Properties

Label 798.2.m.b.787.1
Level $798$
Weight $2$
Character 798.787
Analytic conductor $6.372$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(145,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.145"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 787.1
Character \(\chi\) \(=\) 798.787
Dual form 798.2.m.b.145.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(0.500000 + 0.866025i) q^{3} -1.00000 q^{4} -4.07585i q^{5} +(0.866025 - 0.500000i) q^{6} +(-1.41205 - 2.23744i) q^{7} +1.00000i q^{8} +(-0.500000 + 0.866025i) q^{9} -4.07585 q^{10} +(-0.485128 + 0.840267i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(-1.85511 - 3.21315i) q^{13} +(-2.23744 + 1.41205i) q^{14} +(3.52979 - 2.03792i) q^{15} +1.00000 q^{16} +(-6.48478 + 3.74399i) q^{17} +(0.866025 + 0.500000i) q^{18} +(3.91461 + 1.91725i) q^{19} +4.07585i q^{20} +(1.23165 - 2.34159i) q^{21} +(0.840267 + 0.485128i) q^{22} +(-1.25748 + 2.17802i) q^{23} +(-0.866025 + 0.500000i) q^{24} -11.6125 q^{25} +(-3.21315 + 1.85511i) q^{26} -1.00000 q^{27} +(1.41205 + 2.23744i) q^{28} +(2.39269 - 1.38142i) q^{29} +(-2.03792 - 3.52979i) q^{30} +(-0.648141 + 1.12261i) q^{31} -1.00000i q^{32} -0.970257 q^{33} +(3.74399 + 6.48478i) q^{34} +(-9.11945 + 5.75528i) q^{35} +(0.500000 - 0.866025i) q^{36} +(8.55440 - 4.93889i) q^{37} +(1.91725 - 3.91461i) q^{38} +(1.85511 - 3.21315i) q^{39} +4.07585 q^{40} +(-5.12688 + 8.88001i) q^{41} +(-2.34159 - 1.23165i) q^{42} +(4.80115 - 8.31583i) q^{43} +(0.485128 - 0.840267i) q^{44} +(3.52979 + 2.03792i) q^{45} +(2.17802 + 1.25748i) q^{46} +(-2.30571 - 1.33120i) q^{47} +(0.500000 + 0.866025i) q^{48} +(-3.01225 + 6.31873i) q^{49} +11.6125i q^{50} +(-6.48478 - 3.74399i) q^{51} +(1.85511 + 3.21315i) q^{52} -10.7716i q^{53} +1.00000i q^{54} +(3.42480 + 1.97731i) q^{55} +(2.23744 - 1.41205i) q^{56} +(0.296922 + 4.34877i) q^{57} +(-1.38142 - 2.39269i) q^{58} +(-4.75870 - 8.24231i) q^{59} +(-3.52979 + 2.03792i) q^{60} +(-11.9306 - 6.88815i) q^{61} +(1.12261 + 0.648141i) q^{62} +(2.64370 - 0.104149i) q^{63} -1.00000 q^{64} +(-13.0963 + 7.56116i) q^{65} +0.970257i q^{66} +7.12386i q^{67} +(6.48478 - 3.74399i) q^{68} -2.51497 q^{69} +(5.75528 + 9.11945i) q^{70} +(-0.430764 - 0.248702i) q^{71} +(-0.866025 - 0.500000i) q^{72} +(1.85245 - 1.06951i) q^{73} +(-4.93889 - 8.55440i) q^{74} +(-5.80626 - 10.0567i) q^{75} +(-3.91461 - 1.91725i) q^{76} +(2.56507 - 0.101051i) q^{77} +(-3.21315 - 1.85511i) q^{78} -11.4685i q^{79} -4.07585i q^{80} +(-0.500000 - 0.866025i) q^{81} +(8.88001 + 5.12688i) q^{82} -17.0639i q^{83} +(-1.23165 + 2.34159i) q^{84} +(15.2599 + 26.4310i) q^{85} +(-8.31583 - 4.80115i) q^{86} +(2.39269 + 1.38142i) q^{87} +(-0.840267 - 0.485128i) q^{88} +(-0.360720 + 0.624786i) q^{89} +(2.03792 - 3.52979i) q^{90} +(-4.56972 + 8.68782i) q^{91} +(1.25748 - 2.17802i) q^{92} -1.29628 q^{93} +(-1.33120 + 2.30571i) q^{94} +(7.81440 - 15.9553i) q^{95} +(0.866025 - 0.500000i) q^{96} +(7.84588 - 13.5895i) q^{97} +(6.31873 + 3.01225i) q^{98} +(-0.485128 - 0.840267i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{3} - 28 q^{4} - 8 q^{7} - 14 q^{9} + 4 q^{10} - 14 q^{12} - 2 q^{13} - 4 q^{14} + 6 q^{15} + 28 q^{16} - 6 q^{17} + 2 q^{21} - 12 q^{22} - 12 q^{23} - 28 q^{25} + 24 q^{26} - 28 q^{27} + 8 q^{28}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −1.00000 −0.500000
\(5\) 4.07585i 1.82277i −0.411550 0.911387i \(-0.635013\pi\)
0.411550 0.911387i \(-0.364987\pi\)
\(6\) 0.866025 0.500000i 0.353553 0.204124i
\(7\) −1.41205 2.23744i −0.533703 0.845672i
\(8\) 1.00000i 0.353553i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −4.07585 −1.28890
\(11\) −0.485128 + 0.840267i −0.146272 + 0.253350i −0.929847 0.367947i \(-0.880061\pi\)
0.783575 + 0.621297i \(0.213394\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) −1.85511 3.21315i −0.514516 0.891168i −0.999858 0.0168439i \(-0.994638\pi\)
0.485342 0.874324i \(-0.338695\pi\)
\(14\) −2.23744 + 1.41205i −0.597980 + 0.377385i
\(15\) 3.52979 2.03792i 0.911387 0.526190i
\(16\) 1.00000 0.250000
\(17\) −6.48478 + 3.74399i −1.57279 + 0.908051i −0.576966 + 0.816768i \(0.695764\pi\)
−0.995825 + 0.0912833i \(0.970903\pi\)
\(18\) 0.866025 + 0.500000i 0.204124 + 0.117851i
\(19\) 3.91461 + 1.91725i 0.898073 + 0.439846i
\(20\) 4.07585i 0.911387i
\(21\) 1.23165 2.34159i 0.268769 0.510976i
\(22\) 0.840267 + 0.485128i 0.179146 + 0.103430i
\(23\) −1.25748 + 2.17802i −0.262203 + 0.454149i −0.966827 0.255432i \(-0.917782\pi\)
0.704624 + 0.709581i \(0.251116\pi\)
\(24\) −0.866025 + 0.500000i −0.176777 + 0.102062i
\(25\) −11.6125 −2.32250
\(26\) −3.21315 + 1.85511i −0.630151 + 0.363818i
\(27\) −1.00000 −0.192450
\(28\) 1.41205 + 2.23744i 0.266852 + 0.422836i
\(29\) 2.39269 1.38142i 0.444312 0.256524i −0.261113 0.965308i \(-0.584089\pi\)
0.705425 + 0.708785i \(0.250756\pi\)
\(30\) −2.03792 3.52979i −0.372072 0.644448i
\(31\) −0.648141 + 1.12261i −0.116410 + 0.201627i −0.918342 0.395787i \(-0.870472\pi\)
0.801933 + 0.597414i \(0.203805\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −0.970257 −0.168900
\(34\) 3.74399 + 6.48478i 0.642089 + 1.11213i
\(35\) −9.11945 + 5.75528i −1.54147 + 0.972820i
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) 8.55440 4.93889i 1.40633 0.811948i 0.411302 0.911499i \(-0.365074\pi\)
0.995032 + 0.0995513i \(0.0317407\pi\)
\(38\) 1.91725 3.91461i 0.311018 0.635034i
\(39\) 1.85511 3.21315i 0.297056 0.514516i
\(40\) 4.07585 0.644448
\(41\) −5.12688 + 8.88001i −0.800683 + 1.38682i 0.118484 + 0.992956i \(0.462197\pi\)
−0.919167 + 0.393868i \(0.871137\pi\)
\(42\) −2.34159 1.23165i −0.361315 0.190048i
\(43\) 4.80115 8.31583i 0.732168 1.26815i −0.223787 0.974638i \(-0.571842\pi\)
0.955955 0.293514i \(-0.0948247\pi\)
\(44\) 0.485128 0.840267i 0.0731359 0.126675i
\(45\) 3.52979 + 2.03792i 0.526190 + 0.303796i
\(46\) 2.17802 + 1.25748i 0.321132 + 0.185406i
\(47\) −2.30571 1.33120i −0.336323 0.194176i 0.322322 0.946630i \(-0.395537\pi\)
−0.658645 + 0.752454i \(0.728870\pi\)
\(48\) 0.500000 + 0.866025i 0.0721688 + 0.125000i
\(49\) −3.01225 + 6.31873i −0.430322 + 0.902676i
\(50\) 11.6125i 1.64226i
\(51\) −6.48478 3.74399i −0.908051 0.524264i
\(52\) 1.85511 + 3.21315i 0.257258 + 0.445584i
\(53\) 10.7716i 1.47959i −0.672832 0.739795i \(-0.734922\pi\)
0.672832 0.739795i \(-0.265078\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 3.42480 + 1.97731i 0.461800 + 0.266620i
\(56\) 2.23744 1.41205i 0.298990 0.188693i
\(57\) 0.296922 + 4.34877i 0.0393282 + 0.576009i
\(58\) −1.38142 2.39269i −0.181390 0.314176i
\(59\) −4.75870 8.24231i −0.619530 1.07306i −0.989572 0.144042i \(-0.953990\pi\)
0.370042 0.929015i \(-0.379343\pi\)
\(60\) −3.52979 + 2.03792i −0.455693 + 0.263095i
\(61\) −11.9306 6.88815i −1.52756 0.881937i −0.999464 0.0327518i \(-0.989573\pi\)
−0.528096 0.849185i \(-0.677094\pi\)
\(62\) 1.12261 + 0.648141i 0.142572 + 0.0823140i
\(63\) 2.64370 0.104149i 0.333075 0.0131215i
\(64\) −1.00000 −0.125000
\(65\) −13.0963 + 7.56116i −1.62440 + 0.937847i
\(66\) 0.970257i 0.119430i
\(67\) 7.12386i 0.870318i 0.900354 + 0.435159i \(0.143308\pi\)
−0.900354 + 0.435159i \(0.856692\pi\)
\(68\) 6.48478 3.74399i 0.786396 0.454026i
\(69\) −2.51497 −0.302766
\(70\) 5.75528 + 9.11945i 0.687888 + 1.08998i
