Properties

Label 792.2.q.f.265.5
Level $792$
Weight $2$
Character 792.265
Analytic conductor $6.324$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(265,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.265"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,1,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 7x^{10} - 2x^{9} + 39x^{8} - 9x^{7} + 67x^{6} - 18x^{5} + 88x^{4} - 16x^{3} + 24x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 265.5
Root \(-0.654157 - 1.13303i\) of defining polynomial
Character \(\chi\) \(=\) 792.265
Dual form 792.2.q.f.529.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.23257 - 1.21686i) q^{3} +(-0.644157 + 1.11571i) q^{5} +(2.04089 + 3.53492i) q^{7} +(0.0384795 - 2.99975i) q^{9} +(-0.500000 - 0.866025i) q^{11} +(-0.317363 + 0.549690i) q^{13} +(0.563700 + 2.15905i) q^{15} +1.87510 q^{17} +6.37009 q^{19} +(6.81707 + 1.87357i) q^{21} +(-0.379815 + 0.657858i) q^{23} +(1.67012 + 2.89274i) q^{25} +(-3.60287 - 3.74424i) q^{27} +(2.34297 + 4.05813i) q^{29} +(-2.85825 + 4.95064i) q^{31} +(-1.67012 - 0.459008i) q^{33} -5.25861 q^{35} +3.77232 q^{37} +(0.277724 + 1.06372i) q^{39} +(3.52241 - 6.10099i) q^{41} +(-1.37077 - 2.37424i) q^{43} +(3.32208 + 1.97524i) q^{45} +(-1.76867 - 3.06343i) q^{47} +(-4.83045 + 8.36659i) q^{49} +(2.31120 - 2.28174i) q^{51} +2.90262 q^{53} +1.28831 q^{55} +(7.85161 - 7.75154i) q^{57} +(2.48116 - 4.29749i) q^{59} +(3.96207 + 6.86250i) q^{61} +(10.6824 - 5.98614i) q^{63} +(-0.408864 - 0.708173i) q^{65} +(4.45563 - 7.71737i) q^{67} +(0.332375 + 1.27304i) q^{69} -9.98378 q^{71} -9.27177 q^{73} +(5.57862 + 1.53320i) q^{75} +(2.04089 - 3.53492i) q^{77} +(-8.25154 - 14.2921i) q^{79} +(-8.99704 - 0.230858i) q^{81} +(-8.44755 - 14.6316i) q^{83} +(-1.20786 + 2.09207i) q^{85} +(7.82608 + 2.15088i) q^{87} -2.39069 q^{89} -2.59081 q^{91} +(2.50125 + 9.58014i) q^{93} +(-4.10334 + 7.10719i) q^{95} +(6.01708 + 10.4219i) q^{97} +(-2.61710 + 1.46655i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{3} - 4 q^{5} - 5 q^{7} + 5 q^{9} - 6 q^{11} - 3 q^{13} - 7 q^{15} + 14 q^{17} + 10 q^{19} + 9 q^{21} - 8 q^{23} + 2 q^{25} - 11 q^{27} - 8 q^{29} - 4 q^{31} - 2 q^{33} + 16 q^{35} + 6 q^{37}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.23257 1.21686i 0.711627 0.702557i
\(4\) 0 0
\(5\) −0.644157 + 1.11571i −0.288076 + 0.498962i −0.973350 0.229323i \(-0.926349\pi\)
0.685275 + 0.728285i \(0.259682\pi\)
\(6\) 0 0
\(7\) 2.04089 + 3.53492i 0.771383 + 1.33608i 0.936805 + 0.349852i \(0.113768\pi\)
−0.165422 + 0.986223i \(0.552898\pi\)
\(8\) 0 0
\(9\) 0.0384795 2.99975i 0.0128265 0.999918i
\(10\) 0 0
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) 0 0
\(13\) −0.317363 + 0.549690i −0.0880208 + 0.152456i −0.906674 0.421831i \(-0.861388\pi\)
0.818654 + 0.574288i \(0.194721\pi\)
\(14\) 0 0
\(15\) 0.563700 + 2.15905i 0.145547 + 0.557465i
\(16\) 0 0
\(17\) 1.87510 0.454778 0.227389 0.973804i \(-0.426981\pi\)
0.227389 + 0.973804i \(0.426981\pi\)
\(18\) 0 0
\(19\) 6.37009 1.46140 0.730700 0.682699i \(-0.239194\pi\)
0.730700 + 0.682699i \(0.239194\pi\)
\(20\) 0 0
\(21\) 6.81707 + 1.87357i 1.48761 + 0.408846i
\(22\) 0 0
\(23\) −0.379815 + 0.657858i −0.0791968 + 0.137173i −0.902904 0.429843i \(-0.858569\pi\)
0.823707 + 0.567016i \(0.191902\pi\)
\(24\) 0 0
\(25\) 1.67012 + 2.89274i 0.334025 + 0.578548i
\(26\) 0 0
\(27\) −3.60287 3.74424i −0.693372 0.720580i
\(28\) 0 0
\(29\) 2.34297 + 4.05813i 0.435078 + 0.753577i 0.997302 0.0734081i \(-0.0233876\pi\)
−0.562224 + 0.826985i \(0.690054\pi\)
\(30\) 0 0
\(31\) −2.85825 + 4.95064i −0.513357 + 0.889161i 0.486523 + 0.873668i \(0.338265\pi\)
−0.999880 + 0.0154929i \(0.995068\pi\)
\(32\) 0 0
\(33\) −1.67012 0.459008i −0.290731 0.0799031i
\(34\) 0 0
\(35\) −5.25861 −0.888868
\(36\) 0 0
\(37\) 3.77232 0.620166 0.310083 0.950709i \(-0.399643\pi\)
0.310083 + 0.950709i \(0.399643\pi\)
\(38\) 0 0
\(39\) 0.277724 + 1.06372i 0.0444714 + 0.170332i
\(40\) 0 0
\(41\) 3.52241 6.10099i 0.550108 0.952815i −0.448158 0.893954i \(-0.647920\pi\)
0.998266 0.0588606i \(-0.0187467\pi\)
\(42\) 0 0
\(43\) −1.37077 2.37424i −0.209040 0.362067i 0.742373 0.669987i \(-0.233700\pi\)
−0.951412 + 0.307920i \(0.900367\pi\)
\(44\) 0 0
\(45\) 3.32208 + 1.97524i 0.495226 + 0.294452i
\(46\) 0 0
\(47\) −1.76867 3.06343i −0.257988 0.446848i 0.707715 0.706498i \(-0.249726\pi\)
−0.965703 + 0.259650i \(0.916393\pi\)
\(48\) 0 0
\(49\) −4.83045 + 8.36659i −0.690065 + 1.19523i
\(50\) 0 0
\(51\) 2.31120 2.28174i 0.323632 0.319508i
\(52\) 0 0
\(53\) 2.90262 0.398706 0.199353 0.979928i \(-0.436116\pi\)
0.199353 + 0.979928i \(0.436116\pi\)
\(54\) 0 0
\(55\) 1.28831 0.173716
\(56\) 0 0
\(57\) 7.85161 7.75154i 1.03997 1.02672i
\(58\) 0 0
\(59\) 2.48116 4.29749i 0.323019 0.559485i −0.658090 0.752939i \(-0.728636\pi\)
0.981109 + 0.193454i \(0.0619689\pi\)
\(60\) 0 0
\(61\) 3.96207 + 6.86250i 0.507291 + 0.878653i 0.999964 + 0.00843895i \(0.00268623\pi\)
−0.492674 + 0.870214i \(0.663980\pi\)
\(62\) 0 0
\(63\) 10.6824 5.98614i 1.34586 0.754183i
\(64\) 0 0
\(65\) −0.408864 0.708173i −0.0507133 0.0878380i
\(66\) 0 0
\(67\) 4.45563 7.71737i 0.544341 0.942827i −0.454307 0.890845i \(-0.650113\pi\)
0.998648 0.0519815i \(-0.0165537\pi\)
\(68\) 0 0
\(69\) 0.332375 + 1.27304i 0.0400132 + 0.153256i
\(70\) 0 0
