Newspace parameters
| Level: | \( N \) | \(=\) | \( 8 = 2^{3} \) |
| Weight: | \( k \) | \(=\) | \( 30 \) |
| Character orbit: | \([\chi]\) | \(=\) | 8.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(42.6224339064\) |
| Analytic rank: | \(0\) |
| Dimension: | \(28\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5.1 | −23014.6 | − | 2683.36i | 1.92933e6i | 5.22470e8 | + | 1.23513e8i | 2.40238e10i | 5.17709e9 | − | 4.44027e10i | −2.26247e12 | −1.16930e13 | − | 4.24457e12i | 6.49081e13 | 6.44647e13 | − | 5.52899e14i | ||||||||
| 5.2 | −23014.6 | + | 2683.36i | − | 1.92933e6i | 5.22470e8 | − | 1.23513e8i | − | 2.40238e10i | 5.17709e9 | + | 4.44027e10i | −2.26247e12 | −1.16930e13 | + | 4.24457e12i | 6.49081e13 | 6.44647e13 | + | 5.52899e14i | ||||||
| 5.3 | −21420.9 | − | 8832.69i | − | 1.37657e7i | 3.80838e8 | + | 3.78408e8i | 3.24318e9i | −1.21588e11 | + | 2.94874e11i | −1.14169e11 | −4.81553e12 | − | 1.14697e13i | −1.20865e14 | 2.86460e13 | − | 6.94719e13i | |||||||
| 5.4 | −21420.9 | + | 8832.69i | 1.37657e7i | 3.80838e8 | − | 3.78408e8i | − | 3.24318e9i | −1.21588e11 | − | 2.94874e11i | −1.14169e11 | −4.81553e12 | + | 1.14697e13i | −1.20865e14 | 2.86460e13 | + | 6.94719e13i | |||||||
| 5.5 | −21173.9 | − | 9409.30i | 5.72019e6i | 3.59801e8 | + | 3.98464e8i | − | 6.31246e9i | 5.38230e10 | − | 1.21119e11i | 2.79408e12 | −3.86913e12 | − | 1.18225e13i | 3.59098e13 | −5.93958e13 | + | 1.33660e14i | |||||||
| 5.6 | −21173.9 | + | 9409.30i | − | 5.72019e6i | 3.59801e8 | − | 3.98464e8i | 6.31246e9i | 5.38230e10 | + | 1.21119e11i | 2.79408e12 | −3.86913e12 | + | 1.18225e13i | 3.59098e13 | −5.93958e13 | − | 1.33660e14i | |||||||
| 5.7 | −15876.9 | − | 16875.8i | 1.30630e7i | −3.27158e7 | + | 5.35873e8i | 6.85473e9i | 2.20449e11 | − | 2.07401e11i | −1.34577e12 | 9.56273e12 | − | 7.95592e12i | −1.02013e14 | 1.15679e14 | − | 1.08832e14i | ||||||||
| 5.8 | −15876.9 | + | 16875.8i | − | 1.30630e7i | −3.27158e7 | − | 5.35873e8i | − | 6.85473e9i | 2.20449e11 | + | 2.07401e11i | −1.34577e12 | 9.56273e12 | + | 7.95592e12i | −1.02013e14 | 1.15679e14 | + | 1.08832e14i | ||||||
| 5.9 | −13702.6 | − | 18684.5i | − | 2.53770e6i | −1.61348e8 | + | 5.12052e8i | − | 1.41899e10i | −4.74155e10 | + | 3.47731e10i | −9.83944e11 | 1.17783e13 | − | 4.00175e12i | 6.21905e13 | −2.65131e14 | + | 1.94439e14i | ||||||
| 5.10 | −13702.6 | + | 18684.5i | 2.53770e6i | −1.61348e8 | − | 5.12052e8i | 1.41899e10i | −4.74155e10 | − | 3.47731e10i | −9.83944e11 | 1.17783e13 | + | 4.00175e12i | 6.21905e13 | −2.65131e14 | − | 1.94439e14i | ||||||||
| 5.11 | −8176.08 | − | 21680.0i | − | 6.50530e6i | −4.03174e8 | + | 3.54515e8i | 1.03890e10i | −1.41035e11 | + | 5.31879e10i | 3.70123e11 | 1.09823e13 | + | 5.84228e12i | 2.63114e13 | 2.25234e14 | − | 8.49415e13i | |||||||