\(71\) −0.430764 0.248702i −0.0511223 0.0295155i 0.474221 0.880406i \(-0.342730\pi\)
−0.525343 + 0.850890i \(0.676063\pi\)
\(72\) −0.866025 0.500000i −0.102062 0.0589256i
\(73\) 1.85245 1.06951i 0.216813 0.125177i −0.387661 0.921802i \(-0.626717\pi\)
0.604474 + 0.796625i \(0.293383\pi\)
\(74\) −4.93889 8.55440i −0.574134 0.994429i
\(75\) −5.80626 10.0567i −0.670449 1.16125i
\(76\) −3.91461 1.91725i −0.449037 0.219923i
\(77\) 2.56507 0.101051i 0.292317 0.0115159i
\(78\) −3.21315 1.85511i −0.363818 0.210050i
\(79\) 11.4685i 1.29031i −0.764052 0.645155i \(-0.776793\pi\)
0.764052 0.645155i \(-0.223207\pi\)
\(80\) 4.07585i 0.455693i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 8.88001 + 5.12688i 0.980633 + 0.566169i
\(83\) 17.0639i 1.87301i −0.350655 0.936505i \(-0.614041\pi\)
0.350655 0.936505i \(-0.385959\pi\)
\(84\) −1.23165 + 2.34159i −0.134385 + 0.255488i
\(85\) 15.2599 + 26.4310i 1.65517 + 2.86684i
\(86\) −8.31583 4.80115i −0.896719 0.517721i
\(87\) 2.39269 + 1.38142i 0.256524 + 0.148104i
\(88\) −0.840267 0.485128i −0.0895728 0.0517149i
\(89\) −0.360720 + 0.624786i −0.0382363 + 0.0662271i −0.884510 0.466521i \(-0.845507\pi\)
0.846274 + 0.532748i \(0.178841\pi\)
\(90\) 2.03792 3.52979i 0.214816 0.372072i
\(91\) −4.56972 + 8.68782i −0.479037 + 0.910731i
\(92\) 1.25748 2.17802i 0.131102 0.227075i
\(93\) −1.29628 −0.134418
\(94\) −1.33120 + 2.30571i −0.137303 + 0.237816i
\(95\) 7.81440 15.9553i 0.801740 1.63698i
\(96\) 0.866025 0.500000i 0.0883883 0.0510310i
\(97\) 7.84588 13.5895i 0.796629 1.37980i −0.125171 0.992135i \(-0.539948\pi\)
0.921800 0.387666i \(-0.126719\pi\)
\(98\) 6.31873 + 3.01225i 0.638288 + 0.304283i
\(99\) −0.485128 0.840267i −0.0487572 0.0844500i
\(100\) 11.6125 1.16125
\(101\) 3.71819i 0.369973i 0.982741 + 0.184987i \(0.0592242\pi\)
−0.982741 + 0.184987i \(0.940776\pi\)
\(102\) −3.74399 + 6.48478i −0.370710 + 0.642089i
\(103\) −1.12602 1.95033i −0.110950 0.192172i 0.805203 0.592999i \(-0.202056\pi\)
−0.916154 + 0.400827i \(0.868723\pi\)
\(104\) 3.21315 1.85511i 0.315076 0.181909i
\(105\) −9.54395 5.02004i −0.931394 0.489905i
\(106\) −10.7716 −1.04623
\(107\) 5.70984 3.29658i 0.551991 0.318692i −0.197934 0.980215i \(-0.563423\pi\)
0.749925 + 0.661523i \(0.230090\pi\)
\(108\) 1.00000 0.0962250
\(109\) −6.75153 + 3.89800i −0.646679 + 0.373361i −0.787183 0.616720i \(-0.788461\pi\)
0.140503 + 0.990080i \(0.455128\pi\)
\(110\) 1.97731 3.42480i 0.188529 0.326542i
\(111\) 8.55440 + 4.93889i 0.811948 + 0.468778i
\(112\) −1.41205 2.23744i −0.133426 0.211418i
\(113\) 10.2155i 0.960994i 0.876996 + 0.480497i \(0.159544\pi\)
−0.876996 + 0.480497i \(0.840456\pi\)
\(114\) 4.34877 0.296922i 0.407300 0.0278093i
\(115\) 8.87729 + 5.12531i 0.827812 + 0.477937i
\(116\) −2.39269 + 1.38142i −0.222156 + 0.128262i
\(117\) 3.71023 0.343011
\(118\) −8.24231 + 4.75870i −0.758766 + 0.438074i
\(119\) 17.5338 + 9.22261i 1.60732 + 0.845435i
\(120\) 2.03792 + 3.52979i 0.186036 + 0.322224i
\(121\) 5.02930 + 8.71100i 0.457209 + 0.791910i
\(122\) −6.88815 + 11.9306i −0.623623 + 1.08015i
\(123\) −10.2538 −0.924550
\(124\) 0.648141 1.12261i 0.0582048 0.100814i
\(125\) 26.9516i 2.41063i
\(126\) −0.104149 2.64370i −0.00927833 0.235520i
\(127\) −4.63310 + 2.67492i −0.411122 + 0.237361i −0.691272 0.722595i \(-0.742949\pi\)
0.280150 + 0.959956i \(0.409616\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 9.60229 0.845435
\(130\) 7.56116 + 13.0963i 0.663158 + 1.14862i
\(131\) 1.69994i 0.148524i −0.997239 0.0742622i \(-0.976340\pi\)
0.997239 0.0742622i \(-0.0236602\pi\)
\(132\) 0.970257 0.0844500
\(133\) −1.23789 11.4659i −0.107339 0.994222i
\(134\) 7.12386 0.615408
\(135\) 4.07585i 0.350793i
\(136\) −3.74399 6.48478i −0.321045 0.556066i
\(137\) −2.21715 −0.189424 −0.0947120 0.995505i \(-0.530193\pi\)
−0.0947120 + 0.995505i \(0.530193\pi\)
\(138\) 2.51497i 0.214088i
\(139\) 13.6907 7.90435i 1.16123 0.670438i 0.209634 0.977780i \(-0.432773\pi\)
0.951599 + 0.307341i \(0.0994394\pi\)
\(140\) 9.11945 5.75528i 0.770734 0.486410i
\(141\) 2.66241i 0.224215i
\(142\) −0.248702 + 0.430764i −0.0208706 + 0.0361489i
\(143\) 3.59988 0.301037
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −5.63047 9.75225i −0.467585 0.809880i
\(146\) −1.06951 1.85245i −0.0885135 0.153310i
\(147\) −6.97831 + 0.550678i −0.575561 + 0.0454191i
\(148\) −8.55440 + 4.93889i −0.703167 + 0.405974i
\(149\) 13.0323 1.06765 0.533824 0.845596i \(-0.320754\pi\)
0.533824 + 0.845596i \(0.320754\pi\)
\(150\) −10.0567 + 5.80626i −0.821129 + 0.474079i
\(151\) 12.1248 + 7.00028i 0.986706 + 0.569675i 0.904288 0.426923i \(-0.140402\pi\)
0.0824181 + 0.996598i \(0.473736\pi\)
\(152\) −1.91725 + 3.91461i −0.155509 + 0.317517i
\(153\) 7.48798i 0.605368i
\(154\) −0.101051 2.56507i −0.00814294 0.206699i
\(155\) 4.57560 + 2.64172i 0.367521 + 0.212188i
\(156\) −1.85511 + 3.21315i −0.148528 + 0.257258i
\(157\) 6.88812 3.97686i 0.549732 0.317388i −0.199282 0.979942i \(-0.563861\pi\)
0.749014 + 0.662554i \(0.230528\pi\)
\(158\) −11.4685 −0.912387
\(159\) 9.32846 5.38579i 0.739795 0.427121i
\(160\) −4.07585 −0.322224
\(161\) 6.64882 0.261931i 0.524000 0.0206431i
\(162\) −0.866025 + 0.500000i −0.0680414 + 0.0392837i
\(163\) 10.8199 + 18.7407i 0.847484 + 1.46789i 0.883447 + 0.468532i \(0.155217\pi\)
−0.0359628 + 0.999353i \(0.511450\pi\)
\(164\) 5.12688 8.88001i 0.400342 0.693412i
\(165\) 3.95462i 0.307867i
\(166\) −17.0639 −1.32442
\(167\) −0.0757722 0.131241i −0.00586343 0.0101558i 0.863079 0.505069i \(-0.168533\pi\)
−0.868942 + 0.494914i \(0.835200\pi\)
\(168\) 2.34159 + 1.23165i 0.180657 + 0.0950242i
\(169\) −0.382903 + 0.663208i −0.0294541 + 0.0510160i
\(170\) 26.4310 15.2599i 2.02716 1.17038i
\(171\) −3.61769 + 2.43153i −0.276652 + 0.185944i
\(172\) −4.80115 + 8.31583i −0.366084 + 0.634076i
\(173\) −9.14455 −0.695247 −0.347624 0.937634i \(-0.613011\pi\)
−0.347624 + 0.937634i \(0.613011\pi\)
\(174\) 1.38142 2.39269i 0.104725 0.181390i
\(175\) 16.3974 + 25.9823i 1.23953 + 1.96408i
\(176\) −0.485128 + 0.840267i −0.0365679 + 0.0633375i
\(177\) 4.75870 8.24231i 0.357686 0.619530i
\(178\) 0.624786 + 0.360720i 0.0468297 + 0.0270371i
\(179\) −5.49625 3.17326i −0.410809 0.237181i 0.280328 0.959904i \(-0.409557\pi\)
−0.691137 + 0.722723i \(0.742890\pi\)
\(180\) −3.52979 2.03792i −0.263095 0.151898i
\(181\) −7.25677 12.5691i −0.539392 0.934254i −0.998937 0.0460992i \(-0.985321\pi\)
0.459545 0.888154i \(-0.348012\pi\)
\(182\) 8.68782 + 4.56972i 0.643984 + 0.338730i
\(183\) 13.7763i 1.01837i
\(184\) −2.17802 1.25748i −0.160566 0.0927029i
\(185\) −20.1301 34.8664i −1.48000 2.56343i
\(186\) 1.29628i 0.0950480i
\(187\) 7.26527i 0.531289i
\(188\) 2.30571 + 1.33120i 0.168161 + 0.0970880i
\(189\) 1.41205 + 2.23744i 0.102711 + 0.162750i
\(190\) −15.9553 7.81440i −1.15752 0.566916i
\(191\) −3.41302 5.91152i −0.246957 0.427743i 0.715723 0.698384i \(-0.246097\pi\)
−0.962680 + 0.270642i \(0.912764\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) 11.4737 6.62433i 0.825893 0.476830i −0.0265511 0.999647i \(-0.508452\pi\)
0.852445 + 0.522818i \(0.175119\pi\)
\(194\) −13.5895 7.84588i −0.975667 0.563302i
\(195\) −13.0963 7.56116i −0.937847 0.541466i
\(196\) 3.01225 6.31873i 0.215161 0.451338i
\(197\) −6.85013 −0.488052 −0.244026 0.969769i \(-0.578468\pi\)
