Properties

Label 792.2.q.f.529.4
Level $792$
Weight $2$
Character 792.529
Analytic conductor $6.324$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(265,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.265"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,1,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 7x^{10} - 2x^{9} + 39x^{8} - 9x^{7} + 67x^{6} - 18x^{5} + 88x^{4} - 16x^{3} + 24x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.4
Root \(0.322589 - 0.558741i\) of defining polynomial
Character \(\chi\) \(=\) 792.529
Dual form 792.2.q.f.265.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.893881 - 1.48357i) q^{3} +(-1.29187 - 2.23759i) q^{5} +(-0.251298 + 0.435260i) q^{7} +(-1.40195 - 2.65227i) q^{9} +(-0.500000 + 0.866025i) q^{11} +(-1.11008 - 1.92272i) q^{13} +(-4.47440 - 0.0835557i) q^{15} -2.46350 q^{17} +3.08115 q^{19} +(0.421109 + 0.761889i) q^{21} +(-3.34183 - 5.78822i) q^{23} +(-0.837868 + 1.45123i) q^{25} +(-5.18800 - 0.290916i) q^{27} +(-4.14591 + 7.18093i) q^{29} +(-1.35878 - 2.35348i) q^{31} +(0.837868 + 1.51591i) q^{33} +1.29858 q^{35} +2.51492 q^{37} +(-3.84477 - 0.0717978i) q^{39} +(-0.578267 - 1.00159i) q^{41} +(-1.58657 + 2.74802i) q^{43} +(-4.12354 + 6.56339i) q^{45} +(5.10003 - 8.83351i) q^{47} +(3.37370 + 5.84342i) q^{49} +(-2.20207 + 3.65477i) q^{51} -12.4202 q^{53} +2.58374 q^{55} +(2.75418 - 4.57110i) q^{57} +(-3.45322 - 5.98116i) q^{59} +(0.631684 - 1.09411i) q^{61} +(1.50674 + 0.0562937i) q^{63} +(-2.86817 + 4.96781i) q^{65} +(2.74005 + 4.74591i) q^{67} +(-11.5744 - 0.216143i) q^{69} +8.68115 q^{71} +5.92397 q^{73} +(1.40405 + 2.54026i) q^{75} +(-0.251298 - 0.435260i) q^{77} +(2.96672 - 5.13851i) q^{79} +(-5.06905 + 7.43672i) q^{81} +(5.37161 - 9.30390i) q^{83} +(3.18252 + 5.51229i) q^{85} +(6.94746 + 12.5696i) q^{87} +9.82062 q^{89} +1.11584 q^{91} +(-4.70615 - 0.0878834i) q^{93} +(-3.98045 - 6.89434i) q^{95} +(-0.971719 + 1.68307i) q^{97} +(2.99791 + 0.112006i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{3} - 4 q^{5} - 5 q^{7} + 5 q^{9} - 6 q^{11} - 3 q^{13} - 7 q^{15} + 14 q^{17} + 10 q^{19} + 9 q^{21} - 8 q^{23} + 2 q^{25} - 11 q^{27} - 8 q^{29} - 4 q^{31} - 2 q^{33} + 16 q^{35} + 6 q^{37}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.893881 1.48357i 0.516082 0.856539i
\(4\) 0 0
\(5\) −1.29187 2.23759i −0.577743 1.00068i −0.995738 0.0922306i \(-0.970600\pi\)
0.417995 0.908449i \(-0.362733\pi\)
\(6\) 0 0
\(7\) −0.251298 + 0.435260i −0.0949816 + 0.164513i −0.909601 0.415483i \(-0.863613\pi\)
0.814619 + 0.579996i \(0.196946\pi\)
\(8\) 0 0
\(9\) −1.40195 2.65227i −0.467318 0.884089i
\(10\) 0 0
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) 0 0
\(13\) −1.11008 1.92272i −0.307881 0.533266i 0.670017 0.742345i \(-0.266287\pi\)
−0.977899 + 0.209079i \(0.932953\pi\)
\(14\) 0 0
\(15\) −4.47440 0.0835557i −1.15528 0.0215740i
\(16\) 0 0
\(17\) −2.46350 −0.597486 −0.298743 0.954334i \(-0.596567\pi\)
−0.298743 + 0.954334i \(0.596567\pi\)
\(18\) 0 0
\(19\) 3.08115 0.706864 0.353432 0.935460i \(-0.385015\pi\)
0.353432 + 0.935460i \(0.385015\pi\)
\(20\) 0 0
\(21\) 0.421109 + 0.761889i 0.0918935 + 0.166258i
\(22\) 0 0
\(23\) −3.34183 5.78822i −0.696820 1.20693i −0.969563 0.244841i \(-0.921264\pi\)
0.272743 0.962087i \(-0.412069\pi\)
\(24\) 0 0
\(25\) −0.837868 + 1.45123i −0.167574 + 0.290246i
\(26\) 0 0
\(27\) −5.18800 0.290916i −0.998432 0.0559867i
\(28\) 0 0
\(29\) −4.14591 + 7.18093i −0.769877 + 1.33347i 0.167753 + 0.985829i \(0.446349\pi\)
−0.937629 + 0.347636i \(0.886984\pi\)
\(30\) 0 0
\(31\) −1.35878 2.35348i −0.244045 0.422698i 0.717818 0.696231i \(-0.245141\pi\)
−0.961863 + 0.273533i \(0.911808\pi\)
\(32\) 0 0
\(33\) 0.837868 + 1.51591i 0.145854 + 0.263886i
\(34\) 0 0
\(35\) 1.29858 0.219500
\(36\) 0 0
\(37\) 2.51492 0.413451 0.206725 0.978399i \(-0.433719\pi\)
0.206725 + 0.978399i \(0.433719\pi\)
\(38\) 0 0
\(39\) −3.84477 0.0717978i −0.615655 0.0114969i
\(40\) 0 0
\(41\) −0.578267 1.00159i −0.0903101 0.156422i 0.817332 0.576168i \(-0.195452\pi\)
−0.907642 + 0.419746i \(0.862119\pi\)
\(42\) 0 0
\(43\) −1.58657 + 2.74802i −0.241950 + 0.419069i −0.961270 0.275610i \(-0.911120\pi\)
0.719320 + 0.694679i \(0.244454\pi\)
\(44\) 0 0
\(45\) −4.12354 + 6.56339i −0.614701 + 0.978412i
\(46\) 0 0
\(47\) 5.10003 8.83351i 0.743915 1.28850i −0.206785 0.978387i \(-0.566300\pi\)
0.950700 0.310113i \(-0.100367\pi\)
\(48\) 0 0
\(49\) 3.37370 + 5.84342i 0.481957 + 0.834774i
\(50\) 0 0
\(51\) −2.20207 + 3.65477i −0.308352 + 0.511770i
\(52\) 0 0
\(53\) −12.4202 −1.70605 −0.853024 0.521872i \(-0.825234\pi\)
−0.853024 + 0.521872i \(0.825234\pi\)
\(54\) 0 0
\(55\) 2.58374 0.348392
\(56\) 0 0
\(57\) 2.75418 4.57110i 0.364800 0.605457i
\(58\) 0 0
\(59\) −3.45322 5.98116i −0.449571 0.778680i 0.548787 0.835962i \(-0.315090\pi\)
−0.998358 + 0.0572820i \(0.981757\pi\)
\(60\) 0 0
\(61\) 0.631684 1.09411i 0.0808788 0.140086i −0.822749 0.568405i \(-0.807561\pi\)
0.903628 + 0.428319i \(0.140894\pi\)
\(62\) 0 0
\(63\) 1.50674 + 0.0562937i 0.189831 + 0.00709234i
\(64\) 0 0
\(65\) −2.86817 + 4.96781i −0.355752 + 0.616181i
\(66\) 0 0
\(67\) 2.74005 + 4.74591i 0.334751 + 0.579805i 0.983437 0.181251i \(-0.0580146\pi\)
−0.648686 + 0.761056i \(0.724681\pi\)
\(68\) 0 0
\(69\) −11.5744 0.216143i −1.39340 0.0260205i
\(70\) 0 0
