Properties

Label 1000.2.t.b.701.25
Level $1000$
Weight $2$
Character 1000.701
Analytic conductor $7.985$
Analytic rank $0$
Dimension $224$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1000,2,Mod(101,1000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1000.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1000, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.t (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [224] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(56\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 701.25
Character \(\chi\) \(=\) 1000.701
Dual form 1000.2.t.b.301.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.421131 - 1.35006i) q^{2} +(1.30450 - 0.423859i) q^{3} +(-1.64530 + 1.13710i) q^{4} +(-1.12160 - 1.58265i) q^{6} -0.927462 q^{7} +(2.22803 + 1.74238i) q^{8} +(-0.904979 + 0.657506i) q^{9} +(-1.54449 + 2.12581i) q^{11} +(-1.66433 + 2.18072i) q^{12} +(1.51507 + 2.08531i) q^{13} +(0.390583 + 1.25213i) q^{14} +(1.41401 - 3.74173i) q^{16} +(-0.290328 + 0.893539i) q^{17} +(1.26878 + 0.944876i) q^{18} +(0.336558 + 0.109354i) q^{19} +(-1.20988 + 0.393113i) q^{21} +(3.52040 + 1.18991i) q^{22} +(5.80876 + 4.22031i) q^{23} +(3.64500 + 1.32856i) q^{24} +(2.17724 - 2.92361i) q^{26} +(-3.32054 + 4.57033i) q^{27} +(1.52595 - 1.05462i) q^{28} +(1.33062 - 0.432345i) q^{29} +(-1.34398 + 4.13636i) q^{31} +(-5.64703 - 0.333231i) q^{32} +(-1.11375 + 3.42777i) q^{33} +(1.32859 + 0.0156626i) q^{34} +(0.741311 - 2.11084i) q^{36} +(5.42869 + 7.47195i) q^{37} +(0.00589944 - 0.500425i) q^{38} +(2.86029 + 2.07812i) q^{39} +(7.67997 - 5.57982i) q^{41} +(1.04024 + 1.46785i) q^{42} -5.59241i q^{43} +(0.123891 - 5.25383i) q^{44} +(3.25140 - 9.61944i) q^{46} +(2.55210 + 7.85457i) q^{47} +(0.258613 - 5.48044i) q^{48} -6.13981 q^{49} +1.28868i q^{51} +(-4.86395 - 1.70818i) q^{52} +(-9.26543 + 3.01052i) q^{53} +(7.56858 + 2.55821i) q^{54} +(-2.06642 - 1.61599i) q^{56} +0.485392 q^{57} +(-1.14405 - 1.61434i) q^{58} +(-2.55804 - 3.52083i) q^{59} +(2.14775 - 2.95612i) q^{61} +(6.15030 + 0.0725051i) q^{62} +(0.839334 - 0.609812i) q^{63} +(1.92826 + 7.76414i) q^{64} +(5.09672 + 0.0600846i) q^{66} +(-1.00295 - 0.325879i) q^{67} +(-0.538366 - 1.80027i) q^{68} +(9.36636 + 3.04331i) q^{69} +(3.56365 + 10.9678i) q^{71} +(-3.16194 - 0.111869i) q^{72} +(12.7408 + 9.25671i) q^{73} +(7.80136 - 10.4757i) q^{74} +(-0.678086 + 0.202780i) q^{76} +(1.43246 - 1.97161i) q^{77} +(1.60102 - 4.73671i) q^{78} +(1.73030 + 5.32530i) q^{79} +(-1.35747 + 4.17785i) q^{81} +(-10.7673 - 8.01855i) q^{82} +(-6.70408 - 2.17829i) q^{83} +(1.54360 - 2.02254i) q^{84} +(-7.55006 + 2.35514i) q^{86} +(1.55254 - 1.12799i) q^{87} +(-7.14514 + 2.04529i) q^{88} +(-7.12799 - 5.17879i) q^{89} +(-1.40517 - 1.93405i) q^{91} +(-14.3560 - 0.338530i) q^{92} +5.96555i q^{93} +(9.52933 - 6.75328i) q^{94} +(-7.50781 + 1.95884i) q^{96} +(0.496446 + 1.52791i) q^{97} +(2.58566 + 8.28909i) q^{98} -2.93933i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q + 6 q^{4} + 2 q^{6} + 60 q^{9} + 6 q^{14} - 30 q^{16} + 32 q^{24} - 28 q^{26} - 36 q^{31} - 18 q^{34} + 82 q^{36} + 20 q^{39} - 20 q^{41} + 64 q^{44} + 26 q^{46} + 160 q^{49} - 86 q^{54} + 72 q^{56}+ \cdots + 92 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.421131 1.35006i −0.297784 0.954633i
\(3\) 1.30450 0.423859i 0.753155 0.244715i 0.0928169 0.995683i \(-0.470413\pi\)
0.660338 + 0.750968i \(0.270413\pi\)
\(4\) −1.64530 + 1.13710i −0.822649 + 0.568550i
\(5\) 0 0
\(6\) −1.12160 1.58265i −0.457891 0.646115i
\(7\) −0.927462 −0.350548 −0.175274 0.984520i \(-0.556081\pi\)
−0.175274 + 0.984520i \(0.556081\pi\)
\(8\) 2.22803 + 1.74238i 0.787728 + 0.616023i
\(9\) −0.904979 + 0.657506i −0.301660 + 0.219169i
\(10\) 0 0
\(11\) −1.54449 + 2.12581i −0.465682 + 0.640956i −0.975675 0.219222i \(-0.929648\pi\)
0.509993 + 0.860179i \(0.329648\pi\)
\(12\) −1.66433 + 2.18072i −0.480450 + 0.629521i
\(13\) 1.51507 + 2.08531i 0.420204 + 0.578362i 0.965670 0.259771i \(-0.0836472\pi\)
−0.545466 + 0.838133i \(0.683647\pi\)
\(14\) 0.390583 + 1.25213i 0.104388 + 0.334645i
\(15\) 0 0
\(16\) 1.41401 3.74173i 0.353502 0.935434i
\(17\) −0.290328 + 0.893539i −0.0704150 + 0.216715i −0.980071 0.198647i \(-0.936345\pi\)
0.909656 + 0.415362i \(0.136345\pi\)
\(18\) 1.26878 + 0.944876i 0.299055 + 0.222709i
\(19\) 0.336558 + 0.109354i 0.0772118 + 0.0250876i 0.347368 0.937729i \(-0.387075\pi\)
−0.270156 + 0.962816i \(0.587075\pi\)
\(20\) 0 0
\(21\) −1.20988 + 0.393113i −0.264017 + 0.0857843i
\(22\) 3.52040 + 1.18991i 0.750551 + 0.253689i
\(23\) 5.80876 + 4.22031i 1.21121 + 0.879995i 0.995340 0.0964270i \(-0.0307414\pi\)
0.215869 + 0.976422i \(0.430741\pi\)
\(24\) 3.64500 + 1.32856i 0.744032 + 0.271192i
\(25\) 0 0
\(26\) 2.17724 2.92361i 0.426993 0.573368i
\(27\) −3.32054 + 4.57033i −0.639038 + 0.879561i
\(28\) 1.52595 1.05462i 0.288378 0.199304i
\(29\) 1.33062 0.432345i 0.247090 0.0802844i −0.182854 0.983140i \(-0.558533\pi\)
0.429944 + 0.902856i \(0.358533\pi\)
\(30\) 0 0
\(31\) −1.34398 + 4.13636i −0.241387 + 0.742911i 0.754823 + 0.655928i \(0.227723\pi\)
−0.996210 + 0.0869831i \(0.972277\pi\)
\(32\) −5.64703 0.333231i −0.998263 0.0589075i
\(33\) −1.11375 + 3.42777i −0.193879 + 0.596699i
\(34\) 1.32859 + 0.0156626i 0.227852 + 0.00268612i
\(35\) 0 0
\(36\) 0.741311 2.11084i 0.123552 0.351807i
\(37\) 5.42869 + 7.47195i 0.892471 + 1.22838i 0.972808 + 0.231613i \(0.0744004\pi\)
−0.0803370 + 0.996768i \(0.525600\pi\)
\(38\) 0.00589944 0.500425i 0.000957016 0.0811796i
\(39\) 2.86029 + 2.07812i 0.458013 + 0.332766i
\(40\) 0 0
\(41\) 7.67997 5.57982i 1.19941 0.871422i 0.205183 0.978724i \(-0.434221\pi\)
0.994227 + 0.107301i \(0.0342210\pi\)
\(42\) 1.04024 + 1.46785i 0.160513 + 0.226494i
\(43\) 5.59241i 0.852834i −0.904527 0.426417i \(-0.859776\pi\)
0.904527 0.426417i \(-0.140224\pi\)
\(44\) 0.123891 5.25383i 0.0186772 0.792045i
\(45\) 0 0
\(46\) 3.25140 9.61944i 0.479393 1.41831i
\(47\) 2.55210 + 7.85457i 0.372263 + 1.14571i 0.945307 + 0.326182i \(0.105762\pi\)
−0.573044 + 0.819524i \(0.694238\pi\)
\(48\) 0.258613 5.48044i 0.0373275 0.791034i
\(49\) −6.13981 −0.877116
\(50\) 0 0
\(51\) 1.28868i 0.180452i
\(52\) −4.86395 1.70818i −0.674508 0.236881i
\(53\) −9.26543 + 3.01052i −1.27270 + 0.413527i −0.866005 0.500035i \(-0.833320\pi\)
−0.406699 + 0.913562i \(0.633320\pi\)
\(54\) 7.56858 + 2.55821i 1.02995 + 0.348128i
\(55\) 0 0
\(56\) −2.06642 1.61599i −0.276136 0.215945i
\(57\) 0.485392 0.0642918
\(58\) −1.14405 1.61434i −0.150222 0.211973i
\(59\) −2.55804 3.52083i −0.333028 0.458374i 0.609361 0.792893i \(-0.291426\pi\)
−0.942389 + 0.334519i \(0.891426\pi\)
\(60\) 0 0
\(61\) 2.14775 2.95612i 0.274991 0.378492i −0.649076 0.760724i \(-0.724844\pi\)
0.924067 + 0.382231i \(0.124844\pi\)
\(62\) 6.15030 + 0.0725051i 0.781089 + 0.00920816i
\(63\) 0.839334 0.609812i 0.105746 0.0768291i
\(64\) 1.92826 + 7.76414i 0.241032 + 0.970517i
\(65\) 0 0
\(66\) 5.09672 + 0.0600846i 0.627363 + 0.00739590i
\(67\) −1.00295 0.325879i −0.122530 0.0398124i 0.247110 0.968987i \(-0.420519\pi\)