−0.244026 + 0.969769i \(0.578468\pi\)
\(198\) −0.840267 + 0.485128i −0.0597152 + 0.0344766i
\(199\) 8.47472i 0.600757i 0.953820 + 0.300378i \(0.0971129\pi\)
−0.953820 + 0.300378i \(0.902887\pi\)
\(200\) 11.6125i 0.821129i
\(201\) −6.16944 + 3.56193i −0.435159 + 0.251239i
\(202\) 3.71819 0.261611
\(203\) −6.46944 3.40287i −0.454066 0.238835i
\(204\) 6.48478 + 3.74399i 0.454026 + 0.262132i
\(205\) 36.1936 + 20.8964i 2.52787 + 1.45946i
\(206\) −1.95033 + 1.12602i −0.135886 + 0.0784538i
\(207\) −1.25748 2.17802i −0.0874011 0.151383i
\(208\) −1.85511 3.21315i −0.128629 0.222792i
\(209\) −3.51009 + 2.35921i −0.242798 + 0.163190i
\(210\) −5.02004 + 9.54395i −0.346415 + 0.658595i
\(211\) −1.35940 0.784849i −0.0935848 0.0540312i 0.452477 0.891776i \(-0.350540\pi\)
−0.546062 + 0.837745i \(0.683874\pi\)
\(212\) 10.7716i 0.739795i
\(213\) 0.497403i 0.0340815i
\(214\) −3.29658 5.70984i −0.225349 0.390317i
\(215\) −33.8940 19.5687i −2.31155 1.33458i
\(216\) 1.00000i 0.0680414i
\(217\) 3.42698 0.135006i 0.232639 0.00916484i
\(218\) 3.89800 + 6.75153i 0.264006 + 0.457271i
\(219\) 1.85245 + 1.06951i 0.125177 + 0.0722710i
\(220\) −3.42480 1.97731i −0.230900 0.133310i
\(221\) 24.0600 + 13.8911i 1.61845 + 0.934415i
\(222\) 4.93889 8.55440i 0.331476 0.574134i
\(223\) 9.83556 17.0357i 0.658638 1.14079i −0.322331 0.946627i \(-0.604466\pi\)
0.980968 0.194167i \(-0.0622004\pi\)
\(224\) −2.23744 + 1.41205i −0.149495 + 0.0943463i
\(225\) 5.80626 10.0567i 0.387084 0.670449i
\(226\) 10.2155 0.679525
\(227\) 4.47042 7.74299i 0.296712 0.513921i −0.678670 0.734444i \(-0.737443\pi\)
0.975382 + 0.220523i \(0.0707765\pi\)
\(228\) −0.296922 4.34877i −0.0196641 0.288005i
\(229\) 7.36441 4.25184i 0.486654 0.280970i −0.236531 0.971624i \(-0.576011\pi\)
0.723185 + 0.690654i \(0.242677\pi\)
\(230\) 5.12531 8.87729i 0.337953 0.585351i
\(231\) 1.37005 + 2.17089i 0.0901425 + 0.142834i
\(232\) 1.38142 + 2.39269i 0.0906948 + 0.157088i
\(233\) −0.470178 −0.0308024 −0.0154012 0.999881i \(-0.504903\pi\)
−0.0154012 + 0.999881i \(0.504903\pi\)
\(234\) 3.71023i 0.242545i
\(235\) −5.42578 + 9.39773i −0.353939 + 0.613040i
\(236\) 4.75870 + 8.24231i 0.309765 + 0.536529i
\(237\) 9.93203 5.73426i 0.645155 0.372480i
\(238\) 9.22261 17.5338i 0.597813 1.13654i
\(239\) −12.3419 −0.798329 −0.399164 0.916879i \(-0.630700\pi\)
−0.399164 + 0.916879i \(0.630700\pi\)
\(240\) 3.52979 2.03792i 0.227847 0.131547i
\(241\) −16.8484 −1.08530 −0.542649 0.839959i \(-0.682579\pi\)
−0.542649 + 0.839959i \(0.682579\pi\)
\(242\) 8.71100 5.02930i 0.559965 0.323296i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 11.9306 + 6.88815i 0.763780 + 0.440968i
\(245\) 25.7542 + 12.2775i 1.64537 + 0.784379i
\(246\) 10.2538i 0.653755i
\(247\) −1.10165 16.1350i −0.0700961 1.02664i
\(248\) −1.12261 0.648141i −0.0712860 0.0411570i
\(249\) 14.7778 8.53197i 0.936505 0.540691i
\(250\) 26.9516 1.70457
\(251\) −1.39946 + 0.807976i −0.0883329 + 0.0509990i −0.543516 0.839399i \(-0.682907\pi\)
0.455183 + 0.890398i \(0.349574\pi\)
\(252\) −2.64370 + 0.104149i −0.166537 + 0.00656077i
\(253\) −1.22008 2.11324i −0.0767058 0.132858i
\(254\) 2.67492 + 4.63310i 0.167840 + 0.290707i
\(255\) −15.2599 + 26.4310i −0.955614 + 1.65517i
\(256\) 1.00000 0.0625000
\(257\) −9.02311 + 15.6285i −0.562846 + 0.974878i 0.434400 + 0.900720i \(0.356960\pi\)
−0.997246 + 0.0741582i \(0.976373\pi\)
\(258\) 9.60229i 0.597813i
\(259\) −23.1297 12.1660i −1.43721 0.755959i
\(260\) 13.0963 7.56116i 0.812199 0.468923i
\(261\) 2.76284i 0.171016i
\(262\) −1.69994 −0.105023
\(263\) −10.8038 18.7127i −0.666191 1.15388i −0.978961 0.204047i \(-0.934590\pi\)
0.312770 0.949829i \(-0.398743\pi\)
\(264\) 0.970257i 0.0597152i
\(265\) −43.9033 −2.69696
\(266\) −11.4659 + 1.23789i −0.703021 + 0.0759000i
\(267\) −0.721440 −0.0441514
\(268\) 7.12386i 0.435159i
\(269\) 5.35097 + 9.26815i 0.326254 + 0.565089i 0.981765 0.190096i \(-0.0608801\pi\)
−0.655511 + 0.755186i \(0.727547\pi\)
\(270\) 4.07585 0.248048
\(271\) 6.49782i 0.394714i 0.980332 + 0.197357i \(0.0632359\pi\)
−0.980332 + 0.197357i \(0.936764\pi\)
\(272\) −6.48478 + 3.74399i −0.393198 + 0.227013i
\(273\) −9.80874 + 0.386417i −0.593652 + 0.0233870i
\(274\) 2.21715i 0.133943i
\(275\) 5.63357 9.75762i 0.339717 0.588407i
\(276\) 2.51497 0.151383
\(277\) −5.34502 + 9.25785i −0.321151 + 0.556250i −0.980726 0.195389i \(-0.937403\pi\)
0.659575 + 0.751639i \(0.270736\pi\)
\(278\) −7.90435 13.6907i −0.474072 0.821116i
\(279\) −0.648141 1.12261i −0.0388032 0.0672091i
\(280\) −5.75528 9.11945i −0.343944 0.544991i
\(281\) −4.64102 + 2.67950i −0.276860 + 0.159845i −0.632001 0.774967i \(-0.717766\pi\)
0.355141 + 0.934813i \(0.384433\pi\)
\(282\) −2.66241 −0.158544
\(283\) 11.7540 6.78618i 0.698703 0.403397i −0.108161 0.994133i \(-0.534496\pi\)
0.806864 + 0.590737i \(0.201163\pi\)
\(284\) 0.430764 + 0.248702i 0.0255611 + 0.0147577i
\(285\) 17.7249 1.21021i 1.04993 0.0716865i
\(286\) 3.59988i 0.212865i
\(287\) 27.1078 1.06792i 1.60013 0.0630372i
\(288\) 0.866025 + 0.500000i 0.0510310 + 0.0294628i
\(289\) 19.5349 33.8355i 1.14911 1.99032i
\(290\) −9.75225 + 5.63047i −0.572672 + 0.330632i
\(291\) 15.6918 0.919868
\(292\) −1.85245 + 1.06951i −0.108406 + 0.0625885i
\(293\) −17.3263 −1.01221 −0.506106 0.862471i \(-0.668916\pi\)
−0.506106 + 0.862471i \(0.668916\pi\)
\(294\) 0.550678 + 6.97831i 0.0321162 + 0.406983i
\(295\) −33.5944 + 19.3957i −1.95594 + 1.12926i
\(296\) 4.93889 + 8.55440i 0.287067 + 0.497214i
\(297\) 0.485128 0.840267i 0.0281500 0.0487572i
\(298\) 13.0323i 0.754941i
\(299\) 9.33110 0.539631
\(300\) 5.80626 + 10.0567i 0.335225 + 0.580626i
\(301\) −25.3856 + 1.00007i −1.46320 + 0.0576430i
\(302\) 7.00028 12.1248i 0.402821 0.697707i
\(303\) −3.22004 + 1.85909i −0.184987 + 0.106802i
\(304\) 3.91461 + 1.91725i 0.224518 + 0.109962i
\(305\) −28.0750 + 48.6274i −1.60757 + 2.78440i
\(306\) −7.48798 −0.428060
\(307\) −10.4330 + 18.0706i −0.595446 + 1.03134i 0.398038 + 0.917369i \(0.369691\pi\)
−0.993484 + 0.113973i \(0.963642\pi\)
\(308\) −2.56507 + 0.101051i −0.146158 + 0.00575793i
\(309\) 1.12602 1.95033i 0.0640572 0.110950i
\(310\) 2.64172 4.57560i 0.150040 0.259877i
\(311\) 18.1423 + 10.4745i 1.02875 + 0.593952i 0.916628 0.399742i \(-0.130900\pi\)
0.112127 + 0.993694i \(0.464234\pi\)
\(312\) 3.21315 + 1.85511i 0.181909 + 0.105025i
\(313\) −6.00681 3.46804i −0.339525 0.196025i 0.320537 0.947236i \(-0.396137\pi\)
−0.660062 + 0.751211i \(0.729470\pi\)
\(314\) −3.97686 6.88812i −0.224427 0.388719i
\(315\) −0.424495 10.7753i −0.0239176 0.607120i
\(316\) 11.4685i 0.645155i
\(317\) 8.13501 + 4.69675i 0.456908 + 0.263796i 0.710743 0.703452i \(-0.248359\pi\)
−0.253835 + 0.967247i \(0.581692\pi\)
\(318\) −5.38579 9.32846i −0.302020 0.523114i
\(319\) 2.68067i 0.150089i
\(320\) 4.07585i 0.227847i
\(321\) 5.70984 + 3.29658i 0.318692 + 0.183997i
\(322\) −0.261931 6.64882i −0.0145969 0.370524i
\(323\) −32.5636 + 2.22334i −1.81188 + 0.123710i
\(324\) 0.500000 + 0.866025i 0.0277778 + 0.0481125i
\(325\) 21.5426 + 37.3128i 1.19497 + 2.06974i
\(326\) 18.7407 10.8199i 1.03795 0.599262i
\(327\) −6.75153 3.89800i −0.373361 0.215560i
\(328\) −8.88001 5.12688i −0.490316 0.283084i
\(329\) 0.277287 + 7.03861i 0.0152873 + 0.388051i
\(330\) 3.95462 0.217695