\(71\) 8.68115 1.03026 0.515131 0.857111i \(-0.327743\pi\)
0.515131 + 0.857111i \(0.327743\pi\)
\(72\) 0 0
\(73\) 5.92397 0.693348 0.346674 0.937986i \(-0.387311\pi\)
0.346674 + 0.937986i \(0.387311\pi\)
\(74\) 0 0
\(75\) 1.40405 + 2.54026i 0.162125 + 0.293324i
\(76\) 0 0
\(77\) −0.251298 0.435260i −0.0286380 0.0496025i
\(78\) 0 0
\(79\) 2.96672 5.13851i 0.333782 0.578127i −0.649468 0.760389i \(-0.725008\pi\)
0.983250 + 0.182262i \(0.0583418\pi\)
\(80\) 0 0
\(81\) −5.06905 + 7.43672i −0.563228 + 0.826302i
\(82\) 0 0
\(83\) 5.37161 9.30390i 0.589610 1.02124i −0.404673 0.914462i \(-0.632615\pi\)
0.994283 0.106774i \(-0.0340521\pi\)
\(84\) 0 0
\(85\) 3.18252 + 5.51229i 0.345193 + 0.597892i
\(86\) 0 0
\(87\) 6.94746 + 12.5696i 0.744845 + 1.34761i
\(88\) 0 0
\(89\) 9.82062 1.04098 0.520492 0.853867i \(-0.325749\pi\)
0.520492 + 0.853867i \(0.325749\pi\)
\(90\) 0 0
\(91\) 1.11584 0.116972
\(92\) 0 0
\(93\) −4.70615 0.0878834i −0.488005 0.00911308i
\(94\) 0 0
\(95\) −3.98045 6.89434i −0.408386 0.707345i
\(96\) 0 0
\(97\) −0.971719 + 1.68307i −0.0986631 + 0.170890i −0.911132 0.412116i \(-0.864790\pi\)
0.812468 + 0.583005i \(0.198123\pi\)
\(98\) 0 0
\(99\) 2.99791 + 0.112006i 0.301301 + 0.0112570i
\(100\) 0 0
\(101\) 6.74863 11.6890i 0.671514 1.16310i −0.305961 0.952044i \(-0.598978\pi\)
0.977475 0.211052i \(-0.0676889\pi\)
\(102\) 0 0
\(103\) −8.54821 14.8059i −0.842280 1.45887i −0.887963 0.459915i \(-0.847880\pi\)
0.0456829 0.998956i \(-0.485454\pi\)
\(104\) 0 0
\(105\) 1.16077 1.92653i 0.113280 0.188010i
\(106\) 0 0
\(107\) 15.5517 1.50344 0.751721 0.659482i \(-0.229224\pi\)
0.751721 + 0.659482i \(0.229224\pi\)
\(108\) 0 0
\(109\) −7.40551 −0.709319 −0.354660 0.934996i \(-0.615403\pi\)
−0.354660 + 0.934996i \(0.615403\pi\)
\(110\) 0 0
\(111\) 2.24804 3.73106i 0.213375 0.354137i
\(112\) 0 0
\(113\) −7.12659 12.3436i −0.670414 1.16119i −0.977787 0.209601i \(-0.932783\pi\)
0.307373 0.951589i \(-0.400550\pi\)
\(114\) 0 0
\(115\) −8.63444 + 14.9553i −0.805165 + 1.39459i
\(116\) 0 0
\(117\) −3.54328 + 5.63980i −0.327576 + 0.521399i
\(118\) 0 0
\(119\) 0.619071 1.07226i 0.0567502 0.0982942i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) −2.00283 0.0374011i −0.180589 0.00337234i
\(124\) 0 0
\(125\) −8.58905 −0.768228
\(126\) 0 0
\(127\) 12.3963 1.09999 0.549995 0.835168i \(-0.314630\pi\)
0.549995 + 0.835168i \(0.314630\pi\)
\(128\) 0 0
\(129\) 2.65867 + 4.81019i 0.234083 + 0.423514i
\(130\) 0 0
\(131\) −1.87297 3.24409i −0.163642 0.283437i 0.772530 0.634978i \(-0.218991\pi\)
−0.936172 + 0.351541i \(0.885658\pi\)
\(132\) 0 0
\(133\) −0.774286 + 1.34110i −0.0671391 + 0.116288i
\(134\) 0 0
\(135\) 6.05129 + 11.9844i 0.520812 + 1.03146i
\(136\) 0 0
\(137\) −0.0727359 + 0.125982i −0.00621425 + 0.0107634i −0.869116 0.494609i \(-0.835311\pi\)
0.862902 + 0.505372i \(0.168645\pi\)
\(138\) 0 0
\(139\) 0.970286 + 1.68058i 0.0822986 + 0.142545i 0.904237 0.427031i \(-0.140441\pi\)
−0.821938 + 0.569577i \(0.807107\pi\)
\(140\) 0 0
\(141\) −8.54630 15.4623i −0.719728 1.30216i
\(142\) 0 0
\(143\) 2.22016 0.185659
\(144\) 0 0
\(145\) 21.4240 1.77916
\(146\) 0 0
\(147\) 11.6848 + 0.218204i 0.963746 + 0.0179972i
\(148\) 0 0
\(149\) 3.69848 + 6.40595i 0.302991 + 0.524796i 0.976812 0.214099i \(-0.0686815\pi\)
−0.673821 + 0.738895i \(0.735348\pi\)
\(150\) 0 0
\(151\) 6.58322 11.4025i 0.535735 0.927920i −0.463392 0.886153i \(-0.653368\pi\)
0.999127 0.0417670i \(-0.0132987\pi\)
\(152\) 0 0
\(153\) 3.45371 + 6.53386i 0.279216 + 0.528231i
\(154\) 0 0
\(155\) −3.51075 + 6.08080i −0.281990 + 0.488422i
\(156\) 0 0
\(157\) 1.31627 + 2.27985i 0.105050 + 0.181952i 0.913759 0.406257i \(-0.133166\pi\)
−0.808709 + 0.588210i \(0.799833\pi\)
\(158\) 0 0
\(159\) −11.1022 + 18.4262i −0.880461 + 1.46130i
\(160\) 0 0
\(161\) 3.35918 0.264740
\(162\) 0 0
\(163\) 6.72257 0.526552 0.263276 0.964721i \(-0.415197\pi\)
0.263276 + 0.964721i \(0.415197\pi\)
\(164\) 0 0
\(165\) 2.30956 3.83316i 0.179799 0.298411i
\(166\) 0 0
\(167\) −4.52713 7.84122i −0.350320 0.606772i 0.635985 0.771701i \(-0.280594\pi\)
−0.986305 + 0.164929i \(0.947261\pi\)
\(168\) 0 0
\(169\) 4.03544 6.98958i 0.310418 0.537660i
\(170\) 0 0
\(171\) −4.31963 8.17203i −0.330330 0.624931i
\(172\) 0 0
\(173\) −4.18467 + 7.24807i −0.318155 + 0.551060i −0.980103 0.198489i \(-0.936397\pi\)
0.661948 + 0.749550i \(0.269730\pi\)
\(174\) 0 0
\(175\) −0.421109 0.729382i −0.0318328 0.0551361i
\(176\) 0 0
\(177\) −11.9602 0.223347i −0.898986 0.0167878i
\(178\) 0 0
\(179\) 15.0418 1.12428 0.562138 0.827043i \(-0.309979\pi\)
0.562138 + 0.827043i \(0.309979\pi\)
\(180\) 0 0
\(181\) 7.53854 0.560336 0.280168 0.959951i \(-0.409610\pi\)
0.280168 + 0.959951i \(0.409610\pi\)
\(182\) 0 0
\(183\) −1.05854 1.91515i −0.0782492 0.141572i
\(184\) 0 0
\(185\) −3.24896 5.62736i −0.238868 0.413732i
\(186\) 0 0
\(187\) 1.23175 2.13345i 0.0900744 0.156013i
\(188\) 0 0
\(189\) 1.43036 2.18503i 0.104043 0.158937i
\(190\) 0 0
\(191\) −2.14165 + 3.70945i −0.154964 + 0.268406i −0.933046 0.359757i \(-0.882860\pi\)
0.778082 + 0.628163i \(0.216193\pi\)
\(192\) 0 0
\(193\) 11.2417 + 19.4712i 0.809197 + 1.40157i 0.913421 + 0.407016i \(0.133431\pi\)
−0.104224 + 0.994554i \(0.533236\pi\)
\(194\) 0 0
\(195\) 4.80629 + 8.69576i 0.344186 + 0.622716i
\(196\) 0 0
\(197\) −16.0796 −1.14562 −0.572811 0.819688i \(-0.694147\pi\)