\(71\) −9.98378 −1.18486 −0.592428 0.805623i \(-0.701831\pi\)
−0.592428 + 0.805623i \(0.701831\pi\)
\(72\) 0 0
\(73\) −9.27177 −1.08518 −0.542589 0.839998i \(-0.682556\pi\)
−0.542589 + 0.839998i \(0.682556\pi\)
\(74\) 0 0
\(75\) 5.57862 + 1.53320i 0.644164 + 0.177039i
\(76\) 0 0
\(77\) 2.04089 3.53492i 0.232581 0.402842i
\(78\) 0 0
\(79\) −8.25154 14.2921i −0.928370 1.60798i −0.786049 0.618164i \(-0.787877\pi\)
−0.142321 0.989821i \(-0.545457\pi\)
\(80\) 0 0
\(81\) −8.99704 0.230858i −0.999671 0.0256509i
\(82\) 0 0
\(83\) −8.44755 14.6316i −0.927240 1.60603i −0.787919 0.615779i \(-0.788842\pi\)
−0.139320 0.990247i \(-0.544492\pi\)
\(84\) 0 0
\(85\) −1.20786 + 2.09207i −0.131011 + 0.226917i
\(86\) 0 0
\(87\) 7.82608 + 2.15088i 0.839044 + 0.230599i
\(88\) 0 0
\(89\) −2.39069 −0.253412 −0.126706 0.991940i \(-0.540441\pi\)
−0.126706 + 0.991940i \(0.540441\pi\)
\(90\) 0 0
\(91\) −2.59081 −0.271591
\(92\) 0 0
\(93\) 2.50125 + 9.58014i 0.259367 + 0.993414i
\(94\) 0 0
\(95\) −4.10334 + 7.10719i −0.420994 + 0.729183i
\(96\) 0 0
\(97\) 6.01708 + 10.4219i 0.610942 + 1.05818i 0.991082 + 0.133254i \(0.0425425\pi\)
−0.380140 + 0.924929i \(0.624124\pi\)
\(98\) 0 0
\(99\) −2.61710 + 1.46655i −0.263029 + 0.147394i
\(100\) 0 0
\(101\) −3.51431 6.08696i −0.349687 0.605675i 0.636507 0.771271i \(-0.280379\pi\)
−0.986194 + 0.165596i \(0.947045\pi\)
\(102\) 0 0
\(103\) −4.04279 + 7.00232i −0.398348 + 0.689960i −0.993522 0.113637i \(-0.963750\pi\)
0.595174 + 0.803597i \(0.297083\pi\)
\(104\) 0 0
\(105\) −6.48163 + 6.39902i −0.632542 + 0.624480i
\(106\) 0 0
\(107\) 7.14038 0.690286 0.345143 0.938550i \(-0.387830\pi\)
0.345143 + 0.938550i \(0.387830\pi\)
\(108\) 0 0
\(109\) −6.40838 −0.613812 −0.306906 0.951740i \(-0.599294\pi\)
−0.306906 + 0.951740i \(0.599294\pi\)
\(110\) 0 0
\(111\) 4.64967 4.59041i 0.441327 0.435702i
\(112\) 0 0
\(113\) −6.42460 + 11.1277i −0.604376 + 1.04681i 0.387774 + 0.921754i \(0.373244\pi\)
−0.992150 + 0.125055i \(0.960089\pi\)
\(114\) 0 0
\(115\) −0.489321 0.847528i −0.0456294 0.0790324i
\(116\) 0 0
\(117\) 1.63672 + 0.973164i 0.151315 + 0.0899690i
\(118\) 0 0
\(119\) 3.82686 + 6.62832i 0.350808 + 0.607618i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) −3.08245 11.8062i −0.277935 1.06453i
\(124\) 0 0
\(125\) −10.7449 −0.961049
\(126\) 0 0
\(127\) 14.1597 1.25647 0.628235 0.778023i \(-0.283777\pi\)
0.628235 + 0.778023i \(0.283777\pi\)
\(128\) 0 0
\(129\) −4.57869 1.25839i −0.403132 0.110795i
\(130\) 0 0
\(131\) −9.16523 + 15.8746i −0.800770 + 1.38697i 0.118341 + 0.992973i \(0.462243\pi\)
−0.919110 + 0.394001i \(0.871091\pi\)
\(132\) 0 0
\(133\) 13.0006 + 22.5178i 1.12730 + 1.95254i
\(134\) 0 0
\(135\) 6.49831 1.60788i 0.559286 0.138385i
\(136\) 0 0
\(137\) −1.71691 2.97377i −0.146685 0.254066i 0.783315 0.621625i \(-0.213527\pi\)
−0.930000 + 0.367558i \(0.880194\pi\)
\(138\) 0 0
\(139\) −2.74271 + 4.75051i −0.232634 + 0.402933i −0.958582 0.284816i \(-0.908068\pi\)
0.725949 + 0.687749i \(0.241401\pi\)
\(140\) 0 0
\(141\) −5.90781 1.62367i −0.497527 0.136738i
\(142\) 0 0
\(143\) 0.634727 0.0530785
\(144\) 0 0
\(145\) −6.03695 −0.501341
\(146\) 0 0
\(147\) 4.22712 + 16.1904i 0.348647 + 1.33537i
\(148\) 0 0
\(149\) 1.27194 2.20307i 0.104202 0.180482i −0.809210 0.587519i \(-0.800105\pi\)
0.913412 + 0.407037i \(0.133438\pi\)
\(150\) 0 0
\(151\) −5.61804 9.73073i −0.457190 0.791876i 0.541621 0.840623i \(-0.317811\pi\)
−0.998811 + 0.0487467i \(0.984477\pi\)
\(152\) 0 0
\(153\) 0.0721527 5.62483i 0.00583320 0.454741i
\(154\) 0 0
\(155\) −3.68233 6.37798i −0.295772 0.512291i
\(156\) 0 0
\(157\) 5.64620 9.77951i 0.450616 0.780490i −0.547808 0.836604i \(-0.684538\pi\)
0.998424 + 0.0561141i \(0.0178710\pi\)
\(158\) 0 0
\(159\) 3.57770 3.53210i 0.283730 0.280114i
\(160\) 0 0
\(161\) −3.10064 −0.244364
\(162\) 0 0
\(163\) −14.8053 −1.15964 −0.579819 0.814745i \(-0.696877\pi\)
−0.579819 + 0.814745i \(0.696877\pi\)
\(164\) 0 0
\(165\) 1.58794 1.56770i 0.123621 0.122046i
\(166\) 0 0
\(167\) −2.90539 + 5.03228i −0.224826 + 0.389409i −0.956267 0.292495i \(-0.905515\pi\)
0.731442 + 0.681904i \(0.238848\pi\)
\(168\) 0 0
\(169\) 6.29856 + 10.9094i 0.484505 + 0.839187i
\(170\) 0 0
\(171\) 0.245118 19.1087i 0.0187446 1.46128i
\(172\) 0 0
\(173\) −11.7193 20.2984i −0.891001 1.54326i −0.838677 0.544630i \(-0.816670\pi\)
−0.0523247 0.998630i \(-0.516663\pi\)
\(174\) 0 0
\(175\) −6.81707 + 11.8075i −0.515322 + 0.892564i
\(176\) 0 0
\(177\) −2.17125 8.31621i −0.163201 0.625084i
\(178\) 0 0
\(179\) −19.1537 −1.43162 −0.715808 0.698297i \(-0.753941\pi\)
−0.715808 + 0.698297i \(0.753941\pi\)
\(180\) 0 0
\(181\) 26.7543 1.98864 0.994318 0.106455i \(-0.0339499\pi\)
0.994318 + 0.106455i \(0.0339499\pi\)
\(182\) 0 0
\(183\) 13.2343 + 3.63724i 0.978306 + 0.268873i
\(184\) 0 0
\(185\) −2.42997 + 4.20883i −0.178655 + 0.309439i
\(186\) 0 0
\(187\) −0.937549 1.62388i −0.0685604 0.118750i
\(188\) 0 0
\(189\) 5.88256 20.3774i 0.427894 1.48224i
\(190\) 0 0
\(191\) −11.7451 20.3431i −0.849845 1.47198i −0.881346 0.472472i \(-0.843362\pi\)
0.0315007 0.999504i \(-0.489971\pi\)
\(192\) 0 0
\(193\) −7.55091 + 13.0786i −0.543527 + 0.941416i 0.455171 + 0.890404i \(0.349578\pi\)
−0.998698 + 0.0510120i \(0.983755\pi\)
\(194\) 0 0
\(195\) −1.36571 0.375344i −0.0978002 0.0268789i
\(196\) 0 0
\(197\) 16.5092 1.17623 0.588116 0.808777i \(-0.299870\pi\)
