Properties

Label 798.2.e.b.265.8
Level $798$
Weight $2$
Character 798.265
Analytic conductor $6.372$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(265,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.265"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} + 54x^{8} - 114x^{7} + 120x^{6} + 46x^{5} + 9x^{4} - 4x^{3} + 8x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 265.8
Root \(1.25342 + 1.25342i\) of defining polynomial
Character \(\chi\) \(=\) 798.265
Dual form 798.2.e.b.265.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000 q^{3} -1.00000 q^{4} -2.50684i q^{5} +1.00000i q^{6} +(-2.53963 - 0.741811i) q^{7} -1.00000i q^{8} +1.00000 q^{9} +2.50684 q^{10} -4.07545 q^{11} -1.00000 q^{12} -0.506836 q^{13} +(0.741811 - 2.53963i) q^{14} -2.50684i q^{15} +1.00000 q^{16} +2.30760i q^{17} +1.00000i q^{18} +(-4.30085 - 0.709018i) q^{19} +2.50684i q^{20} +(-2.53963 - 0.741811i) q^{21} -4.07545i q^{22} -6.34027 q^{23} -1.00000i q^{24} -1.28423 q^{25} -0.506836i q^{26} +1.00000 q^{27} +(2.53963 + 0.741811i) q^{28} -8.66728i q^{29} +2.50684 q^{30} -1.39640 q^{31} +1.00000i q^{32} -4.07545 q^{33} -2.30760 q^{34} +(-1.85960 + 6.36643i) q^{35} -1.00000 q^{36} -1.68285i q^{37} +(0.709018 - 4.30085i) q^{38} -0.506836 q^{39} -2.50684 q^{40} -0.402139 q^{41} +(0.741811 - 2.53963i) q^{42} -6.73509 q^{43} +4.07545 q^{44} -2.50684i q^{45} -6.34027i q^{46} -5.33646i q^{47} +1.00000 q^{48} +(5.89943 + 3.76785i) q^{49} -1.28423i q^{50} +2.30760i q^{51} +0.506836 q^{52} -1.66122i q^{53} +1.00000i q^{54} +10.2165i q^{55} +(-0.741811 + 2.53963i) q^{56} +(-4.30085 - 0.709018i) q^{57} +8.66728 q^{58} +9.42907 q^{59} +2.50684i q^{60} +5.31706i q^{61} -1.39640i q^{62} +(-2.53963 - 0.741811i) q^{63} -1.00000 q^{64} +1.27056i q^{65} -4.07545i q^{66} -3.06939i q^{67} -2.30760i q^{68} -6.34027 q^{69} +(-6.36643 - 1.85960i) q^{70} -8.08532i q^{71} -1.00000i q^{72} +13.5144i q^{73} +1.68285 q^{74} -1.28423 q^{75} +(4.30085 + 0.709018i) q^{76} +(10.3501 + 3.02321i) q^{77} -0.506836i q^{78} -3.37893i q^{79} -2.50684i q^{80} +1.00000 q^{81} -0.402139i q^{82} -10.5106i q^{83} +(2.53963 + 0.741811i) q^{84} +5.78478 q^{85} -6.73509i q^{86} -8.66728i q^{87} +4.07545i q^{88} +11.7389 q^{89} +2.50684 q^{90} +(1.28718 + 0.375977i) q^{91} +6.34027 q^{92} -1.39640 q^{93} +5.33646 q^{94} +(-1.77739 + 10.7815i) q^{95} +1.00000i q^{96} +4.87048 q^{97} +(-3.76785 + 5.89943i) q^{98} -4.07545 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{3} - 12 q^{4} + 12 q^{9} + 4 q^{10} + 12 q^{11} - 12 q^{12} + 20 q^{13} - 4 q^{14} + 12 q^{16} - 8 q^{19} - 12 q^{23} - 12 q^{25} + 12 q^{27} + 4 q^{30} + 24 q^{31} + 12 q^{33} + 4 q^{34} + 4 q^{35}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000 0.577350
\(4\) −1.00000 −0.500000
\(5\) 2.50684i 1.12109i −0.828124 0.560546i \(-0.810591\pi\)
0.828124 0.560546i \(-0.189409\pi\)
\(6\) 1.00000i 0.408248i
\(7\) −2.53963 0.741811i −0.959890 0.280378i
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 0.333333
\(10\) 2.50684 0.792731
\(11\) −4.07545 −1.22880 −0.614398 0.788997i \(-0.710601\pi\)
−0.614398 + 0.788997i \(0.710601\pi\)
\(12\) −1.00000 −0.288675
\(13\) −0.506836 −0.140571 −0.0702855 0.997527i \(-0.522391\pi\)
−0.0702855 + 0.997527i \(0.522391\pi\)
\(14\) 0.741811 2.53963i 0.198257 0.678744i
\(15\) 2.50684i 0.647262i
\(16\) 1.00000 0.250000
\(17\) 2.30760i 0.559676i 0.960047 + 0.279838i \(0.0902807\pi\)
−0.960047 + 0.279838i \(0.909719\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −4.30085 0.709018i −0.986682 0.162660i
\(20\) 2.50684i 0.560546i
\(21\) −2.53963 0.741811i −0.554193 0.161876i
\(22\) 4.07545i 0.868889i
\(23\) −6.34027 −1.32204 −0.661019 0.750369i \(-0.729876\pi\)
−0.661019 + 0.750369i \(0.729876\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −1.28423 −0.256845
\(26\) 0.506836i 0.0993987i
\(27\) 1.00000 0.192450
\(28\) 2.53963 + 0.741811i 0.479945 + 0.140189i
\(29\) 8.66728i 1.60947i −0.593632 0.804737i \(-0.702306\pi\)
0.593632 0.804737i \(-0.297694\pi\)
\(30\) 2.50684 0.457684
\(31\) −1.39640 −0.250802 −0.125401 0.992106i \(-0.540022\pi\)
−0.125401 + 0.992106i \(0.540022\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −4.07545 −0.709445
\(34\) −2.30760 −0.395751
\(35\) −1.85960 + 6.36643i −0.314329 + 1.07612i
\(36\) −1.00000 −0.166667
\(37\) 1.68285i 0.276660i −0.990386 0.138330i \(-0.955827\pi\)
0.990386 0.138330i \(-0.0441734\pi\)
\(38\) 0.709018 4.30085i 0.115018 0.697690i
\(39\) −0.506836 −0.0811587
\(40\) −2.50684 −0.396366
\(41\) −0.402139 −0.0628036 −0.0314018 0.999507i \(-0.509997\pi\)
−0.0314018 + 0.999507i \(0.509997\pi\)
\(42\) 0.741811 2.53963i 0.114464 0.391873i
\(43\) −6.73509 −1.02709 −0.513546 0.858062i \(-0.671668\pi\)
−0.513546 + 0.858062i \(0.671668\pi\)
\(44\) 4.07545 0.614398
\(45\) 2.50684i 0.373697i
\(46\) 6.34027i 0.934822i
\(47\) 5.33646i 0.778403i −0.921153 0.389202i \(-0.872751\pi\)
0.921153 0.389202i \(-0.127249\pi\)
\(48\) 1.00000 0.144338
\(49\) 5.89943 + 3.76785i 0.842776 + 0.538264i
\(50\) 1.28423i 0.181617i
\(51\) 2.30760i 0.323129i
\(52\) 0.506836 0.0702855
\(53\) 1.66122i 0.228187i −0.993470 0.114093i \(-0.963604\pi\)
0.993470 0.114093i \(-0.0363963\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 10.2165i 1.37759i
\(56\) −0.741811 + 2.53963i −0.0991286 + 0.339372i
\(57\) −4.30085 0.709018i −0.569661 0.0939117i
\(58\) 8.66728 1.13807
\(59\) 9.42907 1.22756 0.613780 0.789477i \(-0.289648\pi\)
0.613780 + 0.789477i \(0.289648\pi\)
\(60\) 2.50684i 0.323631i
\(61\) 5.31706i 0.680779i 0.940284 + 0.340390i \(0.110559\pi\)
−0.940284 + 0.340390i \(0.889441\pi\)
\(62\) 1.39640i 0.177343i
\(63\) −2.53963 0.741811i −0.319963 0.0934594i
\(64\) −1.00000 −0.125000
\(65\) 1.27056i 0.157593i
\(66\) 4.07545i 0.501653i
\(67\) 3.06939i 0.374986i −0.982266 0.187493i \(-0.939964\pi\)