−0.572811 + 0.819688i \(0.694147\pi\)
\(198\) 0 0
\(199\) −2.71681 −0.192590 −0.0962948 0.995353i \(-0.530699\pi\)
−0.0962948 + 0.995353i \(0.530699\pi\)
\(200\) 0 0
\(201\) 9.49017 + 0.177221i 0.669385 + 0.0125002i
\(202\) 0 0
\(203\) −2.08372 3.60910i −0.146248 0.253309i
\(204\) 0 0
\(205\) −1.49409 + 2.58785i −0.104352 + 0.180743i
\(206\) 0 0
\(207\) −10.6668 + 16.9783i −0.741395 + 1.18007i
\(208\) 0 0
\(209\) −1.54057 + 2.66835i −0.106564 + 0.184574i
\(210\) 0 0
\(211\) 10.1201 + 17.5286i 0.696699 + 1.20672i 0.969605 + 0.244677i \(0.0786820\pi\)
−0.272906 + 0.962041i \(0.587985\pi\)
\(212\) 0 0
\(213\) 7.75991 12.8791i 0.531700 0.882460i
\(214\) 0 0
\(215\) 8.19858 0.559139
\(216\) 0 0
\(217\) 1.36584 0.0927191
\(218\) 0 0
\(219\) 5.29532 8.78861i 0.357824 0.593879i
\(220\) 0 0
\(221\) 2.73468 + 4.73661i 0.183955 + 0.318619i
\(222\) 0 0
\(223\) 3.07520 5.32640i 0.205930 0.356682i −0.744498 0.667624i \(-0.767311\pi\)
0.950429 + 0.310942i \(0.100645\pi\)
\(224\) 0 0
\(225\) 5.02370 + 0.187692i 0.334914 + 0.0125128i
\(226\) 0 0
\(227\) −5.82077 + 10.0819i −0.386338 + 0.669157i −0.991954 0.126600i \(-0.959593\pi\)
0.605616 + 0.795757i \(0.292927\pi\)
\(228\) 0 0
\(229\) 9.85030 + 17.0612i 0.650926 + 1.12744i 0.982899 + 0.184148i \(0.0589525\pi\)
−0.331973 + 0.943289i \(0.607714\pi\)
\(230\) 0 0
\(231\) −0.870369 0.0162534i −0.0572661 0.00106940i
\(232\) 0 0
\(233\) 21.3270 1.39718 0.698588 0.715524i \(-0.253812\pi\)
0.698588 + 0.715524i \(0.253812\pi\)
\(234\) 0 0
\(235\) −26.3543 −1.71917
\(236\) 0 0
\(237\) −4.97144 8.99454i −0.322929 0.584258i
\(238\) 0 0
\(239\) −4.33890 7.51520i −0.280660 0.486118i 0.690887 0.722963i \(-0.257220\pi\)
−0.971548 + 0.236845i \(0.923887\pi\)
\(240\) 0 0
\(241\) 12.9052 22.3524i 0.831295 1.43984i −0.0657173 0.997838i \(-0.520934\pi\)
0.897012 0.442006i \(-0.145733\pi\)
\(242\) 0 0
\(243\) 6.50176 + 14.1678i 0.417088 + 0.908866i
\(244\) 0 0
\(245\) 8.71678 15.0979i 0.556894 0.964569i
\(246\) 0 0
\(247\) −3.42033 5.92418i −0.217630 0.376947i
\(248\) 0 0
\(249\) −9.00140 16.2857i −0.570440 1.03207i
\(250\) 0 0
\(251\) −4.10916 −0.259368 −0.129684 0.991555i \(-0.541396\pi\)
−0.129684 + 0.991555i \(0.541396\pi\)
\(252\) 0 0
\(253\) 6.68366 0.420198
\(254\) 0 0
\(255\) 11.0227 + 0.205839i 0.690266 + 0.0128902i
\(256\) 0 0
\(257\) 9.42959 + 16.3325i 0.588201 + 1.01879i 0.994468 + 0.105040i \(0.0334971\pi\)
−0.406267 + 0.913755i \(0.633170\pi\)
\(258\) 0 0
\(259\) −0.631995 + 1.09465i −0.0392702 + 0.0680180i
\(260\) 0 0
\(261\) 24.8581 + 0.928734i 1.53868 + 0.0574872i
\(262\) 0 0
\(263\) −8.91584 + 15.4427i −0.549774 + 0.952237i 0.448516 + 0.893775i \(0.351953\pi\)
−0.998290 + 0.0584616i \(0.981380\pi\)
\(264\) 0 0
\(265\) 16.0453 + 27.7913i 0.985657 + 1.70721i
\(266\) 0 0
\(267\) 8.77847 14.5696i 0.537233 0.891643i
\(268\) 0 0
\(269\) 12.1462 0.740564 0.370282 0.928919i \(-0.379261\pi\)
0.370282 + 0.928919i \(0.379261\pi\)
\(270\) 0 0
\(271\) −0.860803 −0.0522900 −0.0261450 0.999658i \(-0.508323\pi\)
−0.0261450 + 0.999658i \(0.508323\pi\)
\(272\) 0 0
\(273\) 0.997432 1.65543i 0.0603673 0.100191i
\(274\) 0 0
\(275\) −0.837868 1.45123i −0.0505253 0.0875125i
\(276\) 0 0
\(277\) 8.17937 14.1671i 0.491451 0.851217i −0.508501 0.861061i \(-0.669800\pi\)
0.999952 + 0.00984399i \(0.00313349\pi\)
\(278\) 0 0
\(279\) −4.33711 + 6.90333i −0.259656 + 0.413292i
\(280\) 0 0
\(281\) −10.8107 + 18.7247i −0.644913 + 1.11702i 0.339408 + 0.940639i \(0.389773\pi\)
−0.984321 + 0.176384i \(0.943560\pi\)
\(282\) 0 0
\(283\) −14.0655 24.3622i −0.836109 1.44818i −0.893124 0.449810i \(-0.851492\pi\)
0.0570148 0.998373i \(-0.481842\pi\)
\(284\) 0 0
\(285\) −13.7863 0.257447i −0.816629 0.0152499i
\(286\) 0 0
\(287\) 0.581269 0.0343112
\(288\) 0 0
\(289\) −10.9312 −0.643011
\(290\) 0 0
\(291\) 1.62834 + 2.94607i 0.0954553 + 0.172702i
\(292\) 0 0
\(293\) −8.34267 14.4499i −0.487384 0.844174i 0.512511 0.858681i \(-0.328716\pi\)
−0.999895 + 0.0145067i \(0.995382\pi\)
\(294\) 0 0
\(295\) −8.92225 + 15.4538i −0.519473 + 0.899754i
\(296\) 0 0
\(297\) 2.84594 4.34748i 0.165138 0.252267i
\(298\) 0 0
\(299\) −7.41941 + 12.8508i −0.429076 + 0.743181i
\(300\) 0 0
\(301\) −0.797403 1.38114i −0.0459616 0.0796077i
\(302\) 0 0
\(303\) −11.3089 20.4606i −0.649681 1.17543i
\(304\) 0 0
\(305\) −3.26422 −0.186909
\(306\) 0 0
\(307\) 2.19917 0.125513 0.0627567 0.998029i \(-0.480011\pi\)
0.0627567 + 0.998029i \(0.480011\pi\)
\(308\) 0 0
\(309\) −29.6067 0.552881i −1.68427 0.0314523i
\(310\) 0 0
\(311\) 5.07869 + 8.79655i 0.287986 + 0.498807i 0.973329 0.229414i \(-0.0736810\pi\)
−0.685343 + 0.728221i \(0.740348\pi\)
\(312\) 0 0
\(313\) −5.53771 + 9.59160i −0.313010 + 0.542149i −0.979012 0.203800i \(-0.934671\pi\)
0.666003 + 0.745949i \(0.268004\pi\)
\(314\) 0 0
\(315\) −1.82055 3.44418i −0.102576 0.194057i
\(316\) 0 0
\(317\) −10.7318 + 18.5881i −0.602760 + 1.04401i 0.389641 + 0.920967i \(0.372599\pi\)
−0.992401 + 0.123044i \(0.960734\pi\)
\(318\) 0 0
\(319\) −4.14591 7.18093i −0.232127 0.402055i
\(320\) 0 0
\(321\) 13.9014 23.0720i 0.775899 1.28776i
\(322\) 0 0
\(323\) −7.59040 −0.422341
\(324\) 0 0
\(325\) 3.72041 0.206371
\(326\) 0 0
\(327\) −6.61964 + 10.9866i −0.366067 + 0.607559i
\(328\) 0 0
\(329\) 2.56325 + 4.43968i 0.141317 + 0.244767i
\(330\) 0 0
