Properties

Label 2376.2.q.f.1585.5
Level $2376$
Weight $2$
Character 2376.1585
Analytic conductor $18.972$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2376,2,Mod(793,2376)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2376, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2376.793"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2376 = 2^{3} \cdot 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2376.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.9724555203\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 7x^{10} - 2x^{9} + 39x^{8} - 9x^{7} + 67x^{6} - 18x^{5} + 88x^{4} - 16x^{3} + 24x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1585.5
Root \(0.322589 - 0.558741i\) of defining polynomial
Character \(\chi\) \(=\) 2376.1585
Dual form 2376.2.q.f.793.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.29187 + 2.23759i) q^{5} +(-0.251298 + 0.435260i) q^{7} +(0.500000 - 0.866025i) q^{11} +(-1.11008 - 1.92272i) q^{13} +2.46350 q^{17} +3.08115 q^{19} +(3.34183 + 5.78822i) q^{23} +(-0.837868 + 1.45123i) q^{25} +(4.14591 - 7.18093i) q^{29} +(-1.35878 - 2.35348i) q^{31} -1.29858 q^{35} +2.51492 q^{37} +(0.578267 + 1.00159i) q^{41} +(-1.58657 + 2.74802i) q^{43} +(-5.10003 + 8.83351i) q^{47} +(3.37370 + 5.84342i) q^{49} +12.4202 q^{53} +2.58374 q^{55} +(3.45322 + 5.98116i) q^{59} +(0.631684 - 1.09411i) q^{61} +(2.86817 - 4.96781i) q^{65} +(2.74005 + 4.74591i) q^{67} -8.68115 q^{71} +5.92397 q^{73} +(0.251298 + 0.435260i) q^{77} +(2.96672 - 5.13851i) q^{79} +(-5.37161 + 9.30390i) q^{83} +(3.18252 + 5.51229i) q^{85} -9.82062 q^{89} +1.11584 q^{91} +(3.98045 + 6.89434i) q^{95} +(-0.971719 + 1.68307i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{5} - 5 q^{7} + 6 q^{11} - 3 q^{13} - 14 q^{17} + 10 q^{19} + 8 q^{23} + 2 q^{25} + 8 q^{29} - 4 q^{31} - 16 q^{35} + 6 q^{37} - 5 q^{43} + 17 q^{47} - 3 q^{49} - 28 q^{53} + 8 q^{55} + 4 q^{59}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2376\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(1189\) \(1729\) \(1783\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.29187 + 2.23759i 0.577743 + 1.00068i 0.995738 + 0.0922306i \(0.0293997\pi\)
−0.417995 + 0.908449i \(0.637267\pi\)
\(6\) 0 0
\(7\) −0.251298 + 0.435260i −0.0949816 + 0.164513i −0.909601 0.415483i \(-0.863613\pi\)
0.814619 + 0.579996i \(0.196946\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.500000 0.866025i 0.150756 0.261116i
\(12\) 0 0
\(13\) −1.11008 1.92272i −0.307881 0.533266i 0.670017 0.742345i \(-0.266287\pi\)
−0.977899 + 0.209079i \(0.932953\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.46350 0.597486 0.298743 0.954334i \(-0.403433\pi\)
0.298743 + 0.954334i \(0.403433\pi\)
\(18\) 0 0
\(19\) 3.08115 0.706864 0.353432 0.935460i \(-0.385015\pi\)
0.353432 + 0.935460i \(0.385015\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.34183 + 5.78822i 0.696820 + 1.20693i 0.969563 + 0.244841i \(0.0787356\pi\)
−0.272743 + 0.962087i \(0.587931\pi\)
\(24\) 0 0
\(25\) −0.837868 + 1.45123i −0.167574 + 0.290246i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.14591 7.18093i 0.769877 1.33347i −0.167753 0.985829i \(-0.553651\pi\)
0.937629 0.347636i \(-0.113016\pi\)
\(30\) 0 0
\(31\) −1.35878 2.35348i −0.244045 0.422698i 0.717818 0.696231i \(-0.245141\pi\)
−0.961863 + 0.273533i \(0.911808\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.29858 −0.219500
\(36\) 0 0
\(37\) 2.51492 0.413451 0.206725 0.978399i \(-0.433719\pi\)
0.206725 + 0.978399i \(0.433719\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.578267 + 1.00159i 0.0903101 + 0.156422i 0.907642 0.419746i \(-0.137881\pi\)
−0.817332 + 0.576168i \(0.804548\pi\)
\(42\) 0 0
\(43\) −1.58657 + 2.74802i −0.241950 + 0.419069i −0.961270 0.275610i \(-0.911120\pi\)
0.719320 + 0.694679i \(0.244454\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.10003 + 8.83351i −0.743915 + 1.28850i 0.206785 + 0.978387i \(0.433700\pi\)
−0.950700 + 0.310113i \(0.899633\pi\)
\(48\) 0 0
\(49\) 3.37370 + 5.84342i 0.481957 + 0.834774i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.4202 1.70605 0.853024 0.521872i \(-0.174766\pi\)
0.853024 + 0.521872i \(0.174766\pi\)
\(54\) 0 0
\(55\) 2.58374 0.348392
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.45322 + 5.98116i 0.449571 + 0.778680i 0.998358 0.0572820i \(-0.0182434\pi\)
−0.548787 + 0.835962i \(0.684910\pi\)
\(60\) 0 0
\(61\) 0.631684 1.09411i 0.0808788 0.140086i −0.822749 0.568405i \(-0.807561\pi\)
0.903628 + 0.428319i \(0.140894\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.86817 4.96781i 0.355752 0.616181i
\(66\) 0 0
