(0.220280\pi\)
\(674\) 0 0
\(675\) 2.83567 28.1035i 0.109145 1.08170i
\(676\) 0 0
\(677\) −17.2107 12.5043i −0.661460 0.480579i 0.205696 0.978616i \(-0.434054\pi\)
−0.867156 + 0.498037i \(0.834054\pi\)
\(678\) 0 0
\(679\) −0.460435 1.41707i −0.0176699 0.0543823i
\(680\) 0 0
\(681\) −5.82536 + 17.9286i −0.223228 + 0.687026i
\(682\) 0 0
\(683\) 3.92453 12.0784i 0.150168 0.462169i −0.847471 0.530841i \(-0.821876\pi\)
0.997639 + 0.0686719i \(0.0218762\pi\)
\(684\) 0 0
\(685\) −49.8124 + 5.34025i −1.90323 + 0.204041i
\(686\) 0 0
\(687\) −5.33009 7.33624i −0.203356 0.279895i
\(688\) 0 0
\(689\) 20.3156 + 14.7602i 0.773964 + 0.562318i
\(690\) 0 0
\(691\) −22.6417 31.1636i −0.861329 1.18552i −0.981251 0.192734i \(-0.938264\pi\)
0.119922 0.992783i \(-0.461736\pi\)
\(692\) 0 0
\(693\) 2.72612 0.103557
\(694\) 0 0
\(695\) −10.7656 24.0452i −0.408362 0.912086i
\(696\) 0 0
\(697\) 8.48233 2.75608i 0.321291 0.104394i
\(698\) 0 0
\(699\) 19.7498i 0.747006i
\(700\) 0 0
\(701\) 39.6154i 1.49625i 0.663555 + 0.748127i \(0.269047\pi\)
−0.663555 + 0.748127i \(0.730953\pi\)
\(702\) 0 0
\(703\) 3.10840 1.00998i 0.117235 0.0380921i
\(704\) 0 0
\(705\) −25.1859 + 2.70012i −0.948557 + 0.101692i
\(706\) 0 0
\(707\) 7.19552 0.270615
\(708\) 0 0
\(709\) 5.04361 + 6.94194i 0.189417 + 0.260710i 0.893154 0.449750i \(-0.148487\pi\)
−0.703738 + 0.710460i \(0.748487\pi\)
\(710\) 0 0
\(711\) 5.06730 + 3.68161i 0.190039 + 0.138071i
\(712\) 0 0
\(713\) −18.3551 25.2636i −0.687402 0.946128i
\(714\) 0 0
\(715\) 13.1316 + 7.54514i 0.491093 + 0.282172i
\(716\) 0 0
\(717\) −0.272861 + 0.839780i −0.0101902 + 0.0313622i
\(718\) 0 0
\(719\) −2.74075 + 8.43517i −0.102213 + 0.314579i −0.989066 0.147472i \(-0.952886\pi\)
0.886853 + 0.462051i \(0.152886\pi\)
\(720\) 0 0
\(721\) 0.404892 + 1.24613i 0.0150790 + 0.0464083i
\(722\) 0 0
\(723\) −24.7126 17.9547i −0.919071 0.667744i
\(724\) 0 0
\(725\) −5.21808 4.65923i −0.193795 0.173039i
\(726\) 0 0
\(727\) −19.5205 + 26.8677i −0.723976 + 0.996468i 0.275406 + 0.961328i \(0.411188\pi\)
−0.999382 + 0.0351397i \(0.988812\pi\)
\(728\) 0 0
\(729\) 8.70192 + 26.7818i 0.322293 + 0.991917i
\(730\) 0 0
\(731\) 4.99703 + 1.62364i 0.184822 + 0.0600523i
\(732\) 0 0
\(733\) −0.186051 + 0.572607i −0.00687196 + 0.0211497i −0.954434 0.298423i \(-0.903539\pi\)
0.947562 + 0.319573i \(0.103539\pi\)
\(734\) 0 0