\(331\) −12.4516 + 21.5668i −0.684401 + 1.18542i 0.289224 + 0.957261i \(0.406603\pi\)
−0.973625 + 0.228155i \(0.926731\pi\)
\(332\) 0 0
\(333\) −3.52581 6.67025i −0.193213 0.365527i
\(334\) 0 0
\(335\) 7.07960 12.2622i 0.386800 0.669957i
\(336\) 0 0
\(337\) 0.399568 + 0.692072i 0.0217659 + 0.0376996i 0.876703 0.481032i \(-0.159738\pi\)
−0.854937 + 0.518731i \(0.826404\pi\)
\(338\) 0 0
\(339\) −24.6829 0.460934i −1.34059 0.0250345i
\(340\) 0 0
\(341\) 2.71757 0.147165
\(342\) 0 0
\(343\) −6.90938 −0.373071
\(344\) 0 0
\(345\) 14.4690 + 26.1780i 0.778987 + 1.40938i
\(346\) 0 0
\(347\) −17.2648 29.9035i −0.926822 1.60530i −0.788604 0.614901i \(-0.789196\pi\)
−0.138218 0.990402i \(-0.544137\pi\)
\(348\) 0 0
\(349\) −2.94069 + 5.09343i −0.157412 + 0.272645i −0.933935 0.357444i \(-0.883648\pi\)
0.776523 + 0.630089i \(0.216982\pi\)
\(350\) 0 0
\(351\) 5.19976 + 10.2980i 0.277543 + 0.549667i
\(352\) 0 0
\(353\) −11.0132 + 19.0754i −0.586174 + 1.01528i 0.408555 + 0.912734i \(0.366033\pi\)
−0.994728 + 0.102548i \(0.967300\pi\)
\(354\) 0 0
\(355\) −11.2149 19.4248i −0.595227 1.03096i
\(356\) 0 0
\(357\) −1.03740 1.87691i −0.0549051 0.0993367i
\(358\) 0 0
\(359\) −6.76577 −0.357084 −0.178542 0.983932i \(-0.557138\pi\)
−0.178542 + 0.983932i \(0.557138\pi\)
\(360\) 0 0
\(361\) −9.50652 −0.500343
\(362\) 0 0
\(363\) −1.73175 0.0323390i −0.0908932 0.00169736i
\(364\) 0 0
\(365\) −7.65301 13.2554i −0.400577 0.693819i
\(366\) 0 0
\(367\) 11.1999 19.3989i 0.584632 1.01261i −0.410289 0.911956i \(-0.634572\pi\)
0.994921 0.100657i \(-0.0320946\pi\)
\(368\) 0 0
\(369\) −1.84577 + 2.93790i −0.0960872 + 0.152941i
\(370\) 0 0
\(371\) 3.12117 5.40603i 0.162043 0.280667i
\(372\) 0 0
\(373\) −13.9329 24.1324i −0.721416 1.24953i −0.960432 0.278514i \(-0.910158\pi\)
0.239016 0.971016i \(-0.423175\pi\)
\(374\) 0 0
\(375\) −7.67759 + 12.7424i −0.396469 + 0.658017i
\(376\) 0 0
\(377\) 18.4092 0.948123
\(378\) 0 0
\(379\) −26.9794 −1.38584 −0.692920 0.721014i \(-0.743676\pi\)
−0.692920 + 0.721014i \(0.743676\pi\)
\(380\) 0 0
\(381\) 11.0808 18.3907i 0.567685 0.942184i
\(382\) 0 0
\(383\) 17.9356 + 31.0653i 0.916466 + 1.58737i 0.804741 + 0.593626i \(0.202304\pi\)
0.111725 + 0.993739i \(0.464363\pi\)
\(384\) 0 0
\(385\) −0.649289 + 1.12460i −0.0330908 + 0.0573150i
\(386\) 0 0
\(387\) 9.51278 + 0.355411i 0.483562 + 0.0180665i
\(388\) 0 0
\(389\) 4.63112 8.02133i 0.234807 0.406697i −0.724410 0.689370i \(-0.757888\pi\)
0.959217 + 0.282672i \(0.0912209\pi\)
\(390\) 0 0
\(391\) 8.23259 + 14.2593i 0.416340 + 0.721122i
\(392\) 0 0
\(393\) −6.48704 0.121140i −0.327228 0.00611071i
\(394\) 0 0
\(395\) −15.3305 −0.771360
\(396\) 0 0
\(397\) −28.2180 −1.41622 −0.708110 0.706102i \(-0.750452\pi\)
−0.708110 + 0.706102i \(0.750452\pi\)
\(398\) 0 0
\(399\) 1.29750 + 2.34749i 0.0649562 + 0.117522i
\(400\) 0 0
\(401\) −9.23371 15.9933i −0.461110 0.798665i 0.537907 0.843004i \(-0.319215\pi\)
−0.999017 + 0.0443388i \(0.985882\pi\)
\(402\) 0 0
\(403\) −3.01672 + 5.22512i −0.150274 + 0.260282i
\(404\) 0 0
\(405\) 23.1889 + 1.73516i 1.15226 + 0.0862207i
\(406\) 0 0
\(407\) −1.25746 + 2.17799i −0.0623301 + 0.107959i
\(408\) 0 0
\(409\) −12.2043 21.1384i −0.603462 1.04523i −0.992293 0.123918i \(-0.960454\pi\)
0.388830 0.921309i \(-0.372879\pi\)
\(410\) 0 0
\(411\) 0.121886 + 0.220522i 0.00601220 + 0.0108775i
\(412\) 0 0
\(413\) 3.47115 0.170804
\(414\) 0 0
\(415\) −27.7577 −1.36257
\(416\) 0 0
\(417\) 3.36058 + 0.0627561i 0.164569 + 0.00307318i
\(418\) 0 0
\(419\) −2.30710 3.99601i −0.112709 0.195218i 0.804153 0.594423i \(-0.202619\pi\)
−0.916862 + 0.399205i \(0.869286\pi\)
\(420\) 0 0
\(421\) 8.16163 14.1364i 0.397774 0.688964i −0.595677 0.803224i \(-0.703116\pi\)
0.993451 + 0.114260i \(0.0364496\pi\)
\(422\) 0 0
\(423\) −30.5788 1.14247i −1.48679 0.0555486i
\(424\) 0 0
\(425\) 2.06409 3.57510i 0.100123 0.173418i
\(426\) 0 0
\(427\) 0.317482 + 0.549894i 0.0153640 + 0.0266112i
\(428\) 0 0
\(429\) 1.98456 3.29377i 0.0958155 0.159025i
\(430\) 0 0
\(431\) 25.6444 1.23525 0.617623 0.786475i \(-0.288096\pi\)
0.617623 + 0.786475i \(0.288096\pi\)
\(432\) 0 0
\(433\) −3.62673 −0.174290 −0.0871448 0.996196i \(-0.527774\pi\)
−0.0871448 + 0.996196i \(0.527774\pi\)
\(434\) 0 0
\(435\) 19.1505 31.7839i 0.918195 1.52392i
\(436\) 0 0
\(437\) −10.2967 17.8344i −0.492557 0.853134i
\(438\) 0 0
\(439\) −18.9834 + 32.8802i −0.906029 + 1.56929i −0.0864986 + 0.996252i \(0.527568\pi\)
−0.819530 + 0.573036i \(0.805766\pi\)
\(440\) 0 0
\(441\) 10.7685 17.1402i 0.512788 0.816198i
\(442\) 0 0
\(443\) 17.6397 30.5528i 0.838087 1.45161i −0.0534047 0.998573i \(-0.517007\pi\)
0.891492 0.453037i \(-0.149659\pi\)
\(444\) 0 0
\(445\) −12.6870 21.9745i −0.601421 1.04169i
\(446\) 0 0
\(447\) 12.8097 + 0.239210i 0.605876 + 0.0113142i
\(448\) 0 0
\(449\) −25.6451 −1.21027 −0.605134 0.796123i \(-0.706881\pi\)
−0.605134 + 0.796123i \(0.706881\pi\)
\(450\) 0 0
\(451\) 1.15653 0.0544590
\(452\) 0 0
\(453\) −11.0317 19.9591i −0.518316 0.937761i
\(454\) 0 0
\(455\) −1.44153 2.49680i −0.0675799 0.117052i
\(456\) 0 0
\(457\) 20.2624 35.0956i 0.947837 1.64170i 0.197869 0.980228i \(-0.436598\pi\)
0.749968 0.661474i \(-0.230069\pi\)
\(458\) 0 0
\(459\) 12.7806 + 0.716670i 0.596549 + 0.0334513i
\(460\) 0 0
\(461\) −14.5005 + 25.1157i −0.675358 + 1.16975i 0.301006 + 0.953622i \(0.402677\pi\)
−0.976364 + 0.216132i \(0.930656\pi\)