0.588116 + 0.808777i \(0.299870\pi\)
\(198\) 0 0
\(199\) 3.87009 0.274344 0.137172 0.990547i \(-0.456199\pi\)
0.137172 + 0.990547i \(0.456199\pi\)
\(200\) 0 0
\(201\) −3.89911 14.9341i −0.275022 1.05337i
\(202\) 0 0
\(203\) −9.56346 + 16.5644i −0.671223 + 1.16259i
\(204\) 0 0
\(205\) 4.53797 + 7.85999i 0.316946 + 0.548966i
\(206\) 0 0
\(207\) 1.95880 + 1.16466i 0.136146 + 0.0809498i
\(208\) 0 0
\(209\) −3.18505 5.51666i −0.220314 0.381595i
\(210\) 0 0
\(211\) −0.760845 + 1.31782i −0.0523787 + 0.0907226i −0.891026 0.453952i \(-0.850014\pi\)
0.838647 + 0.544675i \(0.183347\pi\)
\(212\) 0 0
\(213\) −12.3058 + 12.1489i −0.843176 + 0.832430i
\(214\) 0 0
\(215\) 3.53195 0.240877
\(216\) 0 0
\(217\) −23.3335 −1.58398
\(218\) 0 0
\(219\) −11.4281 + 11.2825i −0.772242 + 0.762400i
\(220\) 0 0
\(221\) −0.595087 + 1.03072i −0.0400299 + 0.0693338i
\(222\) 0 0
\(223\) −11.9980 20.7811i −0.803443 1.39160i −0.917337 0.398112i \(-0.869666\pi\)
0.113894 0.993493i \(-0.463668\pi\)
\(224\) 0 0
\(225\) 8.74177 4.89865i 0.582784 0.326576i
\(226\) 0 0
\(227\) 0.277631 + 0.480871i 0.0184270 + 0.0319165i 0.875092 0.483957i \(-0.160801\pi\)
−0.856665 + 0.515873i \(0.827468\pi\)
\(228\) 0 0
\(229\) −0.0170395 + 0.0295133i −0.00112600 + 0.00195030i −0.866588 0.499025i \(-0.833692\pi\)
0.865462 + 0.500975i \(0.167025\pi\)
\(230\) 0 0
\(231\) −1.78598 6.84054i −0.117509 0.450075i
\(232\) 0 0
\(233\) 22.1134 1.44870 0.724348 0.689435i \(-0.242141\pi\)
0.724348 + 0.689435i \(0.242141\pi\)
\(234\) 0 0
\(235\) 4.55722 0.297280
\(236\) 0 0
\(237\) −27.5622 7.57505i −1.79035 0.492052i
\(238\) 0 0
\(239\) −13.4984 + 23.3799i −0.873138 + 1.51232i −0.0144042 + 0.999896i \(0.504585\pi\)
−0.858733 + 0.512423i \(0.828748\pi\)
\(240\) 0 0
\(241\) −5.55913 9.62869i −0.358095 0.620238i 0.629548 0.776962i \(-0.283240\pi\)
−0.987643 + 0.156723i \(0.949907\pi\)
\(242\) 0 0
\(243\) −11.3704 + 10.6636i −0.729414 + 0.684072i
\(244\) 0 0
\(245\) −6.22314 10.7788i −0.397582 0.688632i
\(246\) 0 0
\(247\) −2.02163 + 3.50157i −0.128633 + 0.222800i
\(248\) 0 0
\(249\) −28.2169 7.75499i −1.78817 0.491453i
\(250\) 0 0
\(251\) 1.64637 0.103918 0.0519590 0.998649i \(-0.483453\pi\)
0.0519590 + 0.998649i \(0.483453\pi\)
\(252\) 0 0
\(253\) 0.759629 0.0477575
\(254\) 0 0
\(255\) 1.05699 + 4.04843i 0.0661915 + 0.253523i
\(256\) 0 0
\(257\) 0.0670884 0.116201i 0.00418486 0.00724839i −0.863925 0.503620i \(-0.832001\pi\)
0.868110 + 0.496371i \(0.165335\pi\)
\(258\) 0 0
\(259\) 7.69889 + 13.3349i 0.478386 + 0.828589i
\(260\) 0 0
\(261\) 12.2636 6.87216i 0.759095 0.425376i
\(262\) 0 0
\(263\) −0.964401 1.67039i −0.0594675 0.103001i 0.834759 0.550615i \(-0.185607\pi\)
−0.894226 + 0.447615i \(0.852274\pi\)
\(264\) 0 0
\(265\) −1.86974 + 3.23849i −0.114858 + 0.198939i
\(266\) 0 0
\(267\) −2.94670 + 2.90914i −0.180335 + 0.178037i
\(268\) 0 0
\(269\) 22.2823 1.35858 0.679288 0.733872i \(-0.262289\pi\)
0.679288 + 0.733872i \(0.262289\pi\)
\(270\) 0 0
\(271\) −20.0973 −1.22083 −0.610413 0.792084i \(-0.708996\pi\)
−0.610413 + 0.792084i \(0.708996\pi\)
\(272\) 0 0
\(273\) −3.19337 + 3.15267i −0.193272 + 0.190808i
\(274\) 0 0
\(275\) 1.67012 2.89274i 0.100712 0.174439i
\(276\) 0 0
\(277\) −6.73459 11.6646i −0.404642 0.700861i 0.589638 0.807668i \(-0.299271\pi\)
−0.994280 + 0.106807i \(0.965937\pi\)
\(278\) 0 0
\(279\) 14.7407 + 8.76455i 0.882503 + 0.524720i
\(280\) 0 0
\(281\) −9.59736 16.6231i −0.572530 0.991652i −0.996305 0.0858841i \(-0.972629\pi\)
0.423775 0.905768i \(-0.360705\pi\)
\(282\) 0 0
\(283\) 15.0429 26.0551i 0.894207 1.54881i 0.0594245 0.998233i \(-0.481073\pi\)
0.834783 0.550579i \(-0.185593\pi\)
\(284\) 0 0
\(285\) 3.59082 + 13.7534i 0.212702 + 0.814678i
\(286\) 0 0
\(287\) 28.7554 1.69738
\(288\) 0 0
\(289\) −13.4840 −0.793177
\(290\) 0 0
\(291\) 20.0985 + 5.52378i 1.17820 + 0.323810i
\(292\) 0 0
\(293\) 1.39483 2.41591i 0.0814866 0.141139i −0.822402 0.568907i \(-0.807367\pi\)
0.903889 + 0.427768i \(0.140700\pi\)
\(294\) 0 0
\(295\) 3.19651 + 5.53652i 0.186108 + 0.322348i
\(296\) 0 0
\(297\) −1.44118 + 4.99229i −0.0836256 + 0.289682i
\(298\) 0 0
\(299\) −0.241079 0.417560i −0.0139419 0.0241481i
\(300\) 0 0
\(301\) 5.59516 9.69110i 0.322500 0.558586i
\(302\) 0 0
\(303\) −11.7387 3.22619i −0.674368 0.185340i
\(304\) 0 0
\(305\) −10.2088 −0.584553
\(306\) 0 0
\(307\) 12.0487 0.687658 0.343829 0.939032i \(-0.388276\pi\)
0.343829 + 0.939032i \(0.388276\pi\)
\(308\) 0 0
\(309\) 3.53784 + 13.5504i 0.201261 + 0.770856i
\(310\) 0 0
\(311\) 1.93673 3.35452i 0.109822 0.190217i −0.805876 0.592084i \(-0.798305\pi\)
0.915698 + 0.401867i \(0.131639\pi\)
\(312\) 0 0
\(313\) −4.73353 8.19872i −0.267555 0.463419i 0.700675 0.713481i \(-0.252882\pi\)
−0.968230 + 0.250062i \(0.919549\pi\)
\(314\) 0 0
\(315\) −0.202348 + 15.7745i −0.0114010 + 0.888794i
\(316\) 0 0
\(317\) 5.78252 + 10.0156i 0.324779 + 0.562533i 0.981468 0.191629i \(-0.0613769\pi\)
−0.656689 + 0.754162i \(0.728044\pi\)
\(318\) 0 0
\(319\) 2.34297 4.05813i 0.131181 0.227212i
\(320\) 0 0
\(321\) 8.80105 8.68887i 0.491226 0.484966i
\(322\) 0 0
\(323\) 11.9445 0.664612
\(324\) 0 0
\(325\) −2.12014 −0.117604
\(326\) 0 0
\(327\) −7.89881 + 7.79813i −0.436805 + 0.431238i
\(328\) 0 0
\(329\) 7.21934 12.5043i 0.398015 0.689382i
\(330\) 0 0
