Properties

Label 80.10.a.h
Level $80$
Weight $10$
Character orbit 80.a
Self dual yes
Analytic conductor $41.203$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,10,Mod(1,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,92] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.2028668931\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6049}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{6049}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 46) q^{3} + 625 q^{5} + (37 \beta + 3454) q^{7} + ( - 92 \beta + 6629) q^{9} + (166 \beta + 4040) q^{11} + ( - 252 \beta + 55974) q^{13} + ( - 625 \beta + 28750) q^{15} + ( - 956 \beta - 163766) q^{17}+ \cdots + (728734 \beta - 342740152) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 92 q^{3} + 1250 q^{5} + 6908 q^{7} + 13258 q^{9} + 8080 q^{11} + 111948 q^{13} + 57500 q^{15} - 327532 q^{17} + 1156680 q^{19} - 1472736 q^{21} + 1057252 q^{23} + 781250 q^{25} + 3251096 q^{27} - 4212260 q^{29}+ \cdots - 685480304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
39.3877
−38.3877
0 −109.551 0 625.000 0 9209.37 0 −7681.66 0
1.2 0 201.551 0 625.000 0 −2301.37 0 20939.7 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.10.a.h 2
4.b odd 2 1 40.10.a.b 2
5.b even 2 1 400.10.a.o 2
5.c odd 4 2 400.10.c.o 4
8.b even 2 1 320.10.a.o 2
8.d odd 2 1 320.10.a.p 2
12.b even 2 1 360.10.a.a 2
20.d odd 2 1 200.10.a.d 2
20.e even 4 2 200.10.c.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.10.a.b 2 4.b odd 2 1
80.10.a.h 2 1.a even 1 1 trivial
200.10.a.d 2 20.d odd 2 1
200.10.c.e 4 20.e even 4 2
320.10.a.o 2 8.b even 2 1
320.10.a.p 2 8.d odd 2 1
360.10.a.a 2 12.b even 2 1
400.10.a.o 2 5.b even 2 1
400.10.c.o 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 92T_{3} - 22080 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(80))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 92T - 22080 \) Copy content Toggle raw display
$5$ \( (T - 625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 6908 T - 21194208 \) Copy content Toggle raw display
$11$ \( T^{2} - 8080 T - 650423376 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 1596545892 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 4705707300 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 40779913424 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 1912065852768 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 3590091179076 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 18175848222720 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 52017173403036 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 767462172871932 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 572587094218848 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 203650755299584 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 25\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 11\!\cdots\!52 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 75\!\cdots\!40 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 354007255197152 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 26\!\cdots\!60 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 16\!\cdots\!88 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 33\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 20\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 10\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 21\!\cdots\!04 \) Copy content Toggle raw display
show more
show less