−0.369640 + 0.929175i \(0.620519\pi\)
\(68\) −0.538366 1.80027i −0.0652865 0.218315i
\(69\) 9.36636 + 3.04331i 1.12758 + 0.366372i
\(70\) 0 0
\(71\) 3.56365 + 10.9678i 0.422927 + 1.30164i 0.904965 + 0.425486i \(0.139897\pi\)
−0.482038 + 0.876151i \(0.660103\pi\)
\(72\) −3.16194 0.111869i −0.372639 0.0131839i
\(73\) 12.7408 + 9.25671i 1.49119 + 1.08342i 0.973729 + 0.227712i \(0.0731245\pi\)
0.517466 + 0.855704i \(0.326876\pi\)
\(74\) 7.80136 10.4757i 0.906889 1.21778i
\(75\) 0 0
\(76\) −0.678086 + 0.202780i −0.0777817 + 0.0232604i
\(77\) 1.43246 1.97161i 0.163244 0.224686i
\(78\) 1.60102 4.73671i 0.181280 0.536327i
\(79\) 1.73030 + 5.32530i 0.194673 + 0.599143i 0.999980 + 0.00628500i \(0.00200059\pi\)
−0.805307 + 0.592858i \(0.797999\pi\)
\(80\) 0 0
\(81\) −1.35747 + 4.17785i −0.150830 + 0.464206i
\(82\) −10.7673 8.01855i −1.18905 0.885500i
\(83\) −6.70408 2.17829i −0.735868 0.239098i −0.0829787 0.996551i \(-0.526443\pi\)
−0.652889 + 0.757453i \(0.726443\pi\)
\(84\) 1.54360 2.02254i 0.168421 0.220677i
\(85\) 0 0
\(86\) −7.55006 + 2.35514i −0.814144 + 0.253961i
\(87\) 1.55254 1.12799i 0.166450 0.120933i
\(88\) −7.14514 + 2.04529i −0.761675 + 0.218029i
\(89\) −7.12799 5.17879i −0.755566 0.548951i 0.141981 0.989869i \(-0.454653\pi\)
−0.897547 + 0.440919i \(0.854653\pi\)
\(90\) 0 0
\(91\) −1.40517 1.93405i −0.147302 0.202743i
\(92\) −14.3560 0.338530i −1.49672 0.0352942i
\(93\) 5.96555i 0.618598i
\(94\) 9.52933 6.75328i 0.982875 0.696548i
\(95\) 0 0
\(96\) −7.50781 + 1.95884i −0.766263 + 0.199923i
\(97\) 0.496446 + 1.52791i 0.0504065 + 0.155135i 0.973091 0.230420i \(-0.0740100\pi\)
−0.922685 + 0.385555i \(0.874010\pi\)
\(98\) 2.58566 + 8.28909i 0.261192 + 0.837324i
\(99\) 2.93933i 0.295414i
\(100\) 0 0
\(101\) 7.75829i 0.771979i −0.922503 0.385989i \(-0.873860\pi\)
0.922503 0.385989i \(-0.126140\pi\)
\(102\) 1.73979 0.542704i 0.172265 0.0537357i
\(103\) −0.436559 1.34359i −0.0430155 0.132388i 0.927242 0.374462i \(-0.122172\pi\)
−0.970258 + 0.242074i \(0.922172\pi\)
\(104\) −0.257775 + 7.28596i −0.0252770 + 0.714447i
\(105\) 0 0
\(106\) 7.96632 + 11.2410i 0.773758 + 1.09182i
\(107\) 16.9717i 1.64071i −0.571852 0.820357i \(-0.693775\pi\)
0.571852 0.820357i \(-0.306225\pi\)
\(108\) 0.266356 11.2953i 0.0256301 1.08689i
\(109\) −6.86530 9.44928i −0.657577 0.905077i 0.341822 0.939765i \(-0.388956\pi\)
−0.999398 + 0.0346883i \(0.988956\pi\)
\(110\) 0 0
\(111\) 10.2488 + 7.44618i 0.972772 + 0.706760i
\(112\) −1.31144 + 3.47032i −0.123919 + 0.327914i
\(113\) −0.733494 + 0.532915i −0.0690013 + 0.0501324i −0.621751 0.783215i \(-0.713578\pi\)
0.552750 + 0.833347i \(0.313578\pi\)
\(114\) −0.204414 0.655306i −0.0191451 0.0613751i
\(115\) 0 0
\(116\) −1.69765 + 2.22438i −0.157623 + 0.206529i
\(117\) −2.74221 0.890998i −0.253517 0.0823728i
\(118\) −3.67605 + 4.93622i −0.338408 + 0.454416i
\(119\) 0.269269 0.828724i 0.0246838 0.0759690i
\(120\) 0 0
\(121\) 1.26557 + 3.89502i 0.115052 + 0.354093i
\(122\) −4.89541 1.65466i −0.443209 0.149806i
\(123\) 7.65349 10.5341i 0.690092 0.949830i
\(124\) −2.49219 8.33378i −0.223806 0.748395i
\(125\) 0 0
\(126\) −1.17675 0.876337i −0.104833 0.0780703i
\(127\) 13.1690 + 9.56787i 1.16856 + 0.849012i 0.990836 0.135068i \(-0.0431253\pi\)
0.177728 + 0.984080i \(0.443125\pi\)
\(128\) 9.66996 5.87297i 0.854712 0.519102i
\(129\) −2.37039 7.29531i −0.208701 0.642317i
\(130\) 0 0
\(131\) −15.6123 5.07274i −1.36405 0.443207i −0.466657 0.884438i \(-0.654542\pi\)
−0.897393 + 0.441231i \(0.854542\pi\)
\(132\) −2.06527 6.90616i −0.179758 0.601104i
\(133\) −0.312145 0.101422i −0.0270664 0.00879441i
\(134\) −0.0175805 + 1.49128i −0.00151872 + 0.128827i
\(135\) 0 0
\(136\) −2.20374 + 1.48497i −0.188969 + 0.127335i
\(137\) 18.1256 13.1690i 1.54857 1.12510i 0.603913 0.797051i \(-0.293608\pi\)
0.944659 0.328053i \(-0.106392\pi\)
\(138\) 0.164180 13.9267i 0.0139760 1.18552i
\(139\) −6.92525 + 9.53178i −0.587392 + 0.808475i −0.994481 0.104913i \(-0.966544\pi\)
0.407090 + 0.913388i \(0.366544\pi\)
\(140\) 0 0
\(141\) 6.65845 + 9.16457i 0.560743 + 0.771796i
\(142\) 13.3064 9.42999i 1.11664 0.791348i
\(143\) −6.77299 −0.566386
\(144\) 1.18056 + 4.31591i 0.0983803 + 0.359659i
\(145\) 0 0
\(146\) 7.13154 21.0990i 0.590210 1.74617i
\(147\) −8.00941 + 2.60241i −0.660605 + 0.214643i
\(148\) −17.4282 6.12062i −1.43259 0.503112i
\(149\) 13.3102i 1.09041i −0.838302 0.545207i \(-0.816451\pi\)
0.838302 0.545207i \(-0.183549\pi\)
\(150\) 0 0
\(151\) −21.1864 −1.72412 −0.862062 0.506802i \(-0.830827\pi\)
−0.862062 + 0.506802i \(0.830827\pi\)
\(152\) 0.559326 + 0.830056i 0.0453674 + 0.0673264i
\(153\) −0.324766 0.999527i −0.0262558 0.0808069i
\(154\) −3.26503 1.10359i −0.263104 0.0889300i
\(155\) 0 0
\(156\) −7.06906 0.166696i −0.565978 0.0133463i
\(157\) 3.41079i 0.272211i 0.990694 + 0.136105i \(0.0434586\pi\)
−0.990694 + 0.136105i \(0.956541\pi\)
\(158\) 6.46077 4.57864i 0.513991 0.364257i
\(159\) −10.8107 + 7.85446i −0.857348 + 0.622900i
\(160\) 0 0
\(161\) −5.38740 3.91418i −0.424587 0.308480i
\(162\) 6.21200 + 0.0732325i 0.488061 + 0.00575369i
\(163\) 11.4146 + 15.7109i 0.894062 + 1.23057i 0.972324 + 0.233639i \(0.0750632\pi\)
−0.0782611 + 0.996933i \(0.524937\pi\)
\(164\) −6.29102 + 17.9134i −0.491246 + 1.39880i
\(165\) 0 0
\(166\) −0.117514 + 9.96822i −0.00912086 + 0.773684i
\(167\) 0.874029 2.68999i 0.0676344 0.208157i −0.911527 0.411240i \(-0.865096\pi\)
0.979162 + 0.203082i \(0.0650959\pi\)
\(168\) −3.38060 1.23219i −0.260819 0.0950657i
\(169\) 1.96412 6.04495i 0.151087 0.464997i
\(170\) 0 0
\(171\) −0.376479 + 0.122326i −0.0287901 + 0.00935447i
\(172\) 6.35913 + 9.20118i 0.484879 + 0.701583i
\(173\) 0.504895 0.694928i 0.0383864 0.0528344i −0.789392 0.613889i \(-0.789604\pi\)
0.827779 + 0.561055i \(0.189604\pi\)
\(174\) −2.17667 1.62099i −0.165013 0.122887i
\(175\) 0 0
\(176\) 5.77030 + 8.78500i 0.434952 + 0.662194i
\(177\) −4.82930 3.50869i −0.362993 0.263730i
\(178\) −3.98983 + 11.8041i −0.299051 + 0.884757i
\(179\) −21.7579 + 7.06957i −1.62626 + 0.528404i −0.973408 0.229079i \(-0.926428\pi\)
−0.652854 + 0.757484i \(0.726428\pi\)
\(180\) 0 0
\(181\) 18.5330 + 6.02173i 1.37754 + 0.447591i 0.901862 0.432025i \(-0.142201\pi\)
0.475683 + 0.879617i \(0.342201\pi\)
\(182\) −2.01931 + 2.71154i −0.149681 + 0.200993i
\(183\) 1.54876 4.76661i 0.114488 0.352358i
\(184\) 5.58874 + 19.5240i 0.412007 + 1.43933i
\(185\) 0 0
\(186\) 8.05382 2.51228i 0.590535 0.184209i
\(187\) −1.45109 1.99725i −0.106114 0.146053i
\(188\) −13.1304 10.0211i −0.957632 0.730864i
\(189\) 3.07968 4.23881i 0.224013 0.308328i
\(190\) 0 0
\(191\) 10.2038 7.41347i 0.738318 0.536420i −0.153866 0.988092i \(-0.549172\pi\)
0.892184 + 0.451672i \(0.149172\pi\)
\(192\) 5.80632 + 9.31103i 0.419035 + 0.671966i
\(193\) 8.48402 0.610693 0.305347 0.952241i \(-0.401228\pi\)
0.305347 + 0.952241i \(0.401228\pi\)
\(194\) 1.85369 1.31368i 0.133087 0.0943166i
\(195\) 0 0
\(196\) 10.1018 6.98158i 0.721559 0.498684i
\(197\) 14.0122 4.55285i 0.998331 0.324377i 0.236132 0.971721i \(-0.424120\pi\)