\(462\) 0 0
\(463\) −17.1853 29.7658i −0.798669 1.38334i −0.920483 0.390783i \(-0.872204\pi\)
0.121813 0.992553i \(-0.461129\pi\)
\(464\) 0 0
\(465\) 5.88309 + 10.6440i 0.272822 + 0.493601i
\(466\) 0 0
\(467\) −3.16966 −0.146674 −0.0733371 0.997307i \(-0.523365\pi\)
−0.0733371 + 0.997307i \(0.523365\pi\)
\(468\) 0 0
\(469\) −2.75428 −0.127181
\(470\) 0 0
\(471\) 4.55891 + 0.0851339i 0.210064 + 0.00392277i
\(472\) 0 0
\(473\) −1.58657 2.74802i −0.0729506 0.126354i
\(474\) 0 0
\(475\) −2.58160 + 4.47146i −0.118452 + 0.205164i
\(476\) 0 0
\(477\) 17.4126 + 32.9417i 0.797267 + 1.50830i
\(478\) 0 0
\(479\) −5.82843 + 10.0951i −0.266308 + 0.461259i −0.967905 0.251315i \(-0.919137\pi\)
0.701598 + 0.712573i \(0.252470\pi\)
\(480\) 0 0
\(481\) −2.79177 4.83549i −0.127294 0.220479i
\(482\) 0 0
\(483\) 3.00271 4.98357i 0.136628 0.226760i
\(484\) 0 0
\(485\) 5.02135 0.228008
\(486\) 0 0
\(487\) −2.06578 −0.0936095 −0.0468048 0.998904i \(-0.514904\pi\)
−0.0468048 + 0.998904i \(0.514904\pi\)
\(488\) 0 0
\(489\) 6.00918 9.97340i 0.271744 0.451013i
\(490\) 0 0
\(491\) 18.5423 + 32.1162i 0.836803 + 1.44939i 0.892554 + 0.450941i \(0.148911\pi\)
−0.0557510 + 0.998445i \(0.517755\pi\)
\(492\) 0 0
\(493\) 10.2134 17.6902i 0.459991 0.796727i
\(494\) 0 0
\(495\) −3.62229 6.85278i −0.162810 0.308010i
\(496\) 0 0
\(497\) −2.18155 + 3.77856i −0.0978560 + 0.169492i
\(498\) 0 0
\(499\) 8.61373 + 14.9194i 0.385604 + 0.667885i 0.991853 0.127390i \(-0.0406599\pi\)
−0.606249 + 0.795275i \(0.707327\pi\)
\(500\) 0 0
\(501\) −15.6797 0.292806i −0.700518 0.0130816i
\(502\) 0 0
\(503\) 41.1144 1.83320 0.916600 0.399805i \(-0.130922\pi\)
0.916600 + 0.399805i \(0.130922\pi\)
\(504\) 0 0
\(505\) −34.8735 −1.55185
\(506\) 0 0
\(507\) −6.76233 12.2347i −0.300325 0.543362i
\(508\) 0 0
\(509\) 9.73267 + 16.8575i 0.431393 + 0.747194i 0.996994 0.0774848i \(-0.0246889\pi\)
−0.565601 + 0.824679i \(0.691356\pi\)
\(510\) 0 0
\(511\) −1.48868 + 2.57847i −0.0658553 + 0.114065i
\(512\) 0 0
\(513\) −15.9850 0.896354i −0.705755 0.0395750i
\(514\) 0 0
\(515\) −22.0864 + 38.2547i −0.973242 + 1.68571i
\(516\) 0 0
\(517\) 5.10003 + 8.83351i 0.224299 + 0.388497i
\(518\) 0 0
\(519\) 7.01241 + 12.6872i 0.307811 + 0.556904i
\(520\) 0 0
\(521\) 15.9681 0.699576 0.349788 0.936829i \(-0.386254\pi\)
0.349788 + 0.936829i \(0.386254\pi\)
\(522\) 0 0
\(523\) 36.6045 1.60060 0.800302 0.599597i \(-0.204672\pi\)
0.800302 + 0.599597i \(0.204672\pi\)
\(524\) 0 0
\(525\) −1.45851 0.0272365i −0.0636546 0.00118870i
\(526\) 0 0
\(527\) 3.34736 + 5.79780i 0.145813 + 0.252556i
\(528\) 0 0
\(529\) −10.8357 + 18.7679i −0.471116 + 0.815997i
\(530\) 0 0
\(531\) −11.0224 + 17.5442i −0.478330 + 0.761353i
\(532\) 0 0
\(533\) −1.28385 + 2.22369i −0.0556096 + 0.0963186i
\(534\) 0 0
\(535\) −20.0908 34.7983i −0.868602 1.50446i
\(536\) 0 0
\(537\) 13.4456 22.3155i 0.580219 0.962987i
\(538\) 0 0
\(539\) −6.74740 −0.290631
\(540\) 0 0
\(541\) −14.0034 −0.602055 −0.301028 0.953615i \(-0.597330\pi\)
−0.301028 + 0.953615i \(0.597330\pi\)
\(542\) 0 0
\(543\) 6.73856 11.1840i 0.289179 0.479949i
\(544\) 0 0
\(545\) 9.56697 + 16.5705i 0.409804 + 0.709801i
\(546\) 0 0
\(547\) −12.0437 + 20.8604i −0.514953 + 0.891925i 0.484896 + 0.874572i \(0.338857\pi\)
−0.999849 + 0.0173533i \(0.994476\pi\)
\(548\) 0 0
\(549\) −3.78746 0.141505i −0.161645 0.00603928i
\(550\) 0 0
\(551\) −12.7742 + 22.1255i −0.544198 + 0.942579i
\(552\) 0 0
\(553\) 1.49106 + 2.58259i 0.0634063 + 0.109823i
\(554\) 0 0
\(555\) −11.2528 0.210136i −0.477653 0.00891978i
\(556\) 0 0
\(557\) −20.8881 −0.885057 −0.442529 0.896754i \(-0.645918\pi\)
−0.442529 + 0.896754i \(0.645918\pi\)
\(558\) 0 0
\(559\) 7.04489 0.297967
\(560\) 0 0
\(561\) −2.06409 3.73444i −0.0871458 0.157668i
\(562\) 0 0
\(563\) 1.06276 + 1.84076i 0.0447901 + 0.0775787i 0.887551 0.460709i \(-0.152405\pi\)
−0.842761 + 0.538288i \(0.819071\pi\)
\(564\) 0 0
\(565\) −18.4133 + 31.8928i −0.774653 + 1.34174i
\(566\) 0 0
\(567\) −1.96307 4.07519i −0.0824411 0.171142i
\(568\) 0 0
\(569\) −14.0627 + 24.3574i −0.589540 + 1.02111i 0.404752 + 0.914426i \(0.367358\pi\)
−0.994293 + 0.106687i \(0.965976\pi\)
\(570\) 0 0
\(571\) 4.72244 + 8.17950i 0.197628 + 0.342301i 0.947759 0.318988i \(-0.103343\pi\)
−0.750131 + 0.661289i \(0.770010\pi\)
\(572\) 0 0
\(573\) 3.58884 + 6.49309i 0.149926 + 0.271253i
\(574\) 0 0
\(575\) 11.2001 0.467074
\(576\) 0 0
\(577\) −11.3534 −0.472648 −0.236324 0.971674i \(-0.575943\pi\)
−0.236324 + 0.971674i \(0.575943\pi\)
\(578\) 0 0
\(579\) 38.9357 + 0.727092i 1.61811 + 0.0302169i
\(580\) 0 0
\(581\) 2.69975 + 4.67610i 0.112004 + 0.193997i
\(582\) 0 0
\(583\) 6.21011 10.7562i 0.257196 0.445477i
\(584\) 0 0
\(585\) 17.1970 + 0.642504i 0.711009 + 0.0265643i
\(586\) 0 0
\(587\) 13.3372 23.1007i 0.550486 0.953469i −0.447754 0.894157i \(-0.647776\pi\)
0.998239 0.0593125i \(-0.0188908\pi\)
\(588\) 0 0
\(589\) −4.18662 7.25143i −0.172507 0.298790i
\(590\) 0 0
\(591\) −14.3732 + 23.8551i −0.591235 + 0.981270i
\(592\) 0 0
\(593\) 42.0073 1.72504 0.862518 0.506027i \(-0.168886\pi\)
0.862518 + 0.506027i \(0.168886\pi\)
\(594\) 0 0
\(595\) −3.19905 −0.131148
\(596\) 0 0
\(597\) −2.42851 + 4.03058i −0.0993921 + 0.164961i
\(598\) 0 0
\(599\) 7.26821 + 12.5889i 0.296971 + 0.514369i 0.975441 0.220259i \(-0.0706902\pi\)