\(735\) 18.4278 + 3.87692i 0.679721 + 0.143002i
\(736\) 0 0
\(737\) −1.62877 2.24181i −0.0599965 0.0825781i
\(738\) 0 0
\(739\) −21.4919 + 29.5811i −0.790594 + 1.08816i 0.203440 + 0.979087i \(0.434788\pi\)
−0.994034 + 0.109072i \(0.965212\pi\)
\(740\) 0 0
\(741\) −0.735402 1.01219i −0.0270157 0.0371839i
\(742\) 0 0
\(743\) 0.112858i 0.00414038i 0.999998 + 0.00207019i \(0.000658962\pi\)
−0.999998 + 0.00207019i \(0.999341\pi\)
\(744\) 0 0
\(745\) −25.8060 14.8276i −0.945458 0.543242i
\(746\) 0 0
\(747\) −2.43667 7.49929i −0.0891529 0.274385i
\(748\) 0 0
\(749\) 15.7406i 0.575149i
\(750\) 0 0
\(751\) 21.9164 0.799742 0.399871 0.916571i \(-0.369055\pi\)
0.399871 + 0.916571i \(0.369055\pi\)
\(752\) 0 0
\(753\) 6.54093 2.12528i 0.238365 0.0774495i
\(754\) 0 0
\(755\) 23.6017 41.0765i 0.858955 1.49493i
\(756\) 0 0
\(757\) −16.3710 −0.595014 −0.297507 0.954720i \(-0.596155\pi\)
−0.297507 + 0.954720i \(0.596155\pi\)
\(758\) 0 0
\(759\) −20.9358 + 15.2107i −0.759921 + 0.552115i
\(760\) 0 0
\(761\) −5.84229 4.24467i −0.211783 0.153869i 0.476837 0.878992i \(-0.341783\pi\)
−0.688620 + 0.725122i \(0.741783\pi\)
\(762\) 0 0
\(763\) −8.76385 + 6.36731i −0.317273 + 0.230512i
\(764\) 0 0
\(765\) 0.483817 2.29969i 0.0174924 0.0831453i
\(766\) 0 0
\(767\) 10.6686 + 3.46644i 0.385221 + 0.125166i
\(768\) 0 0
\(769\) 12.3133 37.8964i 0.444028 1.36658i −0.439518 0.898234i \(-0.644851\pi\)
0.883546 0.468344i \(-0.155149\pi\)
\(770\) 0 0
\(771\) 5.32830 1.73127i 0.191894 0.0623502i
\(772\) 0 0
\(773\) −40.6107 29.5054i −1.46066 1.06123i −0.983189 0.182590i \(-0.941552\pi\)
−0.477475 0.878645i \(-0.658448\pi\)
\(774\) 0 0
\(775\) −21.2519 + 4.60970i −0.763391 + 0.165585i
\(776\) 0 0
\(777\) −6.90605 + 9.50537i −0.247753 + 0.341003i
\(778\) 0 0
\(779\) −3.19494 + 1.03810i −0.114470 + 0.0371937i
\(780\) 0 0
\(781\) 28.8195 + 9.36401i 1.03124 + 0.335071i
\(782\) 0 0
\(783\) 7.51699 + 2.44242i 0.268635 + 0.0872849i
\(784\) 0 0
\(785\) −3.79964 + 6.61288i −0.135615 + 0.236024i
\(786\) 0 0
\(787\) 33.6522 24.4497i 1.19957 0.871539i 0.205329 0.978693i \(-0.434174\pi\)
0.994242 + 0.107154i \(0.0341737\pi\)
\(788\) 0 0
\(789\) −19.2737 + 26.5279i −0.686161 + 0.944419i
\(790\) 0 0
\(791\) −0.680288 + 0.494258i −0.0241883 + 0.0175738i
\(792\) 0 0
\(793\) 9.41841i 0.334458i
\(794\) 0 0
\(795\) 3.18512 + 29.7099i 0.112965 + 1.05370i
\(796\) 0 0