\(67\) 2.74005 + 4.74591i 0.334751 + 0.579805i 0.983437 0.181251i \(-0.0580146\pi\)
−0.648686 + 0.761056i \(0.724681\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.68115 −1.03026 −0.515131 0.857111i \(-0.672257\pi\)
−0.515131 + 0.857111i \(0.672257\pi\)
\(72\) 0 0
\(73\) 5.92397 0.693348 0.346674 0.937986i \(-0.387311\pi\)
0.346674 + 0.937986i \(0.387311\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.251298 + 0.435260i 0.0286380 + 0.0496025i
\(78\) 0 0
\(79\) 2.96672 5.13851i 0.333782 0.578127i −0.649468 0.760389i \(-0.725008\pi\)
0.983250 + 0.182262i \(0.0583418\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.37161 + 9.30390i −0.589610 + 1.02124i 0.404673 + 0.914462i \(0.367385\pi\)
−0.994283 + 0.106774i \(0.965948\pi\)
\(84\) 0 0
\(85\) 3.18252 + 5.51229i 0.345193 + 0.597892i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.82062 −1.04098 −0.520492 0.853867i \(-0.674251\pi\)
−0.520492 + 0.853867i \(0.674251\pi\)
\(90\) 0 0
\(91\) 1.11584 0.116972
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.98045 + 6.89434i 0.408386 + 0.707345i
\(96\) 0 0
\(97\) −0.971719 + 1.68307i −0.0986631 + 0.170890i −0.911132 0.412116i \(-0.864790\pi\)
0.812468 + 0.583005i \(0.198123\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.74863 + 11.6890i −0.671514 + 1.16310i 0.305961 + 0.952044i \(0.401022\pi\)
−0.977475 + 0.211052i \(0.932311\pi\)
\(102\) 0 0
\(103\) −8.54821 14.8059i −0.842280 1.45887i −0.887963 0.459915i \(-0.847880\pi\)
0.0456829 0.998956i \(-0.485454\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.5517 −1.50344 −0.751721 0.659482i \(-0.770776\pi\)
−0.751721 + 0.659482i \(0.770776\pi\)
\(108\) 0 0
\(109\) −7.40551 −0.709319 −0.354660 0.934996i \(-0.615403\pi\)
−0.354660 + 0.934996i \(0.615403\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.12659 + 12.3436i 0.670414 + 1.16119i 0.977787 + 0.209601i \(0.0672166\pi\)
−0.307373 + 0.951589i \(0.599450\pi\)
\(114\) 0 0
\(115\) −8.63444 + 14.9553i −0.805165 + 1.39459i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.619071 + 1.07226i −0.0567502 + 0.0982942i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.58905 0.768228
\(126\) 0 0
\(127\) 12.3963 1.09999 0.549995 0.835168i \(-0.314630\pi\)
0.549995 + 0.835168i \(0.314630\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.87297 + 3.24409i 0.163642 + 0.283437i 0.936172 0.351541i \(-0.114342\pi\)
−0.772530 + 0.634978i \(0.781009\pi\)
\(132\) 0 0
\(133\) −0.774286 + 1.34110i −0.0671391 + 0.116288i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.0727359 0.125982i 0.00621425 0.0107634i −0.862902 0.505372i \(-0.831355\pi\)
0.869116 + 0.494609i \(0.164689\pi\)
\(138\) 0 0
\(139\) 0.970286 + 1.68058i 0.0822986 + 0.142545i 0.904237 0.427031i \(-0.140441\pi\)
−0.821938 + 0.569577i \(0.807107\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.22016 −0.185659
\(144\) 0 0
\(145\) 21.4240 1.77916
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.69848 6.40595i −0.302991 0.524796i 0.673821 0.738895i \(-0.264652\pi\)
−0.976812 + 0.214099i \(0.931319\pi\)
\(150\) 0 0
\(151\) 6.58322 11.4025i 0.535735 0.927920i −0.463392 0.886153i \(-0.653368\pi\)
0.999127 0.0417670i \(-0.0132987\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.51075 6.08080i 0.281990 0.488422i
\(156\) 0 0
\(157\) 1.31627 + 2.27985i 0.105050 + 0.181952i 0.913759 0.406257i \(-0.133166\pi\)
−0.808709 + 0.588210i \(0.799833\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.35918 −0.264740
\(162\) 0 0
\(163\) 6.72257 0.526552 0.263276 0.964721i \(-0.415197\pi\)
0.263276 + 0.964721i \(0.415197\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.52713 + 7.84122i 0.350320 + 0.606772i 0.986305 0.164929i \(-0.0527395\pi\)
−0.635985 + 0.771701i \(0.719406\pi\)
\(168\) 0 0
\(169\) 4.03544 6.98958i 0.310418 0.537660i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.18467 7.24807i 0.318155 0.551060i −0.661948 0.749550i \(-0.730270\pi\)
0.980103 + 0.198489i \(0.0636035\pi\)
\(174\) 0 0
\(175\) −0.421109 0.729382i −0.0318328 0.0551361i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.0418 −1.12428 −0.562138 0.827043i \(-0.690021\pi\)
−0.562138 + 0.827043i \(0.690021\pi\)
\(180\) 0 0
\(181\) 7.53854 0.560336 0.280168 0.959951i \(-0.409610\pi\)
0.280168 + 0.959951i \(0.409610\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.24896 + 5.62736i 0.238868 + 0.413732i
\(186\) 0 0
\(187\) 1.23175 2.13345i 0.0900744 0.156013i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.14165 3.70945i 0.154964 0.268406i −0.778082 0.628163i \(-0.783807\pi\)
0.933046 + 0.359757i \(0.117140\pi\)
\(192\) 0 0
\(193\) 11.2417 + 19.4712i 0.809197 + 1.40157i 0.913421 + 0.407016i \(0.133431\pi\)