−0.678471 + 0.734628i \(0.737357\pi\)
\(600\) 0 0
\(601\) −4.04850 + 7.01220i −0.165142 + 0.286034i −0.936706 0.350118i \(-0.886141\pi\)
0.771564 + 0.636152i \(0.219475\pi\)
\(602\) 0 0
\(603\) 8.74600 13.9209i 0.356165 0.566903i
\(604\) 0 0
\(605\) −1.29187 + 2.23759i −0.0525221 + 0.0909709i
\(606\) 0 0
\(607\) 8.82417 + 15.2839i 0.358162 + 0.620354i 0.987654 0.156653i \(-0.0500703\pi\)
−0.629492 + 0.777007i \(0.716737\pi\)
\(608\) 0 0
\(609\) −7.21695 0.134771i −0.292446 0.00546118i
\(610\) 0 0
\(611\) −22.6458 −0.916151
\(612\) 0 0
\(613\) −40.8291 −1.64907 −0.824537 0.565808i \(-0.808564\pi\)
−0.824537 + 0.565808i \(0.808564\pi\)
\(614\) 0 0
\(615\) 2.50371 + 4.52982i 0.100959 + 0.182660i
\(616\) 0 0
\(617\) −9.97609 17.2791i −0.401622 0.695630i 0.592300 0.805718i \(-0.298220\pi\)
−0.993922 + 0.110087i \(0.964887\pi\)
\(618\) 0 0
\(619\) −5.32594 + 9.22480i −0.214068 + 0.370776i −0.952984 0.303021i \(-0.902005\pi\)
0.738916 + 0.673797i \(0.235338\pi\)
\(620\) 0 0
\(621\) 15.6535 + 31.0015i 0.628155 + 1.24405i
\(622\) 0 0
\(623\) −2.46790 + 4.27453i −0.0988743 + 0.171255i
\(624\) 0 0
\(625\) 15.2853 + 26.4749i 0.611412 + 1.05900i
\(626\) 0 0
\(627\) 2.58160 + 4.67074i 0.103099 + 0.186531i
\(628\) 0 0
\(629\) −6.19551 −0.247031
\(630\) 0 0
\(631\) 3.16199 0.125877 0.0629385 0.998017i \(-0.479953\pi\)
0.0629385 + 0.998017i \(0.479953\pi\)
\(632\) 0 0
\(633\) 35.0511 + 0.654550i 1.39315 + 0.0260160i
\(634\) 0 0
\(635\) −16.0144 27.7377i −0.635511 1.10074i
\(636\) 0 0
\(637\) 7.49016 12.9733i 0.296771 0.514023i
\(638\) 0 0
\(639\) −12.1706 23.0247i −0.481460 0.910844i
\(640\) 0 0
\(641\) 18.5188 32.0756i 0.731450 1.26691i −0.224813 0.974402i \(-0.572177\pi\)
0.956263 0.292507i \(-0.0944896\pi\)
\(642\) 0 0
\(643\) 1.99681 + 3.45858i 0.0787465 + 0.136393i 0.902709 0.430251i \(-0.141575\pi\)
−0.823963 + 0.566644i \(0.808242\pi\)
\(644\) 0 0
\(645\) 7.32856 12.1632i 0.288562 0.478924i
\(646\) 0 0
\(647\) 2.79267 0.109791 0.0548955 0.998492i \(-0.482517\pi\)
0.0548955 + 0.998492i \(0.482517\pi\)
\(648\) 0 0
\(649\) 6.90645 0.271102
\(650\) 0 0
\(651\) 1.22090 2.02631i 0.0478507 0.0794175i
\(652\) 0 0
\(653\) 11.9182 + 20.6429i 0.466395 + 0.807820i 0.999263 0.0383785i \(-0.0122193\pi\)
−0.532868 + 0.846198i \(0.678886\pi\)
\(654\) 0 0
\(655\) −4.83928 + 8.38189i −0.189087 + 0.327507i
\(656\) 0 0
\(657\) −8.30513 15.7119i −0.324014 0.612981i
\(658\) 0 0
\(659\) −0.655300 + 1.13501i −0.0255269 + 0.0442138i −0.878507 0.477730i \(-0.841460\pi\)
0.852980 + 0.521944i \(0.174793\pi\)
\(660\) 0 0
\(661\) 0.725184 + 1.25606i 0.0282064 + 0.0488549i 0.879784 0.475374i \(-0.157687\pi\)
−0.851578 + 0.524229i \(0.824354\pi\)
\(662\) 0 0
\(663\) 9.47157 + 0.176874i 0.367845 + 0.00686921i
\(664\) 0 0
\(665\) 4.00111 0.155157
\(666\) 0 0
\(667\) 55.4198 2.14586
\(668\) 0 0
\(669\) −5.15322 9.32343i −0.199235 0.360465i
\(670\) 0 0
\(671\) 0.631684 + 1.09411i 0.0243859 + 0.0422376i
\(672\) 0 0
\(673\) 22.2698 38.5723i 0.858436 1.48685i −0.0149843 0.999888i \(-0.504770\pi\)
0.873420 0.486967i \(-0.161897\pi\)
\(674\) 0 0
\(675\) 4.76905 7.28524i 0.183561 0.280409i
\(676\) 0 0
\(677\) −24.7487 + 42.8660i −0.951169 + 1.64747i −0.208268 + 0.978072i \(0.566783\pi\)
−0.742901 + 0.669401i \(0.766551\pi\)
\(678\) 0 0
\(679\) −0.488382 0.845902i −0.0187424 0.0324627i
\(680\) 0 0
\(681\) 9.75407 + 17.6475i 0.373777 + 0.676253i
\(682\) 0 0
\(683\) −40.8454 −1.56291 −0.781454 0.623963i \(-0.785521\pi\)
−0.781454 + 0.623963i \(0.785521\pi\)
\(684\) 0 0
\(685\) 0.375862 0.0143610
\(686\) 0 0
\(687\) 34.1165 + 0.637097i 1.30162 + 0.0243068i
\(688\) 0 0
\(689\) 13.7875 + 23.8806i 0.525260 + 0.909778i
\(690\) 0 0
\(691\) 7.35816 12.7447i 0.279918 0.484831i −0.691446 0.722428i \(-0.743026\pi\)
0.971364 + 0.237596i \(0.0763595\pi\)
\(692\) 0 0
\(693\) −0.802119 + 1.27672i −0.0304700 + 0.0484987i
\(694\) 0 0
\(695\) 2.50697 4.34220i 0.0950949 0.164709i
\(696\) 0 0
\(697\) 1.42456 + 2.46741i 0.0539590 + 0.0934598i
\(698\) 0 0
\(699\) 19.0638 31.6400i 0.721058 1.19674i
\(700\) 0 0
\(701\) 18.5732 0.701501 0.350751 0.936469i \(-0.385926\pi\)
0.350751 + 0.936469i \(0.385926\pi\)
\(702\) 0 0
\(703\) 7.74885 0.292254
\(704\) 0 0
\(705\) −23.5576 + 39.0985i −0.887232 + 1.47253i
\(706\) 0 0
\(707\) 3.39183 + 5.87482i 0.127563 + 0.220945i
\(708\) 0 0
\(709\) −20.4373 + 35.3985i −0.767539 + 1.32942i 0.171354 + 0.985210i \(0.445186\pi\)
−0.938893 + 0.344208i \(0.888148\pi\)
\(710\) 0 0
\(711\) −17.7879 0.664580i −0.667098 0.0249237i
\(712\) 0 0
\(713\) −9.08165 + 15.7299i −0.340111 + 0.589089i
\(714\) 0 0
\(715\) −2.86817 4.96781i −0.107263 0.185786i
\(716\) 0 0
\(717\) −15.0278 0.280631i −0.561223 0.0104804i
\(718\) 0 0
\(719\) 30.8115 1.14908 0.574538 0.818478i \(-0.305182\pi\)
0.574538 + 0.818478i \(0.305182\pi\)
\(720\) 0 0
\(721\) 8.59258 0.320004
\(722\) 0 0
\(723\) −21.6256 39.1261i −0.804267 1.45511i
\(724\) 0 0
\(725\) −6.94746 12.0333i −0.258022 0.446907i
\(726\) 0 0
\(727\) 18.0554 31.2729i 0.669638 1.15985i −0.308368 0.951267i \(-0.599783\pi\)
0.978006 0.208579i \(-0.0668839\pi\)
\(728\) 0 0
\(729\) 26.8307 + 3.01854i 0.993731 + 0.111798i
\(730\) 0 0
\(731\) 3.90851 6.76974i 0.144562 0.250388i
\(732\) 0 0
\(733\) 16.8793 + 29.2358i 0.623452 + 1.07985i 0.988838 + 0.148994i \(0.0476035\pi\)
−0.365386 + 0.930856i \(0.619063\pi\)