\(797\) −10.9651 33.7472i −0.388404 1.19539i −0.933980 0.357324i \(-0.883689\pi\)
0.545576 0.838061i \(-0.316311\pi\)
\(798\) 0 0
\(799\) −7.75931 −0.274505
\(800\) 0 0
\(801\) 9.85577 0.348236
\(802\) 0 0
\(803\) −12.7876 39.3560i −0.451263 1.38884i
\(804\) 0 0
\(805\) −13.5904 + 6.08475i −0.479000 + 0.214459i
\(806\) 0 0
\(807\) 41.1858i 1.44981i
\(808\) 0 0
\(809\) 15.2356 11.0693i 0.535656 0.389177i −0.286813 0.957986i \(-0.592596\pi\)
0.822469 + 0.568810i \(0.192596\pi\)
\(810\) 0 0
\(811\) 30.8789 42.5012i 1.08431 1.49242i 0.229616 0.973281i \(-0.426253\pi\)
0.854690 0.519138i \(-0.173747\pi\)
\(812\) 0 0
\(813\) 5.24237 3.80881i 0.183858 0.133581i
\(814\) 0 0
\(815\) 4.62882 + 43.1764i 0.162141 + 1.51240i
\(816\) 0 0
\(817\) −1.88217 0.611555i −0.0658489 0.0213956i
\(818\) 0 0
\(819\) −2.54330 0.826367i −0.0888700 0.0288756i
\(820\) 0 0
\(821\) 4.70172 1.52768i 0.164091 0.0533164i −0.225819 0.974169i \(-0.572506\pi\)
0.389910 + 0.920853i \(0.372506\pi\)
\(822\) 0 0
\(823\) 3.18730 4.38694i 0.111102 0.152919i −0.749845 0.661614i \(-0.769872\pi\)
0.860947 + 0.508695i \(0.169872\pi\)
\(824\) 0 0
\(825\) 3.82003 + 17.6113i 0.132996 + 0.613148i
\(826\) 0 0
\(827\) −33.7010 24.4852i −1.17190 0.851435i −0.180664 0.983545i \(-0.557825\pi\)
−0.991235 + 0.132110i \(0.957825\pi\)
\(828\) 0 0
\(829\) −27.3761 + 8.89503i −0.950811 + 0.308937i −0.743045 0.669241i \(-0.766619\pi\)
−0.207766 + 0.978179i \(0.566619\pi\)
\(830\) 0 0
\(831\) −1.57473 + 4.84653i −0.0546268 + 0.168124i
\(832\) 0 0
\(833\) 5.48616 + 1.78256i 0.190084 + 0.0617621i
\(834\) 0 0
\(835\) 4.69124 4.24171i 0.162347 0.146790i
\(836\) 0 0
\(837\) 19.8774 14.4418i 0.687063 0.499180i
\(838\) 0 0
\(839\) −43.0983 31.3128i −1.48792 1.08104i −0.974895 0.222663i \(-0.928525\pi\)
−0.513024 0.858374i \(-0.671475\pi\)
\(840\) 0 0
\(841\) −21.8779 + 15.8952i −0.754409 + 0.548110i
\(842\) 0 0
\(843\) 18.8667 0.649805
\(844\) 0 0
\(845\) 9.53199 + 10.5422i 0.327910 + 0.362662i
\(846\) 0 0
\(847\) 3.61249 1.17377i 0.124126 0.0403311i
\(848\) 0 0
\(849\) −2.04454 −0.0701685
\(850\) 0 0
\(851\) 66.3135i 2.27320i
\(852\) 0 0
\(853\) 16.1501 + 49.7048i 0.552968 + 1.70186i 0.701250 + 0.712915i \(0.252625\pi\)
−0.148283 + 0.988945i \(0.547375\pi\)
\(854\) 0 0
\(855\) −0.182233 + 0.866194i −0.00623225 + 0.0296232i
\(856\) 0 0
\(857\) 6.32615i 0.216097i −0.994146 0.108049i \(-0.965540\pi\)