\(331\) 15.6072 + 27.0324i 0.857849 + 1.48584i 0.873977 + 0.485967i \(0.161533\pi\)
−0.0161284 + 0.999870i \(0.505134\pi\)
\(332\) 0 0
\(333\) 0.145157 11.3160i 0.00795455 0.620115i
\(334\) 0 0
\(335\) 5.74025 + 9.94240i 0.313623 + 0.543211i
\(336\) 0 0
\(337\) 5.08336 8.80463i 0.276908 0.479619i −0.693707 0.720258i \(-0.744024\pi\)
0.970615 + 0.240639i \(0.0773569\pi\)
\(338\) 0 0
\(339\) 5.62215 + 21.5336i 0.305353 + 1.16955i
\(340\) 0 0
\(341\) 5.71650 0.309566
\(342\) 0 0
\(343\) −10.8612 −0.586450
\(344\) 0 0
\(345\) −1.63445 0.449204i −0.0879959 0.0241844i
\(346\) 0 0
\(347\) 17.4365 30.2010i 0.936043 1.62127i 0.163278 0.986580i \(-0.447793\pi\)
0.772764 0.634693i \(-0.218874\pi\)
\(348\) 0 0
\(349\) −3.41880 5.92154i −0.183004 0.316973i 0.759898 0.650042i \(-0.225249\pi\)
−0.942902 + 0.333070i \(0.891916\pi\)
\(350\) 0 0
\(351\) 3.20159 0.792172i 0.170888 0.0422830i
\(352\) 0 0
\(353\) 1.52878 + 2.64792i 0.0813686 + 0.140934i 0.903838 0.427875i \(-0.140738\pi\)
−0.822469 + 0.568809i \(0.807404\pi\)
\(354\) 0 0
\(355\) 6.43112 11.1390i 0.341329 0.591198i
\(356\) 0 0
\(357\) 12.7827 + 3.51313i 0.676531 + 0.185934i
\(358\) 0 0
\(359\) 16.7183 0.882356 0.441178 0.897420i \(-0.354561\pi\)
0.441178 + 0.897420i \(0.354561\pi\)
\(360\) 0 0
\(361\) 21.5781 1.13569
\(362\) 0 0
\(363\) 0.437549 + 1.67587i 0.0229654 + 0.0879605i
\(364\) 0 0
\(365\) 5.97247 10.3446i 0.312614 0.541463i
\(366\) 0 0
\(367\) −9.29762 16.1039i −0.485332 0.840619i 0.514526 0.857475i \(-0.327968\pi\)
−0.999858 + 0.0168556i \(0.994634\pi\)
\(368\) 0 0
\(369\) −18.1659 10.8011i −0.945680 0.562284i
\(370\) 0 0
\(371\) 5.92393 + 10.2605i 0.307555 + 0.532701i
\(372\) 0 0
\(373\) −6.83379 + 11.8365i −0.353840 + 0.612869i −0.986919 0.161218i \(-0.948458\pi\)
0.633079 + 0.774088i \(0.281791\pi\)
\(374\) 0 0
\(375\) −13.2438 + 13.0750i −0.683909 + 0.675192i
\(376\) 0 0
\(377\) −2.97429 −0.153184
\(378\) 0 0
\(379\) 28.8290 1.48085 0.740424 0.672140i \(-0.234625\pi\)
0.740424 + 0.672140i \(0.234625\pi\)
\(380\) 0 0
\(381\) 17.4529 17.2305i 0.894139 0.882743i
\(382\) 0 0
\(383\) −12.6392 + 21.8918i −0.645834 + 1.11862i 0.338274 + 0.941048i \(0.390157\pi\)
−0.984108 + 0.177570i \(0.943176\pi\)
\(384\) 0 0
\(385\) 2.62931 + 4.55409i 0.134002 + 0.232098i
\(386\) 0 0
\(387\) −7.17487 + 4.02060i −0.364719 + 0.204379i
\(388\) 0 0
\(389\) 16.5668 + 28.6945i 0.839969 + 1.45487i 0.889920 + 0.456117i \(0.150760\pi\)
−0.0499508 + 0.998752i \(0.515906\pi\)
\(390\) 0 0
\(391\) −0.712190 + 1.23355i −0.0360170 + 0.0623832i
\(392\) 0 0
\(393\) 8.02047 + 30.7195i 0.404579 + 1.54959i
\(394\) 0 0
\(395\) 21.2611 1.06976
\(396\) 0 0
\(397\) −29.8296 −1.49710 −0.748551 0.663077i \(-0.769250\pi\)
−0.748551 + 0.663077i \(0.769250\pi\)
\(398\) 0 0
\(399\) 43.4254 + 11.9348i 2.17399 + 0.597488i
\(400\) 0 0
\(401\) −8.67440 + 15.0245i −0.433179 + 0.750287i −0.997145 0.0755103i \(-0.975941\pi\)
0.563966 + 0.825798i \(0.309275\pi\)
\(402\) 0 0
\(403\) −1.81421 3.14230i −0.0903722 0.156529i
\(404\) 0 0
\(405\) 6.05308 9.88940i 0.300780 0.491408i
\(406\) 0 0
\(407\) −1.88616 3.26693i −0.0934936 0.161936i
\(408\) 0 0
\(409\) 16.0594 27.8156i 0.794084 1.37539i −0.129335 0.991601i \(-0.541284\pi\)
0.923419 0.383793i \(-0.125382\pi\)
\(410\) 0 0
\(411\) −5.73489 1.57615i −0.282881 0.0777457i
\(412\) 0 0
\(413\) 20.2551 0.996686
\(414\) 0 0
\(415\) 21.7662 1.06846
\(416\) 0 0
\(417\) 2.40014 + 9.19286i 0.117535 + 0.450176i
\(418\) 0 0
\(419\) −16.0347 + 27.7729i −0.783347 + 1.35680i 0.146635 + 0.989191i \(0.453156\pi\)
−0.929982 + 0.367606i \(0.880178\pi\)
\(420\) 0 0
\(421\) −5.11232 8.85480i −0.249159 0.431556i 0.714134 0.700009i \(-0.246821\pi\)
−0.963293 + 0.268453i \(0.913488\pi\)
\(422\) 0 0
\(423\) −9.25760 + 5.18771i −0.450120 + 0.252235i
\(424\) 0 0
\(425\) 3.13164 + 5.42417i 0.151907 + 0.263111i
\(426\) 0 0
\(427\) −16.1723 + 28.0112i −0.782631 + 1.35556i
\(428\) 0 0
\(429\) 0.782348 0.772377i 0.0377721 0.0372907i
\(430\) 0 0
\(431\) −21.3465 −1.02822 −0.514112 0.857723i \(-0.671879\pi\)
−0.514112 + 0.857723i \(0.671879\pi\)
\(432\) 0 0
\(433\) −15.0577 −0.723627 −0.361813 0.932251i \(-0.617842\pi\)
−0.361813 + 0.932251i \(0.617842\pi\)
\(434\) 0 0
\(435\) −7.44099 + 7.34615i −0.356768 + 0.352221i
\(436\) 0 0
\(437\) −2.41945 + 4.19062i −0.115738 + 0.200464i
\(438\) 0 0
\(439\) 0.826425 + 1.43141i 0.0394431 + 0.0683175i 0.885073 0.465452i \(-0.154108\pi\)
−0.845630 + 0.533770i \(0.820775\pi\)
\(440\) 0 0
\(441\) 24.9118 + 14.8121i 1.18628 + 0.705338i
\(442\) 0 0
\(443\) 0.615777 + 1.06656i 0.0292565 + 0.0506737i 0.880283 0.474449i \(-0.157353\pi\)
−0.851026 + 0.525123i \(0.824019\pi\)
\(444\) 0 0
\(445\) 1.53998 2.66732i 0.0730020 0.126443i
\(446\) 0 0
\(447\) −1.11307 4.26323i −0.0526466 0.201644i
\(448\) 0 0
\(449\) 37.7680 1.78238 0.891190 0.453630i \(-0.149871\pi\)
0.891190 + 0.453630i \(0.149871\pi\)
\(450\) 0 0
\(451\) −7.04482 −0.331728
\(452\) 0 0
\(453\) −18.7656 5.15746i −0.881687 0.242318i
\(454\) 0 0
\(455\) 1.66889 2.89060i 0.0782388 0.135514i
\(456\) 0 0
\(457\) −9.88076 17.1140i −0.462202 0.800558i 0.536868 0.843666i \(-0.319607\pi\)
−0.999070 + 0.0431083i \(0.986274\pi\)
\(458\) 0 0
\(459\) −6.75572 7.02082i −0.315330 0.327704i
\(460\) 0 0
\(461\) 14.3931 + 24.9296i 0.670355 + 1.16109i 0.977804 + 0.209524i \(0.0671914\pi\)
−0.307449 + 0.951565i \(0.599475\pi\)