0.762198 + 0.647344i \(0.224120\pi\)
\(198\) −3.96825 + 1.23784i −0.282012 + 0.0879695i
\(199\) −5.70622 −0.404503 −0.202252 0.979334i \(-0.564826\pi\)
−0.202252 + 0.979334i \(0.564826\pi\)
\(200\) 0 0
\(201\) −1.44648 −0.102027
\(202\) −10.4741 + 3.26725i −0.736956 + 0.229883i
\(203\) −1.23410 + 0.400983i −0.0866168 + 0.0281435i
\(204\) −1.46536 2.12027i −0.102596 0.148448i
\(205\) 0 0
\(206\) −1.63007 + 1.15521i −0.113573 + 0.0804871i
\(207\) −8.03168 −0.558240
\(208\) 9.94501 2.72033i 0.689562 0.188621i
\(209\) −0.752279 + 0.546562i −0.0520362 + 0.0378065i
\(210\) 0 0
\(211\) −7.99954 + 11.0104i −0.550711 + 0.757989i −0.990108 0.140304i \(-0.955192\pi\)
0.439398 + 0.898293i \(0.355192\pi\)
\(212\) 11.8211 15.4889i 0.811878 1.06378i
\(213\) 9.29758 + 12.7970i 0.637060 + 0.876838i
\(214\) −22.9127 + 7.14729i −1.56628 + 0.488579i
\(215\) 0 0
\(216\) −15.3615 + 4.39722i −1.04522 + 0.299193i
\(217\) 1.24649 3.83631i 0.0846175 0.260426i
\(218\) −9.86586 + 13.2479i −0.668200 + 0.897262i
\(219\) 20.5439 + 6.67512i 1.38823 + 0.451063i
\(220\) 0 0
\(221\) −2.30318 + 0.748347i −0.154928 + 0.0503393i
\(222\) 5.73668 16.9723i 0.385021 1.13910i
\(223\) −18.3612 13.3402i −1.22956 0.893328i −0.232703 0.972548i \(-0.574757\pi\)
−0.996857 + 0.0792204i \(0.974757\pi\)
\(224\) 5.23741 + 0.309059i 0.349939 + 0.0206499i
\(225\) 0 0
\(226\) 1.02836 + 0.765831i 0.0684056 + 0.0509423i
\(227\) −8.07830 + 11.1188i −0.536176 + 0.737983i −0.988056 0.154096i \(-0.950753\pi\)
0.451880 + 0.892079i \(0.350753\pi\)
\(228\) −0.798615 + 0.551939i −0.0528895 + 0.0365531i
\(229\) −6.28758 + 2.04296i −0.415495 + 0.135002i −0.509302 0.860588i \(-0.670096\pi\)
0.0938071 + 0.995590i \(0.470096\pi\)
\(230\) 0 0
\(231\) 1.03296 3.17913i 0.0679639 0.209171i
\(232\) 3.71797 + 1.35516i 0.244097 + 0.0889707i
\(233\) −4.44945 + 13.6940i −0.291493 + 0.897123i 0.692884 + 0.721049i \(0.256340\pi\)
−0.984377 + 0.176074i \(0.943660\pi\)
\(234\) −0.0480675 + 4.07736i −0.00314227 + 0.266545i
\(235\) 0 0
\(236\) 8.21227 + 2.88408i 0.534573 + 0.187738i
\(237\) 4.51435 + 6.21347i 0.293239 + 0.403608i
\(238\) −1.23222 0.0145265i −0.0798730 0.000941612i
\(239\) 0.520809 + 0.378390i 0.0336883 + 0.0244760i 0.604502 0.796604i \(-0.293372\pi\)
−0.570814 + 0.821080i \(0.693372\pi\)
\(240\) 0 0
\(241\) −18.0169 + 13.0900i −1.16057 + 0.843202i −0.989850 0.142118i \(-0.954609\pi\)
−0.170719 + 0.985320i \(0.554609\pi\)
\(242\) 4.72552 3.34890i 0.303768 0.215276i
\(243\) 10.9223i 0.700668i
\(244\) −0.172281 + 7.30590i −0.0110291 + 0.467712i
\(245\) 0 0
\(246\) −17.4448 5.89639i −1.11224 0.375940i
\(247\) 0.281871 + 0.867509i 0.0179350 + 0.0551983i
\(248\) −10.2015 + 6.87421i −0.647797 + 0.436513i
\(249\) −9.66877 −0.612734
\(250\) 0 0
\(251\) 5.01412i 0.316488i −0.987400 0.158244i \(-0.949417\pi\)
0.987400 0.158244i \(-0.0505833\pi\)
\(252\) −0.687538 + 1.95773i −0.0433108 + 0.123325i
\(253\) −17.9432 + 5.83009i −1.12808 + 0.366534i
\(254\) 7.37127 21.8083i 0.462514 1.36837i
\(255\) 0 0
\(256\) −12.0012 10.5817i −0.750072 0.661356i
\(257\) 4.08455 0.254787 0.127394 0.991852i \(-0.459339\pi\)
0.127394 + 0.991852i \(0.459339\pi\)
\(258\) −8.85083 + 6.27244i −0.551029 + 0.390505i
\(259\) −5.03490 6.92995i −0.312854 0.430606i
\(260\) 0 0
\(261\) −0.919914 + 1.26615i −0.0569412 + 0.0783729i
\(262\) −0.273664 + 23.2137i −0.0169070 + 1.43415i
\(263\) −19.3404 + 14.0516i −1.19258 + 0.866458i −0.993534 0.113532i \(-0.963783\pi\)
−0.199043 + 0.979991i \(0.563783\pi\)
\(264\) −8.45394 + 5.69662i −0.520304 + 0.350603i
\(265\) 0 0
\(266\) −0.00547151 + 0.464125i −0.000335480 + 0.0284573i
\(267\) −11.4936 3.73448i −0.703395 0.228547i
\(268\) 2.02071 0.604288i 0.123435 0.0369128i
\(269\) 28.5572 + 9.27879i 1.74116 + 0.565738i 0.994986 0.100011i \(-0.0318876\pi\)
0.746176 + 0.665749i \(0.231888\pi\)
\(270\) 0 0
\(271\) 1.45987 + 4.49301i 0.0886807 + 0.272931i 0.985555 0.169354i \(-0.0541680\pi\)
−0.896875 + 0.442285i \(0.854168\pi\)
\(272\) 2.93286 + 2.34980i 0.177831 + 0.142478i
\(273\) −2.65281 1.92738i −0.160555 0.116650i
\(274\) −25.4121 18.9246i −1.53520 1.14328i
\(275\) 0 0
\(276\) −18.8710 + 5.64332i −1.13590 + 0.339688i
\(277\) 2.18376 3.00568i 0.131209 0.180594i −0.738357 0.674410i \(-0.764398\pi\)
0.869567 + 0.493816i \(0.164398\pi\)
\(278\) 15.7849 + 5.33534i 0.946713 + 0.319992i
\(279\) −1.50340 4.62699i −0.0900062 0.277011i
\(280\) 0 0
\(281\) 4.25051 13.0817i 0.253564 0.780389i −0.740545 0.672006i \(-0.765433\pi\)
0.994109 0.108383i \(-0.0345673\pi\)
\(282\) 9.56860 12.8488i 0.569802 0.765133i
\(283\) 1.41763 + 0.460617i 0.0842695 + 0.0273808i 0.350848 0.936432i \(-0.385893\pi\)
−0.266579 + 0.963813i \(0.585893\pi\)
\(284\) −18.3347 13.9930i −1.08797 0.830335i
\(285\) 0 0
\(286\) 2.85232 + 9.14391i 0.168661 + 0.540691i
\(287\) −7.12288 + 5.17508i −0.420450 + 0.305475i
\(288\) 5.32955 3.41139i 0.314047 0.201018i
\(289\) 13.0392 + 9.47351i 0.767010 + 0.557265i
\(290\) 0 0
\(291\) 1.29523 + 1.78273i 0.0759278 + 0.104506i
\(292\) −31.4882 0.742523i −1.84271 0.0434529i
\(293\) 7.33412i 0.428464i −0.976783 0.214232i \(-0.931275\pi\)
0.976783 0.214232i \(-0.0687248\pi\)
\(294\) 6.88641 + 9.71718i 0.401624 + 0.566718i
\(295\) 0 0
\(296\) −0.923643 + 26.1066i −0.0536857 + 1.51741i
\(297\) −4.58711 14.1177i −0.266171 0.819191i
\(298\) −17.9695 + 5.60533i −1.04094 + 0.324708i
\(299\) 18.5071i 1.07029i
\(300\) 0 0
\(301\) 5.18675i 0.298959i
\(302\) 8.92224 + 28.6028i 0.513417 + 1.64591i
\(303\) −3.28842 10.1207i −0.188915 0.581420i
\(304\) 0.885072 1.10468i 0.0507624 0.0633580i
\(305\) 0 0
\(306\) −1.21265 + 0.859383i −0.0693224 + 0.0491277i
\(307\) 3.91344i 0.223352i 0.993745 + 0.111676i \(0.0356218\pi\)
−0.993745 + 0.111676i \(0.964378\pi\)
\(308\) −0.114904 + 4.87273i −0.00654727 + 0.277650i
\(309\) −1.13899 1.56768i −0.0647947 0.0891822i
\(310\) 0 0
\(311\) 5.35582 + 3.89123i 0.303701 + 0.220652i 0.729189 0.684312i \(-0.239898\pi\)
−0.425488 + 0.904964i \(0.639898\pi\)
\(312\) 2.75195 + 9.61382i 0.155798 + 0.544275i
\(313\) 16.5981 12.0592i 0.938180 0.681628i −0.00980162 0.999952i \(-0.503120\pi\)
0.947982 + 0.318324i \(0.103120\pi\)
\(314\) 4.60476 1.43639i 0.259861 0.0810601i
\(315\) 0 0
\(316\) −8.90225 6.79419i −0.500791 0.382203i
\(317\) −4.73712 1.53918i −0.266063 0.0864492i 0.172947 0.984931i \(-0.444671\pi\)
−0.439011 + 0.898482i \(0.644671\pi\)
\(318\) 15.1567 + 11.2873i 0.849945 + 0.632963i
\(319\) −1.13605 + 3.49640i −0.0636065 + 0.195761i
\(320\) 0 0
\(321\) −7.19359 22.1396i −0.401507 1.23571i
\(322\) −3.01555 + 8.92167i −0.168050 + 0.497185i
\(323\) −0.195425 + 0.268979i −0.0108737 + 0.0149664i
\(324\) −2.51720 8.41738i −0.139844 0.467632i
\(325\) 0 0
\(326\) 16.4035 22.0267i 0.908506 1.21995i
\(327\) −12.9610 9.41669i −0.716743 0.520744i
\(328\) 26.8334 + 0.949358i 1.48163 + 0.0524195i
\(329\) −2.36698 7.28481i −0.130496 0.401625i
\(330\) 0 0
\(331\) −18.8854 6.13623i −1.03803 0.337278i −0.260072 0.965589i \(-0.583746\pi\)
−0.777962 + 0.628311i \(0.783746\pi\)
\(332\) 13.5071 4.03927i 0.741300 0.221684i