−0.104224 + 0.994554i \(0.533236\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.0796 1.14562 0.572811 0.819688i \(-0.305853\pi\)
0.572811 + 0.819688i \(0.305853\pi\)
\(198\) 0 0
\(199\) −2.71681 −0.192590 −0.0962948 0.995353i \(-0.530699\pi\)
−0.0962948 + 0.995353i \(0.530699\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.08372 + 3.60910i 0.146248 + 0.253309i
\(204\) 0 0
\(205\) −1.49409 + 2.58785i −0.104352 + 0.180743i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.54057 2.66835i 0.106564 0.184574i
\(210\) 0 0
\(211\) 10.1201 + 17.5286i 0.696699 + 1.20672i 0.969605 + 0.244677i \(0.0786820\pi\)
−0.272906 + 0.962041i \(0.587985\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.19858 −0.559139
\(216\) 0 0
\(217\) 1.36584 0.0927191
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.73468 4.73661i −0.183955 0.318619i
\(222\) 0 0
\(223\) 3.07520 5.32640i 0.205930 0.356682i −0.744498 0.667624i \(-0.767311\pi\)
0.950429 + 0.310942i \(0.100645\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.82077 10.0819i 0.386338 0.669157i −0.605616 0.795757i \(-0.707073\pi\)
0.991954 + 0.126600i \(0.0404065\pi\)
\(228\) 0 0
\(229\) 9.85030 + 17.0612i 0.650926 + 1.12744i 0.982899 + 0.184148i \(0.0589525\pi\)
−0.331973 + 0.943289i \(0.607714\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.3270 −1.39718 −0.698588 0.715524i \(-0.746188\pi\)
−0.698588 + 0.715524i \(0.746188\pi\)
\(234\) 0 0
\(235\) −26.3543 −1.71917
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.33890 + 7.51520i 0.280660 + 0.486118i 0.971548 0.236845i \(-0.0761132\pi\)
−0.690887 + 0.722963i \(0.742780\pi\)
\(240\) 0 0
\(241\) 12.9052 22.3524i 0.831295 1.43984i −0.0657173 0.997838i \(-0.520934\pi\)
0.897012 0.442006i \(-0.145733\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −8.71678 + 15.0979i −0.556894 + 0.964569i
\(246\) 0 0
\(247\) −3.42033 5.92418i −0.217630 0.376947i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.10916 0.259368 0.129684 0.991555i \(-0.458604\pi\)
0.129684 + 0.991555i \(0.458604\pi\)
\(252\) 0 0
\(253\) 6.68366 0.420198
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.42959 16.3325i −0.588201 1.01879i −0.994468 0.105040i \(-0.966503\pi\)
0.406267 0.913755i \(-0.366830\pi\)
\(258\) 0 0
\(259\) −0.631995 + 1.09465i −0.0392702 + 0.0680180i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.91584 15.4427i 0.549774 0.952237i −0.448516 0.893775i \(-0.648047\pi\)
0.998290 0.0584616i \(-0.0186195\pi\)
\(264\) 0 0
\(265\) 16.0453 + 27.7913i 0.985657 + 1.70721i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.1462 −0.740564 −0.370282 0.928919i \(-0.620739\pi\)
−0.370282 + 0.928919i \(0.620739\pi\)
\(270\) 0 0
\(271\) −0.860803 −0.0522900 −0.0261450 0.999658i \(-0.508323\pi\)
−0.0261450 + 0.999658i \(0.508323\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.837868 + 1.45123i 0.0505253 + 0.0875125i
\(276\) 0 0
\(277\) 8.17937 14.1671i 0.491451 0.851217i −0.508501 0.861061i \(-0.669800\pi\)
0.999952 + 0.00984399i \(0.00313349\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.8107 18.7247i 0.644913 1.11702i −0.339408 0.940639i \(-0.610227\pi\)
0.984321 0.176384i \(-0.0564399\pi\)
\(282\) 0 0
\(283\) −14.0655 24.3622i −0.836109 1.44818i −0.893124 0.449810i \(-0.851492\pi\)
0.0570148 0.998373i \(-0.481842\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.581269 −0.0343112
\(288\) 0 0
\(289\) −10.9312 −0.643011
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.34267 + 14.4499i 0.487384 + 0.844174i 0.999895 0.0145067i \(-0.00461778\pi\)
−0.512511 + 0.858681i \(0.671284\pi\)
\(294\) 0 0
\(295\) −8.92225 + 15.4538i −0.519473 + 0.899754i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.41941 12.8508i 0.429076 0.743181i
\(300\) 0 0
\(301\) −0.797403 1.38114i −0.0459616 0.0796077i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.26422 0.186909
\(306\) 0 0
\(307\) 2.19917 0.125513 0.0627567 0.998029i \(-0.480011\pi\)
0.0627567 + 0.998029i \(0.480011\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.07869 8.79655i −0.287986 0.498807i 0.685343 0.728221i \(-0.259652\pi\)
−0.973329 + 0.229414i \(0.926319\pi\)
\(312\) 0 0
\(313\) −5.53771 + 9.59160i −0.313010 + 0.542149i −0.979012 0.203800i \(-0.934671\pi\)
0.666003 + 0.745949i \(0.268004\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.7318 18.5881i 0.602760 1.04401i −0.389641 0.920967i \(-0.627401\pi\)
0.992401 0.123044i \(-0.0392657\pi\)
\(318\) 0 0
\(319\) −4.14591 7.18093i −0.232127 0.402055i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.59040 0.422341
\(324\) 0 0
\(325\) 3.72041 0.206371