0.982266 0.187493i \(-0.0600362\pi\)
\(68\) 2.30760i 0.279838i
\(69\) −6.34027 −0.763279
\(70\) −6.36643 1.85960i −0.760934 0.222264i
\(71\) 8.08532i 0.959551i −0.877391 0.479775i \(-0.840718\pi\)
0.877391 0.479775i \(-0.159282\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 13.5144i 1.58174i 0.611984 + 0.790870i \(0.290372\pi\)
−0.611984 + 0.790870i \(0.709628\pi\)
\(74\) 1.68285 0.195628
\(75\) −1.28423 −0.148290
\(76\) 4.30085 + 0.709018i 0.493341 + 0.0813299i
\(77\) 10.3501 + 3.02321i 1.17951 + 0.344527i
\(78\) 0.506836i 0.0573879i
\(79\) 3.37893i 0.380159i −0.981769 0.190079i \(-0.939125\pi\)
0.981769 0.190079i \(-0.0608745\pi\)
\(80\) 2.50684i 0.280273i
\(81\) 1.00000 0.111111
\(82\) 0.402139i 0.0444089i
\(83\) 10.5106i 1.15368i −0.816856 0.576842i \(-0.804285\pi\)
0.816856 0.576842i \(-0.195715\pi\)
\(84\) 2.53963 + 0.741811i 0.277096 + 0.0809382i
\(85\) 5.78478 0.627448
\(86\) 6.73509i 0.726264i
\(87\) 8.66728i 0.929230i
\(88\) 4.07545i 0.434445i
\(89\) 11.7389 1.24432 0.622162 0.782889i \(-0.286255\pi\)
0.622162 + 0.782889i \(0.286255\pi\)
\(90\) 2.50684 0.264244
\(91\) 1.28718 + 0.375977i 0.134933 + 0.0394130i
\(92\) 6.34027 0.661019
\(93\) −1.39640 −0.144800
\(94\) 5.33646 0.550414
\(95\) −1.77739 + 10.7815i −0.182356 + 1.10616i
\(96\) 1.00000i 0.102062i
\(97\) 4.87048 0.494523 0.247261 0.968949i \(-0.420469\pi\)
0.247261 + 0.968949i \(0.420469\pi\)
\(98\) −3.76785 + 5.89943i −0.380610 + 0.595933i
\(99\) −4.07545 −0.409598
\(100\) 1.28423 0.128423
\(101\) 10.8277i 1.07740i −0.842498 0.538700i \(-0.818916\pi\)
0.842498 0.538700i \(-0.181084\pi\)
\(102\) −2.30760 −0.228487
\(103\) 5.51407 0.543317 0.271659 0.962394i \(-0.412428\pi\)
0.271659 + 0.962394i \(0.412428\pi\)
\(104\) 0.506836i 0.0496994i
\(105\) −1.85960 + 6.36643i −0.181478 + 0.621300i
\(106\) 1.66122 0.161352
\(107\) 1.64796i 0.159315i −0.996822 0.0796573i \(-0.974617\pi\)
0.996822 0.0796573i \(-0.0253826\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 18.0910i 1.73281i 0.499345 + 0.866403i \(0.333574\pi\)
−0.499345 + 0.866403i \(0.666426\pi\)
\(110\) −10.2165 −0.974104
\(111\) 1.68285i 0.159730i
\(112\) −2.53963 0.741811i −0.239972 0.0700945i
\(113\) 2.33655i 0.219804i −0.993942 0.109902i \(-0.964946\pi\)
0.993942 0.109902i \(-0.0350538\pi\)
\(114\) 0.709018 4.30085i 0.0664056 0.402811i
\(115\) 15.8940i 1.48213i
\(116\) 8.66728i 0.804737i
\(117\) −0.506836 −0.0468570
\(118\) 9.42907i 0.868016i
\(119\) 1.71180 5.86046i 0.156921 0.537227i
\(120\) −2.50684 −0.228842
\(121\) 5.60931 0.509937
\(122\) −5.31706 −0.481384
\(123\) −0.402139 −0.0362597
\(124\) 1.39640 0.125401
\(125\) 9.31483i 0.833144i
\(126\) 0.741811 2.53963i 0.0660858 0.226248i
\(127\) 1.29418i 0.114840i −0.998350 0.0574200i \(-0.981713\pi\)
0.998350 0.0574200i \(-0.0182874\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −6.73509 −0.592992
\(130\) −1.27056 −0.111435
\(131\) 4.38528i 0.383144i −0.981479 0.191572i \(-0.938642\pi\)
0.981479 0.191572i \(-0.0613585\pi\)
\(132\) 4.07545 0.354723
\(133\) 10.3966 + 4.99106i 0.901500 + 0.432780i
\(134\) 3.06939 0.265155
\(135\) 2.50684i 0.215754i
\(136\) 2.30760 0.197875
\(137\) −17.3945 −1.48611 −0.743056 0.669229i \(-0.766625\pi\)
−0.743056 + 0.669229i \(0.766625\pi\)
\(138\) 6.34027i 0.539720i
\(139\) 4.29012i 0.363884i −0.983309 0.181942i \(-0.941762\pi\)
0.983309 0.181942i \(-0.0582382\pi\)
\(140\) 1.85960 6.36643i 0.157165 0.538062i
\(141\) 5.33646i 0.449411i
\(142\) 8.08532 0.678505
\(143\) 2.06559 0.172733
\(144\) 1.00000 0.0833333
\(145\) −21.7275 −1.80437
\(146\) −13.5144 −1.11846
\(147\) 5.89943 + 3.76785i 0.486577 + 0.310767i
\(148\) 1.68285i 0.138330i
\(149\) −9.33082 −0.764410 −0.382205 0.924077i \(-0.624835\pi\)
−0.382205 + 0.924077i \(0.624835\pi\)
\(150\) 1.28423i 0.104857i
\(151\) 7.62713i 0.620687i 0.950624 + 0.310344i \(0.100444\pi\)
−0.950624 + 0.310344i \(0.899556\pi\)
\(152\) −0.709018 + 4.30085i −0.0575089 + 0.348845i
\(153\) 2.30760i 0.186559i
\(154\) −3.02321 + 10.3501i −0.243618 + 0.834038i
\(155\) 3.50056i 0.281171i
\(156\) 0.506836 0.0405794
\(157\) 13.0191i 1.03904i −0.854458 0.519520i \(-0.826111\pi\)
0.854458 0.519520i \(-0.173889\pi\)
\(158\) 3.37893 0.268813
\(159\) 1.66122i 0.131744i
\(160\) 2.50684 0.198183
\(161\) 16.1019 + 4.70328i 1.26901 + 0.370671i
\(162\) 1.00000i 0.0785674i
\(163\) −4.37938 −0.343020 −0.171510 0.985182i \(-0.554865\pi\)
−0.171510 + 0.985182i \(0.554865\pi\)
\(164\) 0.402139 0.0314018
\(165\) 10.2165i 0.795353i
\(166\) 10.5106 0.815777
\(167\) −2.29406 −0.177520 −0.0887600 0.996053i \(-0.528290\pi\)
−0.0887600 + 0.996053i \(0.528290\pi\)
\(168\) −0.741811 + 2.53963i −0.0572319 + 0.195937i
\(169\) −12.7431 −0.980240
\(170\) 5.78478i 0.443673i
\(171\) −4.30085 0.709018i −0.328894 0.0542199i
\(172\) 6.73509 0.513546
\(173\) 22.4568 1.70736 0.853681 0.520797i \(-0.174365\pi\)
0.853681 + 0.520797i \(0.174365\pi\)
\(174\) 8.66728 0.657065
\(175\) 3.26146 + 0.952654i 0.246543 + 0.0720139i
\(176\) −4.07545 −0.307199
\(177\) 9.42907 0.708732
\(178\) 11.7389i 0.879870i
\(179\) 12.0887i 0.903555i 0.892131 + 0.451777i \(0.149210\pi\)
−0.892131 + 0.451777i \(0.850790\pi\)
\(180\) 2.50684i 0.186849i
\(181\) −14.6113 −1.08605 −0.543025 0.839716i \(-0.682721\pi\)
−0.543025 + 0.839716i \(0.682721\pi\)
\(182\) −0.375977 + 1.28718i −0.0278692 + 0.0954118i
\(183\) 5.31706i 0.393048i
\(184\) 6.34027i 0.467411i
\(185\) −4.21864 −0.310161
\(186\) 1.39640i 0.102389i
\(187\) 9.40453i 0.687727i
\(188\) 5.33646i 0.389202i
\(189\) −2.53963 0.741811i −0.184731 0.0539588i
\(190\) −10.7815 1.77739i −0.782174 0.128946i
\(191\) 0.142938 0.0103427 0.00517133 0.999987i \(-0.498354\pi\)
0.00517133 + 0.999987i \(0.498354\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 5.94006i 0.427575i 0.976880 + 0.213787i \(0.0685800\pi\)
−0.976880 + 0.213787i \(0.931420\pi\)