\(333\) −9.82570 3.19256i −0.538445 0.174951i
\(334\) −3.99971 0.0471521i −0.218854 0.00258005i
\(335\) 0 0
\(336\) −0.239854 + 5.08291i −0.0130851 + 0.277295i
\(337\) −11.2693 + 8.18761i −0.613876 + 0.446007i −0.850777 0.525527i \(-0.823868\pi\)
0.236901 + 0.971534i \(0.423868\pi\)
\(338\) −8.98818 0.105960i −0.488892 0.00576349i
\(339\) −0.730965 + 1.00609i −0.0397005 + 0.0546431i
\(340\) 0 0
\(341\) −6.71734 9.24562i −0.363764 0.500679i
\(342\) 0.323693 + 0.456753i 0.0175033 + 0.0246984i
\(343\) 12.1867 0.658019
\(344\) 9.74407 12.4601i 0.525365 0.671802i
\(345\) 0 0
\(346\) −1.15082 0.388980i −0.0618684 0.0209117i
\(347\) 3.02554 0.983057i 0.162419 0.0527733i −0.226679 0.973970i \(-0.572787\pi\)
0.389098 + 0.921196i \(0.372787\pi\)
\(348\) −1.27176 + 3.62128i −0.0681736 + 0.194121i
\(349\) 17.7286i 0.948990i 0.880258 + 0.474495i \(0.157369\pi\)
−0.880258 + 0.474495i \(0.842631\pi\)
\(350\) 0 0
\(351\) −14.5614 −0.777231
\(352\) 9.43018 11.4898i 0.502630 0.612411i
\(353\) −7.77568 23.9311i −0.413858 1.27372i −0.913269 0.407358i \(-0.866450\pi\)
0.499411 0.866365i \(-0.333550\pi\)
\(354\) −2.70316 + 7.99744i −0.143671 + 0.425059i
\(355\) 0 0
\(356\) 17.6165 + 0.415414i 0.933671 + 0.0220169i
\(357\) 1.19520i 0.0632569i
\(358\) 18.7072 + 26.3971i 0.988708 + 1.39513i
\(359\) 24.3831 17.7154i 1.28689 0.934983i 0.287156 0.957884i \(-0.407290\pi\)
0.999738 + 0.0229013i \(0.00729034\pi\)
\(360\) 0 0
\(361\) −15.2700 11.0943i −0.803685 0.583911i
\(362\) 0.324860 27.5565i 0.0170742 1.44834i
\(363\) 3.30188 + 4.54465i 0.173304 + 0.238532i
\(364\) 4.51113 + 1.58427i 0.236447 + 0.0830383i
\(365\) 0 0
\(366\) −7.08741 0.0835526i −0.370465 0.00436737i
\(367\) −2.07559 + 6.38802i −0.108345 + 0.333452i −0.990501 0.137506i \(-0.956091\pi\)
0.882156 + 0.470957i \(0.156091\pi\)
\(368\) 24.0049 15.7673i 1.25134 0.821926i
\(369\) −3.28144 + 10.0992i −0.170825 + 0.525746i
\(370\) 0 0
\(371\) 8.59333 2.79214i 0.446144 0.144961i
\(372\) −6.78342 9.81510i −0.351704 0.508889i
\(373\) 14.2472 19.6096i 0.737692 1.01535i −0.261056 0.965324i \(-0.584071\pi\)
0.998748 0.0500223i \(-0.0159292\pi\)
\(374\) −2.08530 + 2.80015i −0.107828 + 0.144792i
\(375\) 0 0
\(376\) −7.99943 + 21.9470i −0.412539 + 1.13183i
\(377\) 2.91755 + 2.11973i 0.150262 + 0.109171i
\(378\) −7.01957 2.37264i −0.361048 0.122035i
\(379\) −7.74403 + 2.51619i −0.397784 + 0.129248i −0.501076 0.865403i \(-0.667062\pi\)
0.103292 + 0.994651i \(0.467062\pi\)
\(380\) 0 0
\(381\) 21.2345 + 6.89950i 1.08788 + 0.353472i
\(382\) −14.3057 10.6536i −0.731944 0.545086i
\(383\) 2.79177 8.59217i 0.142653 0.439040i −0.854049 0.520192i \(-0.825860\pi\)
0.996702 + 0.0811529i \(0.0258602\pi\)
\(384\) 10.1252 11.7600i 0.516699 0.600125i
\(385\) 0 0
\(386\) −3.57288 11.4539i −0.181855 0.582988i
\(387\) 3.67704 + 5.06101i 0.186914 + 0.257266i
\(388\) −2.55418 1.94935i −0.129669 0.0989632i
\(389\) 7.45733 10.2641i 0.378102 0.520412i −0.576979 0.816759i \(-0.695768\pi\)
0.955080 + 0.296347i \(0.0957685\pi\)
\(390\) 0 0
\(391\) −5.45746 + 3.96507i −0.275995 + 0.200522i
\(392\) −13.6797 10.6979i −0.690929 0.540323i
\(393\) −22.5164 −1.13580
\(394\) −12.0476 16.9999i −0.606949 0.856445i
\(395\) 0 0
\(396\) 3.34231 + 4.83607i 0.167957 + 0.243022i
\(397\) 13.0071 4.22625i 0.652805 0.212109i 0.0361546 0.999346i \(-0.488489\pi\)
0.616651 + 0.787237i \(0.288489\pi\)
\(398\) 2.40307 + 7.70372i 0.120455 + 0.386152i
\(399\) −0.450183 −0.0225373
\(400\) 0 0
\(401\) 34.7894 1.73730 0.868649 0.495428i \(-0.164989\pi\)
0.868649 + 0.495428i \(0.164989\pi\)
\(402\) 0.609157 + 1.95283i 0.0303820 + 0.0973982i
\(403\) −10.6618 + 3.46424i −0.531103 + 0.172566i
\(404\) 8.82195 + 12.7647i 0.438908 + 0.635067i
\(405\) 0 0
\(406\) 1.06107 + 1.49724i 0.0526599 + 0.0743066i
\(407\) −24.2685 −1.20295
\(408\) −2.24537 + 2.87123i −0.111162 + 0.142147i
\(409\) 13.3846 9.72446i 0.661824 0.480843i −0.205454 0.978667i \(-0.565867\pi\)
0.867278 + 0.497823i \(0.165867\pi\)
\(410\) 0 0
\(411\) 18.0631 24.8617i 0.890985 1.22634i
\(412\) 2.24607 + 1.71420i 0.110656 + 0.0844524i
\(413\) 2.37248 + 3.26544i 0.116742 + 0.160682i
\(414\) 3.38239 + 10.8432i 0.166235 + 0.532915i
\(415\) 0 0
\(416\) −7.86074 12.2807i −0.385405 0.602110i
\(417\) −4.99387 + 15.3696i −0.244551 + 0.752651i
\(418\) 1.05470 + 0.785443i 0.0515869 + 0.0384173i
\(419\) −2.26155 0.734822i −0.110484 0.0358984i 0.253253 0.967400i \(-0.418499\pi\)
−0.363737 + 0.931502i \(0.618499\pi\)
\(420\) 0 0
\(421\) −5.82497 + 1.89265i −0.283892 + 0.0922420i −0.447502 0.894283i \(-0.647686\pi\)
0.163610 + 0.986525i \(0.447686\pi\)
\(422\) 18.2335 + 6.16299i 0.887594 + 0.300010i
\(423\) −7.47402 5.43020i −0.363399 0.264025i
\(424\) −25.8891 9.43631i −1.25729 0.458268i
\(425\) 0 0
\(426\) 13.3612 17.9415i 0.647352 0.869267i
\(427\) −1.99195 + 2.74169i −0.0963974 + 0.132680i
\(428\) 19.2985 + 27.9235i 0.932827 + 1.34973i
\(429\) −8.83539 + 2.87079i −0.426577 + 0.138603i
\(430\) 0 0
\(431\) 9.67194 29.7672i 0.465881 1.43383i −0.391990 0.919970i \(-0.628213\pi\)
0.857871 0.513865i \(-0.171787\pi\)
\(432\) 12.4057 + 18.8871i 0.596869 + 0.908705i
\(433\) 4.60823 14.1827i 0.221457 0.681575i −0.777175 0.629285i \(-0.783348\pi\)
0.998632 0.0522905i \(-0.0166522\pi\)
\(434\) −5.70417 0.0672458i −0.273809 0.00322790i
\(435\) 0 0
\(436\) 22.0402 + 7.74034i 1.05554 + 0.370695i
\(437\) 1.49348 + 2.05559i 0.0714426 + 0.0983324i
\(438\) 0.360109 30.5465i 0.0172067 1.45957i
\(439\) 26.3874 + 19.1715i 1.25940 + 0.915008i 0.998728 0.0504195i \(-0.0160558\pi\)
0.260672 + 0.965427i \(0.416056\pi\)
\(440\) 0 0
\(441\) 5.55640 4.03696i 0.264591 0.192236i
\(442\) 1.98025 + 2.79426i 0.0941908 + 0.132909i
\(443\) 24.4310i 1.16075i −0.814349 0.580375i \(-0.802906\pi\)
0.814349 0.580375i \(-0.197094\pi\)
\(444\) −25.3294 0.597292i −1.20208 0.0283462i
\(445\) 0 0
\(446\) −10.2776 + 30.4067i −0.486656 + 1.43980i
\(447\) −5.64164 17.3632i −0.266841 0.821251i
\(448\) −1.78839 7.20094i −0.0844933 0.340213i
\(449\) 11.0987 0.523780 0.261890 0.965098i \(-0.415654\pi\)
0.261890 + 0.965098i \(0.415654\pi\)
\(450\) 0 0
\(451\) 24.9442i 1.17457i
\(452\) 0.600839 1.71086i 0.0282611 0.0804720i
\(453\) −27.6377 + 8.98004i −1.29853 + 0.421919i
\(454\) 18.4131 + 6.22367i 0.864168 + 0.292091i
\(455\) 0 0
\(456\) 1.08147 + 0.845735i 0.0506445 + 0.0396052i
\(457\) 10.7162 0.501281 0.250641 0.968080i \(-0.419359\pi\)
0.250641 + 0.968080i \(0.419359\pi\)
\(458\) 5.40600 + 7.62822i 0.252606 + 0.356443i
\(459\) −3.11972 4.29393i −0.145616 0.200423i
\(460\) 0 0
\(461\) 9.05653 12.4652i 0.421804 0.580564i −0.544243 0.838927i \(-0.683183\pi\)
0.966048 + 0.258363i \(0.0831832\pi\)
\(462\) −4.72701 0.0557262i −0.219921 0.00259262i
\(463\) −1.49042 + 1.08285i −0.0692657 + 0.0503245i −0.621879 0.783113i \(-0.713631\pi\)
0.552614 + 0.833438i \(0.313631\pi\)
\(464\) 0.263790 5.59016i 0.0122462 0.259517i
\(465\) 0 0
\(466\) 20.3614 + 0.240039i 0.943226 + 0.0111196i
\(467\) 20.0087 + 6.50123i 0.925894 + 0.300841i 0.732883 0.680355i \(-0.238174\pi\)
0.193012 + 0.981196i \(0.438174\pi\)