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.56325 4.43968i −0.141317 0.244767i
\(330\) 0 0
\(331\) −12.4516 + 21.5668i −0.684401 + 1.18542i 0.289224 + 0.957261i \(0.406603\pi\)
−0.973625 + 0.228155i \(0.926731\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −7.07960 + 12.2622i −0.386800 + 0.669957i
\(336\) 0 0
\(337\) 0.399568 + 0.692072i 0.0217659 + 0.0376996i 0.876703 0.481032i \(-0.159738\pi\)
−0.854937 + 0.518731i \(0.826404\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.71757 −0.147165
\(342\) 0 0
\(343\) −6.90938 −0.373071
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.2648 + 29.9035i 0.926822 + 1.60530i 0.788604 + 0.614901i \(0.210804\pi\)
0.138218 + 0.990402i \(0.455863\pi\)
\(348\) 0 0
\(349\) −2.94069 + 5.09343i −0.157412 + 0.272645i −0.933935 0.357444i \(-0.883648\pi\)
0.776523 + 0.630089i \(0.216982\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.0132 19.0754i 0.586174 1.01528i −0.408555 0.912734i \(-0.633967\pi\)
0.994728 0.102548i \(-0.0326996\pi\)
\(354\) 0 0
\(355\) −11.2149 19.4248i −0.595227 1.03096i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.76577 0.357084 0.178542 0.983932i \(-0.442862\pi\)
0.178542 + 0.983932i \(0.442862\pi\)
\(360\) 0 0
\(361\) −9.50652 −0.500343
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.65301 + 13.2554i 0.400577 + 0.693819i
\(366\) 0 0
\(367\) 11.1999 19.3989i 0.584632 1.01261i −0.410289 0.911956i \(-0.634572\pi\)
0.994921 0.100657i \(-0.0320946\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.12117 + 5.40603i −0.162043 + 0.280667i
\(372\) 0 0
\(373\) −13.9329 24.1324i −0.721416 1.24953i −0.960432 0.278514i \(-0.910158\pi\)
0.239016 0.971016i \(-0.423175\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.4092 −0.948123
\(378\) 0 0
\(379\) −26.9794 −1.38584 −0.692920 0.721014i \(-0.743676\pi\)
−0.692920 + 0.721014i \(0.743676\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −17.9356 31.0653i −0.916466 1.58737i −0.804741 0.593626i \(-0.797696\pi\)
−0.111725 0.993739i \(-0.535637\pi\)
\(384\) 0 0
\(385\) −0.649289 + 1.12460i −0.0330908 + 0.0573150i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.63112 + 8.02133i −0.234807 + 0.406697i −0.959217 0.282672i \(-0.908779\pi\)
0.724410 + 0.689370i \(0.242112\pi\)
\(390\) 0 0
\(391\) 8.23259 + 14.2593i 0.416340 + 0.721122i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.3305 0.771360
\(396\) 0 0
\(397\) −28.2180 −1.41622 −0.708110 0.706102i \(-0.750452\pi\)
−0.708110 + 0.706102i \(0.750452\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.23371 + 15.9933i 0.461110 + 0.798665i 0.999017 0.0443388i \(-0.0141181\pi\)
−0.537907 + 0.843004i \(0.680785\pi\)
\(402\) 0 0
\(403\) −3.01672 + 5.22512i −0.150274 + 0.260282i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.25746 2.17799i 0.0623301 0.107959i
\(408\) 0 0
\(409\) −12.2043 21.1384i −0.603462 1.04523i −0.992293 0.123918i \(-0.960454\pi\)
0.388830 0.921309i \(-0.372879\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.47115 −0.170804
\(414\) 0 0
\(415\) −27.7577 −1.36257
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.30710 + 3.99601i 0.112709 + 0.195218i 0.916862 0.399205i \(-0.130714\pi\)
−0.804153 + 0.594423i \(0.797381\pi\)
\(420\) 0 0
\(421\) 8.16163 14.1364i 0.397774 0.688964i −0.595677 0.803224i \(-0.703116\pi\)
0.993451 + 0.114260i \(0.0364496\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.06409 + 3.57510i −0.100123 + 0.173418i
\(426\) 0 0
\(427\) 0.317482 + 0.549894i 0.0153640 + 0.0266112i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −25.6444 −1.23525 −0.617623 0.786475i \(-0.711904\pi\)
−0.617623 + 0.786475i \(0.711904\pi\)
\(432\) 0 0
\(433\) −3.62673 −0.174290 −0.0871448 0.996196i \(-0.527774\pi\)
−0.0871448 + 0.996196i \(0.527774\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10.2967 + 17.8344i 0.492557 + 0.853134i
\(438\) 0 0
\(439\) −18.9834 + 32.8802i −0.906029 + 1.56929i −0.0864986 + 0.996252i \(0.527568\pi\)
−0.819530 + 0.573036i \(0.805766\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.6397 + 30.5528i −0.838087 + 1.45161i 0.0534047 + 0.998573i \(0.482993\pi\)
−0.891492 + 0.453037i \(0.850341\pi\)
\(444\) 0 0
\(445\) −12.6870 21.9745i −0.601421 1.04169i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 25.6451 1.21027 0.605134 0.796123i \(-0.293119\pi\)
0.605134 + 0.796123i \(0.293119\pi\)
\(450\) 0 0
\(451\) 1.15653 0.0544590
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.44153 + 2.49680i 0.0675799 + 0.117052i
\(456\) 0 0
\(457\) 20.2624 35.0956i 0.947837 1.64170i 0.197869 0.980228i \(-0.436598\pi\)