\(734\) 0 0
\(735\) −14.6070 26.4277i −0.538788 0.974799i
\(736\) 0 0
\(737\) −5.48010 −0.201862
\(738\) 0 0
\(739\) 13.7582 0.506104 0.253052 0.967453i \(-0.418566\pi\)
0.253052 + 0.967453i \(0.418566\pi\)
\(740\) 0 0
\(741\) −11.8463 0.221220i −0.435185 0.00812671i
\(742\) 0 0
\(743\) 16.7807 + 29.0650i 0.615623 + 1.06629i 0.990275 + 0.139124i \(0.0444288\pi\)
−0.374652 + 0.927165i \(0.622238\pi\)
\(744\) 0 0
\(745\) 9.55592 16.5513i 0.350102 0.606394i
\(746\) 0 0
\(747\) −32.2072 1.20330i −1.17840 0.0440266i
\(748\) 0 0
\(749\) −3.90811 + 6.76905i −0.142799 + 0.247336i
\(750\) 0 0
\(751\) −24.5938 42.5977i −0.897441 1.55441i −0.830755 0.556639i \(-0.812091\pi\)
−0.0666861 0.997774i \(-0.521243\pi\)
\(752\) 0 0
\(753\) −3.67310 + 6.09623i −0.133855 + 0.222159i
\(754\) 0 0
\(755\) −34.0187 −1.23807
\(756\) 0 0
\(757\) 34.9762 1.27123 0.635617 0.772005i \(-0.280746\pi\)
0.635617 + 0.772005i \(0.280746\pi\)
\(758\) 0 0
\(759\) 5.97440 9.91567i 0.216857 0.359916i
\(760\) 0 0
\(761\) −0.426628 0.738942i −0.0154653 0.0267866i 0.858189 0.513334i \(-0.171590\pi\)
−0.873654 + 0.486547i \(0.838256\pi\)
\(762\) 0 0
\(763\) 1.86099 3.22333i 0.0673723 0.116692i
\(764\) 0 0
\(765\) 10.1583 16.1689i 0.367275 0.584587i
\(766\) 0 0
\(767\) −7.66672 + 13.2792i −0.276829 + 0.479482i
\(768\) 0 0
\(769\) 4.62455 + 8.00996i 0.166766 + 0.288846i 0.937281 0.348575i \(-0.113334\pi\)
−0.770515 + 0.637422i \(0.780001\pi\)
\(770\) 0 0
\(771\) 32.6594 + 0.609886i 1.17620 + 0.0219645i
\(772\) 0 0
\(773\) 38.9134 1.39962 0.699809 0.714330i \(-0.253269\pi\)
0.699809 + 0.714330i \(0.253269\pi\)
\(774\) 0 0
\(775\) 4.55393 0.163582
\(776\) 0 0
\(777\) 1.05906 + 1.91609i 0.0379934 + 0.0687394i
\(778\) 0 0
\(779\) −1.78173 3.08604i −0.0638370 0.110569i
\(780\) 0 0
\(781\) −4.34057 + 7.51809i −0.155318 + 0.269019i
\(782\) 0 0
\(783\) 23.5980 36.0486i 0.843325 1.28827i
\(784\) 0 0
\(785\) 3.40092 5.89056i 0.121384 0.210243i
\(786\) 0 0
\(787\) 3.54778 + 6.14493i 0.126465 + 0.219043i 0.922305 0.386464i \(-0.126304\pi\)
−0.795840 + 0.605507i \(0.792970\pi\)
\(788\) 0 0
\(789\) 14.9406 + 27.0312i 0.531899 + 0.962335i
\(790\) 0 0
\(791\) 7.16359 0.254708
\(792\) 0 0
\(793\) −2.80488 −0.0996043
\(794\) 0 0
\(795\) 55.5730 + 1.03778i 1.97097 + 0.0368062i
\(796\) 0 0
\(797\) 7.96247 + 13.7914i 0.282045 + 0.488516i 0.971888 0.235442i \(-0.0756539\pi\)
−0.689843 + 0.723959i \(0.742321\pi\)
\(798\) 0 0
\(799\) −12.5639 + 21.7613i −0.444479 + 0.769860i
\(800\) 0 0
\(801\) −13.7681 26.0469i −0.486471 0.920323i
\(802\) 0 0
\(803\) −2.96198 + 5.13030i −0.104526 + 0.181045i
\(804\) 0 0
\(805\) −4.33963 7.51646i −0.152952 0.264920i
\(806\) 0 0
\(807\) 10.8572 18.0197i 0.382192 0.634322i
\(808\) 0 0
\(809\) −23.5647 −0.828492 −0.414246 0.910165i \(-0.635955\pi\)
−0.414246 + 0.910165i \(0.635955\pi\)
\(810\) 0 0
\(811\) 51.3678 1.80377 0.901884 0.431978i \(-0.142184\pi\)
0.901884 + 0.431978i \(0.142184\pi\)
\(812\) 0 0
\(813\) −0.769455 + 1.27706i −0.0269860 + 0.0447884i
\(814\) 0 0
\(815\) −8.68470 15.0423i −0.304212 0.526910i
\(816\) 0 0
\(817\) −4.88846 + 8.46706i −0.171026 + 0.296225i
\(818\) 0 0
\(819\) −1.56436 2.95952i −0.0546633 0.103414i
\(820\) 0 0
\(821\) 26.0358 45.0954i 0.908656 1.57384i 0.0927238 0.995692i \(-0.470443\pi\)
0.815933 0.578147i \(-0.196224\pi\)
\(822\) 0 0
\(823\) 15.5424 + 26.9203i 0.541776 + 0.938383i 0.998802 + 0.0489299i \(0.0155811\pi\)
−0.457027 + 0.889453i \(0.651086\pi\)
\(824\) 0 0
\(825\) −2.90195 0.0541916i −0.101033 0.00188671i
\(826\) 0 0
\(827\) −16.4394 −0.571655 −0.285828 0.958281i \(-0.592268\pi\)
−0.285828 + 0.958281i \(0.592268\pi\)
\(828\) 0 0
\(829\) −21.0593 −0.731421 −0.365711 0.930729i \(-0.619174\pi\)
−0.365711 + 0.930729i \(0.619174\pi\)
\(830\) 0 0
\(831\) −13.7065 24.7983i −0.475472 0.860245i
\(832\) 0 0
\(833\) −8.31110 14.3952i −0.287963 0.498766i
\(834\) 0 0
\(835\) −11.6970 + 20.2597i −0.404790 + 0.701117i
\(836\) 0 0
\(837\) 6.36471 + 12.6052i 0.219997 + 0.435698i
\(838\) 0 0
\(839\) 3.73325 6.46618i 0.128886 0.223237i −0.794359 0.607448i \(-0.792193\pi\)
0.923245 + 0.384211i \(0.125527\pi\)
\(840\) 0 0
\(841\) −19.8772 34.4283i −0.685420 1.18718i
\(842\) 0 0
\(843\) 18.1159 + 32.7761i 0.623945 + 1.12887i
\(844\) 0 0
\(845\) −20.8531 −0.717368
\(846\) 0 0
\(847\) 0.502596 0.0172694
\(848\) 0 0
\(849\) −48.7159 0.909730i −1.67193 0.0312219i
\(850\) 0 0
\(851\) −8.40445 14.5569i −0.288101 0.499005i
\(852\) 0 0
\(853\) −13.6648 + 23.6681i −0.467873 + 0.810380i −0.999326 0.0367077i \(-0.988313\pi\)
0.531453 + 0.847088i \(0.321646\pi\)
\(854\) 0 0
\(855\) −12.7052 + 20.2228i −0.434510 + 0.691604i
\(856\) 0 0
\(857\) 19.8199 34.3290i 0.677034 1.17266i −0.298836 0.954305i \(-0.596598\pi\)
0.975870 0.218353i \(-0.0700684\pi\)
\(858\) 0 0
\(859\) −4.61839 7.99928i −0.157577 0.272932i 0.776417 0.630219i \(-0.217035\pi\)
−0.933994 + 0.357287i \(0.883702\pi\)
\(860\) 0 0
\(861\) 0.519585 0.862352i 0.0177074 0.0293889i
\(862\) 0 0
\(863\) 21.8545 0.743938 0.371969 0.928245i \(-0.378683\pi\)
0.371969 + 0.928245i \(0.378683\pi\)
\(864\) 0 0
\(865\) 21.6243 0.735247
\(866\) 0 0
\(867\) −9.77117 + 16.2172i −0.331846 + 0.550764i
\(868\) 0 0
\(869\) 2.96672 + 5.13851i 0.100639 + 0.174312i
\(870\) 0 0
\(871\) 6.08336 10.5367i 0.206127 0.357022i
\(872\) 0 0
\(873\) 5.82625 + 0.217677i 0.197189 + 0.00736724i
