Defining parameters
| Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 80.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(80))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 18 | 2 | 16 |
| Cusp forms | 7 | 2 | 5 |
| Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(5\) | \(1\) | \(4\) | \(2\) | \(1\) | \(1\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(6\) | \(1\) | \(5\) | \(3\) | \(1\) | \(2\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(4\) | \(0\) | \(4\) | \(1\) | \(0\) | \(1\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(7\) | \(0\) | \(7\) | \(2\) | \(0\) | \(2\) | \(5\) | \(0\) | \(5\) | ||||
| Minus space | \(-\) | \(11\) | \(2\) | \(9\) | \(5\) | \(2\) | \(3\) | \(6\) | \(0\) | \(6\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(80))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
| 80.2.a.a | $1$ | $0.639$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(4\) | $+$ | $-$ | \(q+q^{5}+4q^{7}-3q^{9}-4q^{11}-2q^{13}+\cdots\) | |
| 80.2.a.b | $1$ | $0.639$ | \(\Q\) | None | \(0\) | \(2\) | \(-1\) | \(-2\) | $-$ | $+$ | \(q+2q^{3}-q^{5}-2q^{7}+q^{9}+2q^{13}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(80))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(80)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 2}\)