\(194\) 4.87048i 0.349680i
\(195\) 1.27056i 0.0909863i
\(196\) −5.89943 3.76785i −0.421388 0.269132i
\(197\) 9.50252 0.677027 0.338513 0.940962i \(-0.390076\pi\)
0.338513 + 0.940962i \(0.390076\pi\)
\(198\) 4.07545i 0.289630i
\(199\) 23.3287i 1.65373i 0.562404 + 0.826863i \(0.309877\pi\)
−0.562404 + 0.826863i \(0.690123\pi\)
\(200\) 1.28423i 0.0908086i
\(201\) 3.06939i 0.216498i
\(202\) 10.8277 0.761836
\(203\) −6.42948 + 22.0117i −0.451261 + 1.54492i
\(204\) 2.30760i 0.161565i
\(205\) 1.00810i 0.0704086i
\(206\) 5.51407i 0.384183i
\(207\) −6.34027 −0.440679
\(208\) −0.506836 −0.0351428
\(209\) 17.5279 + 2.88957i 1.21243 + 0.199876i
\(210\) −6.36643 1.85960i −0.439326 0.128324i
\(211\) 23.1860i 1.59619i −0.602532 0.798095i \(-0.705841\pi\)
0.602532 0.798095i \(-0.294159\pi\)
\(212\) 1.66122i 0.114093i
\(213\) 8.08532i 0.553997i
\(214\) 1.64796 0.112652
\(215\) 16.8838i 1.15146i
\(216\) 1.00000i 0.0680414i
\(217\) 3.54635 + 1.03587i 0.240742 + 0.0703193i
\(218\) −18.0910 −1.22528
\(219\) 13.5144i 0.913218i
\(220\) 10.2165i 0.688796i
\(221\) 1.16958i 0.0786742i
\(222\) 1.68285 0.112946
\(223\) 23.0366 1.54264 0.771322 0.636446i \(-0.219596\pi\)
0.771322 + 0.636446i \(0.219596\pi\)
\(224\) 0.741811 2.53963i 0.0495643 0.169686i
\(225\) −1.28423 −0.0856152
\(226\) 2.33655 0.155425
\(227\) −17.6866 −1.17390 −0.586951 0.809623i \(-0.699672\pi\)
−0.586951 + 0.809623i \(0.699672\pi\)
\(228\) 4.30085 + 0.709018i 0.284831 + 0.0469558i
\(229\) 3.87815i 0.256275i −0.991756 0.128138i \(-0.959100\pi\)
0.991756 0.128138i \(-0.0408999\pi\)
\(230\) −15.8940 −1.04802
\(231\) 10.3501 + 3.02321i 0.680989 + 0.198913i
\(232\) −8.66728 −0.569035
\(233\) −21.9618 −1.43877 −0.719384 0.694613i \(-0.755576\pi\)
−0.719384 + 0.694613i \(0.755576\pi\)
\(234\) 0.506836i 0.0331329i
\(235\) −13.3776 −0.872661
\(236\) −9.42907 −0.613780
\(237\) 3.37893i 0.219485i
\(238\) 5.86046 + 1.71180i 0.379877 + 0.110960i
\(239\) −5.77182 −0.373348 −0.186674 0.982422i \(-0.559771\pi\)
−0.186674 + 0.982422i \(0.559771\pi\)
\(240\) 2.50684i 0.161816i
\(241\) −10.8837 −0.701079 −0.350539 0.936548i \(-0.614002\pi\)
−0.350539 + 0.936548i \(0.614002\pi\)
\(242\) 5.60931i 0.360580i
\(243\) 1.00000 0.0641500
\(244\) 5.31706i 0.340390i
\(245\) 9.44538 14.7889i 0.603443 0.944829i
\(246\) 0.402139i 0.0256395i
\(247\) 2.17983 + 0.359356i 0.138699 + 0.0228653i
\(248\) 1.39640i 0.0886717i
\(249\) 10.5106i 0.666079i
\(250\) 9.31483 0.589122
\(251\) 23.2434i 1.46711i 0.679629 + 0.733556i \(0.262141\pi\)
−0.679629 + 0.733556i \(0.737859\pi\)
\(252\) 2.53963 + 0.741811i 0.159982 + 0.0467297i
\(253\) 25.8395 1.62451
\(254\) 1.29418 0.0812042
\(255\) 5.78478 0.362257
\(256\) 1.00000 0.0625000
\(257\) 29.4331 1.83599 0.917995 0.396593i \(-0.129808\pi\)
0.917995 + 0.396593i \(0.129808\pi\)
\(258\) 6.73509i 0.419309i
\(259\) −1.24836 + 4.27383i −0.0775693 + 0.265563i
\(260\) 1.27056i 0.0787965i
\(261\) 8.66728i 0.536491i
\(262\) 4.38528 0.270923
\(263\) −9.57036 −0.590134 −0.295067 0.955477i \(-0.595342\pi\)
−0.295067 + 0.955477i \(0.595342\pi\)
\(264\) 4.07545i 0.250827i
\(265\) −4.16441 −0.255818
\(266\) −4.99106 + 10.3966i −0.306021 + 0.637457i
\(267\) 11.7389 0.718411
\(268\) 3.06939i 0.187493i
\(269\) −20.3251 −1.23924 −0.619621 0.784901i \(-0.712714\pi\)
−0.619621 + 0.784901i \(0.712714\pi\)
\(270\) 2.50684 0.152561
\(271\) 27.0034i 1.64034i −0.572120 0.820170i \(-0.693879\pi\)
0.572120 0.820170i \(-0.306121\pi\)
\(272\) 2.30760i 0.139919i
\(273\) 1.28718 + 0.375977i 0.0779034 + 0.0227551i
\(274\) 17.3945i 1.05084i
\(275\) 5.23381 0.315610
\(276\) 6.34027 0.381639
\(277\) 1.93416 0.116213 0.0581063 0.998310i \(-0.481494\pi\)
0.0581063 + 0.998310i \(0.481494\pi\)
\(278\) 4.29012 0.257305
\(279\) −1.39640 −0.0836005
\(280\) 6.36643 + 1.85960i 0.380467 + 0.111132i
\(281\) 26.0581i 1.55450i −0.629194 0.777248i \(-0.716615\pi\)
0.629194 0.777248i \(-0.283385\pi\)
\(282\) 5.33646 0.317782
\(283\) 20.4608i 1.21627i 0.793835 + 0.608133i \(0.208081\pi\)
−0.793835 + 0.608133i \(0.791919\pi\)
\(284\) 8.08532i 0.479775i
\(285\) −1.77739 + 10.7815i −0.105284 + 0.638642i
\(286\) 2.06559i 0.122141i
\(287\) 1.02129 + 0.298311i 0.0602846 + 0.0176088i
\(288\) 1.00000i 0.0589256i
\(289\) 11.6750 0.686763
\(290\) 21.7275i 1.27588i
\(291\) 4.87048 0.285513
\(292\) 13.5144i 0.790870i
\(293\) −16.4410 −0.960495 −0.480248 0.877133i \(-0.659453\pi\)
−0.480248 + 0.877133i \(0.659453\pi\)
\(294\) −3.76785 + 5.89943i −0.219745 + 0.344062i
\(295\) 23.6371i 1.37621i
\(296\) −1.68285 −0.0978139
\(297\) −4.07545 −0.236482
\(298\) 9.33082i 0.540520i
\(299\) 3.21348 0.185840
\(300\) 1.28423 0.0741449
\(301\) 17.1046 + 4.99616i 0.985895 + 0.287974i
\(302\) −7.62713 −0.438892
\(303\) 10.8277i 0.622037i
\(304\) −4.30085 0.709018i −0.246671 0.0406650i
\(305\) 13.3290 0.763216
\(306\) −2.30760 −0.131917
\(307\) −8.09858 −0.462210 −0.231105 0.972929i \(-0.574234\pi\)
−0.231105 + 0.972929i \(0.574234\pi\)
\(308\) −10.3501 3.02321i −0.589754 0.172264i
\(309\) 5.51407 0.313684
\(310\) −3.50056 −0.198818
\(311\) 8.87438i 0.503220i −0.967829 0.251610i \(-0.919040\pi\)
0.967829 0.251610i \(-0.0809600\pi\)
\(312\) 0.506836i 0.0286939i
\(313\) 22.9535i 1.29741i 0.761039 + 0.648706i \(0.224689\pi\)
−0.761039 + 0.648706i \(0.775311\pi\)
\(314\) 13.0191 0.734712
\(315\) −1.85960 + 6.36643i −0.104776 + 0.358708i
\(316\) 3.37893i 0.190079i
\(317\) 19.9885i 1.12267i 0.827589 + 0.561334i \(0.189712\pi\)
−0.827589 + 0.561334i \(0.810288\pi\)
\(318\) 1.66122 0.0931568
\(319\) 35.3231i 1.97771i
\(320\) 2.50684i 0.140136i
\(321\) 1.64796i 0.0919803i
\(322\) −4.70328 + 16.1019i −0.262104 + 0.897326i
\(323\) 1.63613 9.92465i 0.0910368 0.552222i
\(324\) −1.00000 −0.0555556
\(325\) 0.650893 0.0361050
\(326\) 4.37938i 0.242552i
\(327\) 18.0910i 1.00044i
\(328\) 0.402139i 0.0222044i