\(468\) 5.52490 1.65221i 0.255389 0.0763734i
\(469\) 0.930200 + 0.302240i 0.0429527 + 0.0139562i
\(470\) 0 0
\(471\) 1.44569 + 4.44939i 0.0666140 + 0.205017i
\(472\) 0.435227 12.3016i 0.0200329 0.566227i
\(473\) 11.8884 + 8.63743i 0.546630 + 0.397150i
\(474\) 6.48740 8.71131i 0.297976 0.400124i
\(475\) 0 0
\(476\) 0.499314 + 1.66968i 0.0228860 + 0.0765298i
\(477\) 6.40558 8.81653i 0.293292 0.403681i
\(478\) 0.291518 0.862472i 0.0133337 0.0394485i
\(479\) −0.641151 1.97326i −0.0292949 0.0901606i 0.935340 0.353750i \(-0.115094\pi\)
−0.964635 + 0.263589i \(0.915094\pi\)
\(480\) 0 0
\(481\) −7.35651 + 22.6410i −0.335428 + 1.03234i
\(482\) 25.2597 + 18.8112i 1.15055 + 0.856824i
\(483\) −8.68694 2.82256i −0.395270 0.128431i
\(484\) −6.51127 4.96939i −0.295967 0.225882i
\(485\) 0 0
\(486\) −14.7457 + 4.59973i −0.668881 + 0.208648i
\(487\) −3.94704 + 2.86770i −0.178858 + 0.129948i −0.673612 0.739085i \(-0.735258\pi\)
0.494754 + 0.869033i \(0.335258\pi\)
\(488\) 9.93592 2.84415i 0.449778 0.128749i
\(489\) 21.5496 + 15.6567i 0.974507 + 0.708021i
\(490\) 0 0
\(491\) 11.2000 + 15.4154i 0.505447 + 0.695688i 0.983143 0.182837i \(-0.0585280\pi\)
−0.477696 + 0.878525i \(0.658528\pi\)
\(492\) −0.613921 + 26.0345i −0.0276777 + 1.17373i
\(493\) 1.31448i 0.0592013i
\(494\) 1.05248 0.745875i 0.0473533 0.0335585i
\(495\) 0 0
\(496\) 13.5767 + 10.8777i 0.609614 + 0.488422i
\(497\) −3.30515 10.1722i −0.148256 0.456286i
\(498\) 4.07182 + 13.0534i 0.182463 + 0.584936i
\(499\) 12.8562i 0.575522i −0.957702 0.287761i \(-0.907089\pi\)
0.957702 0.287761i \(-0.0929108\pi\)
\(500\) 0 0
\(501\) 3.87956i 0.173326i
\(502\) −6.76934 + 2.11160i −0.302130 + 0.0942453i
\(503\) 7.75639 + 23.8717i 0.345840 + 1.06439i 0.961132 + 0.276088i \(0.0890381\pi\)
−0.615292 + 0.788299i \(0.710962\pi\)
\(504\) 2.93258 + 0.103754i 0.130628 + 0.00462157i
\(505\) 0 0
\(506\) 15.4274 + 21.7690i 0.685830 + 0.967751i
\(507\) 8.71817i 0.387188i
\(508\) −32.5466 0.767483i −1.44402 0.0340515i
\(509\) −7.89183 10.8622i −0.349799 0.481457i 0.597472 0.801890i \(-0.296172\pi\)
−0.947271 + 0.320432i \(0.896172\pi\)
\(510\) 0 0
\(511\) −11.8166 8.58525i −0.522735 0.379789i
\(512\) −9.23182 + 20.6585i −0.407993 + 0.912985i
\(513\) −1.61734 + 1.17507i −0.0714074 + 0.0518805i
\(514\) −1.72013 5.51436i −0.0758716 0.243228i
\(515\) 0 0
\(516\) 12.1955 + 9.30759i 0.536877 + 0.409744i
\(517\) −20.6390 6.70603i −0.907704 0.294931i
\(518\) −7.23546 + 9.71581i −0.317908 + 0.426888i
\(519\) 0.364086 1.12054i 0.0159816 0.0491862i
\(520\) 0 0
\(521\) −7.91688 24.3656i −0.346845 1.06748i −0.960589 0.277973i \(-0.910337\pi\)
0.613744 0.789505i \(-0.289663\pi\)
\(522\) 2.09678 + 0.708719i 0.0917736 + 0.0310198i
\(523\) 15.7926 21.7366i 0.690562 0.950476i −0.309438 0.950919i \(-0.600141\pi\)
1.00000 0.000443114i \(0.000141047\pi\)
\(524\) 31.4550 9.40655i 1.37412 0.410927i
\(525\) 0 0
\(526\) 27.1152 + 20.1930i 1.18228 + 0.880456i
\(527\) −3.30580 2.40180i −0.144003 0.104624i
\(528\) 11.2510 + 9.01427i 0.489635 + 0.392296i
\(529\) 8.82326 + 27.1552i 0.383620 + 1.18066i
\(530\) 0 0
\(531\) 4.62994 + 1.50436i 0.200922 + 0.0652836i
\(532\) 0.628899 0.188071i 0.0272662 0.00815389i
\(533\) 23.2714 + 7.56132i 1.00799 + 0.327517i
\(534\) −0.201468 + 17.0896i −0.00871836 + 0.739541i
\(535\) 0 0
\(536\) −1.66681 2.47359i −0.0719951 0.106843i
\(537\) −25.3867 + 18.4446i −1.09552 + 0.795941i
\(538\) 0.500572 42.4614i 0.0215812 1.83064i
\(539\) 9.48290 13.0521i 0.408457 0.562193i
\(540\) 0 0
\(541\) −11.1415 15.3350i −0.479011 0.659302i 0.499304 0.866427i \(-0.333589\pi\)
−0.978314 + 0.207125i \(0.933589\pi\)
\(542\) 5.45102 3.86305i 0.234141 0.165932i
\(543\) 26.7287 1.14704
\(544\) 1.93725 4.94910i 0.0830588 0.212191i
\(545\) 0 0
\(546\) −1.48489 + 4.39312i −0.0635474 + 0.188008i
\(547\) 14.4470 4.69413i 0.617711 0.200706i 0.0165870 0.999862i \(-0.494720\pi\)
0.601124 + 0.799156i \(0.294720\pi\)
\(548\) −14.8475 + 42.2775i −0.634254 + 1.80601i
\(549\) 4.08738i 0.174445i
\(550\) 0 0
\(551\) 0.495110 0.0210924
\(552\) 15.5660 + 23.1003i 0.662531 + 0.983214i
\(553\) −1.60478 4.93902i −0.0682424 0.210028i
\(554\) −4.97748 1.68241i −0.211473 0.0714786i
\(555\) 0 0
\(556\) 0.555506 23.5573i 0.0235587 0.999053i
\(557\) 1.85471i 0.0785867i 0.999228 + 0.0392933i \(0.0125107\pi\)
−0.999228 + 0.0392933i \(0.987489\pi\)
\(558\) −5.61357 + 3.97824i −0.237641 + 0.168412i
\(559\) 11.6619 8.47288i 0.493247 0.358365i
\(560\) 0 0
\(561\) −2.73950 1.99036i −0.115662 0.0840331i
\(562\) −19.4510 0.229306i −0.820493 0.00967269i
\(563\) 22.0332 + 30.3261i 0.928587 + 1.27809i 0.960408 + 0.278597i \(0.0898694\pi\)
−0.0318207 + 0.999494i \(0.510131\pi\)
\(564\) −21.3762 7.50713i −0.900099 0.316107i
\(565\) 0 0
\(566\) 0.0248493 2.10786i 0.00104449 0.0886000i
\(567\) 1.25900 3.87480i 0.0528730 0.162726i
\(568\) −11.1701 + 30.6458i −0.468686 + 1.28587i
\(569\) 8.05065 24.7774i 0.337501 1.03872i −0.627976 0.778233i \(-0.716116\pi\)
0.965477 0.260488i \(-0.0838835\pi\)
\(570\) 0 0
\(571\) 31.4963 10.2338i 1.31808 0.428270i 0.436244 0.899828i \(-0.356308\pi\)
0.881835 + 0.471558i \(0.156308\pi\)
\(572\) 11.1436 7.70157i 0.465937 0.322019i
\(573\) 10.1686 13.9958i 0.424798 0.584685i
\(574\) 9.98630 + 7.43690i 0.416820 + 0.310410i
\(575\) 0 0
\(576\) −6.85000 5.75854i −0.285417 0.239939i
\(577\) −14.0705 10.2228i −0.585761 0.425580i 0.255035 0.966932i \(-0.417913\pi\)
−0.840796 + 0.541351i \(0.817913\pi\)
\(578\) 7.29857 21.5932i 0.303580 0.898158i
\(579\) 11.0674 3.59603i 0.459947 0.149446i
\(580\) 0 0
\(581\) 6.21778 + 2.02028i 0.257957 + 0.0838153i
\(582\) 1.86133 2.49940i 0.0771545 0.103603i
\(583\) 7.91058 24.3463i 0.327623 1.00832i
\(584\) 12.2582 + 42.8234i 0.507247 + 1.77205i
\(585\) 0 0
\(586\) −9.90146 + 3.08862i −0.409026 + 0.127590i
\(587\) −19.7090 27.1271i −0.813476 1.11965i −0.990778 0.135497i \(-0.956737\pi\)
0.177301 0.984157i \(-0.443263\pi\)
\(588\) 10.2187 13.3892i 0.421410 0.552163i
\(589\) −0.904658 + 1.24515i −0.0372758 + 0.0513057i
\(590\) 0 0
\(591\) 16.3492 11.8784i 0.672518 0.488613i
\(592\) 35.6343 9.74731i 1.46456 0.400612i
\(593\) −19.5523 −0.802917 −0.401458 0.915877i \(-0.631497\pi\)
−0.401458 + 0.915877i \(0.631497\pi\)
\(594\) −17.1279 + 12.1382i −0.702765 + 0.498038i
\(595\) 0 0
\(596\) 15.1350 + 21.8992i 0.619954 + 0.897027i
\(597\) −7.44379 + 2.41863i −0.304654 + 0.0989880i
\(598\) 24.9856 7.79392i 1.02174 0.318717i
\(599\) 15.7131 0.642018 0.321009 0.947076i \(-0.395978\pi\)
0.321009 + 0.947076i \(0.395978\pi\)
\(600\) 0 0
\(601\) 44.4894 1.81476 0.907380 0.420310i \(-0.138079\pi\)
0.907380 + 0.420310i \(0.138079\pi\)
\(602\) 7.00240 2.18430i 0.285396 0.0890254i
\(603\) 1.12192 0.364533i 0.0456880 0.0148449i
\(604\) 34.8579 24.0910i 1.41835 0.980251i
\(605\) 0 0
\(606\) −12.2787 + 8.70169i −0.498787 + 0.353482i
\(607\) 21.4173 0.869301 0.434651 0.900599i \(-0.356872\pi\)
0.434651 + 0.900599i \(0.356872\pi\)
\(608\) −1.86411 0.729680i −0.0755998 0.0295924i
\(609\) −1.43993 + 1.04617i −0.0583488 + 0.0423929i
\(610\) 0 0
\(611\) −12.5126 + 17.2221i −0.506206 + 0.696733i