0.994146 0.108049i \(-0.0344602\pi\)
\(858\) 0 0
\(859\) −31.4567 43.2964i −1.07329 1.47726i −0.866701 0.498827i \(-0.833764\pi\)
−0.206588 0.978428i \(-0.566236\pi\)
\(860\) 0 0
\(861\) 7.09832 9.77000i 0.241910 0.332961i
\(862\) 0 0
\(863\) 25.6168 + 35.2585i 0.872007 + 1.20021i 0.978571 + 0.205909i \(0.0660150\pi\)
−0.106564 + 0.994306i \(0.533985\pi\)
\(864\) 0 0
\(865\) −1.75305 + 0.784880i −0.0596055 + 0.0266867i
\(866\) 0 0
\(867\) 6.83146 21.0251i 0.232008 0.714049i
\(868\) 0 0
\(869\) −13.9930 4.54661i −0.474681 0.154233i
\(870\) 0 0
\(871\) 0.839981 + 2.58520i 0.0284617 + 0.0875961i
\(872\) 0 0
\(873\) 1.05631 1.45388i 0.0357505 0.0492064i
\(874\) 0 0
\(875\) 0.0646922 + 10.3691i 0.00218700 + 0.350541i
\(876\) 0 0
\(877\) −3.02353 2.19672i −0.102097 0.0741781i 0.535565 0.844494i \(-0.320099\pi\)
−0.637663 + 0.770316i \(0.720099\pi\)
\(878\) 0 0
\(879\) −3.10863 9.56738i −0.104851 0.322700i
\(880\) 0 0
\(881\) −13.5548 + 41.7174i −0.456673 + 1.40549i 0.412487 + 0.910963i \(0.364660\pi\)
−0.869160 + 0.494531i \(0.835340\pi\)
\(882\) 0 0
\(883\) 6.00720 18.4883i 0.202158 0.622179i −0.797660 0.603108i \(-0.793929\pi\)
0.999818 0.0190716i \(-0.00607105\pi\)
\(884\) 0 0
\(885\) 5.45441 + 12.1826i 0.183348 + 0.409512i
\(886\) 0 0
\(887\) 10.5570 + 14.5304i 0.354468 + 0.487883i 0.948597 0.316486i \(-0.102503\pi\)
−0.594129 + 0.804370i \(0.702503\pi\)
\(888\) 0 0
\(889\) 12.2138 + 8.87384i 0.409638 + 0.297619i
\(890\) 0 0
\(891\) −6.78473 9.33838i −0.227297 0.312847i
\(892\) 0 0
\(893\) 2.92260 0.0978012
\(894\) 0 0
\(895\) 10.5318 50.0600i 0.352040 1.67332i
\(896\) 0 0
\(897\) 24.1426 7.84441i 0.806098 0.261917i
\(898\) 0 0
\(899\) 6.08498i 0.202945i
\(900\) 0 0
\(901\) 9.15306i 0.304933i
\(902\) 0 0
\(903\) 6.76613 2.19845i 0.225163 0.0731598i
\(904\) 0 0
\(905\) −32.3208 + 29.2237i −1.07438 + 0.971429i
\(906\) 0 0
\(907\) 14.9961 0.497938 0.248969 0.968511i \(-0.419908\pi\)
0.248969 + 0.968511i \(0.419908\pi\)
\(908\) 0 0
\(909\) 5.10112 + 7.02109i 0.169193 + 0.232875i
\(910\) 0 0
\(911\) −28.4325 20.6574i −0.942011 0.684411i 0.00689309 0.999976i \(-0.497806\pi\)
−0.948904 + 0.315565i \(0.897806\pi\)
\(912\) 0 0
\(913\) 10.8873 + 14.9850i 0.360316 + 0.495932i
\(914\) 0 0
\(915\) −8.31278 + 7.51623i −0.274812 + 0.248479i
\(916\) 0 0
\(917\) −4.70477 + 14.4798i −0.155365 + 0.478165i
\(918\) 0 0