\(329\) −3.95865 + 13.5526i −0.218247 + 0.747181i
\(330\) −10.2165 −0.562399
\(331\) 19.4117i 1.06697i −0.845811 0.533483i \(-0.820883\pi\)
0.845811 0.533483i \(-0.179117\pi\)
\(332\) 10.5106i 0.576842i
\(333\) 1.68285i 0.0922199i
\(334\) 2.29406i 0.125526i
\(335\) −7.69446 −0.420394
\(336\) −2.53963 0.741811i −0.138548 0.0404691i
\(337\) 26.3229i 1.43390i 0.697124 + 0.716951i \(0.254463\pi\)
−0.697124 + 0.716951i \(0.745537\pi\)
\(338\) 12.7431i 0.693134i
\(339\) 2.33655i 0.126904i
\(340\) −5.78478 −0.313724
\(341\) 5.69098 0.308184
\(342\) 0.709018 4.30085i 0.0383393 0.232563i
\(343\) −12.1873 13.9452i −0.658055 0.752970i
\(344\) 6.73509i 0.363132i
\(345\) 15.8940i 0.855705i
\(346\) 22.4568i 1.20729i
\(347\) −6.55866 −0.352087 −0.176044 0.984382i \(-0.556330\pi\)
−0.176044 + 0.984382i \(0.556330\pi\)
\(348\) 8.66728i 0.464615i
\(349\) 28.8644i 1.54508i −0.634968 0.772539i \(-0.718987\pi\)
0.634968 0.772539i \(-0.281013\pi\)
\(350\) −0.952654 + 3.26146i −0.0509215 + 0.174332i
\(351\) −0.506836 −0.0270529
\(352\) 4.07545i 0.217222i
\(353\) 34.6309i 1.84321i −0.388124 0.921607i \(-0.626877\pi\)
0.388124 0.921607i \(-0.373123\pi\)
\(354\) 9.42907i 0.501150i
\(355\) −20.2686 −1.07574
\(356\) −11.7389 −0.622162
\(357\) 1.71180 5.86046i 0.0905983 0.310168i
\(358\) −12.0887 −0.638910
\(359\) 11.1407 0.587983 0.293992 0.955808i \(-0.405016\pi\)
0.293992 + 0.955808i \(0.405016\pi\)
\(360\) −2.50684 −0.132122
\(361\) 17.9946 + 6.09875i 0.947084 + 0.320987i
\(362\) 14.6113i 0.767953i
\(363\) 5.60931 0.294412
\(364\) −1.28718 0.375977i −0.0674663 0.0197065i
\(365\) 33.8784 1.77327
\(366\) −5.31706 −0.277927
\(367\) 11.0195i 0.575213i 0.957749 + 0.287607i \(0.0928595\pi\)
−0.957749 + 0.287607i \(0.907140\pi\)
\(368\) −6.34027 −0.330509
\(369\) −0.402139 −0.0209345
\(370\) 4.21864i 0.219317i
\(371\) −1.23231 + 4.21889i −0.0639785 + 0.219034i
\(372\) 1.39640 0.0724002
\(373\) 27.0191i 1.39900i −0.714634 0.699499i \(-0.753407\pi\)
0.714634 0.699499i \(-0.246593\pi\)
\(374\) 9.40453 0.486296
\(375\) 9.31483i 0.481016i
\(376\) −5.33646 −0.275207
\(377\) 4.39289i 0.226245i
\(378\) 0.741811 2.53963i 0.0381546 0.130624i
\(379\) 24.9769i 1.28298i −0.767133 0.641488i \(-0.778318\pi\)
0.767133 0.641488i \(-0.221682\pi\)
\(380\) 1.77739 10.7815i 0.0911782 0.553080i
\(381\) 1.29418i 0.0663029i
\(382\) 0.142938i 0.00731337i
\(383\) −12.4870 −0.638057 −0.319029 0.947745i \(-0.603357\pi\)
−0.319029 + 0.947745i \(0.603357\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 7.57870 25.9461i 0.386246 1.32234i
\(386\) −5.94006 −0.302341
\(387\) −6.73509 −0.342364
\(388\) −4.87048 −0.247261
\(389\) 31.4241 1.59327 0.796634 0.604462i \(-0.206612\pi\)
0.796634 + 0.604462i \(0.206612\pi\)
\(390\) −1.27056 −0.0643371
\(391\) 14.6308i 0.739913i
\(392\) 3.76785 5.89943i 0.190305 0.297966i
\(393\) 4.38528i 0.221208i
\(394\) 9.50252i 0.478730i
\(395\) −8.47041 −0.426193
\(396\) 4.07545 0.204799
\(397\) 37.1197i 1.86299i −0.363759 0.931493i \(-0.618507\pi\)
0.363759 0.931493i \(-0.381493\pi\)
\(398\) −23.3287 −1.16936
\(399\) 10.3966 + 4.99106i 0.520481 + 0.249865i
\(400\) −1.28423 −0.0642114
\(401\) 38.8566i 1.94041i −0.242289 0.970204i \(-0.577898\pi\)
0.242289 0.970204i \(-0.422102\pi\)
\(402\) 3.06939 0.153087
\(403\) 0.707748 0.0352554
\(404\) 10.8277i 0.538700i
\(405\) 2.50684i 0.124566i
\(406\) −22.0117 6.42948i −1.09242 0.319090i
\(407\) 6.85839i 0.339958i
\(408\) 2.30760 0.114243
\(409\) 9.77207 0.483198 0.241599 0.970376i \(-0.422328\pi\)
0.241599 + 0.970376i \(0.422328\pi\)
\(410\) −1.00810 −0.0497864
\(411\) −17.3945 −0.858008
\(412\) −5.51407 −0.271659
\(413\) −23.9463 6.99459i −1.17832 0.344181i
\(414\) 6.34027i 0.311607i
\(415\) −26.3482 −1.29338
\(416\) 0.506836i 0.0248497i
\(417\) 4.29012i 0.210088i
\(418\) −2.88957 + 17.5279i −0.141333 + 0.857318i
\(419\) 30.2647i 1.47853i 0.673416 + 0.739264i \(0.264826\pi\)
−0.673416 + 0.739264i \(0.735174\pi\)
\(420\) 1.85960 6.36643i 0.0907391 0.310650i
\(421\) 21.7967i 1.06231i −0.847276 0.531153i \(-0.821759\pi\)
0.847276 0.531153i \(-0.178241\pi\)
\(422\) 23.1860 1.12868
\(423\) 5.33646i 0.259468i
\(424\) −1.66122 −0.0806761
\(425\) 2.96349i 0.143750i
\(426\) 8.08532 0.391735
\(427\) 3.94425 13.5034i 0.190876 0.653473i
\(428\) 1.64796i 0.0796573i
\(429\) 2.06559 0.0997274
\(430\) −16.8838 −0.814208
\(431\) 31.4075i 1.51285i −0.654082 0.756423i \(-0.726945\pi\)
0.654082 0.756423i \(-0.273055\pi\)
\(432\) 1.00000 0.0481125
\(433\) −13.5121 −0.649348 −0.324674 0.945826i \(-0.605255\pi\)
−0.324674 + 0.945826i \(0.605255\pi\)
\(434\) −1.03587 + 3.54635i −0.0497232 + 0.170230i
\(435\) −21.7275 −1.04175
\(436\) 18.0910i 0.866403i
\(437\) 27.2685 + 4.49536i 1.30443 + 0.215042i
\(438\) −13.5144 −0.645743
\(439\) 26.4310 1.26148 0.630742 0.775993i \(-0.282751\pi\)
0.630742 + 0.775993i \(0.282751\pi\)
\(440\) 10.2165 0.487052
\(441\) 5.89943 + 3.76785i 0.280925 + 0.179421i
\(442\) 1.16958 0.0556311
\(443\) −27.7520 −1.31854 −0.659269 0.751907i \(-0.729134\pi\)
−0.659269 + 0.751907i \(0.729134\pi\)
\(444\) 1.68285i 0.0798648i
\(445\) 29.4276i 1.39500i
\(446\) 23.0366i 1.09081i
\(447\) −9.33082 −0.441333
\(448\) 2.53963 + 0.741811i 0.119986 + 0.0350473i
\(449\) 15.1061i 0.712900i −0.934314 0.356450i \(-0.883987\pi\)
0.934314 0.356450i \(-0.116013\pi\)
\(450\) 1.28423i 0.0605391i
\(451\) 1.63890 0.0771728
\(452\) 2.33655i 0.109902i
\(453\) 7.62713i 0.358354i
\(454\) 17.6866i 0.830073i
\(455\) 0.942512 3.22674i 0.0441856 0.151272i
\(456\) −0.709018 + 4.30085i −0.0332028 + 0.201406i
\(457\) −20.9766 −0.981245 −0.490623 0.871372i \(-0.663231\pi\)
−0.490623 + 0.871372i \(0.663231\pi\)
\(458\) 3.87815 0.181214
\(459\) 2.30760i 0.107710i
\(460\) 15.8940i 0.741063i
\(461\) 7.85663i 0.365920i −0.983120 0.182960i \(-0.941432\pi\)
0.983120 0.182960i \(-0.0585678\pi\)