\(331\) 16.7710 9.68272i 0.921816 0.532211i 0.0376019 0.999293i \(-0.488028\pi\)
0.884214 + 0.467082i \(0.154695\pi\)
\(332\) 17.0639i 0.936505i
\(333\) 9.87777i 0.541298i
\(334\) −0.131241 + 0.0757722i −0.00718120 + 0.00414607i
\(335\) 29.0357 1.58639
\(336\) 1.23165 2.34159i 0.0671923 0.127744i
\(337\) 19.3232 + 11.1562i 1.05260 + 0.607719i 0.923376 0.383897i \(-0.125418\pi\)
0.129224 + 0.991615i \(0.458751\pi\)
\(338\) 0.663208 + 0.382903i 0.0360737 + 0.0208272i
\(339\) −8.84689 + 5.10775i −0.480497 + 0.277415i
\(340\) −15.2599 26.4310i −0.827586 1.43342i
\(341\) −0.628863 1.08922i −0.0340549 0.0589847i
\(342\) 2.43153 + 3.61769i 0.131482 + 0.195622i
\(343\) 18.3912 2.18261i 0.993031 0.117850i
\(344\) 8.31583 + 4.80115i 0.448359 + 0.258860i
\(345\) 10.2506i 0.551874i
\(346\) 9.14455i 0.491614i
\(347\) −1.23494 2.13899i −0.0662953 0.114827i 0.830973 0.556313i \(-0.187785\pi\)
−0.897268 + 0.441487i \(0.854451\pi\)
\(348\) −2.39269 1.38142i −0.128262 0.0740520i
\(349\) 4.96655i 0.265853i −0.991126 0.132927i \(-0.957563\pi\)
0.991126 0.132927i \(-0.0424375\pi\)
\(350\) 25.9823 16.3974i 1.38881 0.876479i
\(351\) 1.85511 + 3.21315i 0.0990187 + 0.171505i
\(352\) 0.840267 + 0.485128i 0.0447864 + 0.0258574i
\(353\) 29.6058 + 17.0929i 1.57576 + 0.909764i 0.995442 + 0.0953725i \(0.0304042\pi\)
0.580316 + 0.814391i \(0.302929\pi\)
\(354\) −8.24231 4.75870i −0.438074 0.252922i
\(355\) −1.01367 + 1.75573i −0.0538000 + 0.0931844i
\(356\) 0.360720 0.624786i 0.0191181 0.0331136i
\(357\) 0.779866 + 19.7960i 0.0412749 + 1.04771i
\(358\) −3.17326 + 5.49625i −0.167712 + 0.290486i
\(359\) −24.0215 −1.26780 −0.633902 0.773413i \(-0.718548\pi\)
−0.633902 + 0.773413i \(0.718548\pi\)
\(360\) −2.03792 + 3.52979i −0.107408 + 0.186036i
\(361\) 11.6483 + 15.0105i 0.613070 + 0.790028i
\(362\) −12.5691 + 7.25677i −0.660617 + 0.381407i
\(363\) −5.02930 + 8.71100i −0.263970 + 0.457209i
\(364\) 4.56972 8.68782i 0.239519 0.455366i
\(365\) −4.35917 7.55030i −0.228169 0.395201i
\(366\) −13.7763 −0.720098
\(367\) 21.3328i 1.11357i −0.830658 0.556783i \(-0.812036\pi\)
0.830658 0.556783i \(-0.187964\pi\)
\(368\) −1.25748 + 2.17802i −0.0655508 + 0.113537i
\(369\) −5.12688 8.88001i −0.266894 0.462275i
\(370\) −34.8664 + 20.1301i −1.81262 + 1.04652i
\(371\) −24.1007 + 15.2100i −1.25125 + 0.789662i
\(372\) 1.29628 0.0672091
\(373\) −8.29433 + 4.78873i −0.429464 + 0.247951i −0.699118 0.715006i \(-0.746424\pi\)
0.269654 + 0.962957i \(0.413091\pi\)
\(374\) −7.26527 −0.375678
\(375\) −23.3408 + 13.4758i −1.20531 + 0.695888i
\(376\) 1.33120 2.30571i 0.0686516 0.118908i
\(377\) −8.87744 5.12539i −0.457212 0.263971i
\(378\) 2.23744 1.41205i 0.115081 0.0726278i
\(379\) 24.4666i 1.25676i −0.777905 0.628382i \(-0.783718\pi\)
0.777905 0.628382i \(-0.216282\pi\)
\(380\) −7.81440 + 15.9553i −0.400870 + 0.818492i
\(381\) −4.63310 2.67492i −0.237361 0.137041i
\(382\) −5.91152 + 3.41302i −0.302460 + 0.174625i
\(383\) 7.12577 0.364110 0.182055 0.983288i \(-0.441725\pi\)
0.182055 + 0.983288i \(0.441725\pi\)
\(384\) −0.866025 + 0.500000i −0.0441942 + 0.0255155i
\(385\) −0.411870 10.4548i −0.0209908 0.532827i
\(386\) −6.62433 11.4737i −0.337170 0.583995i
\(387\) 4.80115 + 8.31583i 0.244056 + 0.422717i
\(388\) −7.84588 + 13.5895i −0.398314 + 0.689901i
\(389\) 9.22919 0.467939 0.233969 0.972244i \(-0.424828\pi\)
0.233969 + 0.972244i \(0.424828\pi\)
\(390\) −7.56116 + 13.0963i −0.382874 + 0.663158i
\(391\) 18.8320i 0.952376i
\(392\) −6.31873 3.01225i −0.319144 0.152142i
\(393\) 1.47219 0.849970i 0.0742622 0.0428753i
\(394\) 6.85013i 0.345105i
\(395\) −46.7439 −2.35194
\(396\) 0.485128 + 0.840267i 0.0243786 + 0.0422250i
\(397\) 13.3617i 0.670606i 0.942110 + 0.335303i \(0.108839\pi\)
−0.942110 + 0.335303i \(0.891161\pi\)
\(398\) 8.47472 0.424799
\(399\) 9.31084 6.80501i 0.466125 0.340677i
\(400\) −11.6125 −0.580626
\(401\) 25.9594i 1.29635i 0.761491 + 0.648176i \(0.224468\pi\)
−0.761491 + 0.648176i \(0.775532\pi\)
\(402\) 3.56193 + 6.16944i 0.177653 + 0.307704i
\(403\) 4.80950 0.239578
\(404\) 3.71819i 0.184987i
\(405\) −3.52979 + 2.03792i −0.175397 + 0.101265i
\(406\) −3.40287 + 6.46944i −0.168882 + 0.321073i
\(407\) 9.58397i 0.475060i
\(408\) 3.74399 6.48478i 0.185355 0.321045i
\(409\) −6.20352 −0.306744 −0.153372 0.988168i \(-0.549013\pi\)
−0.153372 + 0.988168i \(0.549013\pi\)
\(410\) 20.8964 36.1936i 1.03200 1.78747i
\(411\) −1.10858 1.92011i −0.0546820 0.0947120i
\(412\) 1.12602 + 1.95033i 0.0554752 + 0.0960859i
\(413\) −11.7221 + 22.2858i −0.576809 + 1.09661i
\(414\) −2.17802 + 1.25748i −0.107044 + 0.0618019i
\(415\) −69.5500 −3.41407
\(416\) −3.21315 + 1.85511i −0.157538 + 0.0909545i
\(417\) 13.6907 + 7.90435i 0.670438 + 0.387078i
\(418\) 2.35921 + 3.51009i 0.115393 + 0.171684i
\(419\) 7.95386i 0.388571i 0.980945 + 0.194286i \(0.0622389\pi\)
−0.980945 + 0.194286i \(0.937761\pi\)
\(420\) 9.54395 + 5.02004i 0.465697 + 0.244953i
\(421\) −12.8689 7.42985i −0.627191 0.362109i 0.152472 0.988308i \(-0.451276\pi\)
−0.779663 + 0.626199i \(0.784610\pi\)
\(422\) −0.784849 + 1.35940i −0.0382058 + 0.0661745i
\(423\) 2.30571 1.33120i 0.112108 0.0647253i
\(424\) 10.7716 0.523114
\(425\) 75.3047 43.4772i 3.65282 2.10895i
\(426\) −0.497403 −0.0240993
\(427\) 1.43479 + 36.4204i 0.0694342 + 1.76251i
\(428\) −5.70984 + 3.29658i −0.275995 + 0.159346i
\(429\) 1.79994 + 3.11758i 0.0869018 + 0.150518i
\(430\) −19.5687 + 33.8940i −0.943688 + 1.63452i
\(431\) 7.45630i 0.359157i 0.983744 + 0.179579i \(0.0574734\pi\)
−0.983744 + 0.179579i \(0.942527\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 5.01071 + 8.67881i 0.240799 + 0.417077i 0.960942 0.276749i \(-0.0892571\pi\)
−0.720143 + 0.693826i \(0.755924\pi\)
\(434\) −0.135006 3.42698i −0.00648052 0.164500i
\(435\) 5.63047 9.75225i 0.269960 0.467585i
\(436\) 6.75153 3.89800i 0.323340 0.186680i
\(437\) −9.09836 + 6.11521i −0.435234 + 0.292530i
\(438\) 1.06951 1.85245i 0.0511033 0.0885135i
\(439\) −20.8943 −0.997230 −0.498615 0.866823i \(-0.666158\pi\)
−0.498615 + 0.866823i \(0.666158\pi\)
\(440\) −1.97731 + 3.42480i −0.0942645 + 0.163271i
\(441\) −3.96605 5.76805i −0.188860 0.274669i
\(442\) 13.8911 24.0600i 0.660731 1.14442i
\(443\) 5.21714 9.03634i 0.247874 0.429330i −0.715062 0.699061i \(-0.753602\pi\)
0.962936 + 0.269731i \(0.0869349\pi\)
\(444\) −8.55440 4.93889i −0.405974 0.234389i
\(445\) 2.54653 + 1.47024i 0.120717 + 0.0696960i
\(446\) −17.0357 9.83556i −0.806663 0.465727i
\(447\) 6.51615 + 11.2863i 0.308203 + 0.533824i
\(448\) 1.41205 + 2.23744i 0.0667129 + 0.105709i
\(449\) 19.7533i 0.932214i 0.884728 + 0.466107i \(0.154344\pi\)
−0.884728 + 0.466107i \(0.845656\pi\)
\(450\) −10.0567 5.80626i −0.474079 0.273710i
\(451\) −4.97439 8.61589i −0.234235 0.405706i
\(452\) 10.2155i 0.480497i
\(453\) 14.0006i 0.657804i
\(454\) −7.74299 4.47042i −0.363397 0.209807i
\(455\) 35.4102 + 18.6255i 1.66006 + 0.873176i
\(456\) −4.34877 + 0.296922i −0.203650 + 0.0139046i
\(457\) −4.05777 7.02827i −0.189815 0.328769i 0.755374 0.655294i \(-0.227455\pi\)
−0.945188 + 0.326526i \(0.894122\pi\)
\(458\) −4.25184 7.36441i −0.198676 0.344116i
\(459\) 6.48478 3.74399i 0.302684 0.174755i
\(460\) −8.87729 5.12531i −0.413906 0.238969i
\(461\) −29.0623 16.7791i −1.35357 0.781483i −0.364820 0.931078i \(-0.618870\pi\)