\(919\) −1.49412 + 4.59844i −0.0492866 + 0.151689i −0.972671 0.232188i \(-0.925411\pi\)
0.923384 + 0.383877i \(0.125411\pi\)
\(920\) 0 0
\(921\) 1.65874 + 5.10509i 0.0546575 + 0.168218i
\(922\) 0 0
\(923\) −24.0483 17.4721i −0.791558 0.575101i
\(924\) 0 0
\(925\) 42.2645 + 18.6071i 1.38965 + 0.611799i
\(926\) 0 0
\(927\) −0.928882 + 1.27850i −0.0305085 + 0.0419913i
\(928\) 0 0
\(929\) −1.73466 5.33873i −0.0569124 0.175158i 0.918559 0.395283i \(-0.129354\pi\)
−0.975472 + 0.220125i \(0.929354\pi\)
\(930\) 0 0
\(931\) −2.06641 0.671416i −0.0677237 0.0220048i
\(932\) 0 0
\(933\) 2.80601 8.63602i 0.0918648 0.282731i
\(934\) 0 0
\(935\) 0.588440 + 5.48880i 0.0192440 + 0.179503i
\(936\) 0 0
\(937\) −20.3931 28.0687i −0.666213 0.916964i 0.333454 0.942767i \(-0.391786\pi\)
−0.999667 + 0.0258024i \(0.991786\pi\)
\(938\) 0 0
\(939\) −16.5409 + 22.7666i −0.539791 + 0.742958i
\(940\) 0 0
\(941\) −27.7263 38.1620i −0.903853 1.24405i −0.969223 0.246185i \(-0.920823\pi\)
0.0653703 0.997861i \(-0.479177\pi\)
\(942\) 0 0
\(943\) 68.1597i 2.21958i
\(944\) 0 0
\(945\) −4.78749 10.6930i −0.155737 0.347842i
\(946\) 0 0
\(947\) −1.10237 3.39273i −0.0358221 0.110249i 0.931547 0.363622i \(-0.118460\pi\)
−0.967369 + 0.253373i \(0.918460\pi\)
\(948\) 0 0
\(949\) 40.5930i 1.31771i
\(950\) 0 0
\(951\) 6.83199 0.221542
\(952\) 0 0
\(953\) 26.4322 8.58834i 0.856222 0.278204i 0.152172 0.988354i \(-0.451373\pi\)
0.704050 + 0.710150i \(0.251373\pi\)
\(954\) 0 0
\(955\) 3.00629 + 28.0418i 0.0972812 + 0.907412i
\(956\) 0 0
\(957\) −5.04259 −0.163004
\(958\) 0 0
\(959\) −16.8108 + 12.2137i −0.542848 + 0.394402i
\(960\) 0 0
\(961\) 9.77638 + 7.10296i 0.315367 + 0.229128i
\(962\) 0 0
\(963\) −15.3590 + 11.1590i −0.494937 + 0.359593i
\(964\) 0 0
\(965\) 16.4489 + 9.45124i 0.529510 + 0.304246i
\(966\) 0 0
\(967\) 23.8022 + 7.73379i 0.765426 + 0.248702i 0.665606 0.746304i \(-0.268173\pi\)
0.0998201 + 0.995006i \(0.468173\pi\)
\(968\) 0 0
\(969\) 0.140923 0.433717i 0.00452710 0.0139330i
\(970\) 0 0
\(971\) 23.8687 7.75540i 0.765982 0.248883i 0.100138 0.994974i \(-0.468072\pi\)
0.665844 + 0.746091i \(0.268072\pi\)
\(972\) 0 0
\(973\) −8.84037 6.42290i −0.283409 0.205909i
\(974\) 0 0
\(975\) 1.77467 17.5883i 0.0568349 0.563275i
\(976\) 0 0
\(977\) 20.3216 27.9703i 0.650146 0.894850i −0.348959 0.937138i \(-0.613465\pi\)
0.999105 + 0.0422882i \(0.0134648\pi\)