\(462\) 0 0
\(463\) 10.3909 17.9975i 0.482904 0.836415i −0.516903 0.856044i \(-0.672915\pi\)
0.999807 + 0.0196292i \(0.00624856\pi\)
\(464\) 0 0
\(465\) −12.2999 3.38044i −0.570393 0.156764i
\(466\) 0 0
\(467\) −14.6117 −0.676148 −0.338074 0.941120i \(-0.609775\pi\)
−0.338074 + 0.941120i \(0.609775\pi\)
\(468\) 0 0
\(469\) 36.3737 1.67958
\(470\) 0 0
\(471\) −4.94098 18.9246i −0.227668 0.872001i
\(472\) 0 0
\(473\) −1.37077 + 2.37424i −0.0630279 + 0.109167i
\(474\) 0 0
\(475\) 10.6388 + 18.4270i 0.488143 + 0.845489i
\(476\) 0 0
\(477\) 0.111691 8.70715i 0.00511399 0.398673i
\(478\) 0 0
\(479\) 19.9109 + 34.4867i 0.909753 + 1.57574i 0.814407 + 0.580294i \(0.197062\pi\)
0.0953454 + 0.995444i \(0.469604\pi\)
\(480\) 0 0
\(481\) −1.19720 + 2.07361i −0.0545875 + 0.0945483i
\(482\) 0 0
\(483\) −3.82177 + 3.77306i −0.173896 + 0.171680i
\(484\) 0 0
\(485\) −15.5038 −0.703990
\(486\) 0 0
\(487\) −12.6286 −0.572255 −0.286128 0.958192i \(-0.592368\pi\)
−0.286128 + 0.958192i \(0.592368\pi\)
\(488\) 0 0
\(489\) −18.2486 + 18.0160i −0.825230 + 0.814712i
\(490\) 0 0
\(491\) 19.9298 34.5194i 0.899419 1.55784i 0.0711813 0.997463i \(-0.477323\pi\)
0.828238 0.560376i \(-0.189344\pi\)
\(492\) 0 0
\(493\) 4.39329 + 7.60940i 0.197864 + 0.342710i
\(494\) 0 0
\(495\) 0.0495736 3.86462i 0.00222817 0.173702i
\(496\) 0 0
\(497\) −20.3758 35.2919i −0.913979 1.58306i
\(498\) 0 0
\(499\) 21.8613 37.8650i 0.978648 1.69507i 0.311320 0.950305i \(-0.399229\pi\)
0.667328 0.744764i \(-0.267438\pi\)
\(500\) 0 0
\(501\) 2.54250 + 9.73812i 0.113590 + 0.435067i
\(502\) 0 0
\(503\) −5.68820 −0.253624 −0.126812 0.991927i \(-0.540475\pi\)
−0.126812 + 0.991927i \(0.540475\pi\)
\(504\) 0 0
\(505\) 9.05507 0.402945
\(506\) 0 0
\(507\) 21.0387 + 5.78218i 0.934363 + 0.256796i
\(508\) 0 0
\(509\) −12.6383 + 21.8902i −0.560183 + 0.970266i 0.437296 + 0.899317i \(0.355936\pi\)
−0.997480 + 0.0709488i \(0.977397\pi\)
\(510\) 0 0
\(511\) −18.9226 32.7750i −0.837088 1.44988i
\(512\) 0 0
\(513\) −22.9506 23.8512i −1.01329 1.05305i
\(514\) 0 0
\(515\) −5.20839 9.02119i −0.229509 0.397521i
\(516\) 0 0
\(517\) −1.76867 + 3.06343i −0.0777862 + 0.134730i
\(518\) 0 0
\(519\) −39.1453 10.7585i −1.71829 0.472246i
\(520\) 0 0
\(521\) 0.000322593 0 1.41331e−5 0 7.06653e−6 1.00000i \(-0.499998\pi\)
7.06653e−6 1.00000i \(0.499998\pi\)
\(522\) 0 0
\(523\) 35.9483 1.57191 0.785956 0.618283i \(-0.212171\pi\)
0.785956 + 0.618283i \(0.212171\pi\)
\(524\) 0 0
\(525\) 5.96560 + 22.8491i 0.260360 + 0.997216i
\(526\) 0 0
\(527\) −5.35950 + 9.28293i −0.233464 + 0.404371i
\(528\) 0 0
\(529\) 11.2115 + 19.4189i 0.487456 + 0.844298i
\(530\) 0 0
\(531\) −12.7959 7.60822i −0.555296 0.330169i
\(532\) 0 0
\(533\) 2.23577 + 3.87246i 0.0968418 + 0.167735i
\(534\) 0 0
\(535\) −4.59952 + 7.96661i −0.198855 + 0.344427i
\(536\) 0 0
\(537\) −23.6084 + 23.3075i −1.01878 + 1.00579i
\(538\) 0 0
\(539\) 9.66090 0.416125
\(540\) 0 0
\(541\) −7.64007 −0.328472 −0.164236 0.986421i \(-0.552516\pi\)
−0.164236 + 0.986421i \(0.552516\pi\)
\(542\) 0 0
\(543\) 32.9767 32.5564i 1.41517 1.39713i
\(544\) 0 0
\(545\) 4.12800 7.14991i 0.176824 0.306269i
\(546\) 0 0
\(547\) −16.1755 28.0167i −0.691613 1.19791i −0.971309 0.237820i \(-0.923567\pi\)
0.279696 0.960089i \(-0.409766\pi\)
\(548\) 0 0
\(549\) 20.7383 11.6212i 0.885087 0.495979i
\(550\) 0 0
\(551\) 14.9249 + 25.8507i 0.635822 + 1.10128i
\(552\) 0 0
\(553\) 33.6809 58.3371i 1.43226 2.48075i
\(554\) 0 0
\(555\) 2.12646 + 8.14464i 0.0902632 + 0.345721i
\(556\) 0 0
\(557\) 13.9455 0.590892 0.295446 0.955359i \(-0.404532\pi\)
0.295446 + 0.955359i \(0.404532\pi\)
\(558\) 0 0
\(559\) 1.74012 0.0735994
\(560\) 0 0
\(561\) −3.13164 0.860685i −0.132218 0.0363382i
\(562\) 0 0
\(563\) 3.16603 5.48372i 0.133432 0.231111i −0.791565 0.611085i \(-0.790734\pi\)
0.924997 + 0.379973i \(0.124067\pi\)
\(564\) 0 0
\(565\) −8.27691 14.3360i −0.348212 0.603121i
\(566\) 0 0
\(567\) −17.5459 32.2750i −0.736858 1.35542i
\(568\) 0 0
\(569\) 4.02037 + 6.96348i 0.168542 + 0.291924i 0.937908 0.346885i \(-0.112761\pi\)
−0.769365 + 0.638809i \(0.779427\pi\)
\(570\) 0 0
\(571\) 2.90279 5.02778i 0.121478 0.210406i −0.798873 0.601500i \(-0.794570\pi\)
0.920351 + 0.391094i \(0.127903\pi\)
\(572\) 0 0
\(573\) −39.2315 10.7822i −1.63892 0.450433i
\(574\) 0 0
\(575\) −2.53735 −0.105815
\(576\) 0 0
\(577\) −17.5466 −0.730476 −0.365238 0.930914i \(-0.619012\pi\)
−0.365238 + 0.930914i \(0.619012\pi\)
\(578\) 0 0
\(579\) 6.60779 + 25.3088i 0.274610 + 1.05180i
\(580\) 0 0
\(581\) 34.4810 59.7229i 1.43051 2.47772i
\(582\) 0 0
\(583\) −1.45131 2.51374i −0.0601072 0.104109i
\(584\) 0 0
\(585\) −2.14008 + 1.19924i −0.0884813 + 0.0495825i
\(586\) 0 0
\(587\) −3.26482 5.65483i −0.134753 0.233400i 0.790750 0.612139i \(-0.209691\pi\)
−0.925503 + 0.378740i \(0.876358\pi\)
\(588\) 0 0
\(589\) −18.2073 + 31.5360i −0.750220 + 1.29942i
\(590\) 0 0
\(591\) 20.3488 20.0895i 0.837038 0.826370i
\(592\) 0 0
\(593\) −15.1772 −0.623252 −0.311626 0.950205i \(-0.600874\pi\)
−0.311626 + 0.950205i \(0.600874\pi\)
\(594\) 0 0
\(595\) −9.86041 −0.404237
\(596\) 0 0
\(597\) 4.77018 4.70938i 0.195230 0.192742i
\(598\) 0 0
\(599\) −11.8928 + 20.5989i −0.485926 + 0.841649i −0.999869 0.0161752i \(-0.994851\pi\)
0.513943 + 0.857824i \(0.328184\pi\)
\(600\) 0 0