−0.988747 + 0.149596i \(0.952203\pi\)
\(462\) 2.17089 1.37005i 0.100999 0.0637404i
\(463\) 14.8883 0.691917 0.345959 0.938250i \(-0.387554\pi\)
0.345959 + 0.938250i \(0.387554\pi\)
\(464\) 2.39269 1.38142i 0.111078 0.0641309i
\(465\) 5.28345i 0.245014i
\(466\) 0.470178i 0.0217806i
\(467\) 7.71786 4.45591i 0.357140 0.206195i −0.310686 0.950513i \(-0.600559\pi\)
0.667825 + 0.744318i \(0.267225\pi\)
\(468\) −3.71023 −0.171505
\(469\) 15.9392 10.0592i 0.736003 0.464491i
\(470\) 9.39773 + 5.42578i 0.433485 + 0.250273i
\(471\) 6.88812 + 3.97686i 0.317388 + 0.183244i
\(472\) 8.24231 4.75870i 0.379383 0.219037i
\(473\) 4.65834 + 8.06849i 0.214191 + 0.370990i
\(474\) −5.73426 9.93203i −0.263383 0.456193i
\(475\) −45.4585 22.2641i −2.08578 1.02155i
\(476\) −17.5338 9.22261i −0.803659 0.422718i
\(477\) 9.32846 + 5.38579i 0.427121 + 0.246598i
\(478\) 12.3419i 0.564504i
\(479\) 17.7340i 0.810289i 0.914253 + 0.405144i \(0.132779\pi\)
−0.914253 + 0.405144i \(0.867221\pi\)
\(480\) −2.03792 3.52979i −0.0930180 0.161112i
\(481\) −31.7388 18.3244i −1.44716 0.835521i
\(482\) 16.8484i 0.767422i
\(483\) 3.55125 + 5.62708i 0.161587 + 0.256041i
\(484\) −5.02930 8.71100i −0.228605 0.395955i
\(485\) −55.3886 31.9786i −2.51507 1.45207i
\(486\) −0.866025 0.500000i −0.0392837 0.0226805i
\(487\) −12.2636 7.08040i −0.555717 0.320844i 0.195707 0.980662i \(-0.437300\pi\)
−0.751425 + 0.659819i \(0.770633\pi\)
\(488\) 6.88815 11.9306i 0.311812 0.540074i
\(489\) −10.8199 + 18.7407i −0.489295 + 0.847484i
\(490\) 12.2775 25.7542i 0.554640 1.16345i
\(491\) 5.82747 10.0935i 0.262990 0.455512i −0.704045 0.710155i \(-0.748625\pi\)
0.967035 + 0.254643i \(0.0819580\pi\)
\(492\) 10.2538 0.462275
\(493\) −10.3441 + 17.9165i −0.465873 + 0.806916i
\(494\) −16.1350 + 1.10165i −0.725946 + 0.0495655i
\(495\) −3.42480 + 1.97731i −0.153933 + 0.0888734i
\(496\) −0.648141 + 1.12261i −0.0291024 + 0.0504068i
\(497\) 0.0518041 + 1.31499i 0.00232373 + 0.0589852i
\(498\) −8.53197 14.7778i −0.382327 0.662209i
\(499\) 7.22272 0.323333 0.161667 0.986845i \(-0.448313\pi\)
0.161667 + 0.986845i \(0.448313\pi\)
\(500\) 26.9516i 1.20531i
\(501\) 0.0757722 0.131241i 0.00338525 0.00586343i
\(502\) 0.807976 + 1.39946i 0.0360617 + 0.0624608i
\(503\) 25.1228 14.5047i 1.12017 0.646731i 0.178726 0.983899i \(-0.442803\pi\)
0.941444 + 0.337168i \(0.109469\pi\)
\(504\) 0.104149 + 2.64370i 0.00463917 + 0.117760i
\(505\) 15.1548 0.674378
\(506\) −2.11324 + 1.22008i −0.0939451 + 0.0542392i
\(507\) −0.765806 −0.0340106
\(508\) 4.63310 2.67492i 0.205561 0.118681i
\(509\) 13.6875 23.7074i 0.606686 1.05081i −0.385097 0.922876i \(-0.625832\pi\)
0.991783 0.127935i \(-0.0408347\pi\)
\(510\) 26.4310 + 15.2599i 1.17038 + 0.675721i
\(511\) −5.00871 2.63454i −0.221572 0.116545i
\(512\) 1.00000i 0.0441942i
\(513\) −3.91461 1.91725i −0.172834 0.0846485i
\(514\) 15.6285 + 9.02311i 0.689343 + 0.397992i
\(515\) −7.94925 + 4.58950i −0.350286 + 0.202238i
\(516\) −9.60229 −0.422717
\(517\) 2.23713 1.29161i 0.0983890 0.0568049i
\(518\) −12.1660 + 23.1297i −0.534543 + 1.01626i
\(519\) −4.57227 7.91941i −0.200701 0.347624i
\(520\) −7.56116 13.0963i −0.331579 0.574312i
\(521\) 12.8508 22.2583i 0.563005 0.975154i −0.434227 0.900804i \(-0.642978\pi\)
0.997232 0.0743503i \(-0.0236883\pi\)
\(522\) 2.76284 0.120926
\(523\) −3.81566 + 6.60891i −0.166847 + 0.288987i −0.937310 0.348498i \(-0.886692\pi\)
0.770463 + 0.637485i \(0.220025\pi\)
\(524\) 1.69994i 0.0742622i
\(525\) −14.3026 + 27.1917i −0.624218 + 1.18674i
\(526\) −18.7127 + 10.8038i −0.815914 + 0.471068i
\(527\) 9.70654i 0.422823i
\(528\) −0.970257 −0.0422250
\(529\) 8.33747 + 14.4409i 0.362499 + 0.627867i
\(530\) 43.9033i 1.90704i
\(531\) 9.51740 0.413020
\(532\) 1.23789 + 11.4659i 0.0536694 + 0.497111i
\(533\) 38.0438 1.64786
\(534\) 0.721440i 0.0312198i
\(535\) −13.4363 23.2724i −0.580904 1.00615i
\(536\) −7.12386 −0.307704
\(537\) 6.34652i 0.273873i
\(538\) 9.26815 5.35097i 0.399578 0.230697i
\(539\) −3.84809 5.59649i −0.165749 0.241058i
\(540\) 4.07585i 0.175397i
\(541\) 13.6481 23.6392i 0.586777 1.01633i −0.407874 0.913038i \(-0.633730\pi\)
0.994651 0.103290i \(-0.0329369\pi\)
\(542\) 6.49782 0.279105
\(543\) 7.25677 12.5691i 0.311418 0.539392i
\(544\) 3.74399 + 6.48478i 0.160522 + 0.278033i
\(545\) 15.8876 + 27.5182i 0.680552 + 1.17875i
\(546\) 0.386417 + 9.80874i 0.0165371 + 0.419775i
\(547\) −16.3761 + 9.45474i −0.700191 + 0.404256i −0.807419 0.589979i \(-0.799136\pi\)
0.107227 + 0.994235i \(0.465803\pi\)
\(548\) 2.21715 0.0947120
\(549\) 11.9306 6.88815i 0.509186 0.293979i
\(550\) −9.75762 5.63357i −0.416066 0.240216i
\(551\) 12.0150 0.820348i 0.511856 0.0349480i
\(552\) 2.51497i 0.107044i
\(553\) −25.6601 + 16.1941i −1.09118 + 0.688642i
\(554\) 9.25785 + 5.34502i 0.393328 + 0.227088i
\(555\) 20.1301 34.8664i 0.854477 1.48000i
\(556\) −13.6907 + 7.90435i −0.580617 + 0.335219i
\(557\) −4.14219 −0.175510 −0.0877552 0.996142i \(-0.527969\pi\)
−0.0877552 + 0.996142i \(0.527969\pi\)
\(558\) −1.12261 + 0.648141i −0.0475240 + 0.0274380i
\(559\) −35.6267 −1.50685
\(560\) −9.11945 + 5.75528i −0.385367 + 0.243205i
\(561\) 6.29191 3.63263i 0.265644 0.153370i
\(562\) 2.67950 + 4.64102i 0.113028 + 0.195770i
\(563\) 3.24552 5.62141i 0.136782 0.236914i −0.789494 0.613758i \(-0.789657\pi\)
0.926277 + 0.376843i \(0.122991\pi\)
\(564\) 2.66241i 0.112108i
\(565\) 41.6368 1.75167
\(566\) −6.78618 11.7540i −0.285244 0.494058i
\(567\) −1.23165 + 2.34159i −0.0517246 + 0.0983374i
\(568\) 0.248702 0.430764i 0.0104353 0.0180745i
\(569\) 22.6885 13.0992i 0.951152 0.549148i 0.0577133 0.998333i \(-0.481619\pi\)
0.893439 + 0.449185i \(0.148286\pi\)
\(570\) −1.21021 17.7249i −0.0506900 0.742416i
\(571\) 10.2510 17.7552i 0.428991 0.743034i −0.567793 0.823171i \(-0.692203\pi\)
0.996784 + 0.0801376i \(0.0255360\pi\)
\(572\) −3.59988 −0.150518
\(573\) 3.41302 5.91152i 0.142581 0.246957i
\(574\) −1.06792 27.1078i −0.0445740 1.13146i
\(575\) 14.6025 25.2924i 0.608968 1.05476i
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) −34.4102 19.8667i −1.43251 0.827062i −0.435201 0.900333i \(-0.643323\pi\)
−0.997312 + 0.0732710i \(0.976656\pi\)
\(578\) −33.8355 19.5349i −1.40737 0.812547i
\(579\) 11.4737 + 6.62433i 0.476830 + 0.275298i
\(580\) 5.63047 + 9.75225i 0.233792 + 0.404940i
\(581\) −38.1795 + 24.0951i −1.58395 + 0.999631i
\(582\) 15.6918i 0.650445i
\(583\) 9.05101 + 5.22560i 0.374854 + 0.216422i
\(584\) 1.06951 + 1.85245i 0.0442568 + 0.0766549i
\(585\) 15.1223i 0.625231i
\(586\) 17.3263i 0.715742i
\(587\) 15.2614 + 8.81115i 0.629904 + 0.363675i 0.780715 0.624887i \(-0.214855\pi\)
−0.150811 + 0.988563i \(0.548188\pi\)
\(588\) 6.97831 0.550678i 0.287780 0.0227096i
\(589\) −4.68954 + 3.15195i −0.193229 + 0.129874i
\(590\) 19.3957 + 33.5944i 0.798510 + 1.38306i
\(591\) −3.42507 5.93239i −0.140888 0.244026i
\(592\) 8.55440 4.93889i 0.351584 0.202987i
\(593\) −13.8171 7.97729i −0.567399 0.327588i 0.188711 0.982033i \(-0.439569\pi\)
−0.756110 + 0.654445i \(0.772902\pi\)
\(594\) −0.840267 0.485128i −0.0344766 0.0199051i
\(595\) 37.5899 71.4649i 1.54104 2.92978i
\(596\) −13.0323 −0.533824
\(597\) −7.33932 + 4.23736i −0.300378 + 0.173424i
\(598\) 9.33110i 0.381577i
\(599\) 8.78304i 0.358865i 0.983770 + 0.179433i \(0.0574262\pi\)
