Properties

Label 792.2.m.a.197.4
Level $792$
Weight $2$
Character 792.197
Analytic conductor $6.324$
Analytic rank $0$
Dimension $4$
CM discriminant -88
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(197,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.197"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-8,0,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 11x^{2} - 10x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 197.4
Root \(0.500000 + 0.244099i\) of defining polynomial
Character \(\chi\) \(=\) 792.197
Dual form 792.2.m.a.197.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} -2.82843i q^{8} +3.31662i q^{11} -6.69042 q^{13} +4.00000 q^{16} -0.690416 q^{19} -4.69042 q^{22} -5.21904i q^{23} -5.00000 q^{25} -9.46168i q^{26} +6.63325i q^{29} -9.38083 q^{31} +5.65685i q^{32} -0.976395i q^{38} -12.6904 q^{43} -6.63325i q^{44} +7.38083 q^{46} -13.7043i q^{47} +7.00000 q^{49} -7.07107i q^{50} +13.3808 q^{52} -9.38083 q^{58} +5.30958 q^{61} -13.2665i q^{62} -8.00000 q^{64} +3.26625i q^{71} +1.38083 q^{76} +6.63325i q^{83} -17.9470i q^{86} +9.38083 q^{88} +14.6807i q^{89} +10.4381i q^{92} +19.3808 q^{94} +18.7617 q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} - 8 q^{13} + 16 q^{16} + 16 q^{19} - 20 q^{25} - 32 q^{43} - 8 q^{46} + 28 q^{49} + 16 q^{52} + 40 q^{61} - 32 q^{64} - 32 q^{76} + 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.00000i
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) − 2.82843i − 1.00000i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.31662i 1.00000i
\(12\) 0 0
\(13\) −6.69042 −1.85559 −0.927794 0.373094i \(-0.878297\pi\)
−0.927794 + 0.373094i \(0.878297\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −0.690416 −0.158392 −0.0791961 0.996859i \(-0.525235\pi\)
−0.0791961 + 0.996859i \(0.525235\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.69042 −1.00000
\(23\) − 5.21904i − 1.08824i −0.839006 0.544122i \(-0.816863\pi\)
0.839006 0.544122i \(-0.183137\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) − 9.46168i − 1.85559i
\(27\) 0 0
\(28\) 0 0
\(29\) 6.63325i 1.23176i 0.787839 + 0.615882i \(0.211200\pi\)
−0.787839 + 0.615882i \(0.788800\pi\)
\(30\) 0 0
\(31\) −9.38083 −1.68485 −0.842424 0.538816i \(-0.818872\pi\)
−0.842424 + 0.538816i \(0.818872\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) − 0.976395i − 0.158392i
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −12.6904 −1.93527 −0.967635 0.252353i \(-0.918795\pi\)
−0.967635 + 0.252353i \(0.918795\pi\)
\(44\) − 6.63325i − 1.00000i
\(45\) 0 0
\(46\) 7.38083 1.08824
\(47\) − 13.7043i − 1.99898i −0.0319312 0.999490i \(-0.510166\pi\)
0.0319312 0.999490i \(-0.489834\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) − 7.07107i − 1.00000i
\(51\) 0 0
\(52\) 13.3808 1.85559
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −9.38083 −1.23176
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 5.30958 0.679823 0.339911 0.940457i \(-0.389603\pi\)
0.339911 + 0.940457i \(0.389603\pi\)
\(62\) − 13.2665i − 1.68485i
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.26625i 0.387632i 0.981038 + 0.193816i \(0.0620865\pi\)
−0.981038 + 0.193816i \(0.937914\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 1.38083 0.158392
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.63325i 0.728094i 0.931381 + 0.364047i \(0.118605\pi\)
−0.931381 + 0.364047i \(0.881395\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 17.9470i − 1.93527i
\(87\) 0 0
\(88\) 9.38083 1.00000
\(89\) 14.6807i 1.55615i 0.628170 + 0.778076i \(0.283804\pi\)
−0.628170 + 0.778076i \(0.716196\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 10.4381i 1.08824i
\(93\) 0 0
\(94\) 19.3808 1.99898
\(95\) 0 0
\(96\) 0 0
\(97\) 18.7617 1.90496 0.952479 0.304604i \(-0.0985241\pi\)