\(601\) 10.0752 + 17.4507i 0.410975 + 0.711829i 0.994997 0.0999089i \(-0.0318551\pi\)
−0.584022 + 0.811738i \(0.698522\pi\)
\(602\) 0 0
\(603\) −22.9788 13.6627i −0.935767 0.556390i
\(604\) 0 0
\(605\) −0.644157 1.11571i −0.0261887 0.0453602i
\(606\) 0 0
\(607\) 1.05994 1.83587i 0.0430217 0.0745158i −0.843713 0.536795i \(-0.819635\pi\)
0.886734 + 0.462279i \(0.152968\pi\)
\(608\) 0 0
\(609\) 8.36896 + 32.0543i 0.339127 + 1.29891i
\(610\) 0 0
\(611\) 2.24525 0.0908331
\(612\) 0 0
\(613\) 1.93317 0.0780800 0.0390400 0.999238i \(-0.487570\pi\)
0.0390400 + 0.999238i \(0.487570\pi\)
\(614\) 0 0
\(615\) 15.1579 + 4.16593i 0.611227 + 0.167987i
\(616\) 0 0
\(617\) −16.4960 + 28.5719i −0.664105 + 1.15026i 0.315422 + 0.948951i \(0.397854\pi\)
−0.979527 + 0.201312i \(0.935480\pi\)
\(618\) 0 0
\(619\) −9.79499 16.9654i −0.393694 0.681898i 0.599240 0.800570i \(-0.295470\pi\)
−0.992934 + 0.118672i \(0.962136\pi\)
\(620\) 0 0
\(621\) 3.83160 0.948057i 0.153757 0.0380442i
\(622\) 0 0
\(623\) −4.87913 8.45090i −0.195478 0.338578i
\(624\) 0 0
\(625\) −1.42924 + 2.47551i −0.0571695 + 0.0990206i
\(626\) 0 0
\(627\) −10.6388 2.92392i −0.424874 0.116770i
\(628\) 0 0
\(629\) 7.07347 0.282038
\(630\) 0 0
\(631\) −30.0742 −1.19723 −0.598617 0.801036i \(-0.704283\pi\)
−0.598617 + 0.801036i \(0.704283\pi\)
\(632\) 0 0
\(633\) 0.665813 + 2.55016i 0.0264637 + 0.101360i
\(634\) 0 0
\(635\) −9.12108 + 15.7982i −0.361959 + 0.626931i
\(636\) 0 0
\(637\) −3.06602 5.31050i −0.121480 0.210410i
\(638\) 0 0
\(639\) −0.384170 + 29.9489i −0.0151975 + 1.18476i
\(640\) 0 0
\(641\) −15.9042 27.5469i −0.628179 1.08804i −0.987917 0.154985i \(-0.950467\pi\)
0.359738 0.933053i \(-0.382866\pi\)
\(642\) 0 0
\(643\) −13.7948 + 23.8934i −0.544016 + 0.942263i 0.454652 + 0.890669i \(0.349763\pi\)
−0.998668 + 0.0515939i \(0.983570\pi\)
\(644\) 0 0
\(645\) 4.35340 4.29791i 0.171415 0.169230i
\(646\) 0 0
\(647\) 29.7962 1.17141 0.585704 0.810525i \(-0.300818\pi\)
0.585704 + 0.810525i \(0.300818\pi\)
\(648\) 0 0
\(649\) −4.96231 −0.194788
\(650\) 0 0
\(651\) −28.7603 + 28.3937i −1.12720 + 1.11284i
\(652\) 0 0
\(653\) −16.4258 + 28.4503i −0.642792 + 1.11335i 0.342015 + 0.939694i \(0.388891\pi\)
−0.984807 + 0.173653i \(0.944443\pi\)
\(654\) 0 0
\(655\) −11.8077 20.4515i −0.461365 0.799107i
\(656\) 0 0
\(657\) −0.356772 + 27.8130i −0.0139190 + 1.08509i
\(658\) 0 0
\(659\) −5.06773 8.77757i −0.197411 0.341926i 0.750277 0.661123i \(-0.229920\pi\)
−0.947688 + 0.319198i \(0.896587\pi\)
\(660\) 0 0
\(661\) −4.28181 + 7.41631i −0.166543 + 0.288461i −0.937202 0.348787i \(-0.886594\pi\)
0.770659 + 0.637248i \(0.219927\pi\)
\(662\) 0 0
\(663\) 0.520759 + 1.99458i 0.0202246 + 0.0774631i
\(664\) 0 0
\(665\) −33.4978 −1.29899
\(666\) 0 0
\(667\) −3.55957 −0.137827
\(668\) 0 0
\(669\) −40.0762 11.0143i −1.54943 0.425839i
\(670\) 0 0
\(671\) 3.96207 6.86250i 0.152954 0.264924i
\(672\) 0 0
\(673\) 0.573061 + 0.992570i 0.0220899 + 0.0382608i 0.876859 0.480748i \(-0.159635\pi\)
−0.854769 + 0.519008i \(0.826301\pi\)
\(674\) 0 0
\(675\) 4.81389 16.6755i 0.185287 0.641840i
\(676\) 0 0
\(677\) 3.24461 + 5.61982i 0.124700 + 0.215987i 0.921616 0.388104i \(-0.126870\pi\)
−0.796915 + 0.604091i \(0.793536\pi\)
\(678\) 0 0
\(679\) −24.5604 + 42.5398i −0.942541 + 1.63253i
\(680\) 0 0
\(681\) 0.927355 + 0.254870i 0.0355363 + 0.00976663i
\(682\) 0 0
\(683\) 28.2950 1.08268 0.541339 0.840805i \(-0.317918\pi\)
0.541339 + 0.840805i \(0.317918\pi\)
\(684\) 0 0
\(685\) 4.42383 0.169026
\(686\) 0 0
\(687\) 0.0149112 + 0.0571122i 0.000568900 + 0.00217897i
\(688\) 0 0
\(689\) −0.921186 + 1.59554i −0.0350944 + 0.0607853i
\(690\) 0 0
\(691\) 20.1532 + 34.9063i 0.766663 + 1.32790i 0.939363 + 0.342924i \(0.111417\pi\)
−0.172700 + 0.984974i \(0.555249\pi\)
\(692\) 0 0
\(693\) −10.5254 6.25818i −0.399825 0.237729i
\(694\) 0 0
\(695\) −3.53347 6.12015i −0.134032 0.232151i
\(696\) 0 0
\(697\) 6.60486 11.4400i 0.250177 0.433319i
\(698\) 0 0
\(699\) 27.2564 26.9090i 1.03093 1.01779i
\(700\) 0 0
\(701\) 32.4271 1.22475 0.612377 0.790566i \(-0.290213\pi\)
0.612377 + 0.790566i \(0.290213\pi\)
\(702\) 0 0
\(703\) 24.0300 0.906310
\(704\) 0 0
\(705\) 5.61711 5.54552i 0.211553 0.208856i
\(706\) 0 0
\(707\) 14.3446 24.8456i 0.539485 0.934415i
\(708\) 0 0
\(709\) −15.6889 27.1739i −0.589208 1.02054i −0.994336 0.106278i \(-0.966107\pi\)
0.405128 0.914260i \(-0.367227\pi\)
\(710\) 0 0
\(711\) −43.1902 + 24.2026i −1.61976 + 0.907669i
\(712\) 0 0
\(713\) −2.17121 3.76065i −0.0813125 0.140837i
\(714\) 0 0
\(715\) −0.408864 + 0.708173i −0.0152906 + 0.0264842i
\(716\) 0 0
\(717\) 11.8124 + 45.2432i 0.441142 + 1.68964i
\(718\) 0 0
\(719\) −13.4457 −0.501440 −0.250720 0.968060i \(-0.580667\pi\)
−0.250720 + 0.968060i \(0.580667\pi\)
\(720\) 0 0
\(721\) −33.0036 −1.22912
\(722\) 0 0
\(723\) −18.5688 5.10337i −0.690583 0.189796i
\(724\) 0 0
\(725\) −7.82608 + 13.5552i −0.290653 + 0.503426i
\(726\) 0 0
\(727\) −14.6638 25.3985i −0.543851 0.941978i −0.998678 0.0513984i \(-0.983632\pi\)
0.454827 0.890580i \(-0.349701\pi\)
\(728\) 0 0
\(729\) −1.03872 + 26.9800i −0.0384710 + 0.999260i
\(730\) 0 0
\(731\) −2.57032 4.45192i −0.0950667 0.164660i
\(732\) 0 0
\(733\) 8.16123 14.1357i 0.301442 0.522113i −0.675021 0.737799i \(-0.735865\pi\)
0.976463 + 0.215686i \(0.0691987\pi\)
\(734\) 0 0
\(735\) −20.7868 5.71295i −0.766733 0.210725i