\(978\) 0 0
\(979\) −22.0183 + 7.15417i −0.703707 + 0.228648i
\(980\) 0 0
\(981\) −12.4259 4.03742i −0.396729 0.128905i
\(982\) 0 0
\(983\) −16.4679 5.35074i −0.525244 0.170662i 0.0343798 0.999409i \(-0.489054\pi\)
−0.559624 + 0.828747i \(0.689054\pi\)
\(984\) 0 0
\(985\) 32.2390 + 6.78257i 1.02722 + 0.216111i
\(986\) 0 0
\(987\) −8.49980 + 6.17546i −0.270552 + 0.196567i
\(988\) 0 0
\(989\) 23.6017 32.4849i 0.750490 1.03296i
\(990\) 0 0
\(991\) 45.0802 32.7527i 1.43202 1.04042i 0.442385 0.896825i \(-0.354132\pi\)
0.989636 0.143599i \(-0.0458676\pi\)
\(992\) 0 0
\(993\) 27.2369i 0.864338i
\(994\) 0 0
\(995\) −6.35676 + 11.0633i −0.201523 + 0.350730i
\(996\) 0 0
\(997\) −5.97548 18.3906i −0.189245 0.582438i 0.810750 0.585392i \(-0.199060\pi\)
−0.999996 + 0.00295465i \(0.999060\pi\)
\(998\) 0 0
\(999\) −52.1755 −1.65076
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.be.a.209.20 112
4.3 odd 2 200.2.o.a.109.15 yes 112
8.3 odd 2 200.2.o.a.109.2 112
8.5 even 2 inner 800.2.be.a.209.9 112
20.3 even 4 1000.2.t.b.701.55 224
20.7 even 4 1000.2.t.b.701.2 224
20.19 odd 2 1000.2.o.a.549.14 112
25.14 even 10 inner 800.2.be.a.689.9 112
40.3 even 4 1000.2.t.b.701.32 224
40.19 odd 2 1000.2.o.a.549.27 112
40.27 even 4 1000.2.t.b.701.25 224
100.11 odd 10 1000.2.o.a.949.27 112
100.23 even 20 1000.2.t.b.301.32 224
100.27 even 20 1000.2.t.b.301.25 224
100.39 odd 10 200.2.o.a.189.2 yes 112
200.11 odd 10 1000.2.o.a.949.14 112
200.27 even 20 1000.2.t.b.301.2 224
200.123 even 20 1000.2.t.b.301.55 224
200.139 odd 10 200.2.o.a.189.15 yes 112
200.189 even 10 inner 800.2.be.a.689.20 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.2 112 8.3 odd 2
200.2.o.a.109.15 yes 112 4.3 odd 2
200.2.o.a.189.2 yes 112 100.39 odd 10
200.2.o.a.189.15 yes 112 200.139 odd 10
800.2.be.a.209.9 112 8.5 even 2 inner
800.2.be.a.209.20 112 1.1 even 1 trivial
800.2.be.a.689.9 112 25.14 even 10 inner
800.2.be.a.689.20 112 200.189 even 10 inner
1000.2.o.a.549.14 112 20.19 odd 2
1000.2.o.a.549.27 112 40.19 odd 2
1000.2.o.a.949.14 112 200.11 odd 10
1000.2.o.a.949.27 112 100.11 odd 10
1000.2.t.b.301.2 224 200.27 even 20
1000.2.t.b.301.25 224 100.27 even 20
1000.2.t.b.301.32 224 100.23 even 20
1000.2.t.b.301.55 224 200.123 even 20
1000.2.t.b.701.2 224 20.7 even 4
1000.2.t.b.701.25 224 40.27 even 4
1000.2.t.b.701.32 224 40.3 even 4
1000.2.t.b.701.55 224 20.3 even 4