0.952479 + 0.304604i \(0.0985241\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) 10.0000 1.00000
\(101\) 2.82843i 0.281439i 0.990050 + 0.140720i \(0.0449416\pi\)
−0.990050 + 0.140720i \(0.955058\pi\)
\(102\) 0 0
\(103\) −9.38083 −0.924321 −0.462160 0.886796i \(-0.652926\pi\)
−0.462160 + 0.886796i \(0.652926\pi\)
\(104\) 18.9234i 1.85559i
\(105\) 0 0
\(106\) 0 0
\(107\) − 5.65685i − 0.546869i −0.961891 0.273434i \(-0.911840\pi\)
0.961891 0.273434i \(-0.0881596\pi\)
\(108\) 0 0
\(109\) −18.6904 −1.79022 −0.895109 0.445848i \(-0.852902\pi\)
−0.895109 + 0.445848i \(0.852902\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.19543i 0.582817i 0.956599 + 0.291409i \(0.0941239\pi\)
−0.956599 + 0.291409i \(0.905876\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 13.2665i − 1.23176i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 7.50889i 0.679823i
\(123\) 0 0
\(124\) 18.7617 1.68485
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) − 11.3137i − 1.00000i
\(129\) 0 0
\(130\) 0 0
\(131\) 11.3137i 0.988483i 0.869325 + 0.494242i \(0.164554\pi\)
−0.869325 + 0.494242i \(0.835446\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 23.1660i 1.97920i 0.143831 + 0.989602i \(0.454058\pi\)
−0.143831 + 0.989602i \(0.545942\pi\)
\(138\) 0 0
\(139\) 11.3096 0.959266 0.479633 0.877469i \(-0.340770\pi\)
0.479633 + 0.877469i \(0.340770\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.61917 −0.387632
\(143\) − 22.1896i − 1.85559i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 14.1421i − 1.15857i −0.815125 0.579284i \(-0.803332\pi\)
0.815125 0.579284i \(-0.196668\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 1.95279i 0.158392i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −9.38083 −0.728094
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 31.7617 2.44320
\(170\) 0 0
\(171\) 0 0
\(172\) 25.3808 1.93527
\(173\) 6.63325i 0.504317i 0.967686 + 0.252158i \(0.0811404\pi\)
−0.967686 + 0.252158i \(0.918860\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 13.2665i 1.00000i
\(177\) 0 0
\(178\) −20.7617 −1.55615
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −14.7617 −1.08824
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 27.4086i 1.99898i
\(189\) 0 0
\(190\) 0 0
\(191\) 11.7515i 0.850311i 0.905120 + 0.425155i \(0.139781\pi\)
−0.905120 + 0.425155i \(0.860219\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 26.5330i 1.90496i
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 19.7990i 1.41062i 0.708899 + 0.705310i \(0.249192\pi\)
−0.708899 + 0.705310i \(0.750808\pi\)
\(198\) 0 0
\(199\) 2.00000 0.141776 0.0708881 0.997484i \(-0.477417\pi\)
0.0708881 + 0.997484i \(0.477417\pi\)
\(200\) 14.1421i 1.00000i
\(201\) 0 0
\(202\) −4.00000 −0.281439
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) − 13.2665i − 0.924321i
\(207\) 0 0
\(208\) −26.7617 −1.85559
\(209\) − 2.28985i − 0.158392i
\(210\) 0 0
\(211\) −24.6904 −1.69976 −0.849879 0.526978i \(-0.823325\pi\)
−0.849879 + 0.526978i \(0.823325\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 8.00000 0.546869
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) − 26.4322i − 1.79022i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −10.0000 −0.669650 −0.334825 0.942280i \(-0.608677\pi\)
−0.334825 + 0.942280i \(0.608677\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −8.76166 −0.582817
\(227\) − 22.6274i − 1.50183i −0.660396 0.750917i \(-0.729612\pi\)
0.660396 0.750917i \(-0.270388\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 18.7617 1.23176
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) − 15.5563i − 1.00000i
\(243\) 0 0
\(244\) −10.6192 −0.679823
\(245\) 0 0
\(246\) 0 0
\(247\) 4.61917 0.293911
\(248\) 26.5330i 1.68485i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 17.3096 1.08824