\(462\) −3.02321 + 10.3501i −0.140653 + 0.481532i
\(463\) 12.6622 0.588463 0.294231 0.955734i \(-0.404936\pi\)
0.294231 + 0.955734i \(0.404936\pi\)
\(464\) 8.66728i 0.402368i
\(465\) 3.50056i 0.162334i
\(466\) 21.9618i 1.01736i
\(467\) 8.29420i 0.383810i 0.981414 + 0.191905i \(0.0614665\pi\)
−0.981414 + 0.191905i \(0.938534\pi\)
\(468\) 0.506836 0.0234285
\(469\) −2.27691 + 7.79512i −0.105138 + 0.359945i
\(470\) 13.3776i 0.617065i
\(471\) 13.0191i 0.599890i
\(472\) 9.42907i 0.434008i
\(473\) 27.4485 1.26209
\(474\) 3.37893 0.155199
\(475\) 5.52327 + 0.910540i 0.253425 + 0.0417784i
\(476\) −1.71180 + 5.86046i −0.0784605 + 0.268614i
\(477\) 1.66122i 0.0760622i
\(478\) 5.77182i 0.263997i
\(479\) 3.93055i 0.179591i −0.995960 0.0897957i \(-0.971379\pi\)
0.995960 0.0897957i \(-0.0286214\pi\)
\(480\) 2.50684 0.114421
\(481\) 0.852932i 0.0388903i
\(482\) 10.8837i 0.495738i
\(483\) 16.1019 + 4.70328i 0.732664 + 0.214007i
\(484\) −5.60931 −0.254969
\(485\) 12.2095i 0.554405i
\(486\) 1.00000i 0.0453609i
\(487\) 19.0464i 0.863077i 0.902095 + 0.431538i \(0.142029\pi\)
−0.902095 + 0.431538i \(0.857971\pi\)
\(488\) 5.31706 0.240692
\(489\) −4.37938 −0.198042
\(490\) 14.7889 + 9.44538i 0.668095 + 0.426699i
\(491\) 19.5088 0.880419 0.440209 0.897895i \(-0.354904\pi\)
0.440209 + 0.897895i \(0.354904\pi\)
\(492\) 0.402139 0.0181298
\(493\) 20.0006 0.900784
\(494\) −0.359356 + 2.17983i −0.0161682 + 0.0980750i
\(495\) 10.2165i 0.459197i
\(496\) −1.39640 −0.0627004
\(497\) −5.99778 + 20.5337i −0.269037 + 0.921063i
\(498\) 10.5106 0.470989
\(499\) −14.9906 −0.671074 −0.335537 0.942027i \(-0.608918\pi\)
−0.335537 + 0.942027i \(0.608918\pi\)
\(500\) 9.31483i 0.416572i
\(501\) −2.29406 −0.102491
\(502\) −23.2434 −1.03740
\(503\) 3.32055i 0.148056i 0.997256 + 0.0740279i \(0.0235854\pi\)
−0.997256 + 0.0740279i \(0.976415\pi\)
\(504\) −0.741811 + 2.53963i −0.0330429 + 0.113124i
\(505\) −27.1433 −1.20786
\(506\) 25.8395i 1.14870i
\(507\) −12.7431 −0.565942
\(508\) 1.29418i 0.0574200i
\(509\) −7.68285 −0.340537 −0.170268 0.985398i \(-0.554463\pi\)
−0.170268 + 0.985398i \(0.554463\pi\)
\(510\) 5.78478i 0.256154i
\(511\) 10.0251 34.3215i 0.443485 1.51830i
\(512\) 1.00000i 0.0441942i
\(513\) −4.30085 0.709018i −0.189887 0.0313039i
\(514\) 29.4331i 1.29824i
\(515\) 13.8229i 0.609108i
\(516\) 6.73509 0.296496
\(517\) 21.7485i 0.956498i
\(518\) −4.27383 1.24836i −0.187781 0.0548498i
\(519\) 22.4568 0.985745
\(520\) 1.27056 0.0557175
\(521\) 37.1281 1.62661 0.813306 0.581836i \(-0.197665\pi\)
0.813306 + 0.581836i \(0.197665\pi\)
\(522\) 8.66728 0.379357
\(523\) −24.7335 −1.08152 −0.540761 0.841177i \(-0.681863\pi\)
−0.540761 + 0.841177i \(0.681863\pi\)
\(524\) 4.38528i 0.191572i
\(525\) 3.26146 + 0.952654i 0.142342 + 0.0415772i
\(526\) 9.57036i 0.417288i
\(527\) 3.22235i 0.140368i
\(528\) −4.07545 −0.177361
\(529\) 17.1990 0.747784
\(530\) 4.16441i 0.180891i
\(531\) 9.42907 0.409187
\(532\) −10.3966 4.99106i −0.450750 0.216390i
\(533\) 0.203819 0.00882837
\(534\) 11.7389i 0.507993i
\(535\) −4.13117 −0.178606
\(536\) −3.06939 −0.132578
\(537\) 12.0887i 0.521668i
\(538\) 20.3251i 0.876276i
\(539\) −24.0429 15.3557i −1.03560 0.661416i
\(540\) 2.50684i 0.107877i
\(541\) −32.9110 −1.41496 −0.707478 0.706735i \(-0.750167\pi\)
−0.707478 + 0.706735i \(0.750167\pi\)
\(542\) 27.0034 1.15990
\(543\) −14.6113 −0.627031
\(544\) −2.30760 −0.0989377
\(545\) 45.3512 1.94263
\(546\) −0.375977 + 1.28718i −0.0160903 + 0.0550860i
\(547\) 41.6086i 1.77905i 0.456883 + 0.889527i \(0.348966\pi\)
−0.456883 + 0.889527i \(0.651034\pi\)
\(548\) 17.3945 0.743056
\(549\) 5.31706i 0.226926i
\(550\) 5.23381i 0.223170i
\(551\) −6.14526 + 37.2767i −0.261797 + 1.58804i
\(552\) 6.34027i 0.269860i
\(553\) −2.50652 + 8.58122i −0.106588 + 0.364910i
\(554\) 1.93416i 0.0821748i
\(555\) −4.21864 −0.179071
\(556\) 4.29012i 0.181942i
\(557\) −8.31329 −0.352245 −0.176123 0.984368i \(-0.556356\pi\)
−0.176123 + 0.984368i \(0.556356\pi\)
\(558\) 1.39640i 0.0591145i
\(559\) 3.41359 0.144379
\(560\) −1.85960 + 6.36643i −0.0785824 + 0.269031i
\(561\) 9.40453i 0.397059i
\(562\) 26.0581 1.09920
\(563\) 8.97656 0.378317 0.189159 0.981947i \(-0.439424\pi\)
0.189159 + 0.981947i \(0.439424\pi\)
\(564\) 5.33646i 0.224706i
\(565\) −5.85736 −0.246421
\(566\) −20.4608 −0.860030
\(567\) −2.53963 0.741811i −0.106654 0.0311531i
\(568\) −8.08532 −0.339252
\(569\) 33.0391i 1.38507i 0.721383 + 0.692536i \(0.243507\pi\)
−0.721383 + 0.692536i \(0.756493\pi\)
\(570\) −10.7815 1.77739i −0.451588 0.0744467i
\(571\) −21.4576 −0.897973 −0.448987 0.893538i \(-0.648215\pi\)
−0.448987 + 0.893538i \(0.648215\pi\)
\(572\) −2.06559 −0.0863665
\(573\) 0.142938 0.00597134
\(574\) −0.298311 + 1.02129i −0.0124513 + 0.0426276i
\(575\) 8.14235 0.339559
\(576\) −1.00000 −0.0416667
\(577\) 22.0341i 0.917293i −0.888619 0.458646i \(-0.848334\pi\)
0.888619 0.458646i \(-0.151666\pi\)
\(578\) 11.6750i 0.485615i
\(579\) 5.94006i 0.246861i
\(580\) 21.7275 0.902184
\(581\) −7.79684 + 26.6929i −0.323468 + 1.10741i
\(582\) 4.87048i 0.201888i
\(583\) 6.77023i 0.280394i
\(584\) 13.5144 0.559229
\(585\) 1.27056i 0.0525310i
\(586\) 16.4410i 0.679173i
\(587\) 47.5397i 1.96217i −0.193573 0.981086i \(-0.562008\pi\)
0.193573 0.981086i \(-0.437992\pi\)
\(588\) −5.89943 3.76785i −0.243289 0.155383i
\(589\) 6.00572 + 0.990075i 0.247461 + 0.0407953i
\(590\) 23.6371 0.973126
\(591\) 9.50252 0.390882
\(592\) 1.68285i 0.0691649i
\(593\) 36.0330i 1.47970i 0.672774 + 0.739848i \(0.265103\pi\)
−0.672774 + 0.739848i \(0.734897\pi\)
\(594\) 4.07545i 0.167218i
\(595\) −14.6912 4.29121i −0.602281 0.175923i
\(596\) 9.33082 0.382205
\(597\) 23.3287i 0.954779i
\(598\) 3.21348i 0.131409i
\(599\) 19.8527i 0.811161i 0.914059 + 0.405580i \(0.132931\pi\)
−0.914059 + 0.405580i \(0.867069\pi\)
\(600\) 1.28423i 0.0524284i