0.749968 0.661474i \(-0.230069\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.5005 25.1157i 0.675358 1.16975i −0.301006 0.953622i \(-0.597323\pi\)
0.976364 0.216132i \(-0.0693441\pi\)
\(462\) 0 0
\(463\) −17.1853 29.7658i −0.798669 1.38334i −0.920483 0.390783i \(-0.872204\pi\)
0.121813 0.992553i \(-0.461129\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.16966 0.146674 0.0733371 0.997307i \(-0.476635\pi\)
0.0733371 + 0.997307i \(0.476635\pi\)
\(468\) 0 0
\(469\) −2.75428 −0.127181
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.58657 + 2.74802i 0.0729506 + 0.126354i
\(474\) 0 0
\(475\) −2.58160 + 4.47146i −0.118452 + 0.205164i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.82843 10.0951i 0.266308 0.461259i −0.701598 0.712573i \(-0.747530\pi\)
0.967905 + 0.251315i \(0.0808629\pi\)
\(480\) 0 0
\(481\) −2.79177 4.83549i −0.127294 0.220479i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.02135 −0.228008
\(486\) 0 0
\(487\) −2.06578 −0.0936095 −0.0468048 0.998904i \(-0.514904\pi\)
−0.0468048 + 0.998904i \(0.514904\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −18.5423 32.1162i −0.836803 1.44939i −0.892554 0.450941i \(-0.851089\pi\)
0.0557510 0.998445i \(-0.482245\pi\)
\(492\) 0 0
\(493\) 10.2134 17.6902i 0.459991 0.796727i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.18155 3.77856i 0.0978560 0.169492i
\(498\) 0 0
\(499\) 8.61373 + 14.9194i 0.385604 + 0.667885i 0.991853 0.127390i \(-0.0406599\pi\)
−0.606249 + 0.795275i \(0.707327\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −41.1144 −1.83320 −0.916600 0.399805i \(-0.869078\pi\)
−0.916600 + 0.399805i \(0.869078\pi\)
\(504\) 0 0
\(505\) −34.8735 −1.55185
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.73267 16.8575i −0.431393 0.747194i 0.565601 0.824679i \(-0.308644\pi\)
−0.996994 + 0.0774848i \(0.975311\pi\)
\(510\) 0 0
\(511\) −1.48868 + 2.57847i −0.0658553 + 0.114065i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 22.0864 38.2547i 0.973242 1.68571i
\(516\) 0 0
\(517\) 5.10003 + 8.83351i 0.224299 + 0.388497i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −15.9681 −0.699576 −0.349788 0.936829i \(-0.613746\pi\)
−0.349788 + 0.936829i \(0.613746\pi\)
\(522\) 0 0
\(523\) 36.6045 1.60060 0.800302 0.599597i \(-0.204672\pi\)
0.800302 + 0.599597i \(0.204672\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.34736 5.79780i −0.145813 0.252556i
\(528\) 0 0
\(529\) −10.8357 + 18.7679i −0.471116 + 0.815997i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.28385 2.22369i 0.0556096 0.0963186i
\(534\) 0 0
\(535\) −20.0908 34.7983i −0.868602 1.50446i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.74740 0.290631
\(540\) 0 0
\(541\) −14.0034 −0.602055 −0.301028 0.953615i \(-0.597330\pi\)
−0.301028 + 0.953615i \(0.597330\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.56697 16.5705i −0.409804 0.709801i
\(546\) 0 0
\(547\) −12.0437 + 20.8604i −0.514953 + 0.891925i 0.484896 + 0.874572i \(0.338857\pi\)
−0.999849 + 0.0173533i \(0.994476\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.7742 22.1255i 0.544198 0.942579i
\(552\) 0 0
\(553\) 1.49106 + 2.58259i 0.0634063 + 0.109823i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20.8881 0.885057 0.442529 0.896754i \(-0.354082\pi\)
0.442529 + 0.896754i \(0.354082\pi\)
\(558\) 0 0
\(559\) 7.04489 0.297967
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.06276 1.84076i −0.0447901 0.0775787i 0.842761 0.538288i \(-0.180929\pi\)
−0.887551 + 0.460709i \(0.847595\pi\)
\(564\) 0 0
\(565\) −18.4133 + 31.8928i −0.774653 + 1.34174i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14.0627 24.3574i 0.589540 1.02111i −0.404752 0.914426i \(-0.632642\pi\)
0.994293 0.106687i \(-0.0340244\pi\)
\(570\) 0 0
\(571\) 4.72244 + 8.17950i 0.197628 + 0.342301i 0.947759 0.318988i \(-0.103343\pi\)
−0.750131 + 0.661289i \(0.770010\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −11.2001 −0.467074
\(576\) 0 0
\(577\) −11.3534 −0.472648 −0.236324 0.971674i \(-0.575943\pi\)
−0.236324 + 0.971674i \(0.575943\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.69975 4.67610i −0.112004 0.193997i
\(582\) 0 0
\(583\) 6.21011 10.7562i 0.257196 0.445477i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.3372 + 23.1007i −0.550486 + 0.953469i 0.447754 + 0.894157i \(0.352224\pi\)
−0.998239 + 0.0593125i \(0.981109\pi\)
\(588\) 0 0
\(589\) −4.18662 7.25143i −0.172507 0.298790i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −42.0073 −1.72504 −0.862518 0.506027i \(-0.831114\pi\)
−0.862518 + 0.506027i \(0.831114\pi\)
\(594\) 0 0
\(595\) −3.19905 −0.131148
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.26821 12.5889i −0.296971 0.514369i 0.678471 0.734628i \(-0.262643\pi\)