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 31.6513i 1.97435i 0.159635 + 0.987176i \(0.448968\pi\)
−0.159635 + 0.987176i \(0.551032\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −16.0000 −0.988483
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −32.7617 −1.97920
\(275\) − 16.5831i − 1.00000i
\(276\) 0 0
\(277\) 21.4521 1.28893 0.644465 0.764634i \(-0.277080\pi\)
0.644465 + 0.764634i \(0.277080\pi\)
\(278\) 15.9942i 0.959266i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 27.4521 1.63186 0.815928 0.578153i \(-0.196226\pi\)
0.815928 + 0.578153i \(0.196226\pi\)
\(284\) − 6.53249i − 0.387632i
\(285\) 0 0
\(286\) 31.3808 1.85559
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 33.1662i − 1.93759i −0.247858 0.968796i \(-0.579727\pi\)
0.247858 0.968796i \(-0.420273\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 20.0000 1.15857
\(299\) 34.9175i 2.01933i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −2.76166 −0.158392
\(305\) 0 0
\(306\) 0 0
\(307\) 15.4521 0.881897 0.440948 0.897532i \(-0.354642\pi\)
0.440948 + 0.897532i \(0.354642\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 30.6749i − 1.73941i −0.493569 0.869706i \(-0.664308\pi\)
0.493569 0.869706i \(-0.335692\pi\)
\(312\) 0 0
\(313\) 18.7617 1.06047 0.530236 0.847850i \(-0.322103\pi\)
0.530236 + 0.847850i \(0.322103\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) −22.0000 −1.23176
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 33.4521 1.85559
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) − 13.2665i − 0.728094i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 44.9178i 2.44320i
\(339\) 0 0
\(340\) 0 0
\(341\) − 31.1127i − 1.68485i
\(342\) 0 0
\(343\) 0 0
\(344\) 35.8939i 1.93527i
\(345\) 0 0
\(346\) −9.38083 −0.504317
\(347\) − 33.1662i − 1.78046i −0.455514 0.890229i \(-0.650544\pi\)
0.455514 0.890229i \(-0.349456\pi\)
\(348\) 0 0
\(349\) −30.6904 −1.64282 −0.821410 0.570338i \(-0.806812\pi\)
−0.821410 + 0.570338i \(0.806812\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −18.7617 −1.00000
\(353\) − 25.1188i − 1.33694i −0.743740 0.668469i \(-0.766950\pi\)
0.743740 0.668469i \(-0.233050\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 29.3614i − 1.55615i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −18.5233 −0.974912
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 26.0000 1.35719 0.678594 0.734513i \(-0.262589\pi\)
0.678594 + 0.734513i \(0.262589\pi\)
\(368\) − 20.8761i − 1.08824i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9.45208 0.489410 0.244705 0.969598i \(-0.421309\pi\)
0.244705 + 0.969598i \(0.421309\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −38.7617 −1.99898
\(377\) − 44.3792i − 2.28564i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −16.6192 −0.850311
\(383\) 20.2368i 1.03405i 0.855970 + 0.517026i \(0.172961\pi\)
−0.855970 + 0.517026i \(0.827039\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −37.5233 −1.90496
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 19.7990i − 1.00000i
\(393\) 0 0
\(394\) −28.0000 −1.41062
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 2.82843i 0.141776i
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) − 16.6335i − 0.830638i −0.909676 0.415319i \(-0.863670\pi\)
0.909676 0.415319i \(-0.136330\pi\)
\(402\) 0 0
\(403\) 62.7617 3.12638
\(404\) − 5.65685i − 0.281439i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 18.7617 0.924321
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) − 37.8467i − 1.85559i
\(417\) 0 0
\(418\) 3.23834 0.158392
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) − 34.9175i − 1.69976i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 11.3137i 0.546869i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −37.5233 −1.80326 −0.901628 0.432512i \(-0.857627\pi\)