\(601\) −32.8582 −1.34032 −0.670158 0.742219i \(-0.733774\pi\)
−0.670158 + 0.742219i \(0.733774\pi\)
\(602\) −4.99616 + 17.1046i −0.203628 + 0.697133i
\(603\) 3.06939i 0.124995i
\(604\) 7.62713i 0.310344i
\(605\) 14.0616i 0.571686i
\(606\) 10.8277 0.439846
\(607\) 16.9412 0.687621 0.343810 0.939039i \(-0.388282\pi\)
0.343810 + 0.939039i \(0.388282\pi\)
\(608\) 0.709018 4.30085i 0.0287545 0.174422i
\(609\) −6.42948 + 22.0117i −0.260536 + 0.891958i
\(610\) 13.3290i 0.539675i
\(611\) 2.70471i 0.109421i
\(612\) 2.30760i 0.0932793i
\(613\) 15.2574 0.616242 0.308121 0.951347i \(-0.400300\pi\)
0.308121 + 0.951347i \(0.400300\pi\)
\(614\) 8.09858i 0.326832i
\(615\) 1.00810i 0.0406504i
\(616\) 3.02321 10.3501i 0.121809 0.417019i
\(617\) −46.9250 −1.88913 −0.944564 0.328328i \(-0.893515\pi\)
−0.944564 + 0.328328i \(0.893515\pi\)
\(618\) 5.51407i 0.221808i
\(619\) 8.50433i 0.341818i −0.985287 0.170909i \(-0.945330\pi\)
0.985287 0.170909i \(-0.0546704\pi\)
\(620\) 3.50056i 0.140586i
\(621\) −6.34027 −0.254426
\(622\) 8.87438 0.355830
\(623\) −29.8125 8.70806i −1.19441 0.348881i
\(624\) −0.506836 −0.0202897
\(625\) −29.7719 −1.19088
\(626\) −22.9535 −0.917408
\(627\) 17.5279 + 2.88957i 0.699997 + 0.115398i
\(628\) 13.0191i 0.519520i
\(629\) 3.88336 0.154840
\(630\) −6.36643 1.85960i −0.253645 0.0740882i
\(631\) 43.6369 1.73716 0.868579 0.495552i \(-0.165034\pi\)
0.868579 + 0.495552i \(0.165034\pi\)
\(632\) −3.37893 −0.134406
\(633\) 23.1860i 0.921560i
\(634\) −19.9885 −0.793846
\(635\) −3.24430 −0.128746
\(636\) 1.66122i 0.0658718i
\(637\) −2.99005 1.90968i −0.118470 0.0756644i
\(638\) −35.3231 −1.39845
\(639\) 8.08532i 0.319850i
\(640\) −2.50684 −0.0990914
\(641\) 16.0386i 0.633488i 0.948511 + 0.316744i \(0.102590\pi\)
−0.948511 + 0.316744i \(0.897410\pi\)
\(642\) 1.64796 0.0650399
\(643\) 36.3835i 1.43482i 0.696649 + 0.717412i \(0.254673\pi\)
−0.696649 + 0.717412i \(0.745327\pi\)
\(644\) −16.1019 4.70328i −0.634505 0.185335i
\(645\) 16.8838i 0.664798i
\(646\) 9.92465 + 1.63613i 0.390480 + 0.0643727i
\(647\) 31.7012i 1.24630i 0.782101 + 0.623151i \(0.214148\pi\)
−0.782101 + 0.623151i \(0.785852\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −38.4277 −1.50842
\(650\) 0.650893i 0.0255301i
\(651\) 3.54635 + 1.03587i 0.138992 + 0.0405988i
\(652\) 4.37938 0.171510
\(653\) 4.26096 0.166744 0.0833721 0.996518i \(-0.473431\pi\)
0.0833721 + 0.996518i \(0.473431\pi\)
\(654\) −18.0910 −0.707415
\(655\) −10.9932 −0.429539
\(656\) −0.402139 −0.0157009
\(657\) 13.5144i 0.527247i
\(658\) −13.5526 3.95865i −0.528337 0.154324i
\(659\) 0.0621626i 0.00242151i −0.999999 0.00121076i \(-0.999615\pi\)
0.999999 0.00121076i \(-0.000385395\pi\)
\(660\) 10.2165i 0.397676i
\(661\) 16.2637 0.632585 0.316293 0.948662i \(-0.397562\pi\)
0.316293 + 0.948662i \(0.397562\pi\)
\(662\) 19.4117 0.754458
\(663\) 1.16958i 0.0454226i
\(664\) −10.5106 −0.407889
\(665\) 12.5118 26.0626i 0.485185 1.01066i
\(666\) 1.68285 0.0652093
\(667\) 54.9529i 2.12779i
\(668\) 2.29406 0.0887600
\(669\) 23.0366 0.890646
\(670\) 7.69446i 0.297263i
\(671\) 21.6694i 0.836538i
\(672\) 0.741811 2.53963i 0.0286160 0.0979683i
\(673\) 5.20897i 0.200791i 0.994948 + 0.100395i \(0.0320108\pi\)
−0.994948 + 0.100395i \(0.967989\pi\)
\(674\) −26.3229 −1.01392
\(675\) −1.28423 −0.0494299
\(676\) 12.7431 0.490120
\(677\) 40.7978 1.56799 0.783993 0.620770i \(-0.213180\pi\)
0.783993 + 0.620770i \(0.213180\pi\)
\(678\) 2.33655 0.0897348
\(679\) −12.3692 3.61298i −0.474687 0.138653i
\(680\) 5.78478i 0.221836i
\(681\) −17.6866 −0.677752
\(682\) 5.69098i 0.217919i
\(683\) 9.91494i 0.379385i −0.981844 0.189692i \(-0.939251\pi\)
0.981844 0.189692i \(-0.0607491\pi\)
\(684\) 4.30085 + 0.709018i 0.164447 + 0.0271100i
\(685\) 43.6052i 1.66607i
\(686\) 13.9452 12.1873i 0.532430 0.465315i
\(687\) 3.87815i 0.147961i
\(688\) −6.73509 −0.256773
\(689\) 0.841968i 0.0320764i
\(690\) −15.8940 −0.605075
\(691\) 18.4742i 0.702790i −0.936227 0.351395i \(-0.885707\pi\)
0.936227 0.351395i \(-0.114293\pi\)
\(692\) −22.4568 −0.853681
\(693\) 10.3501 + 3.02321i 0.393169 + 0.114842i
\(694\) 6.55866i 0.248963i
\(695\) −10.7546 −0.407947
\(696\) −8.66728 −0.328532
\(697\) 0.927978i 0.0351497i
\(698\) 28.8644 1.09253
\(699\) −21.9618 −0.830673
\(700\) −3.26146 0.952654i −0.123272 0.0360069i
\(701\) −3.23079 −0.122025 −0.0610126 0.998137i \(-0.519433\pi\)
−0.0610126 + 0.998137i \(0.519433\pi\)
\(702\) 0.506836i 0.0191293i
\(703\) −1.19317 + 7.23770i −0.0450014 + 0.272975i
\(704\) 4.07545 0.153599
\(705\) −13.3776 −0.503831
\(706\) 34.6309 1.30335
\(707\) −8.03213 + 27.4984i −0.302079 + 1.03418i
\(708\) −9.42907 −0.354366
\(709\) 24.7361 0.928984 0.464492 0.885577i \(-0.346237\pi\)
0.464492 + 0.885577i \(0.346237\pi\)
\(710\) 20.2686i 0.760666i
\(711\) 3.37893i 0.126720i
\(712\) 11.7389i 0.439935i
\(713\) 8.85358 0.331569
\(714\) 5.86046 + 1.71180i 0.219322 + 0.0640627i
\(715\) 5.17809i 0.193649i
\(716\) 12.0887i 0.451777i
\(717\) −5.77182 −0.215552
\(718\) 11.1407i 0.415767i
\(719\) 13.1215i 0.489349i −0.969605 0.244675i \(-0.921319\pi\)
0.969605 0.244675i \(-0.0786811\pi\)
\(720\) 2.50684i 0.0934243i
\(721\) −14.0037 4.09039i −0.521524 0.152334i
\(722\) −6.09875 + 17.9946i −0.226972 + 0.669689i
\(723\) −10.8837 −0.404768
\(724\) 14.6113 0.543025
\(725\) 11.1308i 0.413386i
\(726\) 5.60931i 0.208181i
\(727\) 5.24285i 0.194446i −0.995263 0.0972232i \(-0.969004\pi\)
0.995263 0.0972232i \(-0.0309961\pi\)
\(728\) 0.375977 1.28718i 0.0139346 0.0477059i
\(729\) 1.00000 0.0370370
\(730\) 33.8784i 1.25389i
\(731\) 15.5419i 0.574839i
\(732\) 5.31706i 0.196524i
\(733\) 28.0831i 1.03727i −0.854995 0.518636i \(-0.826440\pi\)
0.854995 0.518636i \(-0.173560\pi\)
\(734\) −11.0195 −0.406737
\(735\) 9.44538 14.7889i 0.348398 0.545497i
\(736\) 6.34027i 0.233706i
\(737\) 12.5092i 0.460781i