\(612\) 1.67090 + 1.27523i 0.0675420 + 0.0515480i
\(613\) 1.40405 + 1.93251i 0.0567090 + 0.0780532i 0.836430 0.548074i \(-0.184639\pi\)
−0.779721 + 0.626128i \(0.784639\pi\)
\(614\) 5.28336 1.64807i 0.213219 0.0665106i
\(615\) 0 0
\(616\) 6.62685 1.89693i 0.267003 0.0764295i
\(617\) −3.17299 + 9.76545i −0.127740 + 0.393142i −0.994390 0.105773i \(-0.966268\pi\)
0.866651 + 0.498915i \(0.166268\pi\)
\(618\) −1.63679 + 2.19789i −0.0658414 + 0.0884122i
\(619\) 22.9711 + 7.46375i 0.923285 + 0.299994i 0.731814 0.681505i \(-0.238674\pi\)
0.191471 + 0.981498i \(0.438674\pi\)
\(620\) 0 0
\(621\) −38.5764 + 12.5342i −1.54802 + 0.502982i
\(622\) 2.99788 8.86938i 0.120204 0.355630i
\(623\) 6.61094 + 4.80313i 0.264862 + 0.192433i
\(624\) 11.8203 7.76396i 0.473189 0.310807i
\(625\) 0 0
\(626\) −23.2706 17.3298i −0.930080 0.692640i
\(627\) −0.749685 + 1.03185i −0.0299395 + 0.0412082i
\(628\) −3.87841 5.61177i −0.154765 0.223934i
\(629\) −8.25258 + 2.68143i −0.329052 + 0.106915i
\(630\) 0 0
\(631\) 5.14314 15.8289i 0.204745 0.630140i −0.794979 0.606637i \(-0.792518\pi\)
0.999724 0.0235031i \(-0.00748197\pi\)
\(632\) −5.42352 + 14.8798i −0.215736 + 0.591885i
\(633\) −5.76856 + 17.7538i −0.229280 + 0.705650i
\(634\) −0.0830358 + 7.04357i −0.00329777 + 0.279736i
\(635\) 0 0
\(636\) 8.85558 25.2158i 0.351147 0.999872i
\(637\) −9.30224 12.8034i −0.368568 0.507290i
\(638\) 5.19876 + 0.0612875i 0.205821 + 0.00242639i
\(639\) −10.4364 7.58250i −0.412858 0.299959i
\(640\) 0 0
\(641\) −11.9869 + 8.70898i −0.473454 + 0.343984i −0.798786 0.601616i \(-0.794524\pi\)
0.325332 + 0.945600i \(0.394524\pi\)
\(642\) −26.8602 + 19.0354i −1.06009 + 0.751268i
\(643\) 17.1919i 0.677981i 0.940790 + 0.338990i \(0.110085\pi\)
−0.940790 + 0.338990i \(0.889915\pi\)
\(644\) 13.3147 + 0.313974i 0.524672 + 0.0123723i
\(645\) 0 0
\(646\) 0.445436 + 0.150559i 0.0175255 + 0.00592366i
\(647\) −2.43430 7.49201i −0.0957023 0.294541i 0.891734 0.452560i \(-0.149489\pi\)
−0.987436 + 0.158019i \(0.949489\pi\)
\(648\) −10.3039 + 6.94317i −0.404774 + 0.272754i
\(649\) 11.4355 0.448882
\(650\) 0 0
\(651\) 5.53282i 0.216848i
\(652\) −36.6453 12.8695i −1.43514 0.504009i
\(653\) 36.6029 11.8930i 1.43238 0.465409i 0.512869 0.858467i \(-0.328583\pi\)
0.919514 + 0.393057i \(0.128583\pi\)
\(654\) −7.25479 + 21.4637i −0.283685 + 0.839296i
\(655\) 0 0
\(656\) −10.0187 36.6263i −0.391163 1.43002i
\(657\) −17.6165 −0.687284
\(658\) −8.83809 + 6.26341i −0.344545 + 0.244173i
\(659\) −20.8965 28.7616i −0.814013 1.12039i −0.990692 0.136124i \(-0.956535\pi\)
0.176679 0.984269i \(-0.443465\pi\)
\(660\) 0 0
\(661\) −17.1104 + 23.5504i −0.665516 + 0.916005i −0.999648 0.0265217i \(-0.991557\pi\)
0.334132 + 0.942526i \(0.391557\pi\)
\(662\) −0.331037 + 28.0805i −0.0128661 + 1.09138i
\(663\) −2.68731 + 1.95244i −0.104366 + 0.0758266i
\(664\) −11.1415 16.5343i −0.432374 0.641656i
\(665\) 0 0
\(666\) −0.172232 + 14.6097i −0.00667386 + 0.566115i
\(667\) 9.55387 + 3.10424i 0.369927 + 0.120197i
\(668\) 1.62074 + 5.41969i 0.0627084 + 0.209694i
\(669\) −29.6067 9.61979i −1.14466 0.371923i
\(670\) 0 0
\(671\) 2.96697 + 9.13141i 0.114539 + 0.352514i
\(672\) 6.96321 1.81675i 0.268612 0.0700827i
\(673\) 2.67251 + 1.94169i 0.103018 + 0.0748467i 0.638102 0.769952i \(-0.279720\pi\)
−0.535084 + 0.844799i \(0.679720\pi\)
\(674\) 15.7996 + 11.7661i 0.608576 + 0.453213i
\(675\) 0 0
\(676\) 3.64214 + 12.1792i 0.140082 + 0.468429i
\(677\) −12.5043 + 17.2107i −0.480579 + 0.661460i −0.978616 0.205696i \(-0.934054\pi\)
0.498037 + 0.867156i \(0.334054\pi\)
\(678\) 1.66610 + 0.563149i 0.0639863 + 0.0216276i
\(679\) −0.460435 1.41707i −0.0176699 0.0543823i
\(680\) 0 0
\(681\) −5.82536 + 17.9286i −0.223228 + 0.687026i
\(682\) −9.65322 + 12.9624i −0.369641 + 0.496356i
\(683\) −12.0784 3.92453i −0.462169 0.150168i 0.0686719 0.997639i \(-0.478124\pi\)
−0.530841 + 0.847471i \(0.678124\pi\)
\(684\) 0.480324 0.629357i 0.0183657 0.0240640i
\(685\) 0 0
\(686\) −5.13219 16.4527i −0.195948 0.628167i
\(687\) −7.33624 + 5.33009i −0.279895 + 0.203356i
\(688\) −20.9253 7.90772i −0.797770 0.301479i
\(689\) −20.3156 14.7602i −0.773964 0.562318i
\(690\) 0 0
\(691\) −22.6417 31.1636i −0.861329 1.18552i −0.981251 0.192734i \(-0.938264\pi\)
0.119922 0.992783i \(-0.461736\pi\)
\(692\) −0.0404999 + 1.71748i −0.00153958 + 0.0652888i
\(693\) 2.72612i 0.103557i
\(694\) −2.60133 3.67065i −0.0987451 0.139336i
\(695\) 0 0
\(696\) 5.42450 + 0.191917i 0.205615 + 0.00727461i
\(697\) 2.75608 + 8.48233i 0.104394 + 0.321291i
\(698\) 23.9346 7.46606i 0.905937 0.282594i
\(699\) 19.7498i 0.747006i
\(700\) 0 0
\(701\) 39.6154i 1.49625i −0.663555 0.748127i \(-0.730953\pi\)
0.663555 0.748127i \(-0.269047\pi\)
\(702\) 6.13226 + 19.6587i 0.231447 + 0.741970i
\(703\) 1.00998 + 3.10840i 0.0380921 + 0.117235i
\(704\) −19.4833 7.89254i −0.734303 0.297461i
\(705\) 0 0
\(706\) −29.0337 + 20.5757i −1.09270 + 0.774377i
\(707\) 7.19552i 0.270615i
\(708\) 11.9354 + 0.281448i 0.448559 + 0.0105775i
\(709\) 5.04361 + 6.94194i 0.189417 + 0.260710i 0.893154 0.449750i \(-0.148487\pi\)
−0.703738 + 0.710460i \(0.748487\pi\)
\(710\) 0 0
\(711\) −5.06730 3.68161i −0.190039 0.138071i
\(712\) −6.85800 23.9581i −0.257015 0.897870i
\(713\) −25.2636 + 18.3551i −0.946128 + 0.687402i
\(714\) −1.61359 + 0.503337i −0.0603872 + 0.0188369i
\(715\) 0 0
\(716\) 27.7594 36.3724i 1.03742 1.35930i
\(717\) 0.839780 + 0.272861i 0.0313622 + 0.0101902i
\(718\) −34.1853 25.4581i −1.27578 0.950088i
\(719\) −2.74075 + 8.43517i −0.102213 + 0.314579i −0.989066 0.147472i \(-0.952886\pi\)
0.886853 + 0.462051i \(0.152886\pi\)
\(720\) 0 0
\(721\) 0.404892 + 1.24613i 0.0150790 + 0.0464083i
\(722\) −8.54726 + 25.2875i −0.318096 + 0.941104i
\(723\) −17.9547 + 24.7126i −0.667744 + 0.919071i
\(724\) −37.3396 + 11.1663i −1.38771 + 0.414992i
\(725\) 0 0
\(726\) 4.74500 6.37161i 0.176103 0.236473i
\(727\) 26.8677 + 19.5205i 0.996468 + 0.723976i 0.961328 0.275406i \(-0.0888124\pi\)
0.0351397 + 0.999382i \(0.488812\pi\)
\(728\) 0.239077 6.75745i 0.00886078 0.250448i
\(729\) −8.70192 26.7818i −0.322293 0.991917i
\(730\) 0 0
\(731\) 4.99703 + 1.62364i 0.184822 + 0.0600523i
\(732\) 2.87193 + 9.60359i 0.106149 + 0.354959i
\(733\) −0.572607 0.186051i −0.0211497 0.00687196i 0.298423 0.954434i \(-0.403539\pi\)
−0.319573 + 0.947562i \(0.603539\pi\)
\(734\) 9.49827 + 0.111974i 0.350588 + 0.00413303i
\(735\) 0 0
\(736\) −31.3959 25.7679i −1.15727 0.949816i
\(737\) 2.24181 1.62877i 0.0825781 0.0599965i
\(738\) 15.0165 + 0.177027i 0.552764 + 0.00651646i
\(739\) 21.4919 29.5811i 0.790594 1.08816i −0.203440 0.979087i \(-0.565212\pi\)
0.994034 0.109072i \(-0.0347878\pi\)
\(740\) 0 0
\(741\) 0.735402 + 1.01219i 0.0270157 + 0.0371839i
\(742\) −7.38847 10.4256i −0.271239 0.382736i
\(743\) −0.112858 −0.00414038 −0.00207019 0.999998i \(-0.500659\pi\)
−0.00207019 + 0.999998i \(0.500659\pi\)
\(744\) −10.3942 + 13.2914i −0.381071 + 0.487288i
\(745\) 0 0
\(746\) −32.4740 10.9763i −1.18896 0.401871i
\(747\) 7.49929 2.43667i 0.274385 0.0891529i