−0.983770 + 0.179433i \(0.942574\pi\)
\(600\) 10.0567 5.80626i 0.410565 0.237040i
\(601\) 8.16815 0.333186 0.166593 0.986026i \(-0.446723\pi\)
0.166593 + 0.986026i \(0.446723\pi\)
\(602\) 1.00007 + 25.3856i 0.0407598 + 1.03464i
\(603\) −6.16944 3.56193i −0.251239 0.145053i
\(604\) −12.1248 7.00028i −0.493353 0.284838i
\(605\) 35.5047 20.4987i 1.44347 0.833389i
\(606\) 1.85909 + 3.22004i 0.0755205 + 0.130805i
\(607\) −7.02409 12.1661i −0.285099 0.493806i 0.687534 0.726152i \(-0.258693\pi\)
−0.972633 + 0.232346i \(0.925360\pi\)
\(608\) 1.91725 3.91461i 0.0777546 0.158758i
\(609\) −0.287748 7.30413i −0.0116601 0.295978i
\(610\) 48.6274 + 28.0750i 1.96886 + 1.13672i
\(611\) 9.87814i 0.399627i
\(612\) 7.48798i 0.302684i
\(613\) 7.91814 + 13.7146i 0.319811 + 0.553928i 0.980448 0.196777i \(-0.0630473\pi\)
−0.660638 + 0.750705i \(0.729714\pi\)
\(614\) 18.0706 + 10.4330i 0.729269 + 0.421044i
\(615\) 41.7927i 1.68524i
\(616\) 0.101051 + 2.56507i 0.00407147 + 0.103350i
\(617\) −21.5429 37.3134i −0.867285 1.50218i −0.864761 0.502184i \(-0.832530\pi\)
−0.00252400 0.999997i \(-0.500803\pi\)
\(618\) −1.95033 1.12602i −0.0784538 0.0452953i
\(619\) 35.7535 + 20.6423i 1.43705 + 0.829684i 0.997644 0.0686028i \(-0.0218541\pi\)
0.439410 + 0.898287i \(0.355187\pi\)
\(620\) −4.57560 2.64172i −0.183760 0.106094i
\(621\) 1.25748 2.17802i 0.0504610 0.0874011i
\(622\) 10.4745 18.1423i 0.419987 0.727440i
\(623\) 1.90727 0.0751373i 0.0764132 0.00301031i
\(624\) 1.85511 3.21315i 0.0742640 0.128629i
\(625\) 51.7881 2.07152
\(626\) −3.46804 + 6.00681i −0.138611 + 0.240081i
\(627\) −3.79818 1.86022i −0.151685 0.0742901i
\(628\) −6.88812 + 3.97686i −0.274866 + 0.158694i
\(629\) −36.9823 + 64.0552i −1.47458 + 2.55405i
\(630\) −10.7753 + 0.424495i −0.429299 + 0.0169123i
\(631\) 5.05007 + 8.74698i 0.201040 + 0.348212i 0.948864 0.315686i \(-0.102235\pi\)
−0.747824 + 0.663897i \(0.768901\pi\)
\(632\) 11.4685 0.456193
\(633\) 1.56970i 0.0623899i
\(634\) 4.69675 8.13501i 0.186532 0.323083i
\(635\) 10.9026 + 18.8838i 0.432656 + 0.749382i
\(636\) −9.32846 + 5.38579i −0.369898 + 0.213561i
\(637\) 25.8911 2.04314i 1.02584 0.0809522i
\(638\) 2.68067 0.106129
\(639\) 0.430764 0.248702i 0.0170408 0.00983849i
\(640\) 4.07585 0.161112
\(641\) −19.7269 + 11.3893i −0.779164 + 0.449851i −0.836134 0.548525i \(-0.815189\pi\)
0.0569697 + 0.998376i \(0.481856\pi\)
\(642\) 3.29658 5.70984i 0.130106 0.225349i
\(643\) −6.73718 3.88971i −0.265688 0.153395i 0.361238 0.932474i \(-0.382354\pi\)
−0.626927 + 0.779078i \(0.715687\pi\)
\(644\) −6.64882 + 0.261931i −0.262000 + 0.0103215i
\(645\) 39.1375i 1.54104i
\(646\) 2.22334 + 32.5636i 0.0874763 + 1.28120i
\(647\) 36.1528 + 20.8728i 1.42131 + 0.820596i 0.996411 0.0846425i \(-0.0269748\pi\)
0.424903 + 0.905239i \(0.360308\pi\)
\(648\) 0.866025 0.500000i 0.0340207 0.0196419i
\(649\) 9.23432 0.362479
\(650\) 37.3128 21.5426i 1.46353 0.844969i
\(651\) 1.83041 + 2.90035i 0.0717394 + 0.113674i
\(652\) −10.8199 18.7407i −0.423742 0.733943i
\(653\) −0.316827 0.548760i −0.0123984 0.0214746i 0.859760 0.510699i \(-0.170613\pi\)
−0.872158 + 0.489224i \(0.837280\pi\)
\(654\) −3.89800 + 6.75153i −0.152424 + 0.264006i
\(655\) −6.92870 −0.270727
\(656\) −5.12688 + 8.88001i −0.200171 + 0.346706i
\(657\) 2.13903i 0.0834513i
\(658\) 7.03861 0.277287i 0.274393 0.0108098i
\(659\) 2.65971 1.53559i 0.103608 0.0598179i −0.447301 0.894384i \(-0.647615\pi\)
0.550909 + 0.834566i \(0.314281\pi\)
\(660\) 3.95462i 0.153933i
\(661\) −32.9715 −1.28244 −0.641221 0.767357i \(-0.721572\pi\)
−0.641221 + 0.767357i \(0.721572\pi\)
\(662\) −9.68272 16.7710i −0.376330 0.651822i
\(663\) 27.7821i 1.07897i
\(664\) 17.0639 0.662209
\(665\) −46.7334 + 5.04546i −1.81224 + 0.195654i
\(666\) 9.87777 0.382756
\(667\) 6.94846i 0.269045i
\(668\) 0.0757722 + 0.131241i 0.00293171 + 0.00507788i
\(669\) 19.6711 0.760529
\(670\) 29.0357i 1.12175i
\(671\) 11.5758 6.68327i 0.446877 0.258005i
\(672\) −2.34159 1.23165i −0.0903287 0.0475121i
\(673\) 14.2527i 0.549400i 0.961530 + 0.274700i \(0.0885786\pi\)
−0.961530 + 0.274700i \(0.911421\pi\)
\(674\) 11.1562 19.3232i 0.429722 0.744301i
\(675\) 11.6125 0.446966
\(676\) 0.382903 0.663208i 0.0147270 0.0255080i
\(677\) 14.3151 + 24.7946i 0.550176 + 0.952933i 0.998261 + 0.0589419i \(0.0187727\pi\)
−0.448086 + 0.893991i \(0.647894\pi\)
\(678\) 5.10775 + 8.84689i 0.196162 + 0.339763i
\(679\) −41.4843 + 1.63428i −1.59202 + 0.0627180i
\(680\) −26.4310 + 15.2599i −1.01358 + 0.585192i
\(681\) 8.94084 0.342614
\(682\) −1.08922 + 0.628863i −0.0417085 + 0.0240804i
\(683\) −2.69797 1.55767i −0.103235 0.0596027i 0.447494 0.894287i \(-0.352317\pi\)
−0.550729 + 0.834684i \(0.685650\pi\)
\(684\) 3.61769 2.43153i 0.138326 0.0929718i
\(685\) 9.03677i 0.345277i
\(686\) −2.18261 18.3912i −0.0833324 0.702179i
\(687\) 7.36441 + 4.25184i 0.280970 + 0.162218i
\(688\) 4.80115 8.31583i 0.183042 0.317038i
\(689\) −34.6107 + 19.9825i −1.31856 + 0.761274i
\(690\) 10.2506 0.390234
\(691\) −27.5558 + 15.9093i −1.04827 + 0.605219i −0.922165 0.386797i \(-0.873581\pi\)
−0.126106 + 0.992017i \(0.540248\pi\)
\(692\) 9.14455 0.347624
\(693\) −1.19502 + 2.27194i −0.0453951 + 0.0863039i
\(694\) −2.13899 + 1.23494i −0.0811948 + 0.0468778i
\(695\) −32.2169 55.8014i −1.22206 2.11667i
\(696\) −1.38142 + 2.39269i −0.0523627 + 0.0906948i
\(697\) 76.7799i 2.90825i
\(698\) −4.96655 −0.187987
\(699\) −0.235089 0.407186i −0.00889188 0.0154012i
\(700\) −16.3974 25.9823i −0.619764 0.982039i
\(701\) −4.37494 + 7.57761i −0.165239 + 0.286203i −0.936740 0.350025i \(-0.886173\pi\)
0.771501 + 0.636228i \(0.219506\pi\)
\(702\) 3.21315 1.85511i 0.121273 0.0700168i
\(703\) 42.9562 2.93292i 1.62012 0.110617i
\(704\) 0.485128 0.840267i 0.0182840 0.0316688i
\(705\) −10.8516 −0.408693
\(706\) 17.0929 29.6058i 0.643300 1.11423i
\(707\) 8.31921 5.25025i 0.312876 0.197456i
\(708\) −4.75870 + 8.24231i −0.178843 + 0.309765i
\(709\) −5.88151 + 10.1871i −0.220885 + 0.382584i −0.955077 0.296358i \(-0.904228\pi\)
0.734192 + 0.678942i \(0.237561\pi\)
\(710\) 1.75573 + 1.01367i 0.0658913 + 0.0380424i
\(711\) 9.93203 + 5.73426i 0.372480 + 0.215052i
\(712\) −0.624786 0.360720i −0.0234148 0.0135186i
\(713\) −1.63005 2.82333i −0.0610459 0.105735i
\(714\) 19.7960 0.779866i 0.740846 0.0291858i
\(715\) 14.6725i 0.548722i
\(716\) 5.49625 + 3.17326i 0.205405 + 0.118590i
\(717\) −6.17093 10.6884i −0.230458 0.399164i
\(718\) 24.0215i 0.896473i
\(719\) 24.8775i 0.927775i 0.885894 + 0.463887i \(0.153546\pi\)
−0.885894 + 0.463887i \(0.846454\pi\)
\(720\) 3.52979 + 2.03792i 0.131547 + 0.0759489i
\(721\) −2.77374 + 5.27336i −0.103300 + 0.196390i
\(722\) 15.0105 11.6483i 0.558634 0.433506i
\(723\) −8.42418 14.5911i −0.313299 0.542649i
\(724\) 7.25677 + 12.5691i 0.269696 + 0.467127i
\(725\) −27.7852 + 16.0418i −1.03192 + 0.595778i
\(726\) 8.71100 + 5.02930i 0.323296 + 0.186655i
\(727\) −43.3648 25.0367i −1.60831 0.928559i −0.989748 0.142825i \(-0.954381\pi\)
−0.618564 0.785734i \(-0.712285\pi\)
\(728\) −8.68782 4.56972i −0.321992 0.169365i
\(729\) 1.00000 0.0370370
\(730\) −7.55030 + 4.35917i −0.279449 + 0.161340i
\(731\) 71.9018i 2.65938i
\(732\) 13.7763i 0.509186i
\(733\) 19.1045 11.0300i 0.705640 0.407402i −0.103804 0.994598i \(-0.533102\pi\)