−0.975441 + 0.220259i \(0.929310\pi\)
\(600\) 0 0
\(601\) −4.04850 + 7.01220i −0.165142 + 0.286034i −0.936706 0.350118i \(-0.886141\pi\)
0.771564 + 0.636152i \(0.219475\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.29187 2.23759i 0.0525221 0.0909709i
\(606\) 0 0
\(607\) 8.82417 + 15.2839i 0.358162 + 0.620354i 0.987654 0.156653i \(-0.0500703\pi\)
−0.629492 + 0.777007i \(0.716737\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 22.6458 0.916151
\(612\) 0 0
\(613\) −40.8291 −1.64907 −0.824537 0.565808i \(-0.808564\pi\)
−0.824537 + 0.565808i \(0.808564\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.97609 + 17.2791i 0.401622 + 0.695630i 0.993922 0.110087i \(-0.0351131\pi\)
−0.592300 + 0.805718i \(0.701780\pi\)
\(618\) 0 0
\(619\) −5.32594 + 9.22480i −0.214068 + 0.370776i −0.952984 0.303021i \(-0.902005\pi\)
0.738916 + 0.673797i \(0.235338\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.46790 4.27453i 0.0988743 0.171255i
\(624\) 0 0
\(625\) 15.2853 + 26.4749i 0.611412 + 1.05900i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.19551 0.247031
\(630\) 0 0
\(631\) 3.16199 0.125877 0.0629385 0.998017i \(-0.479953\pi\)
0.0629385 + 0.998017i \(0.479953\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.0144 + 27.7377i 0.635511 + 1.10074i
\(636\) 0 0
\(637\) 7.49016 12.9733i 0.296771 0.514023i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.5188 + 32.0756i −0.731450 + 1.26691i 0.224813 + 0.974402i \(0.427823\pi\)
−0.956263 + 0.292507i \(0.905510\pi\)
\(642\) 0 0
\(643\) 1.99681 + 3.45858i 0.0787465 + 0.136393i 0.902709 0.430251i \(-0.141575\pi\)
−0.823963 + 0.566644i \(0.808242\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.79267 −0.109791 −0.0548955 0.998492i \(-0.517483\pi\)
−0.0548955 + 0.998492i \(0.517483\pi\)
\(648\) 0 0
\(649\) 6.90645 0.271102
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.9182 20.6429i −0.466395 0.807820i 0.532868 0.846198i \(-0.321114\pi\)
−0.999263 + 0.0383785i \(0.987781\pi\)
\(654\) 0 0
\(655\) −4.83928 + 8.38189i −0.189087 + 0.327507i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.655300 1.13501i 0.0255269 0.0442138i −0.852980 0.521944i \(-0.825207\pi\)
0.878507 + 0.477730i \(0.158540\pi\)
\(660\) 0 0
\(661\) 0.725184 + 1.25606i 0.0282064 + 0.0488549i 0.879784 0.475374i \(-0.157687\pi\)
−0.851578 + 0.524229i \(0.824354\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.00111 −0.155157
\(666\) 0 0
\(667\) 55.4198 2.14586
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.631684 1.09411i −0.0243859 0.0422376i
\(672\) 0 0
\(673\) 22.2698 38.5723i 0.858436 1.48685i −0.0149843 0.999888i \(-0.504770\pi\)
0.873420 0.486967i \(-0.161897\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 24.7487 42.8660i 0.951169 1.64747i 0.208268 0.978072i \(-0.433217\pi\)
0.742901 0.669401i \(-0.233449\pi\)
\(678\) 0 0
\(679\) −0.488382 0.845902i −0.0187424 0.0324627i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 40.8454 1.56291 0.781454 0.623963i \(-0.214479\pi\)
0.781454 + 0.623963i \(0.214479\pi\)
\(684\) 0 0
\(685\) 0.375862 0.0143610
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −13.7875 23.8806i −0.525260 0.909778i
\(690\) 0 0
\(691\) 7.35816 12.7447i 0.279918 0.484831i −0.691446 0.722428i \(-0.743026\pi\)
0.971364 + 0.237596i \(0.0763595\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.50697 + 4.34220i −0.0950949 + 0.164709i
\(696\) 0 0
\(697\) 1.42456 + 2.46741i 0.0539590 + 0.0934598i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.5732 −0.701501 −0.350751 0.936469i \(-0.614074\pi\)
−0.350751 + 0.936469i \(0.614074\pi\)
\(702\) 0 0
\(703\) 7.74885 0.292254
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.39183 5.87482i −0.127563 0.220945i
\(708\) 0 0
\(709\) −20.4373 + 35.3985i −0.767539 + 1.32942i 0.171354 + 0.985210i \(0.445186\pi\)
−0.938893 + 0.344208i \(0.888148\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.08165 15.7299i 0.340111 0.589089i
\(714\) 0 0
\(715\) −2.86817 4.96781i −0.107263 0.185786i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −30.8115 −1.14908 −0.574538 0.818478i \(-0.694818\pi\)
−0.574538 + 0.818478i \(0.694818\pi\)
\(720\) 0 0
\(721\) 8.59258 0.320004
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.94746 + 12.0333i 0.258022 + 0.446907i
\(726\) 0 0
\(727\) 18.0554 31.2729i 0.669638 1.15985i −0.308368 0.951267i \(-0.599783\pi\)
0.978006 0.208579i \(-0.0668839\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.90851 + 6.76974i −0.144562 + 0.250388i
\(732\) 0 0
\(733\) 16.8793 + 29.2358i 0.623452 + 1.07985i 0.988838 + 0.148994i \(0.0476035\pi\)