\(748\) 4.65854 + 1.63604i 0.170333 + 0.0598195i
\(749\) 15.7406i 0.575149i
\(750\) 0 0
\(751\) −21.9164 −0.799742 −0.399871 0.916571i \(-0.630945\pi\)
−0.399871 + 0.916571i \(0.630945\pi\)
\(752\) 32.9984 + 1.55714i 1.20333 + 0.0567830i
\(753\) −2.12528 6.54093i −0.0774495 0.238365i
\(754\) 1.63308 4.83154i 0.0594731 0.175954i
\(755\) 0 0
\(756\) −0.247035 + 10.4760i −0.00898457 + 0.381008i
\(757\) 16.3710i 0.595014i 0.954720 + 0.297507i \(0.0961551\pi\)
−0.954720 + 0.297507i \(0.903845\pi\)
\(758\) 6.65824 + 9.39523i 0.241838 + 0.341250i
\(759\) −20.9358 + 15.2107i −0.759921 + 0.552115i
\(760\) 0 0
\(761\) −5.84229 4.24467i −0.211783 0.153869i 0.476837 0.878992i \(-0.341783\pi\)
−0.688620 + 0.725122i \(0.741783\pi\)
\(762\) 0.372214 31.5733i 0.0134839 1.14378i
\(763\) 6.36731 + 8.76385i 0.230512 + 0.317273i
\(764\) −8.35838 + 23.8001i −0.302395 + 0.861056i
\(765\) 0 0
\(766\) −12.7756 0.150610i −0.461601 0.00544176i
\(767\) 3.46644 10.6686i 0.125166 0.385221i
\(768\) −20.1407 8.71706i −0.726764 0.314550i
\(769\) −12.3133 + 37.8964i −0.444028 + 1.36658i 0.439518 + 0.898234i \(0.355149\pi\)
−0.883546 + 0.468344i \(0.844851\pi\)
\(770\) 0 0
\(771\) 5.32830 1.73127i 0.191894 0.0623502i
\(772\) −13.9587 + 9.64718i −0.502386 + 0.347210i
\(773\) 29.5054 40.6107i 1.06123 1.46066i 0.182590 0.983189i \(-0.441552\pi\)
0.878645 0.477475i \(-0.158448\pi\)
\(774\) 5.28413 7.09556i 0.189934 0.255044i
\(775\) 0 0
\(776\) −1.55609 + 4.26922i −0.0558602 + 0.153256i
\(777\) −9.50537 6.90605i −0.341003 0.247753i
\(778\) −16.9977 5.74526i −0.609395 0.205978i
\(779\) 3.19494 1.03810i 0.114470 0.0371937i
\(780\) 0 0
\(781\) −28.8195 9.36401i −1.03124 0.335071i
\(782\) 7.65137 + 5.69805i 0.273613 + 0.203762i
\(783\) −2.44242 + 7.51699i −0.0872849 + 0.268635i
\(784\) −8.68175 + 22.9736i −0.310063 + 0.820484i
\(785\) 0 0
\(786\) 9.48234 + 30.3984i 0.338224 + 1.08427i
\(787\) 24.4497 + 33.6522i 0.871539 + 1.19957i 0.978693 + 0.205329i \(0.0658263\pi\)
−0.107154 + 0.994242i \(0.534174\pi\)
\(788\) −17.8773 + 23.4241i −0.636851 + 0.834449i
\(789\) −19.2737 + 26.5279i −0.686161 + 0.944419i
\(790\) 0 0
\(791\) 0.680288 0.494258i 0.0241883 0.0175738i
\(792\) 5.12141 6.54892i 0.181981 0.232706i
\(793\) 9.41841 0.334458
\(794\) −11.1833 15.7804i −0.396882 0.560027i
\(795\) 0 0
\(796\) 9.38844 6.48854i 0.332764 0.229980i
\(797\) −33.7472 + 10.9651i −1.19539 + 0.388404i −0.838061 0.545576i \(-0.816311\pi\)
−0.357324 + 0.933980i \(0.616311\pi\)
\(798\) 0.189586 + 0.607772i 0.00671127 + 0.0215149i
\(799\) −7.75931 −0.274505
\(800\) 0 0
\(801\) 9.85577 0.348236
\(802\) −14.6509 46.9676i −0.517340 1.65848i
\(803\) −39.3560 + 12.7876i −1.38884 + 0.451263i
\(804\) 2.37989 1.64479i 0.0839323 0.0580074i
\(805\) 0 0
\(806\) 9.16693 + 12.9351i 0.322891 + 0.455621i
\(807\) 41.1858 1.44981
\(808\) 13.5179 17.2857i 0.475556 0.608110i
\(809\) −15.2356 + 11.0693i −0.535656 + 0.389177i −0.822469 0.568810i \(-0.807404\pi\)
0.286813 + 0.957986i \(0.407404\pi\)
\(810\) 0 0
\(811\) 30.8789 42.5012i 1.08431 1.49242i 0.229616 0.973281i \(-0.426253\pi\)
0.854690 0.519138i \(-0.173747\pi\)
\(812\) 1.57450 2.06303i 0.0552542 0.0723982i
\(813\) 3.80881 + 5.24237i 0.133581 + 0.183858i
\(814\) 10.2202 + 32.7638i 0.358219 + 1.14837i
\(815\) 0 0
\(816\) 4.82191 + 1.82221i 0.168801 + 0.0637901i
\(817\) 0.611555 1.88217i 0.0213956 0.0658489i
\(818\) −18.7652 13.9746i −0.656110 0.488612i
\(819\) 2.54330 + 0.826367i 0.0888700 + 0.0288756i
\(820\) 0 0
\(821\) −4.70172 + 1.52768i −0.164091 + 0.0533164i −0.389910 0.920853i \(-0.627494\pi\)
0.225819 + 0.974169i \(0.427494\pi\)
\(822\) −41.1715 13.9161i −1.43602 0.485380i
\(823\) 4.38694 + 3.18730i 0.152919 + 0.111102i 0.661614 0.749845i \(-0.269872\pi\)
−0.508695 + 0.860947i \(0.669872\pi\)
\(824\) 1.36837 3.75422i 0.0476695 0.130784i
\(825\) 0 0
\(826\) 3.40940 4.57816i 0.118628 0.159295i
\(827\) 24.4852 33.7010i 0.851435 1.17190i −0.132110 0.991235i \(-0.542175\pi\)
0.983545 0.180664i \(-0.0578248\pi\)
\(828\) 13.2145 9.13282i 0.459236 0.317387i
\(829\) −27.3761 + 8.89503i −0.950811 + 0.308937i −0.743045 0.669241i \(-0.766619\pi\)
−0.207766 + 0.978179i \(0.566619\pi\)
\(830\) 0 0
\(831\) 1.57473 4.84653i 0.0546268 0.168124i
\(832\) −13.2692 + 15.7842i −0.460027 + 0.547219i
\(833\) 1.78256 5.48616i 0.0617621 0.190084i
\(834\) 22.8528 + 0.269409i 0.791329 + 0.00932888i
\(835\) 0 0
\(836\) 0.616227 1.75467i 0.0213126 0.0606867i
\(837\) −14.4418 19.8774i −0.499180 0.687063i
\(838\) −0.0396421 + 3.36267i −0.00136942 + 0.116162i
\(839\) −43.0983 31.3128i −1.48792 1.08104i −0.974895 0.222663i \(-0.928525\pi\)
−0.513024 0.858374i \(-0.671475\pi\)
\(840\) 0 0
\(841\) −21.8779 + 15.8952i −0.754409 + 0.548110i
\(842\) 5.00825 + 7.06698i 0.172596 + 0.243544i
\(843\) 18.8667i 0.649805i
\(844\) 0.641680 27.2117i 0.0220875 0.936665i
\(845\) 0 0
\(846\) −4.18352 + 12.3772i −0.143832 + 0.425536i
\(847\) −1.17377 3.61249i −0.0403311 0.124126i
\(848\) −1.83684 + 38.9257i −0.0630772 + 1.33671i
\(849\) 2.04454 0.0701685
\(850\) 0 0
\(851\) 66.3135i 2.27320i
\(852\) −29.8488 10.4826i −1.02260 0.359129i
\(853\) −49.7048 + 16.1501i −1.70186 + 0.552968i −0.988945 0.148283i \(-0.952625\pi\)
−0.712915 + 0.701250i \(0.752625\pi\)
\(854\) 4.54030 + 1.53464i 0.155366 + 0.0525142i
\(855\) 0 0
\(856\) 29.5710 37.8134i 1.01072 1.29244i
\(857\) 6.32615 0.216097 0.108049 0.994146i \(-0.465540\pi\)
0.108049 + 0.994146i \(0.465540\pi\)
\(858\) 7.59658 + 10.7193i 0.259343 + 0.365950i
\(859\) 31.4567 + 43.2964i 1.07329 + 1.47726i 0.866701 + 0.498827i \(0.166236\pi\)
0.206588 + 0.978428i \(0.433764\pi\)
\(860\) 0 0
\(861\) −7.09832 + 9.77000i −0.241910 + 0.332961i
\(862\) −44.2605 0.521781i −1.50752 0.0177719i
\(863\) −35.2585 + 25.6168i −1.20021 + 0.872007i −0.994306 0.106564i \(-0.966015\pi\)
−0.205909 + 0.978571i \(0.566015\pi\)
\(864\) 20.2742 24.7023i 0.689741 0.840389i
\(865\) 0 0
\(866\) −21.0880 0.248604i −0.716601 0.00844792i
\(867\) 21.0251 + 6.83146i 0.714049 + 0.232008i
\(868\) 2.31142 + 7.72927i 0.0784546 + 0.262348i
\(869\) −13.9930 4.54661i −0.474681 0.154233i
\(870\) 0 0
\(871\) −0.839981 2.58520i −0.0284617 0.0875961i
\(872\) 1.16807 33.0152i 0.0395558 1.11804i
\(873\) −1.45388 1.05631i −0.0492064 0.0357505i
\(874\) 2.14622 2.88195i 0.0725968 0.0974834i
\(875\) 0 0
\(876\) −41.3911 + 12.3779i −1.39848 + 0.418211i
\(877\) −2.19672 + 3.02353i −0.0741781 + 0.102097i −0.844494 0.535565i \(-0.820099\pi\)
0.770316 + 0.637663i \(0.220099\pi\)
\(878\) 14.7701 43.6981i 0.498467 1.47474i
\(879\) −3.10863 9.56738i −0.104851 0.322700i
\(880\) 0 0
\(881\) −13.5548 + 41.7174i −0.456673 + 1.40549i 0.412487 + 0.910963i \(0.364660\pi\)
−0.869160 + 0.494531i \(0.835340\pi\)
\(882\) −7.79009 5.80136i −0.262306 0.195342i
\(883\) −18.4883 6.00720i −0.622179 0.202158i −0.0190716 0.999818i \(-0.506071\pi\)
−0.603108 + 0.797660i \(0.706071\pi\)
\(884\) 2.93846 3.85019i 0.0988312 0.129496i
\(885\) 0 0
\(886\) −32.9832 + 10.2886i −1.10809 + 0.345654i
\(887\) 14.5304 10.5570i 0.487883 0.354468i −0.316486 0.948597i \(-0.602503\pi\)