0.809445 + 0.587196i \(0.199768\pi\)
\(734\) −21.3328 −0.787410
\(735\) 2.24448 + 28.4425i 0.0827888 + 1.04912i
\(736\) 2.17802 + 1.25748i 0.0802830 + 0.0463514i
\(737\) −5.98594 3.45599i −0.220495 0.127303i
\(738\) −8.88001 + 5.12688i −0.326878 + 0.188723i
\(739\) 25.1743 + 43.6032i 0.926052 + 1.60397i 0.789860 + 0.613288i \(0.210153\pi\)
0.136193 + 0.990682i \(0.456513\pi\)
\(740\) 20.1301 + 34.8664i 0.739999 + 1.28172i
\(741\) 13.4225 9.02153i 0.493086 0.331414i
\(742\) 15.2100 + 24.1007i 0.558376 + 0.884766i
\(743\) 18.1811 + 10.4968i 0.666998 + 0.385092i 0.794938 0.606690i \(-0.207503\pi\)
−0.127940 + 0.991782i \(0.540837\pi\)
\(744\) 1.29628i 0.0475240i
\(745\) 53.1177i 1.94608i
\(746\) 4.78873 + 8.29433i 0.175328 + 0.303677i
\(747\) 14.7778 + 8.53197i 0.540691 + 0.312168i
\(748\) 7.26527i 0.265644i
\(749\) −15.4384 8.12049i −0.564108 0.296716i
\(750\) 13.4758 + 23.3408i 0.492067 + 0.852286i
\(751\) −30.3419 17.5179i −1.10719 0.639237i −0.169091 0.985600i \(-0.554083\pi\)
−0.938100 + 0.346363i \(0.887416\pi\)
\(752\) −2.30571 1.33120i −0.0840807 0.0485440i
\(753\) −1.39946 0.807976i −0.0509990 0.0294443i
\(754\) −5.12539 + 8.87744i −0.186656 + 0.323297i
\(755\) 28.5321 49.4190i 1.03839 1.79854i
\(756\) −1.41205 2.23744i −0.0513556 0.0813748i
\(757\) 9.36580 16.2220i 0.340406 0.589600i −0.644102 0.764939i \(-0.722769\pi\)
0.984508 + 0.175339i \(0.0561023\pi\)
\(758\) −24.4666 −0.888666
\(759\) 1.22008 2.11324i 0.0442861 0.0767058i
\(760\) 15.9553 + 7.81440i 0.578761 + 0.283458i
\(761\) −31.0528 + 17.9284i −1.12566 + 0.649903i −0.942841 0.333243i \(-0.891857\pi\)
−0.182824 + 0.983146i \(0.558524\pi\)
\(762\) −2.67492 + 4.63310i −0.0969023 + 0.167840i
\(763\) 18.2550 + 9.60198i 0.660875 + 0.347615i
\(764\) 3.41302 + 5.91152i 0.123479 + 0.213871i
\(765\) −30.5199 −1.10345
\(766\) 7.12577i 0.257464i
\(767\) −17.6559 + 30.5809i −0.637517 + 1.10421i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) 14.7852 8.53622i 0.533167 0.307824i −0.209138 0.977886i \(-0.567066\pi\)
0.742305 + 0.670062i \(0.233733\pi\)
\(770\) −10.4548 + 0.411870i −0.376766 + 0.0148427i
\(771\) −18.0462 −0.649919
\(772\) −11.4737 + 6.62433i −0.412947 + 0.238415i
\(773\) −6.28142 −0.225927 −0.112963 0.993599i \(-0.536034\pi\)
−0.112963 + 0.993599i \(0.536034\pi\)
\(774\) 8.31583 4.80115i 0.298906 0.172574i
\(775\) 7.52655 13.0364i 0.270362 0.468280i
\(776\) 13.5895 + 7.84588i 0.487833 + 0.281651i
\(777\) −1.02876 26.1139i −0.0369066 0.936830i
\(778\) 9.22919i 0.330883i
\(779\) −37.0949 + 24.9323i −1.32906 + 0.893292i
\(780\) 13.0963 + 7.56116i 0.468923 + 0.270733i
\(781\) 0.417952 0.241305i 0.0149555 0.00863456i
\(782\) −18.8320 −0.673432
\(783\) −2.39269 + 1.38142i −0.0855079 + 0.0493680i
\(784\) −3.01225 + 6.31873i −0.107580 + 0.225669i
\(785\) −16.2091 28.0749i −0.578527 1.00204i
\(786\) −0.849970 1.47219i −0.0303174 0.0525113i
\(787\) 12.3838 21.4493i 0.441434 0.764586i −0.556362 0.830940i \(-0.687803\pi\)
0.997796 + 0.0663537i \(0.0211366\pi\)
\(788\) 6.85013 0.244026
\(789\) 10.8038 18.7127i 0.384625 0.666191i
\(790\) 46.7439i 1.66307i
\(791\) 22.8566 14.4248i 0.812685 0.512886i
\(792\) 0.840267 0.485128i 0.0298576 0.0172383i
\(793\) 51.1132i 1.81508i
\(794\) 13.3617 0.474190
\(795\) −21.9517 38.0214i −0.778545 1.34848i
\(796\) 8.47472i 0.300378i
\(797\) −15.8875 −0.562764 −0.281382 0.959596i \(-0.590793\pi\)
−0.281382 + 0.959596i \(0.590793\pi\)
\(798\) −6.80501 9.31084i −0.240895 0.329600i
\(799\) 19.9361 0.705287
\(800\) 11.6125i 0.410565i
\(801\) −0.360720 0.624786i −0.0127454 0.0220757i
\(802\) 25.9594 0.916659
\(803\) 2.07540i 0.0732394i
\(804\) 6.16944 3.56193i 0.217579 0.125620i
\(805\) −1.06759 27.0996i −0.0376276 0.955134i
\(806\) 4.80950i 0.169408i
\(807\) −5.35097 + 9.26815i −0.188363 + 0.326254i
\(808\) −3.71819 −0.130805
\(809\) 15.2941 26.4902i 0.537713 0.931347i −0.461313 0.887237i \(-0.652622\pi\)
0.999027 0.0441095i \(-0.0140450\pi\)
\(810\) 2.03792 + 3.52979i 0.0716053 + 0.124024i
\(811\) −0.304033 0.526601i −0.0106760 0.0184915i 0.860638 0.509217i \(-0.170065\pi\)
−0.871314 + 0.490726i \(0.836732\pi\)
\(812\) 6.46944 + 3.40287i 0.227033 + 0.119417i
\(813\) −5.62728 + 3.24891i −0.197357 + 0.113944i
\(814\) 9.58397 0.335918
\(815\) 76.3842 44.1005i 2.67562 1.54477i
\(816\) −6.48478 3.74399i −0.227013 0.131066i
\(817\) 34.7381 23.3482i 1.21533 0.816852i
\(818\) 6.20352i 0.216901i
\(819\) −5.23902 8.30141i −0.183066 0.290075i
\(820\) −36.1936 20.8964i −1.26393 0.729732i
\(821\) 10.7834 18.6774i 0.376343 0.651845i −0.614184 0.789163i \(-0.710515\pi\)
0.990527 + 0.137318i \(0.0438481\pi\)
\(822\) −1.92011 + 1.10858i −0.0669715 + 0.0386660i
\(823\) 23.9544 0.834999 0.417499 0.908677i \(-0.362907\pi\)
0.417499 + 0.908677i \(0.362907\pi\)
\(824\) 1.95033 1.12602i 0.0679430 0.0392269i
\(825\) 11.2671 0.392271
\(826\) 22.2858 + 11.7221i 0.775423 + 0.407866i
\(827\) 31.9154 18.4264i 1.10981 0.640748i 0.171029 0.985266i \(-0.445291\pi\)
0.938780 + 0.344518i \(0.111958\pi\)
\(828\) 1.25748 + 2.17802i 0.0437005 + 0.0756916i
\(829\) −11.6590 + 20.1940i −0.404934 + 0.701366i −0.994314 0.106490i \(-0.966039\pi\)
0.589380 + 0.807856i \(0.299372\pi\)
\(830\) 69.5500i 2.41411i
\(831\) −10.6900 −0.370833
\(832\) 1.85511 + 3.21315i 0.0643145 + 0.111396i
\(833\) −4.12346 52.2534i −0.142870 1.81047i
\(834\) 7.90435 13.6907i 0.273705 0.474072i
\(835\) −0.534919 + 0.308836i −0.0185116 + 0.0106877i
\(836\) 3.51009 2.35921i 0.121399 0.0815949i
\(837\) 0.648141 1.12261i 0.0224030 0.0388032i
\(838\) 7.95386 0.274761
\(839\) −7.89487 + 13.6743i −0.272561 + 0.472090i −0.969517 0.245024i \(-0.921204\pi\)
0.696956 + 0.717114i \(0.254537\pi\)
\(840\) 5.02004 9.54395i 0.173208 0.329297i
\(841\) −10.6833 + 18.5041i −0.368391 + 0.638072i
\(842\) −7.42985 + 12.8689i −0.256050 + 0.443491i
\(843\) −4.64102 2.67950i −0.159845 0.0922867i
\(844\) 1.35940 + 0.784849i 0.0467924 + 0.0270156i
\(845\) 2.70313 + 1.56065i 0.0929906 + 0.0536881i
\(846\) −1.33120 2.30571i −0.0457677 0.0792720i
\(847\) 12.3887 23.5531i 0.425682 0.809294i
\(848\) 10.7716i 0.369898i
\(849\) 11.7540 + 6.78618i 0.403397 + 0.232901i
\(850\) −43.4772 75.3047i −1.49126 2.58293i
\(851\) 24.8422i 0.851581i
\(852\) 0.497403i 0.0170408i
\(853\) −15.3678 8.87262i −0.526185 0.303793i 0.213277 0.976992i \(-0.431586\pi\)
−0.739461 + 0.673199i \(0.764920\pi\)
\(854\) 36.4204 1.43479i 1.24628 0.0490974i
\(855\) 9.91054 + 14.7451i 0.338933 + 0.504273i
\(856\) 3.29658 + 5.70984i 0.112675 + 0.195158i
\(857\) 11.8316 + 20.4929i 0.404160 + 0.700025i 0.994223 0.107332i \(-0.0342307\pi\)
−0.590064 + 0.807357i \(0.700897\pi\)
\(858\) 3.11758 1.79994i 0.106433 0.0614489i
\(859\) −23.4022 13.5113i −0.798473 0.460999i 0.0444640 0.999011i \(-0.485842\pi\)
−0.842937 + 0.538012i \(0.819175\pi\)
\(860\) 33.8940 + 19.5687i 1.15578 + 0.667288i
\(861\) 14.4788 + 22.9421i 0.493435 + 0.781866i
\(862\) 7.45630 0.253963
\(863\) 24.9978 14.4325i 0.850933 0.491287i −0.0100322 0.999950i \(-0.503193\pi\)
0.860966 + 0.508663i \(0.169860\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 37.2718i 1.26728i
\(866\) 8.67881 5.01071i 0.294918 0.170271i
\(867\) 39.0699 1.32688
\(868\) −3.42698 + 0.135006i −0.116319 + 0.00458242i
\(869\) 9.63662 + 5.56371i 0.326900 + 0.188736i