\(738\) 0.402139i 0.0148030i
\(739\) 37.2496 1.37025 0.685125 0.728425i \(-0.259747\pi\)
0.685125 + 0.728425i \(0.259747\pi\)
\(740\) 4.21864 0.155080
\(741\) 2.17983 + 0.359356i 0.0800779 + 0.0132013i
\(742\) −4.21889 1.23231i −0.154880 0.0452396i
\(743\) 22.4717i 0.824408i 0.911092 + 0.412204i \(0.135241\pi\)
−0.911092 + 0.412204i \(0.864759\pi\)
\(744\) 1.39640i 0.0511946i
\(745\) 23.3908i 0.856974i
\(746\) 27.0191 0.989241
\(747\) 10.5106i 0.384561i
\(748\) 9.40453i 0.343864i
\(749\) −1.22248 + 4.18521i −0.0446683 + 0.152924i
\(750\) 9.31483 0.340130
\(751\) 43.1905i 1.57604i 0.615647 + 0.788022i \(0.288895\pi\)
−0.615647 + 0.788022i \(0.711105\pi\)
\(752\) 5.33646i 0.194601i
\(753\) 23.2434i 0.847037i
\(754\) −4.39289 −0.159980
\(755\) 19.1200 0.695847
\(756\) 2.53963 + 0.741811i 0.0923654 + 0.0269794i
\(757\) 8.50229 0.309021 0.154511 0.987991i \(-0.450620\pi\)
0.154511 + 0.987991i \(0.450620\pi\)
\(758\) 24.9769 0.907200
\(759\) 25.8395 0.937913
\(760\) 10.7815 + 1.77739i 0.391087 + 0.0644728i
\(761\) 4.95250i 0.179528i 0.995963 + 0.0897639i \(0.0286113\pi\)
−0.995963 + 0.0897639i \(0.971389\pi\)
\(762\) 1.29418 0.0468832
\(763\) 13.4201 45.9445i 0.485841 1.66330i
\(764\) −0.142938 −0.00517133
\(765\) 5.78478 0.209149
\(766\) 12.4870i 0.451174i
\(767\) −4.77899 −0.172559
\(768\) 1.00000 0.0360844
\(769\) 5.92509i 0.213664i −0.994277 0.106832i \(-0.965929\pi\)
0.994277 0.106832i \(-0.0340708\pi\)
\(770\) 25.9461 + 7.57870i 0.935032 + 0.273118i
\(771\) 29.4331 1.06001
\(772\) 5.94006i 0.213787i
\(773\) −17.3774 −0.625023 −0.312512 0.949914i \(-0.601170\pi\)
−0.312512 + 0.949914i \(0.601170\pi\)
\(774\) 6.73509i 0.242088i
\(775\) 1.79330 0.0644172
\(776\) 4.87048i 0.174840i
\(777\) −1.24836 + 4.27383i −0.0447847 + 0.153323i
\(778\) 31.4241i 1.12661i
\(779\) 1.72954 + 0.285124i 0.0619672 + 0.0102156i
\(780\) 1.27056i 0.0454932i
\(781\) 32.9513i 1.17909i
\(782\) 14.6308 0.523197
\(783\) 8.66728i 0.309743i
\(784\) 5.89943 + 3.76785i 0.210694 + 0.134566i
\(785\) −32.6368 −1.16486
\(786\) 4.38528 0.156418
\(787\) 11.7715 0.419609 0.209805 0.977743i \(-0.432717\pi\)
0.209805 + 0.977743i \(0.432717\pi\)
\(788\) −9.50252 −0.338513
\(789\) −9.57036 −0.340714
\(790\) 8.47041i 0.301364i
\(791\) −1.73328 + 5.93398i −0.0616284 + 0.210988i
\(792\) 4.07545i 0.144815i
\(793\) 2.69488i 0.0956979i
\(794\) 37.1197 1.31733
\(795\) −4.16441 −0.147697
\(796\) 23.3287i 0.826863i
\(797\) −1.38112 −0.0489218 −0.0244609 0.999701i \(-0.507787\pi\)
−0.0244609 + 0.999701i \(0.507787\pi\)
\(798\) −4.99106 + 10.3966i −0.176682 + 0.368036i
\(799\) 12.3144 0.435654
\(800\) 1.28423i 0.0454043i
\(801\) 11.7389 0.414775
\(802\) 38.8566 1.37208
\(803\) 55.0772i 1.94363i
\(804\) 3.06939i 0.108249i
\(805\) 11.7904 40.3649i 0.415555 1.42268i
\(806\) 0.707748i 0.0249294i
\(807\) −20.3251 −0.715477
\(808\) −10.8277 −0.380918
\(809\) −0.562056 −0.0197608 −0.00988042 0.999951i \(-0.503145\pi\)
−0.00988042 + 0.999951i \(0.503145\pi\)
\(810\) 2.50684 0.0880812
\(811\) 27.0061 0.948311 0.474156 0.880441i \(-0.342753\pi\)
0.474156 + 0.880441i \(0.342753\pi\)
\(812\) 6.42948 22.0117i 0.225631 0.772459i
\(813\) 27.0034i 0.947051i
\(814\) −6.85839 −0.240387
\(815\) 10.9784i 0.384556i
\(816\) 2.30760i 0.0807823i
\(817\) 28.9666 + 4.77530i 1.01341 + 0.167067i
\(818\) 9.77207i 0.341672i
\(819\) 1.28718 + 0.375977i 0.0449776 + 0.0131377i
\(820\) 1.00810i 0.0352043i
\(821\) 5.06969 0.176933 0.0884667 0.996079i \(-0.471803\pi\)
0.0884667 + 0.996079i \(0.471803\pi\)
\(822\) 17.3945i 0.606703i
\(823\) −42.8564 −1.49388 −0.746941 0.664890i \(-0.768478\pi\)
−0.746941 + 0.664890i \(0.768478\pi\)
\(824\) 5.51407i 0.192092i
\(825\) 5.23381 0.182218
\(826\) 6.99459 23.9463i 0.243373 0.833200i
\(827\) 35.3843i 1.23043i 0.788358 + 0.615217i \(0.210931\pi\)
−0.788358 + 0.615217i \(0.789069\pi\)
\(828\) 6.34027 0.220340
\(829\) 28.4298 0.987407 0.493703 0.869630i \(-0.335643\pi\)
0.493703 + 0.869630i \(0.335643\pi\)
\(830\) 26.3482i 0.914561i
\(831\) 1.93416 0.0670954
\(832\) 0.506836 0.0175714
\(833\) −8.69470 + 13.6136i −0.301253 + 0.471682i
\(834\) 4.29012 0.148555
\(835\) 5.75084i 0.199016i
\(836\) −17.5279 2.88957i −0.606215 0.0999378i
\(837\) −1.39640 −0.0482668
\(838\) −30.2647 −1.04548
\(839\) −15.7323 −0.543139 −0.271569 0.962419i \(-0.587543\pi\)
−0.271569 + 0.962419i \(0.587543\pi\)
\(840\) 6.36643 + 1.85960i 0.219663 + 0.0641622i
\(841\) −46.1218 −1.59041
\(842\) 21.7967 0.751164
\(843\) 26.0581i 0.897489i
\(844\) 23.1860i 0.798095i
\(845\) 31.9449i 1.09894i
\(846\) 5.33646 0.183471
\(847\) −14.2456 4.16105i −0.489483 0.142975i
\(848\) 1.66122i 0.0570466i
\(849\) 20.4608i 0.702211i
\(850\) 2.96349 0.101647
\(851\) 10.6698i 0.365755i
\(852\) 8.08532i 0.276998i
\(853\) 28.5022i 0.975896i 0.872873 + 0.487948i \(0.162254\pi\)
−0.872873 + 0.487948i \(0.837746\pi\)
\(854\) 13.5034 + 3.94425i 0.462075 + 0.134969i
\(855\) −1.77739 + 10.7815i −0.0607855 + 0.368720i
\(856\) −1.64796 −0.0563262
\(857\) −51.1600 −1.74759 −0.873796 0.486293i \(-0.838349\pi\)
−0.873796 + 0.486293i \(0.838349\pi\)
\(858\) 2.06559i 0.0705180i
\(859\) 44.1527i 1.50647i −0.657752 0.753235i \(-0.728492\pi\)
0.657752 0.753235i \(-0.271508\pi\)
\(860\) 16.8838i 0.575732i
\(861\) 1.02129 + 0.298311i 0.0348053 + 0.0101664i
\(862\) 31.4075 1.06974
\(863\) 17.8212i 0.606640i 0.952889 + 0.303320i \(0.0980952\pi\)
−0.952889 + 0.303320i \(0.901905\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 56.2956i 1.91411i
\(866\) 13.5121i 0.459159i
\(867\) 11.6750 0.396503
\(868\) −3.54635 1.03587i −0.120371 0.0351596i
\(869\) 13.7706i 0.467137i
\(870\) 21.7275i 0.736630i
\(871\) 1.55568i 0.0527122i
\(872\) 18.0910 0.612640
\(873\) 4.87048 0.164841
\(874\) −4.49536 + 27.2685i −0.152058 + 0.922372i
\(875\) −6.90984 + 23.6562i −0.233595 + 0.799726i