0.804370 + 0.594129i \(0.202503\pi\)
\(888\) 9.86060 + 34.4476i 0.330900 + 1.15599i
\(889\) −12.2138 8.87384i −0.409638 0.297619i
\(890\) 0 0
\(891\) −6.78473 9.33838i −0.227297 0.312847i
\(892\) 45.3789 + 1.07008i 1.51940 + 0.0358289i
\(893\) 2.92260i 0.0978012i
\(894\) −21.0654 + 14.9287i −0.704532 + 0.499290i
\(895\) 0 0
\(896\) −8.96853 + 5.44696i −0.299617 + 0.181970i
\(897\) 7.84441 + 24.1426i 0.261917 + 0.806098i
\(898\) −4.67401 14.9839i −0.155974 0.500018i
\(899\) 6.08498i 0.202945i
\(900\) 0 0
\(901\) 9.15306i 0.304933i
\(902\) 33.6760 10.5048i 1.12129 0.349770i
\(903\) 2.19845 + 6.76613i 0.0731598 + 0.225163i
\(904\) −2.56279 0.0906707i −0.0852370 0.00301566i
\(905\) 0 0
\(906\) 23.7626 + 33.5307i 0.789461 + 1.11398i
\(907\) 14.9961i 0.497938i 0.968511 + 0.248969i \(0.0800917\pi\)
−0.968511 + 0.248969i \(0.919908\pi\)
\(908\) 0.647998 27.4796i 0.0215046 0.911943i
\(909\) 5.10112 + 7.02109i 0.169193 + 0.232875i
\(910\) 0 0
\(911\) 28.4325 + 20.6574i 0.942011 + 0.684411i 0.948904 0.315565i \(-0.102194\pi\)
−0.00689309 + 0.999976i \(0.502194\pi\)
\(912\) 0.686349 1.81621i 0.0227273 0.0601407i
\(913\) 14.9850 10.8873i 0.495932 0.360316i
\(914\) −4.51291 14.4674i −0.149274 0.478540i
\(915\) 0 0
\(916\) 8.02189 10.5109i 0.265051 0.347289i
\(917\) 14.4798 + 4.70477i 0.478165 + 0.155365i
\(918\) −4.48323 + 6.02010i −0.147969 + 0.198693i
\(919\) −1.49412 + 4.59844i −0.0492866 + 0.151689i −0.972671 0.232188i \(-0.925411\pi\)
0.923384 + 0.383877i \(0.125411\pi\)
\(920\) 0 0
\(921\) 1.65874 + 5.10509i 0.0546575 + 0.168218i
\(922\) −20.6427 6.97731i −0.679833 0.229786i
\(923\) −17.4721 + 24.0483i −0.575101 + 0.791558i
\(924\) 1.91546 + 6.40520i 0.0630139 + 0.210716i
\(925\) 0 0
\(926\) 2.08957 + 1.55613i 0.0686677 + 0.0511375i
\(927\) 1.27850 + 0.928882i 0.0419913 + 0.0305085i
\(928\) −7.65812 + 1.99806i −0.251390 + 0.0655895i
\(929\) 1.73466 + 5.33873i 0.0569124 + 0.175158i 0.975472 0.220125i \(-0.0706465\pi\)
−0.918559 + 0.395283i \(0.870646\pi\)
\(930\) 0 0
\(931\) −2.06641 0.671416i −0.0677237 0.0220048i
\(932\) −8.25077 27.5902i −0.270263 0.903746i
\(933\) 8.63602 + 2.80601i 0.282731 + 0.0918648i
\(934\) 0.350728 29.7508i 0.0114762 0.973475i
\(935\) 0 0
\(936\) −4.55728 6.76313i −0.148959 0.221060i
\(937\) 28.0687 20.3931i 0.916964 0.666213i −0.0258024 0.999667i \(-0.508214\pi\)
0.942767 + 0.333454i \(0.108214\pi\)
\(938\) 0.0163052 1.38310i 0.000532385 0.0451600i
\(939\) 16.5409 22.7666i 0.539791 0.742958i
\(940\) 0 0
\(941\) 27.7263 + 38.1620i 0.903853 + 1.24405i 0.969223 + 0.246185i \(0.0791771\pi\)
−0.0653703 + 0.997861i \(0.520823\pi\)
\(942\) 5.39809 3.82554i 0.175879 0.124643i
\(943\) 68.1597 2.21958
\(944\) −16.7911 + 4.59300i −0.546504 + 0.149489i
\(945\) 0 0
\(946\) 6.65444 19.6875i 0.216354 0.640096i
\(947\) 3.39273 1.10237i 0.110249 0.0358221i −0.253373 0.967369i \(-0.581540\pi\)
0.363622 + 0.931547i \(0.381540\pi\)
\(948\) −14.4928 5.08974i −0.470704 0.165307i
\(949\) 40.5930i 1.31771i
\(950\) 0 0
\(951\) −6.83199 −0.221542
\(952\) 2.04389 1.37726i 0.0662427 0.0446371i
\(953\) −8.58834 26.4322i −0.278204 0.856222i −0.988354 0.152172i \(-0.951373\pi\)
0.710150 0.704050i \(-0.248627\pi\)
\(954\) −14.6004 4.93498i −0.472705 0.159776i
\(955\) 0 0
\(956\) −1.28715 0.0303524i −0.0416295 0.000981665i
\(957\) 5.04259i 0.163004i
\(958\) −2.39400 + 1.69659i −0.0773467 + 0.0548143i
\(959\) −16.8108 + 12.2137i −0.542848 + 0.394402i
\(960\) 0 0
\(961\) 9.77638 + 7.10296i 0.315367 + 0.229128i
\(962\) 33.6647 + 0.396869i 1.08539 + 0.0127956i
\(963\) 11.1590 + 15.3590i 0.359593 + 0.494937i
\(964\) 14.7585 42.0239i 0.475338 1.35350i
\(965\) 0 0
\(966\) −0.152271 + 12.9165i −0.00489924 + 0.415582i
\(967\) 7.73379 23.8022i 0.248702 0.765426i −0.746304 0.665606i \(-0.768173\pi\)
0.995006 0.0998201i \(-0.0318267\pi\)
\(968\) −3.96686 + 10.8833i −0.127500 + 0.349804i
\(969\) −0.140923 + 0.433717i −0.00452710 + 0.0139330i
\(970\) 0 0
\(971\) 23.8687 7.75540i 0.765982 0.248883i 0.100138 0.994974i \(-0.468072\pi\)
0.665844 + 0.746091i \(0.268072\pi\)
\(972\) 12.4198 + 17.9705i 0.398364 + 0.576403i
\(973\) 6.42290 8.84037i 0.205909 0.283409i
\(974\) 5.53377 + 4.12105i 0.177313 + 0.132047i
\(975\) 0 0
\(976\) −8.02408 12.2163i −0.256844 0.391033i
\(977\) 27.9703 + 20.3216i 0.894850 + 0.650146i 0.937138 0.348959i \(-0.113465\pi\)
−0.0422882 + 0.999105i \(0.513465\pi\)
\(978\) 12.0622 35.6867i 0.385707 1.14113i
\(979\) 22.0183 7.15417i 0.703707 0.228648i
\(980\) 0 0
\(981\) 12.4259 + 4.03742i 0.396729 + 0.128905i
\(982\) 16.0950 21.6125i 0.513613 0.689682i
\(983\) 5.35074 16.4679i 0.170662 0.525244i −0.828747 0.559624i \(-0.810946\pi\)
0.999409 + 0.0343798i \(0.0109456\pi\)
\(984\) 35.4066 10.1351i 1.12872 0.323096i
\(985\) 0 0
\(986\) 1.77462 0.553569i 0.0565155 0.0176292i
\(987\) −6.17546 8.49980i −0.196567 0.270552i
\(988\) −1.45020 1.10680i −0.0461372 0.0352118i
\(989\) 23.6017 32.4849i 0.750490 1.03296i
\(990\) 0 0
\(991\) −45.0802 + 32.7527i −1.43202 + 1.04042i −0.442385 + 0.896825i \(0.645868\pi\)
−0.989636 + 0.143599i \(0.954132\pi\)
\(992\) 8.96788 22.9103i 0.284730 0.727402i
\(993\) −27.2369 −0.864338
\(994\) −12.3411 + 8.74596i −0.391437 + 0.277405i
\(995\) 0 0
\(996\) 15.9080 10.9944i 0.504065 0.348370i
\(997\) −18.3906 + 5.97548i −0.582438 + 0.189245i −0.585392 0.810750i \(-0.699060\pi\)
0.00295465 + 0.999996i \(0.499060\pi\)
\(998\) −17.3566 + 5.41413i −0.549412 + 0.171381i
\(999\) −52.1755 −1.65076
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.t.b.701.25 224
5.2 odd 4 1000.2.o.a.549.27 112
5.3 odd 4 200.2.o.a.109.2 112
5.4 even 2 inner 1000.2.t.b.701.32 224
8.5 even 2 inner 1000.2.t.b.701.2 224
20.3 even 4 800.2.be.a.209.9 112
25.2 odd 20 200.2.o.a.189.15 yes 112
25.11 even 5 inner 1000.2.t.b.301.2 224
25.14 even 10 inner 1000.2.t.b.301.55 224
25.23 odd 20 1000.2.o.a.949.14 112
40.3 even 4 800.2.be.a.209.20 112
40.13 odd 4 200.2.o.a.109.15 yes 112
40.29 even 2 inner 1000.2.t.b.701.55 224
40.37 odd 4 1000.2.o.a.549.14 112
100.27 even 20 800.2.be.a.689.20 112
200.27 even 20 800.2.be.a.689.9 112
200.61 even 10 inner 1000.2.t.b.301.25 224
200.77 odd 20 200.2.o.a.189.2 yes 112
200.173 odd 20 1000.2.o.a.949.27 112
200.189 even 10 inner 1000.2.t.b.301.32 224
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.2 112 5.3 odd 4
200.2.o.a.109.15 yes 112 40.13 odd 4
200.2.o.a.189.2 yes 112 200.77 odd 20
200.2.o.a.189.15 yes 112 25.2 odd 20
800.2.be.a.209.9 112 20.3 even 4
800.2.be.a.209.20 112 40.3 even 4
800.2.be.a.689.9 112 200.27 even 20
800.2.be.a.689.20 112 100.27 even 20
1000.2.o.a.549.14 112 40.37 odd 4
1000.2.o.a.549.27 112 5.2 odd 4
1000.2.o.a.949.14 112 25.23 odd 20
1000.2.o.a.949.27 112 200.173 odd 20
1000.2.t.b.301.2 224 25.11 even 5 inner
1000.2.t.b.301.25 224 200.61 even 10 inner
1000.2.t.b.301.32 224 200.189 even 10 inner
1000.2.t.b.301.55 224 25.14 even 10 inner
1000.2.t.b.701.2 224 8.5 even 2 inner
1000.2.t.b.701.25 224 1.1 even 1 trivial
1000.2.t.b.701.32 224 5.4 even 2 inner
1000.2.t.b.701.55 224 40.29 even 2 inner