−0.365386 + 0.930856i \(0.619063\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.48010 0.201862
\(738\) 0 0
\(739\) 13.7582 0.506104 0.253052 0.967453i \(-0.418566\pi\)
0.253052 + 0.967453i \(0.418566\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16.7807 29.0650i −0.615623 1.06629i −0.990275 0.139124i \(-0.955571\pi\)
0.374652 0.927165i \(-0.377762\pi\)
\(744\) 0 0
\(745\) 9.55592 16.5513i 0.350102 0.606394i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.90811 6.76905i 0.142799 0.247336i
\(750\) 0 0
\(751\) −24.5938 42.5977i −0.897441 1.55441i −0.830755 0.556639i \(-0.812091\pi\)
−0.0666861 0.997774i \(-0.521243\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 34.0187 1.23807
\(756\) 0 0
\(757\) 34.9762 1.27123 0.635617 0.772005i \(-0.280746\pi\)
0.635617 + 0.772005i \(0.280746\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.426628 + 0.738942i 0.0154653 + 0.0267866i 0.873654 0.486547i \(-0.161744\pi\)
−0.858189 + 0.513334i \(0.828410\pi\)
\(762\) 0 0
\(763\) 1.86099 3.22333i 0.0673723 0.116692i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.66672 13.2792i 0.276829 0.479482i
\(768\) 0 0
\(769\) 4.62455 + 8.00996i 0.166766 + 0.288846i 0.937281 0.348575i \(-0.113334\pi\)
−0.770515 + 0.637422i \(0.780001\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −38.9134 −1.39962 −0.699809 0.714330i \(-0.746731\pi\)
−0.699809 + 0.714330i \(0.746731\pi\)
\(774\) 0 0
\(775\) 4.55393 0.163582
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.78173 + 3.08604i 0.0638370 + 0.110569i
\(780\) 0 0
\(781\) −4.34057 + 7.51809i −0.155318 + 0.269019i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.40092 + 5.89056i −0.121384 + 0.210243i
\(786\) 0 0
\(787\) 3.54778 + 6.14493i 0.126465 + 0.219043i 0.922305 0.386464i \(-0.126304\pi\)
−0.795840 + 0.605507i \(0.792970\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7.16359 −0.254708
\(792\) 0 0
\(793\) −2.80488 −0.0996043
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.96247 13.7914i −0.282045 0.488516i 0.689843 0.723959i \(-0.257679\pi\)
−0.971888 + 0.235442i \(0.924346\pi\)
\(798\) 0 0
\(799\) −12.5639 + 21.7613i −0.444479 + 0.769860i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.96198 5.13030i 0.104526 0.181045i
\(804\) 0 0
\(805\) −4.33963 7.51646i −0.152952 0.264920i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.5647 0.828492 0.414246 0.910165i \(-0.364045\pi\)
0.414246 + 0.910165i \(0.364045\pi\)
\(810\) 0 0
\(811\) 51.3678 1.80377 0.901884 0.431978i \(-0.142184\pi\)
0.901884 + 0.431978i \(0.142184\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.68470 + 15.0423i 0.304212 + 0.526910i
\(816\) 0 0
\(817\) −4.88846 + 8.46706i −0.171026 + 0.296225i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −26.0358 + 45.0954i −0.908656 + 1.57384i −0.0927238 + 0.995692i \(0.529557\pi\)
−0.815933 + 0.578147i \(0.803776\pi\)
\(822\) 0 0
\(823\) 15.5424 + 26.9203i 0.541776 + 0.938383i 0.998802 + 0.0489299i \(0.0155811\pi\)
−0.457027 + 0.889453i \(0.651086\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 16.4394 0.571655 0.285828 0.958281i \(-0.407732\pi\)
0.285828 + 0.958281i \(0.407732\pi\)
\(828\) 0 0
\(829\) −21.0593 −0.731421 −0.365711 0.930729i \(-0.619174\pi\)
−0.365711 + 0.930729i \(0.619174\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8.31110 + 14.3952i 0.287963 + 0.498766i
\(834\) 0 0
\(835\) −11.6970 + 20.2597i −0.404790 + 0.701117i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −3.73325 + 6.46618i −0.128886 + 0.223237i −0.923245 0.384211i \(-0.874473\pi\)
0.794359 + 0.607448i \(0.207807\pi\)
\(840\) 0 0
\(841\) −19.8772 34.4283i −0.685420 1.18718i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 20.8531 0.717368
\(846\) 0 0
\(847\) 0.502596 0.0172694
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.40445 + 14.5569i 0.288101 + 0.499005i
\(852\) 0 0
\(853\) −13.6648 + 23.6681i −0.467873 + 0.810380i −0.999326 0.0367077i \(-0.988313\pi\)
0.531453 + 0.847088i \(0.321646\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19.8199 + 34.3290i −0.677034 + 1.17266i 0.298836 + 0.954305i \(0.403402\pi\)
−0.975870 + 0.218353i \(0.929932\pi\)
\(858\) 0 0
\(859\) −4.61839 7.99928i −0.157577 0.272932i 0.776417 0.630219i \(-0.217035\pi\)
−0.933994 + 0.357287i \(0.883702\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −21.8545 −0.743938 −0.371969 0.928245i \(-0.621317\pi\)
−0.371969 + 0.928245i \(0.621317\pi\)
\(864\) 0 0
\(865\) 21.6243 0.735247
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.96672 5.13851i −0.100639 0.174312i
\(870\) 0 0
\(871\) 6.08336 10.5367i 0.206127 0.357022i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.15841 + 3.73847i −0.0729675 + 0.126383i
