Properties

Label 8.30.b
Level $8$
Weight $30$
Character orbit 8.b
Rep. character $\chi_{8}(5,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $1$
Sturm bound $30$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 30 \)
Character orbit: \([\chi]\) \(=\) 8.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(30\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{30}(8, [\chi])\).

Total New Old
Modular forms 30 30 0
Cusp forms 28 28 0
Eisenstein series 2 2 0

Trace form

\( 28 q - 8642 q^{2} - 69796972 q^{4} - 35869200308 q^{6} + 1356446145696 q^{7} - 9960937476728 q^{8} - 594796603828988 q^{9} - 62453907924808 q^{10} - 73\!\cdots\!44 q^{12} + 78\!\cdots\!40 q^{14} - 11\!\cdots\!36 q^{15}+ \cdots + 15\!\cdots\!18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{30}^{\mathrm{new}}(8, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
8.30.b.a 8.b 8.b $28$ $42.622$ None 8.30.b.a \(-8642\) \(0\) \(0\) \(13\!\cdots\!96\) $\mathrm{SU}(2)[C_{2}]$