\(876\) 13.5144i 0.456609i
\(877\) 6.47255i 0.218563i 0.994011 + 0.109281i \(0.0348549\pi\)
−0.994011 + 0.109281i \(0.965145\pi\)
\(878\) 26.4310i 0.892004i
\(879\) −16.4410 −0.554542
\(880\) 10.2165i 0.344398i
\(881\) 4.78225i 0.161118i −0.996750 0.0805590i \(-0.974329\pi\)
0.996750 0.0805590i \(-0.0256706\pi\)
\(882\) −3.76785 + 5.89943i −0.126870 + 0.198644i
\(883\) 17.8380 0.600297 0.300148 0.953892i \(-0.402964\pi\)
0.300148 + 0.953892i \(0.402964\pi\)
\(884\) 1.16958i 0.0393371i
\(885\) 23.6371i 0.794554i
\(886\) 27.7520i 0.932348i
\(887\) −57.0906 −1.91692 −0.958458 0.285234i \(-0.907929\pi\)
−0.958458 + 0.285234i \(0.907929\pi\)
\(888\) −1.68285 −0.0564729
\(889\) −0.960038 + 3.28674i −0.0321986 + 0.110234i
\(890\) 29.4276 0.986414
\(891\) −4.07545 −0.136533
\(892\) −23.0366 −0.771322
\(893\) −3.78365 + 22.9513i −0.126615 + 0.768037i
\(894\) 9.33082i 0.312069i
\(895\) 30.3045 1.01297
\(896\) −0.741811 + 2.53963i −0.0247822 + 0.0848431i
\(897\) 3.21348 0.107295
\(898\) 15.1061 0.504097
\(899\) 12.1030i 0.403659i
\(900\) 1.28423 0.0428076
\(901\) 3.83344 0.127711
\(902\) 1.63890i 0.0545694i
\(903\) 17.1046 + 4.99616i 0.569207 + 0.166262i
\(904\) −2.33655 −0.0777126
\(905\) 36.6282i 1.21756i
\(906\) −7.62713 −0.253395
\(907\) 32.8683i 1.09137i −0.837989 0.545687i \(-0.816269\pi\)
0.837989 0.545687i \(-0.183731\pi\)
\(908\) 17.6866 0.586951
\(909\) 10.8277i 0.359133i
\(910\) 3.22674 + 0.942512i 0.106965 + 0.0312440i
\(911\) 35.4594i 1.17482i −0.809289 0.587411i \(-0.800147\pi\)
0.809289 0.587411i \(-0.199853\pi\)
\(912\) −4.30085 0.709018i −0.142415 0.0234779i
\(913\) 42.8353i 1.41764i
\(914\) 20.9766i 0.693845i
\(915\) 13.3290 0.440643
\(916\) 3.87815i 0.128138i
\(917\) −3.25305 + 11.1370i −0.107425 + 0.367776i
\(918\) −2.30760 −0.0761622
\(919\) −17.4663 −0.576161 −0.288080 0.957606i \(-0.593017\pi\)
−0.288080 + 0.957606i \(0.593017\pi\)
\(920\) 15.8940 0.524010
\(921\) −8.09858 −0.266857
\(922\) 7.85663 0.258744
\(923\) 4.09793i 0.134885i
\(924\) −10.3501 3.02321i −0.340495 0.0994565i
\(925\) 2.16117i 0.0710588i
\(926\) 12.6622i 0.416106i
\(927\) 5.51407 0.181106
\(928\) 8.66728 0.284517
\(929\) 20.8426i 0.683825i −0.939732 0.341912i \(-0.888925\pi\)
0.939732 0.341912i \(-0.111075\pi\)
\(930\) −3.50056 −0.114788
\(931\) −22.7011 20.3877i −0.743998 0.668181i
\(932\) 21.9618 0.719384
\(933\) 8.87438i 0.290534i
\(934\) −8.29420 −0.271394
\(935\) −23.5756 −0.771005
\(936\) 0.506836i 0.0165665i
\(937\) 8.44662i 0.275939i −0.990436 0.137969i \(-0.955942\pi\)
0.990436 0.137969i \(-0.0440576\pi\)
\(938\) −7.79512 2.27691i −0.254520 0.0743437i
\(939\) 22.9535i 0.749061i
\(940\) 13.3776 0.436331
\(941\) −36.0231 −1.17432 −0.587160 0.809471i \(-0.699754\pi\)
−0.587160 + 0.809471i \(0.699754\pi\)
\(942\) 13.0191 0.424186
\(943\) 2.54967 0.0830288
\(944\) 9.42907 0.306890
\(945\) −1.85960 + 6.36643i −0.0604927 + 0.207100i
\(946\) 27.4485i 0.892429i
\(947\) 34.9342 1.13521 0.567605 0.823301i \(-0.307870\pi\)
0.567605 + 0.823301i \(0.307870\pi\)
\(948\) 3.37893i 0.109742i
\(949\) 6.84958i 0.222347i
\(950\) −0.910540 + 5.52327i −0.0295418 + 0.179198i
\(951\) 19.9885i 0.648172i
\(952\) −5.86046 1.71180i −0.189938 0.0554799i
\(953\) 44.7390i 1.44924i 0.689149 + 0.724620i \(0.257985\pi\)
−0.689149 + 0.724620i \(0.742015\pi\)
\(954\) 1.66122 0.0537841
\(955\) 0.358323i 0.0115951i
\(956\) 5.77182 0.186674
\(957\) 35.3231i 1.14183i
\(958\) 3.93055 0.126990
\(959\) 44.1756 + 12.9034i 1.42650 + 0.416674i
\(960\) 2.50684i 0.0809078i
\(961\) −29.0501 −0.937099
\(962\) −0.852932 −0.0274996
\(963\) 1.64796i 0.0531049i
\(964\) 10.8837 0.350539
\(965\) 14.8908 0.479351
\(966\) −4.70328 + 16.1019i −0.151326 + 0.518071i
\(967\) −29.5592 −0.950559 −0.475280 0.879835i \(-0.657653\pi\)
−0.475280 + 0.879835i \(0.657653\pi\)
\(968\) 5.60931i 0.180290i
\(969\) 1.63613 9.92465i 0.0525601 0.318826i
\(970\) 12.2095 0.392024
\(971\) 33.7683 1.08368 0.541838 0.840483i \(-0.317728\pi\)
0.541838 + 0.840483i \(0.317728\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −3.18246 + 10.8953i −0.102025 + 0.349288i
\(974\) −19.0464 −0.610287
\(975\) 0.650893 0.0208453
\(976\) 5.31706i 0.170195i
\(977\) 51.1745i 1.63722i −0.574351 0.818609i \(-0.694745\pi\)
0.574351 0.818609i \(-0.305255\pi\)
\(978\) 4.37938i 0.140037i
\(979\) −47.8414 −1.52902
\(980\) −9.44538 + 14.7889i −0.301722 + 0.472414i
\(981\) 18.0910i 0.577602i
\(982\) 19.5088i 0.622550i
\(983\) −57.3236 −1.82834 −0.914170 0.405331i \(-0.867156\pi\)
−0.914170 + 0.405331i \(0.867156\pi\)
\(984\) 0.402139i 0.0128197i
\(985\) 23.8213i 0.759009i
\(986\) 20.0006i 0.636950i
\(987\) −3.95865 + 13.5526i −0.126005 + 0.431385i
\(988\) −2.17983 0.359356i −0.0693495 0.0114326i
\(989\) 42.7023 1.35785
\(990\) −10.2165 −0.324701
\(991\) 52.1178i 1.65558i −0.561041 0.827788i \(-0.689599\pi\)
0.561041 0.827788i \(-0.310401\pi\)
\(992\) 1.39640i 0.0443359i
\(993\) 19.4117i 0.616013i
\(994\) −20.5337 5.99778i −0.651290 0.190238i
\(995\) 58.4811 1.85398
\(996\) 10.5106i 0.333040i
\(997\) 15.2597i 0.483281i 0.970366 + 0.241640i \(0.0776854\pi\)
−0.970366 + 0.241640i \(0.922315\pi\)
\(998\) 14.9906i 0.474521i
\(999\) 1.68285i 0.0532432i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 798.2.e.b.265.8 yes 12
3.2 odd 2 2394.2.e.b.1063.5 12
7.6 odd 2 798.2.e.a.265.11 yes 12
19.18 odd 2 798.2.e.a.265.2 12
21.20 even 2 2394.2.e.a.1063.2 12
57.56 even 2 2394.2.e.a.1063.11 12
133.132 even 2 inner 798.2.e.b.265.5 yes 12
399.398 odd 2 2394.2.e.b.1063.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
798.2.e.a.265.2 12 19.18 odd 2
798.2.e.a.265.11 yes 12 7.6 odd 2
798.2.e.b.265.5 yes 12 133.132 even 2 inner
798.2.e.b.265.8 yes 12 1.1 even 1 trivial
2394.2.e.a.1063.2 12 21.20 even 2
2394.2.e.a.1063.11 12 57.56 even 2
2394.2.e.b.1063.5 12 3.2 odd 2
2394.2.e.b.1063.8 12 399.398 odd 2