\(874\) 0 0
\(875\) 2.15841 3.73847i 0.0729675 0.126383i
\(876\) 0 0
\(877\) −10.5679 18.3042i −0.356854 0.618089i 0.630579 0.776125i \(-0.282817\pi\)
−0.987433 + 0.158035i \(0.949484\pi\)
\(878\) 0 0
\(879\) −28.8948 0.539587i −0.974599 0.0181998i
\(880\) 0 0
\(881\) 46.1967 1.55641 0.778203 0.628013i \(-0.216131\pi\)
0.778203 + 0.628013i \(0.216131\pi\)
\(882\) 0 0
\(883\) 4.03099 0.135654 0.0678269 0.997697i \(-0.478393\pi\)
0.0678269 + 0.997697i \(0.478393\pi\)
\(884\) 0 0
\(885\) 14.9513 + 27.0506i 0.502584 + 0.909296i
\(886\) 0 0
\(887\) 25.9508 + 44.9482i 0.871344 + 1.50921i 0.860607 + 0.509269i \(0.170084\pi\)
0.0107365 + 0.999942i \(0.496582\pi\)
\(888\) 0 0
\(889\) −3.11515 + 5.39560i −0.104479 + 0.180963i
\(890\) 0 0
\(891\) −3.90586 8.10828i −0.130851 0.271638i
\(892\) 0 0
\(893\) 15.7139 27.2173i 0.525847 0.910794i
\(894\) 0 0
\(895\) −19.4321 33.6573i −0.649543 1.12504i
\(896\) 0 0
\(897\) 12.4330 + 22.4943i 0.415125 + 0.751062i
\(898\) 0 0
\(899\) 22.5336 0.751538
\(900\) 0 0
\(901\) 30.5972 1.01934
\(902\) 0 0
\(903\) −2.76180 0.0515744i −0.0919071 0.00171629i
\(904\) 0 0
\(905\) −9.73884 16.8682i −0.323730 0.560717i
\(906\) 0 0
\(907\) 9.40612 16.2919i 0.312325 0.540963i −0.666540 0.745469i \(-0.732226\pi\)
0.978865 + 0.204506i \(0.0655589\pi\)
\(908\) 0 0
\(909\) −40.4635 1.51177i −1.34209 0.0501424i
\(910\) 0 0
\(911\) 0.535073 0.926774i 0.0177278 0.0307054i −0.857025 0.515274i \(-0.827690\pi\)
0.874753 + 0.484569i \(0.161023\pi\)
\(912\) 0 0
\(913\) 5.37161 + 9.30390i 0.177774 + 0.307914i
\(914\) 0 0
\(915\) −2.91782 + 4.84270i −0.0964603 + 0.160095i
\(916\) 0 0
\(917\) 1.88270 0.0621721
\(918\) 0 0
\(919\) 9.97597 0.329077 0.164538 0.986371i \(-0.447387\pi\)
0.164538 + 0.986371i \(0.447387\pi\)
\(920\) 0 0
\(921\) 1.96580 3.26263i 0.0647753 0.107507i
\(922\) 0 0
\(923\) −9.63678 16.6914i −0.317199 0.549404i
\(924\) 0 0
\(925\) −2.10717 + 3.64973i −0.0692835 + 0.120002i
\(926\) 0 0
\(927\) −27.2851 + 43.4294i −0.896160 + 1.42641i
\(928\) 0 0
\(929\) −18.8413 + 32.6341i −0.618162 + 1.07069i 0.371658 + 0.928370i \(0.378789\pi\)
−0.989821 + 0.142319i \(0.954544\pi\)
\(930\) 0 0
\(931\) 10.3949 + 18.0044i 0.340678 + 0.590072i
\(932\) 0 0
\(933\) 17.5900 + 0.328479i 0.575872 + 0.0107539i
\(934\) 0 0
\(935\) −6.36505 −0.208159
\(936\) 0 0
\(937\) −35.8799 −1.17214 −0.586072 0.810259i \(-0.699326\pi\)
−0.586072 + 0.810259i \(0.699326\pi\)
\(938\) 0 0
\(939\) 9.27974 + 16.7893i 0.302833 + 0.547899i
\(940\) 0 0
\(941\) 8.62812 + 14.9443i 0.281269 + 0.487172i 0.971697 0.236229i \(-0.0759115\pi\)
−0.690429 + 0.723400i \(0.742578\pi\)
\(942\) 0 0
\(943\) −3.86494 + 6.69427i −0.125860 + 0.217995i
\(944\) 0 0
\(945\) −6.73703 0.377777i −0.219156 0.0122891i
\(946\) 0 0
\(947\) −20.9864 + 36.3496i −0.681968 + 1.18120i 0.292412 + 0.956293i \(0.405542\pi\)
−0.974379 + 0.224910i \(0.927791\pi\)
\(948\) 0 0
\(949\) −6.57609 11.3901i −0.213469 0.369739i
\(950\) 0 0
\(951\) 17.9837 + 32.5370i 0.583162 + 1.05508i
\(952\) 0 0
\(953\) −17.6110 −0.570477 −0.285239 0.958457i \(-0.592073\pi\)
−0.285239 + 0.958457i \(0.592073\pi\)
\(954\) 0 0
\(955\) 11.0670 0.358118
\(956\) 0 0
\(957\) −14.3594 0.268149i −0.464172 0.00866803i
\(958\) 0 0
\(959\) −0.0365568 0.0633182i −0.00118048 0.00204465i
\(960\) 0 0
\(961\) 11.8074 20.4510i 0.380884 0.659711i
\(962\) 0 0
\(963\) −21.8028 41.2473i −0.702585 1.32918i
\(964\) 0 0
\(965\) 29.0457 50.3087i 0.935015 1.61949i
\(966\) 0 0
\(967\) 6.86559 + 11.8916i 0.220783 + 0.382407i 0.955046 0.296458i \(-0.0958056\pi\)
−0.734263 + 0.678865i \(0.762472\pi\)
\(968\) 0 0
\(969\) −6.78492 + 11.2609i −0.217963 + 0.361752i
\(970\) 0 0
\(971\) −39.0717 −1.25387 −0.626935 0.779072i \(-0.715691\pi\)
−0.626935 + 0.779072i \(0.715691\pi\)
\(972\) 0 0
\(973\) −0.975323 −0.0312674
\(974\) 0 0
\(975\) 3.32560 5.51948i 0.106504 0.176765i
\(976\) 0 0
\(977\) −21.8006 37.7597i −0.697462 1.20804i −0.969344 0.245708i \(-0.920979\pi\)
0.271882 0.962331i \(-0.412354\pi\)
\(978\) 0 0
\(979\) −4.91031 + 8.50491i −0.156934 + 0.271818i
\(980\) 0 0
\(981\) 10.3822 + 19.6414i 0.331478 + 0.627101i
\(982\) 0 0
\(983\) 27.1583 47.0396i 0.866217 1.50033i 0.000382692 1.00000i \(-0.499878\pi\)
0.865834 0.500331i \(-0.166788\pi\)
\(984\) 0 0
\(985\) 20.7727 + 35.9794i 0.661875 + 1.14640i
\(986\) 0 0
\(987\) 8.87781 + 0.165786i 0.282584 + 0.00527702i
\(988\) 0 0
\(989\) 21.2082 0.674381
\(990\) 0 0
\(991\) −13.7473 −0.436697 −0.218348 0.975871i \(-0.570067\pi\)
−0.218348 + 0.975871i \(0.570067\pi\)
\(992\) 0 0
\(993\) 20.8656 + 37.7509i 0.662149 + 1.19799i
\(994\) 0 0
\(995\) 3.50977 + 6.07911i 0.111267 + 0.192721i
\(996\) 0 0
\(997\) −0.263061 + 0.455634i −0.00833121 + 0.0144301i −0.870161 0.492768i \(-0.835985\pi\)
0.861830 + 0.507198i \(0.169319\pi\)
\(998\) 0 0
\(999\) −13.0474 0.731630i −0.412802 0.0231478i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.q.f.529.4 yes 12
3.2 odd 2 2376.2.q.f.1585.5 12
9.2 odd 6 7128.2.a.w.1.2 6
9.4 even 3 inner 792.2.q.f.265.4 12
9.5 odd 6 2376.2.q.f.793.5 12
9.7 even 3 7128.2.a.ba.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.q.f.265.4 12 9.4 even 3 inner
792.2.q.f.529.4 yes 12 1.1 even 1 trivial
2376.2.q.f.793.5 12 9.5 odd 6
2376.2.q.f.1585.5 12 3.2 odd 2
7128.2.a.w.1.2 6 9.2 odd 6
7128.2.a.ba.1.5 6 9.7 even 3