\(876\) 0 0
\(877\) −10.5679 18.3042i −0.356854 0.618089i 0.630579 0.776125i \(-0.282817\pi\)
−0.987433 + 0.158035i \(0.949484\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −46.1967 −1.55641 −0.778203 0.628013i \(-0.783869\pi\)
−0.778203 + 0.628013i \(0.783869\pi\)
\(882\) 0 0
\(883\) 4.03099 0.135654 0.0678269 0.997697i \(-0.478393\pi\)
0.0678269 + 0.997697i \(0.478393\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25.9508 44.9482i −0.871344 1.50921i −0.860607 0.509269i \(-0.829916\pi\)
−0.0107365 0.999942i \(-0.503418\pi\)
\(888\) 0 0
\(889\) −3.11515 + 5.39560i −0.104479 + 0.180963i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −15.7139 + 27.2173i −0.525847 + 0.910794i
\(894\) 0 0
\(895\) −19.4321 33.6573i −0.649543 1.12504i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −22.5336 −0.751538
\(900\) 0 0
\(901\) 30.5972 1.01934
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 9.73884 + 16.8682i 0.323730 + 0.560717i
\(906\) 0 0
\(907\) 9.40612 16.2919i 0.312325 0.540963i −0.666540 0.745469i \(-0.732226\pi\)
0.978865 + 0.204506i \(0.0655589\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.535073 + 0.926774i −0.0177278 + 0.0307054i −0.874753 0.484569i \(-0.838977\pi\)
0.857025 + 0.515274i \(0.172310\pi\)
\(912\) 0 0
\(913\) 5.37161 + 9.30390i 0.177774 + 0.307914i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.88270 −0.0621721
\(918\) 0 0
\(919\) 9.97597 0.329077 0.164538 0.986371i \(-0.447387\pi\)
0.164538 + 0.986371i \(0.447387\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.63678 + 16.6914i 0.317199 + 0.549404i
\(924\) 0 0
\(925\) −2.10717 + 3.64973i −0.0692835 + 0.120002i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 18.8413 32.6341i 0.618162 1.07069i −0.371658 0.928370i \(-0.621211\pi\)
0.989821 0.142319i \(-0.0454559\pi\)
\(930\) 0 0
\(931\) 10.3949 + 18.0044i 0.340678 + 0.590072i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.36505 0.208159
\(936\) 0 0
\(937\) −35.8799 −1.17214 −0.586072 0.810259i \(-0.699326\pi\)
−0.586072 + 0.810259i \(0.699326\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8.62812 14.9443i −0.281269 0.487172i 0.690429 0.723400i \(-0.257422\pi\)
−0.971697 + 0.236229i \(0.924089\pi\)
\(942\) 0 0
\(943\) −3.86494 + 6.69427i −0.125860 + 0.217995i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.9864 36.3496i 0.681968 1.18120i −0.292412 0.956293i \(-0.594458\pi\)
0.974379 0.224910i \(-0.0722090\pi\)
\(948\) 0 0
\(949\) −6.57609 11.3901i −0.213469 0.369739i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 17.6110 0.570477 0.285239 0.958457i \(-0.407927\pi\)
0.285239 + 0.958457i \(0.407927\pi\)
\(954\) 0 0
\(955\) 11.0670 0.358118
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.0365568 + 0.0633182i 0.00118048 + 0.00204465i
\(960\) 0 0
\(961\) 11.8074 20.4510i 0.380884 0.659711i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −29.0457 + 50.3087i −0.935015 + 1.61949i
\(966\) 0 0
\(967\) 6.86559 + 11.8916i 0.220783 + 0.382407i 0.955046 0.296458i \(-0.0958056\pi\)
−0.734263 + 0.678865i \(0.762472\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 39.0717 1.25387 0.626935 0.779072i \(-0.284309\pi\)
0.626935 + 0.779072i \(0.284309\pi\)
\(972\) 0 0
\(973\) −0.975323 −0.0312674
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.8006 + 37.7597i 0.697462 + 1.20804i 0.969344 + 0.245708i \(0.0790205\pi\)
−0.271882 + 0.962331i \(0.587646\pi\)
\(978\) 0 0
\(979\) −4.91031 + 8.50491i −0.156934 + 0.271818i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −27.1583 + 47.0396i −0.866217 + 1.50033i −0.000382692 1.00000i \(0.500122\pi\)
−0.865834 + 0.500331i \(0.833212\pi\)
\(984\) 0 0
\(985\) 20.7727 + 35.9794i 0.661875 + 1.14640i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −21.2082 −0.674381
\(990\) 0 0
\(991\) −13.7473 −0.436697 −0.218348 0.975871i \(-0.570067\pi\)
−0.218348 + 0.975871i \(0.570067\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3.50977 6.07911i −0.111267 0.192721i
\(996\) 0 0
\(997\) −0.263061 + 0.455634i −0.00833121 + 0.0144301i −0.870161 0.492768i \(-0.835985\pi\)
0.861830 + 0.507198i \(0.169319\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2376.2.q.f.1585.5 12
3.2 odd 2 792.2.q.f.529.4 yes 12
9.2 odd 6 7128.2.a.ba.1.5 6
9.4 even 3 inner 2376.2.q.f.793.5 12
9.5 odd 6 792.2.q.f.265.4 12
9.7 even 3 7128.2.a.w.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.q.f.265.4 12 9.5 odd 6
792.2.q.f.529.4 yes 12 3.2 odd 2
2376.2.q.f.793.5 12 9.4 even 3 inner
2376.2.q.f.1585.5 12 1.1 even 1 trivial
7128.2.a.w.1.2 6 9.7 even 3
7128.2.a.ba.1.5 6 9.2 odd 6