\(736\) 0 0
\(737\) −8.91125 −0.328250
\(738\) 0 0
\(739\) −11.9475 −0.439494 −0.219747 0.975557i \(-0.570523\pi\)
−0.219747 + 0.975557i \(0.570523\pi\)
\(740\) 0 0
\(741\) 1.76913 + 6.77600i 0.0649905 + 0.248923i
\(742\) 0 0
\(743\) 12.3295 21.3553i 0.452324 0.783449i −0.546206 0.837651i \(-0.683928\pi\)
0.998530 + 0.0542023i \(0.0172616\pi\)
\(744\) 0 0
\(745\) 1.63866 + 2.83825i 0.0600359 + 0.103985i
\(746\) 0 0
\(747\) −44.2162 + 24.7776i −1.61779 + 0.906564i
\(748\) 0 0
\(749\) 14.5727 + 25.2407i 0.532475 + 0.922274i
\(750\) 0 0
\(751\) 7.67002 13.2849i 0.279883 0.484772i −0.691472 0.722403i \(-0.743038\pi\)
0.971355 + 0.237631i \(0.0763710\pi\)
\(752\) 0 0
\(753\) 2.02928 2.00341i 0.0739509 0.0730084i
\(754\) 0 0
\(755\) 14.4756 0.526821
\(756\) 0 0
\(757\) −6.66820 −0.242360 −0.121180 0.992631i \(-0.538668\pi\)
−0.121180 + 0.992631i \(0.538668\pi\)
\(758\) 0 0
\(759\) 0.936300 0.924366i 0.0339855 0.0335524i
\(760\) 0 0
\(761\) 2.89929 5.02171i 0.105099 0.182037i −0.808680 0.588249i \(-0.799817\pi\)
0.913779 + 0.406212i \(0.133151\pi\)
\(762\) 0 0
\(763\) −13.0788 22.6531i −0.473484 0.820098i
\(764\) 0 0
\(765\) 6.22922 + 3.70378i 0.225218 + 0.133910i
\(766\) 0 0
\(767\) 1.57486 + 2.72773i 0.0568648 + 0.0984927i
\(768\) 0 0
\(769\) 9.82077 17.0101i 0.354146 0.613399i −0.632825 0.774294i \(-0.718105\pi\)
0.986971 + 0.160896i \(0.0514383\pi\)
\(770\) 0 0
\(771\) −0.0587089 0.224863i −0.00211435 0.00809825i
\(772\) 0 0
\(773\) −11.8012 −0.424460 −0.212230 0.977220i \(-0.568073\pi\)
−0.212230 + 0.977220i \(0.568073\pi\)
\(774\) 0 0
\(775\) −19.0945 −0.685896
\(776\) 0 0
\(777\) 25.7162 + 7.06771i 0.922563 + 0.253553i
\(778\) 0 0
\(779\) 22.4381 38.8639i 0.803927 1.39244i
\(780\) 0 0
\(781\) 4.99189 + 8.64621i 0.178624 + 0.309386i
\(782\) 0 0
\(783\) 6.75326 23.3935i 0.241342 0.836017i
\(784\) 0 0
\(785\) 7.27408 + 12.5991i 0.259623 + 0.449680i
\(786\) 0 0
\(787\) −24.9599 + 43.2318i −0.889723 + 1.54105i −0.0495208 + 0.998773i \(0.515769\pi\)
−0.840202 + 0.542273i \(0.817564\pi\)
\(788\) 0 0
\(789\) −3.22134 0.885336i −0.114683 0.0315188i
\(790\) 0 0
\(791\) −52.4476 −1.86482
\(792\) 0 0
\(793\) −5.02966 −0.178608
\(794\) 0 0
\(795\) 1.63621 + 6.26691i 0.0580304 + 0.222264i
\(796\) 0 0
\(797\) 6.81649 11.8065i 0.241452 0.418208i −0.719676 0.694310i \(-0.755710\pi\)
0.961128 + 0.276102i \(0.0890429\pi\)
\(798\) 0 0
\(799\) −3.31644 5.74424i −0.117327 0.203217i
\(800\) 0 0
\(801\) −0.0919924 + 7.17147i −0.00325039 + 0.253392i
\(802\) 0 0
\(803\) 4.63588 + 8.02958i 0.163597 + 0.283358i
\(804\) 0 0
\(805\) 1.99730 3.45942i 0.0703955 0.121929i
\(806\) 0 0
\(807\) 27.4646 27.1145i 0.966799 0.954477i
\(808\) 0 0
\(809\) 47.6700 1.67599 0.837994 0.545679i \(-0.183728\pi\)
0.837994 + 0.545679i \(0.183728\pi\)
\(810\) 0 0
\(811\) 14.9369 0.524506 0.262253 0.964999i \(-0.415535\pi\)
0.262253 + 0.964999i \(0.415535\pi\)
\(812\) 0 0
\(813\) −24.7714 + 24.4557i −0.868773 + 0.857700i
\(814\) 0 0
\(815\) 9.53692 16.5184i 0.334064 0.578615i
\(816\) 0 0
\(817\) −8.73190 15.1241i −0.305491 0.529125i
\(818\) 0 0
\(819\) −0.0996931 + 7.77180i −0.00348356 + 0.271569i
\(820\) 0 0
\(821\) −5.96878 10.3382i −0.208312 0.360807i 0.742871 0.669435i \(-0.233464\pi\)
−0.951183 + 0.308628i \(0.900130\pi\)
\(822\) 0 0
\(823\) 2.11763 3.66783i 0.0738158 0.127853i −0.826755 0.562562i \(-0.809816\pi\)
0.900571 + 0.434710i \(0.143149\pi\)
\(824\) 0 0
\(825\) −1.46152 5.59783i −0.0508836 0.194891i
\(826\) 0 0
\(827\) −6.16070 −0.214228 −0.107114 0.994247i \(-0.534161\pi\)
−0.107114 + 0.994247i \(0.534161\pi\)
\(828\) 0 0
\(829\) −27.3809 −0.950979 −0.475490 0.879721i \(-0.657729\pi\)
−0.475490 + 0.879721i \(0.657729\pi\)
\(830\) 0 0
\(831\) −22.4952 6.18246i −0.780349 0.214467i
\(832\) 0 0
\(833\) −9.05757 + 15.6882i −0.313826 + 0.543563i
\(834\) 0 0
\(835\) −3.74305 6.48315i −0.129534 0.224359i
\(836\) 0 0
\(837\) 28.8343 7.13449i 0.996659 0.246604i
\(838\) 0 0
\(839\) 20.6604 + 35.7848i 0.713275 + 1.23543i 0.963621 + 0.267271i \(0.0861220\pi\)
−0.250347 + 0.968156i \(0.580545\pi\)
\(840\) 0 0
\(841\) 3.52103 6.09860i 0.121415 0.210297i
\(842\) 0 0
\(843\) −32.0575 8.81053i −1.10412 0.303451i
\(844\) 0 0
\(845\) −16.2291 −0.558296
\(846\) 0 0
\(847\) −4.08178 −0.140252
\(848\) 0 0
\(849\) −13.1640 50.4200i −0.451787 1.73041i
\(850\) 0 0
\(851\) −1.43278 + 2.48165i −0.0491152 + 0.0850700i
\(852\) 0 0
\(853\) −1.73415 3.00363i −0.0593761 0.102842i 0.834809 0.550539i \(-0.185578\pi\)
−0.894186 + 0.447697i \(0.852244\pi\)
\(854\) 0 0
\(855\) 21.1619 + 12.5825i 0.723723 + 0.430312i
\(856\) 0 0
\(857\) −0.121222 0.209963i −0.00414088 0.00717221i 0.863948 0.503582i \(-0.167985\pi\)
−0.868088 + 0.496410i \(0.834651\pi\)
\(858\) 0 0
\(859\) −7.71054 + 13.3550i −0.263080 + 0.455668i −0.967059 0.254553i \(-0.918072\pi\)
0.703979 + 0.710221i \(0.251405\pi\)
\(860\) 0 0
\(861\) 35.4431 34.9914i 1.20790 1.19250i
\(862\) 0 0
\(863\) 37.8799 1.28945 0.644724 0.764416i \(-0.276972\pi\)
0.644724 + 0.764416i \(0.276972\pi\)
\(864\) 0 0
\(865\) 30.1963 1.02670
\(866\) 0 0
\(867\) −16.6200 + 16.4082i −0.564446 + 0.557252i
\(868\) 0 0
\(869\) −8.25154 + 14.2921i −0.279914 + 0.484826i
\(870\) 0 0
\(871\) 2.82810 + 4.89842i 0.0958267 + 0.165977i
\(872\) 0 0
\(873\) 31.4946 17.6487i 1.06593 0.597319i