\(870\) −9.75225 5.63047i −0.330632 0.190891i
\(871\) 22.8900 13.2156i 0.775600 0.447793i
\(872\) −3.89800 6.75153i −0.132003 0.228636i
\(873\) 7.84588 + 13.5895i 0.265543 + 0.459934i
\(874\) 6.11521 + 9.09836i 0.206850 + 0.307757i
\(875\) 60.3026 38.0569i 2.03860 1.28656i
\(876\) −1.85245 1.06951i −0.0625885 0.0361355i
\(877\) 15.7433i 0.531612i 0.964027 + 0.265806i \(0.0856381\pi\)
−0.964027 + 0.265806i \(0.914362\pi\)
\(878\) 20.8943i 0.705148i
\(879\) −8.66314 15.0050i −0.292201 0.506106i
\(880\) 3.42480 + 1.97731i 0.115450 + 0.0666551i
\(881\) 17.0246i 0.573575i −0.957994 0.286787i \(-0.907413\pi\)
0.957994 0.286787i \(-0.0925873\pi\)
\(882\) −5.76805 + 3.96605i −0.194220 + 0.133544i
\(883\) 1.18000 + 2.04382i 0.0397102 + 0.0687801i 0.885197 0.465216i \(-0.154023\pi\)
−0.845487 + 0.533996i \(0.820690\pi\)
\(884\) −24.0600 13.8911i −0.809227 0.467207i
\(885\) −33.5944 19.3957i −1.12926 0.651980i
\(886\) −9.03634 5.21714i −0.303582 0.175273i
\(887\) 21.5758 37.3703i 0.724443 1.25477i −0.234760 0.972053i \(-0.575430\pi\)
0.959203 0.282719i \(-0.0912363\pi\)
\(888\) −4.93889 + 8.55440i −0.165738 + 0.287067i
\(889\) 12.5271 + 6.58917i 0.420147 + 0.220994i
\(890\) 1.47024 2.54653i 0.0492825 0.0853599i
\(891\) 0.970257 0.0325048
\(892\) −9.83556 + 17.0357i −0.329319 + 0.570397i
\(893\) −6.47372 9.63176i −0.216635 0.322315i
\(894\) 11.2863 6.51615i 0.377471 0.217933i
\(895\) −12.9337 + 22.4019i −0.432327 + 0.748812i
\(896\) 2.23744 1.41205i 0.0747475 0.0471731i
\(897\) 4.66555 + 8.08097i 0.155778 + 0.269816i
\(898\) 19.7533 0.659175
\(899\) 3.58143i 0.119447i
\(900\) −5.80626 + 10.0567i −0.193542 + 0.335225i
\(901\) 40.3287 + 69.8514i 1.34354 + 2.32709i
\(902\) −8.61589 + 4.97439i −0.286878 + 0.165629i
\(903\) −13.5589 21.4845i −0.451211 0.714960i
\(904\) −10.2155 −0.339763
\(905\) −51.2297 + 29.5775i −1.70293 + 0.983189i
\(906\) 14.0006 0.465138
\(907\) 46.5100 26.8526i 1.54434 0.891625i 0.545783 0.837926i \(-0.316232\pi\)
0.998557 0.0536988i \(-0.0171011\pi\)
\(908\) −4.47042 + 7.74299i −0.148356 + 0.256960i
\(909\) −3.22004 1.85909i −0.106802 0.0616622i
\(910\) 18.6255 35.4102i 0.617429 1.17384i
\(911\) 20.9585i 0.694385i 0.937794 + 0.347193i \(0.112865\pi\)
−0.937794 + 0.347193i \(0.887135\pi\)
\(912\) 0.296922 + 4.34877i 0.00983206 + 0.144002i
\(913\) 14.3383 + 8.27820i 0.474527 + 0.273968i
\(914\) −7.02827 + 4.05777i −0.232474 + 0.134219i
\(915\) −56.1500 −1.85626
\(916\) −7.36441 + 4.25184i −0.243327 + 0.140485i
\(917\) −3.80351 + 2.40039i −0.125603 + 0.0792680i
\(918\) −3.74399 6.48478i −0.123570 0.214030i
\(919\) 19.3534 + 33.5211i 0.638411 + 1.10576i 0.985781 + 0.168033i \(0.0537414\pi\)
−0.347370 + 0.937728i \(0.612925\pi\)
\(920\) −5.12531 + 8.87729i −0.168976 + 0.292676i
\(921\) −20.8661 −0.687561
\(922\) −16.7791 + 29.0623i −0.552592 + 0.957117i
\(923\) 1.84548i 0.0607448i
\(924\) −1.37005 2.17089i −0.0450712 0.0714170i
\(925\) −99.3382 + 57.3529i −3.26622 + 1.88575i
\(926\) 14.8883i 0.489259i
\(927\) 2.25205 0.0739669
\(928\) −1.38142 2.39269i −0.0453474 0.0785440i
\(929\) 35.2938i 1.15795i −0.815344 0.578977i \(-0.803452\pi\)
0.815344 0.578977i \(-0.196548\pi\)
\(930\) 5.28345 0.173251
\(931\) −23.9063 + 18.9601i −0.783499 + 0.621393i
\(932\) 0.470178 0.0154012
\(933\) 20.9489i 0.685837i
\(934\) −4.45591 7.71786i −0.145802 0.252536i
\(935\) −29.6121 −0.968420
\(936\) 3.71023i 0.121273i
\(937\) 0.638730 0.368771i 0.0208664 0.0120472i −0.489531 0.871986i \(-0.662832\pi\)
0.510397 + 0.859939i \(0.329498\pi\)
\(938\) −10.0592 15.9392i −0.328445 0.520433i
\(939\) 6.93607i 0.226350i
\(940\) 5.42578 9.39773i 0.176969 0.306520i
\(941\) −23.9231 −0.779872 −0.389936 0.920842i \(-0.627503\pi\)
−0.389936 + 0.920842i \(0.627503\pi\)
\(942\) 3.97686 6.88812i 0.129573 0.224427i
\(943\) −12.8939 22.3329i −0.419884 0.727260i
\(944\) −4.75870 8.24231i −0.154882 0.268264i
\(945\) 9.11945 5.75528i 0.296656 0.187219i
\(946\) 8.06849 4.65834i 0.262329 0.151456i
\(947\) 13.7977 0.448364 0.224182 0.974547i \(-0.428029\pi\)
0.224182 + 0.974547i \(0.428029\pi\)
\(948\) −9.93203 + 5.73426i −0.322577 + 0.186240i
\(949\) −6.87302 3.96814i −0.223108 0.128811i
\(950\) −22.2641 + 45.4585i −0.722342 + 1.47487i
\(951\) 9.39350i 0.304605i
\(952\) −9.22261 + 17.5338i −0.298906 + 0.568272i
\(953\) −20.2313 11.6806i −0.655357 0.378370i 0.135149 0.990825i \(-0.456849\pi\)
−0.790506 + 0.612455i \(0.790182\pi\)
\(954\) 5.38579 9.32846i 0.174371 0.302020i
\(955\) −24.0944 + 13.9109i −0.779678 + 0.450147i
\(956\) 12.3419 0.399164
\(957\) −2.32153 + 1.34033i −0.0750443 + 0.0433269i
\(958\) 17.7340 0.572961
\(959\) 3.13072 + 4.96074i 0.101096 + 0.160191i
\(960\) −3.52979 + 2.03792i −0.113923 + 0.0657737i
\(961\) 14.6598 + 25.3916i 0.472898 + 0.819083i
\(962\) −18.3244 + 31.7388i −0.590802 + 1.02330i
\(963\) 6.59315i 0.212461i
\(964\) 16.8484 0.542649
\(965\) −26.9998 46.7650i −0.869153 1.50542i
\(966\) 5.62708 3.55125i 0.181048 0.114259i
\(967\) −8.02350 + 13.8971i −0.258018 + 0.446901i −0.965711 0.259620i \(-0.916403\pi\)
0.707693 + 0.706520i \(0.249736\pi\)
\(968\) −8.71100 + 5.02930i −0.279982 + 0.161648i
\(969\) −18.2072 27.0892i −0.584901 0.870230i
\(970\) −31.9786 + 55.3886i −1.02677 + 1.77842i
\(971\) 17.5872 0.564399 0.282199 0.959356i \(-0.408936\pi\)
0.282199 + 0.959356i \(0.408936\pi\)
\(972\) −0.500000 + 0.866025i −0.0160375 + 0.0277778i
\(973\) −37.0174 19.4709i −1.18672 0.624207i
\(974\) −7.08040 + 12.2636i −0.226871 + 0.392952i
\(975\) −21.5426 + 37.3128i −0.689914 + 1.19497i
\(976\) −11.9306 6.88815i −0.381890 0.220484i
\(977\) 40.7937 + 23.5523i 1.30511 + 0.753503i 0.981275 0.192611i \(-0.0616957\pi\)
0.323831 + 0.946115i \(0.395029\pi\)
\(978\) 18.7407 + 10.8199i 0.599262 + 0.345984i
\(979\) −0.349991 0.606202i −0.0111858 0.0193743i
\(980\) −25.7542 12.2775i −0.822687 0.392190i
\(981\) 7.79600i 0.248907i
\(982\) −10.0935 5.82747i −0.322096 0.185962i
\(983\) −16.0280 27.7613i −0.511214 0.885448i −0.999916 0.0129975i \(-0.995863\pi\)
0.488702 0.872451i \(-0.337471\pi\)
\(984\) 10.2538i 0.326878i
\(985\) 27.9201i 0.889608i
\(986\) 17.9165 + 10.3441i 0.570576 + 0.329422i
\(987\) −5.95697 + 3.75944i −0.189612 + 0.119664i
\(988\) 1.10165 + 16.1350i 0.0350481 + 0.513321i
\(989\) 12.0747 + 20.9140i 0.383954 + 0.665027i
\(990\) 1.97731 + 3.42480i 0.0628430 + 0.108847i
\(991\) 3.81577 2.20303i 0.121212 0.0699817i −0.438168 0.898893i \(-0.644373\pi\)
0.559380 + 0.828911i \(0.311039\pi\)
\(992\) 1.12261 + 0.648141i 0.0356430 + 0.0205785i
\(993\) 16.7710 + 9.68272i 0.532211 + 0.307272i
\(994\) 1.31499 0.0518041i 0.0417088 0.00164313i
\(995\) 34.5416 1.09504
\(996\) −14.7778 + 8.53197i −0.468252 + 0.270346i
\(997\) 9.96486i 0.315590i 0.987472 + 0.157795i \(0.0504386\pi\)
−0.987472 + 0.157795i \(0.949561\pi\)
\(998\) 7.22272i 0.228631i
\(999\) −8.55440 + 4.93889i −0.270649 + 0.156259i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 798.2.m.b.787.1 yes 28
7.5 odd 6 798.2.bc.b.103.7 yes 28
19.12 odd 6 798.2.bc.b.31.7 yes 28
133.12 even 6 inner 798.2.m.b.145.14 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
798.2.m.b.145.14 28 133.12 even 6 inner
798.2.m.b.787.1 yes 28 1.1 even 1 trivial
798.2.bc.b.31.7 yes 28 19.12 odd 6
798.2.bc.b.103.7 yes 28 7.5 odd 6