| 5.12 | −8176.08 | + | 21680.0i | 6.50530e6i | −4.03174e8 | − | 3.54515e8i | − | 1.03890e10i | −1.41035e11 | − | 5.31879e10i | 3.70123e11 | 1.09823e13 | − | 5.84228e12i | 2.63114e13 | 2.25234e14 | + | 8.49415e13i | |||||||
| 5.13 | 1176.52 | − | 23140.6i | 9.62485e6i | −5.34103e8 | − | 5.44508e7i | − | 1.90239e10i | 2.22725e11 | + | 1.13238e10i | −8.83863e11 | −1.88841e12 | + | 1.22954e13i | −2.40073e13 | −4.40223e14 | − | 2.23820e13i | |||||||
| 5.14 | 1176.52 | + | 23140.6i | − | 9.62485e6i | −5.34103e8 | + | 5.44508e7i | 1.90239e10i | 2.22725e11 | − | 1.13238e10i | −8.83863e11 | −1.88841e12 | − | 1.22954e13i | −2.40073e13 | −4.40223e14 | + | 2.23820e13i | |||||||
| 5.15 | 1364.59 | − | 23130.3i | 7.47781e6i | −5.33147e8 | − | 6.31264e7i | 2.01913e10i | 1.72964e11 | + | 1.02041e10i | 1.70351e12 | −2.18765e12 | + | 1.22457e13i | 1.27128e13 | 4.67029e14 | + | 2.75527e13i | ||||||||
| 5.16 | 1364.59 | + | 23130.3i | − | 7.47781e6i | −5.33147e8 | + | 6.31264e7i | − | 2.01913e10i | 1.72964e11 | − | 1.02041e10i | 1.70351e12 | −2.18765e12 | − | 1.22457e13i | 1.27128e13 | 4.67029e14 | − | 2.75527e13i | ||||||
| 5.17 | 4985.59 | − | 22627.7i | − | 1.40185e7i | −4.87159e8 | − | 2.25625e8i | − | 2.07995e10i | −3.17207e11 | − | 6.98904e10i | 2.73002e12 | −7.53416e12 | + | 9.89843e12i | −1.27888e14 | −4.70646e14 | − | 1.03698e14i | ||||||
| 5.18 | 4985.59 | + | 22627.7i | 1.40185e7i | −4.87159e8 | + | 2.25625e8i | 2.07995e10i | −3.17207e11 | + | 6.98904e10i | 2.73002e12 | −7.53416e12 | − | 9.89843e12i | −1.27888e14 | −4.70646e14 | + | 1.03698e14i | ||||||||
| 5.19 | 10885.6 | − | 20454.2i | − | 7.14793e6i | −2.99879e8 | − | 4.45313e8i | 6.52418e9i | −1.46205e11 | − | 7.78094e10i | −3.17101e12 | −1.23729e13 | + | 1.28629e12i | 1.75375e13 | 1.33447e14 | + | 7.10196e13i | |||||||
| 5.20 | 10885.6 | + | 20454.2i | 7.14793e6i | −2.99879e8 | + | 4.45313e8i | − | 6.52418e9i | −1.46205e11 | + | 7.78094e10i | −3.17101e12 | −1.23729e13 | − | 1.28629e12i | 1.75375e13 | 1.33447e14 | − | 7.10196e13i | |||||||
| See all 28 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 8.b | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 8.30.b.a | ✓ | 28 |
| 4.b | odd | 2 | 1 | 32.30.b.a | 28 | ||
| 8.b | even | 2 | 1 | inner | 8.30.b.a | ✓ | 28 |
| 8.d | odd | 2 | 1 | 32.30.b.a | 28 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 8.30.b.a | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
| 8.30.b.a | ✓ | 28 | 8.b | even | 2 | 1 | inner |
| 32.30.b.a | 28 | 4.b | odd | 2 | 1 | ||
| 32.30.b.a | 28 | 8.d | odd | 2 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{30}^{\mathrm{new}}(8, [\chi])\).