\(874\) 0 0
\(875\) −21.9291 37.9822i −0.741337 1.28403i
\(876\) 0 0
\(877\) 6.64174 11.5038i 0.224275 0.388456i −0.731826 0.681491i \(-0.761332\pi\)
0.956102 + 0.293035i \(0.0946651\pi\)
\(878\) 0 0
\(879\) −1.22061 4.67510i −0.0411701 0.157687i
\(880\) 0 0
\(881\) 2.85831 0.0962990 0.0481495 0.998840i \(-0.484668\pi\)
0.0481495 + 0.998840i \(0.484668\pi\)
\(882\) 0 0
\(883\) 1.05489 0.0354999 0.0177499 0.999842i \(-0.494350\pi\)
0.0177499 + 0.999842i \(0.494350\pi\)
\(884\) 0 0
\(885\) 10.6771 + 2.93445i 0.358908 + 0.0986404i
\(886\) 0 0
\(887\) −0.0206451 + 0.0357584i −0.000693196 + 0.00120065i −0.866372 0.499400i \(-0.833554\pi\)
0.865679 + 0.500600i \(0.166887\pi\)
\(888\) 0 0
\(889\) 28.8984 + 50.0535i 0.969221 + 1.67874i
\(890\) 0 0
\(891\) 4.29859 + 7.90709i 0.144008 + 0.264898i
\(892\) 0 0
\(893\) −11.2666 19.5144i −0.377023 0.653023i
\(894\) 0 0
\(895\) 12.3380 21.3701i 0.412414 0.714322i
\(896\) 0 0
\(897\) −0.805262 0.221314i −0.0268869 0.00738946i
\(898\) 0 0
\(899\) −26.7871 −0.893401
\(900\) 0 0
\(901\) 5.44270 0.181323
\(902\) 0 0
\(903\) −4.89631 18.7536i −0.162939 0.624079i
\(904\) 0 0
\(905\) −17.2340 + 29.8502i −0.572878 + 0.992253i
\(906\) 0 0
\(907\) 13.7674 + 23.8458i 0.457139 + 0.791788i 0.998808 0.0488037i \(-0.0155409\pi\)
−0.541669 + 0.840592i \(0.682208\pi\)
\(908\) 0 0
\(909\) −18.3946 + 10.3078i −0.610111 + 0.341889i
\(910\) 0 0
\(911\) −1.66761 2.88838i −0.0552503 0.0956963i 0.837077 0.547084i \(-0.184262\pi\)
−0.892328 + 0.451388i \(0.850929\pi\)
\(912\) 0 0
\(913\) −8.44755 + 14.6316i −0.279573 + 0.484235i
\(914\) 0 0
\(915\) −12.5831 + 12.4227i −0.415983 + 0.410682i
\(916\) 0 0
\(917\) −74.8208 −2.47080
\(918\) 0 0
\(919\) 30.4941 1.00591 0.502953 0.864314i \(-0.332247\pi\)
0.502953 + 0.864314i \(0.332247\pi\)
\(920\) 0 0
\(921\) 14.8510 14.6617i 0.489356 0.483119i
\(922\) 0 0
\(923\) 3.16849 5.48798i 0.104292 0.180639i
\(924\) 0 0
\(925\) 6.30025 + 10.9123i 0.207151 + 0.358796i
\(926\) 0 0
\(927\) 20.8497 + 12.3968i 0.684793 + 0.407165i
\(928\) 0 0
\(929\) 12.2327 + 21.1877i 0.401342 + 0.695145i 0.993888 0.110391i \(-0.0352104\pi\)
−0.592546 + 0.805537i \(0.701877\pi\)
\(930\) 0 0
\(931\) −30.7704 + 53.2959i −1.00846 + 1.74670i
\(932\) 0 0
\(933\) −1.69483 6.49143i −0.0554862 0.212520i
\(934\) 0 0
\(935\) 2.41571 0.0790023
\(936\) 0 0
\(937\) 18.2256 0.595405 0.297703 0.954659i \(-0.403780\pi\)
0.297703 + 0.954659i \(0.403780\pi\)
\(938\) 0 0
\(939\) −15.8112 4.34546i −0.515978 0.141809i
\(940\) 0 0
\(941\) −9.44290 + 16.3556i −0.307830 + 0.533177i −0.977887 0.209132i \(-0.932936\pi\)
0.670058 + 0.742309i \(0.266269\pi\)
\(942\) 0 0
\(943\) 2.67573 + 4.63449i 0.0871336 + 0.150920i
\(944\) 0 0
\(945\) 18.9461 + 19.6895i 0.616316 + 0.640500i
\(946\) 0 0
\(947\) −28.4732 49.3171i −0.925256 1.60259i −0.791149 0.611624i \(-0.790517\pi\)
−0.134108 0.990967i \(-0.542817\pi\)
\(948\) 0 0
\(949\) 2.94252 5.09659i 0.0955182 0.165442i
\(950\) 0 0
\(951\) 19.3150 + 5.30845i 0.626333 + 0.172138i
\(952\) 0 0
\(953\) −17.9737 −0.582224 −0.291112 0.956689i \(-0.594025\pi\)
−0.291112 + 0.956689i \(0.594025\pi\)
\(954\) 0 0
\(955\) 30.2627 0.979280
\(956\) 0 0
\(957\) −2.05032 7.85303i −0.0662775 0.253852i
\(958\) 0 0
\(959\) 7.00803 12.1383i 0.226301 0.391965i
\(960\) 0 0
\(961\) −0.839208 1.45355i −0.0270712 0.0468887i
\(962\) 0 0
\(963\) 0.274758 21.4194i 0.00885395 0.690229i
\(964\) 0 0
\(965\) −9.72795 16.8493i −0.313154 0.542398i
\(966\) 0 0
\(967\) −27.7266 + 48.0239i −0.891627 + 1.54434i −0.0537033 + 0.998557i \(0.517103\pi\)
−0.837924 + 0.545787i \(0.816231\pi\)
\(968\) 0 0
\(969\) 14.7225 14.5349i 0.472956 0.466928i
\(970\) 0 0
\(971\) −57.3995 −1.84204 −0.921019 0.389517i \(-0.872642\pi\)
−0.921019 + 0.389517i \(0.872642\pi\)
\(972\) 0 0
\(973\) −22.3902 −0.717798
\(974\) 0 0
\(975\) −2.61324 + 2.57993i −0.0836905 + 0.0826238i
\(976\) 0 0
\(977\) 3.31468 5.74120i 0.106046 0.183677i −0.808119 0.589019i \(-0.799514\pi\)
0.914165 + 0.405342i \(0.132848\pi\)
\(978\) 0 0
\(979\) 1.19534 + 2.07040i 0.0382034 + 0.0661702i
\(980\) 0 0
\(981\) −0.246591 + 19.2236i −0.00787304 + 0.613761i
\(982\) 0 0
\(983\) 9.17287 + 15.8879i 0.292569 + 0.506745i 0.974416 0.224750i \(-0.0721565\pi\)
−0.681847 + 0.731495i \(0.738823\pi\)
\(984\) 0 0
\(985\) −10.6345 + 18.4195i −0.338844 + 0.586895i
\(986\) 0 0
\(987\) −6.31762 24.1974i −0.201092 0.770211i
\(988\) 0 0
\(989\) 2.08255 0.0662211
\(990\) 0 0
\(991\) −32.4397 −1.03048 −0.515240 0.857046i \(-0.672297\pi\)
−0.515240 + 0.857046i \(0.672297\pi\)
\(992\) 0 0
\(993\) 52.1318 + 14.3277i 1.65435 + 0.454674i
\(994\) 0 0
\(995\) −2.49295 + 4.31791i −0.0790318 + 0.136887i
\(996\) 0 0
\(997\) 13.0761 + 22.6484i 0.414123 + 0.717282i 0.995336 0.0964694i \(-0.0307550\pi\)
−0.581213 + 0.813752i \(0.697422\pi\)
\(998\) 0 0
\(999\) −13.5912 14.1245i −0.430006 0.446879i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.q.f.265.5 12
3.2 odd 2 2376.2.q.f.793.3 12
9.2 odd 6 2376.2.q.f.1585.3 12
9.4 even 3 7128.2.a.ba.1.3 6
9.5 odd 6 7128.2.a.w.1.4 6
9.7 even 3 inner 792.2.q.f.529.5 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.q.f.265.5 12 1.1 even 1 trivial
792.2.q.f.529.5 yes 12 9.7 even 3 inner
2376.2.q.f.793.3 12 3.2 odd 2
2376.2.q.f.1585.3 12 9.2 odd 6
7128.2.a.w.1.4 6 9.5 odd 6
7128.2.a.ba.1.3 6 9.4 even 3