−0.901628 + 0.432512i \(0.857627\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 37.3808 1.79022
\(437\) 3.60330i 0.172369i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 14.1421i − 0.669650i
\(447\) 0 0
\(448\) 0 0
\(449\) 40.1366i 1.89416i 0.320996 + 0.947081i \(0.395982\pi\)
−0.320996 + 0.947081i \(0.604018\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) − 12.3909i − 0.582817i
\(453\) 0 0
\(454\) 32.0000 1.50183
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.63325i 0.308941i 0.987997 + 0.154471i \(0.0493672\pi\)
−0.987997 + 0.154471i \(0.950633\pi\)
\(462\) 0 0
\(463\) −9.38083 −0.435964 −0.217982 0.975953i \(-0.569947\pi\)
−0.217982 + 0.975953i \(0.569947\pi\)
\(464\) 26.5330i 1.23176i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 42.0893i − 1.93527i
\(474\) 0 0
\(475\) 3.45208 0.158392
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 22.0000 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) −34.0000 −1.54069 −0.770344 0.637629i \(-0.779915\pi\)
−0.770344 + 0.637629i \(0.779915\pi\)
\(488\) − 15.0178i − 0.679823i
\(489\) 0 0
\(490\) 0 0
\(491\) − 39.5980i − 1.78703i −0.449032 0.893516i \(-0.648231\pi\)
0.449032 0.893516i \(-0.351769\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 6.53249i 0.293911i
\(495\) 0 0
\(496\) −37.5233 −1.68485
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 24.4794i 1.08824i
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) −44.7617 −1.97435
\(515\) 0 0
\(516\) 0 0
\(517\) 45.4521 1.99898
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 8.14822i − 0.356980i −0.983942 0.178490i \(-0.942879\pi\)
0.983942 0.178490i \(-0.0571212\pi\)
\(522\) 0 0
\(523\) −36.6904 −1.60436 −0.802180 0.597082i \(-0.796327\pi\)
−0.802180 + 0.597082i \(0.796327\pi\)
\(524\) − 22.6274i − 0.988483i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −4.23834 −0.184276
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23.2164i 1.00000i
\(540\) 0 0
\(541\) −34.8329 −1.49758 −0.748792 0.662805i \(-0.769366\pi\)
−0.748792 + 0.662805i \(0.769366\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −28.8329 −1.23281 −0.616403 0.787431i \(-0.711411\pi\)
−0.616403 + 0.787431i \(0.711411\pi\)
\(548\) − 46.3320i − 1.97920i
\(549\) 0 0
\(550\) 23.4521 1.00000
\(551\) − 4.57970i − 0.195102i
\(552\) 0 0
\(553\) 0 0
\(554\) 30.3378i 1.28893i
\(555\) 0 0
\(556\) −22.6192 −0.959266
\(557\) 46.4327i 1.96742i 0.179766 + 0.983709i \(0.442466\pi\)
−0.179766 + 0.983709i \(0.557534\pi\)
\(558\) 0 0
\(559\) 84.9042 3.59106
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 33.1662i − 1.39779i −0.715224 0.698895i \(-0.753675\pi\)
0.715224 0.698895i \(-0.246325\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 38.8231i 1.63186i
\(567\) 0 0
\(568\) 9.23834 0.387632
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −40.8329 −1.70880 −0.854402 0.519612i \(-0.826076\pi\)
−0.854402 + 0.519612i \(0.826076\pi\)
\(572\) 44.3792i 1.85559i
\(573\) 0 0
\(574\) 0 0
\(575\) 26.0952i 1.08824i
\(576\) 0 0
\(577\) −37.5233 −1.56212 −0.781058 0.624458i \(-0.785320\pi\)
−0.781058 + 0.624458i \(0.785320\pi\)
\(578\) − 24.0416i − 1.00000i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 46.9042 1.93759
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 6.47667 0.266867
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 28.2843i 1.15857i
\(597\) 0 0
\(598\) −49.3808 −2.01933
\(599\) 43.0657i 1.75962i 0.475327 + 0.879809i \(0.342330\pi\)
−0.475327 + 0.879809i \(0.657670\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) − 3.90558i − 0.158392i
\(609\) 0 0
\(610\) 0 0
\(611\) 91.6876i 3.70928i
\(612\) 0 0
\(613\) −2.54792 −0.102910 −0.0514548 0.998675i \(-0.516386\pi\)
−0.0514548 + 0.998675i \(0.516386\pi\)
\(614\) 21.8525i 0.881897i
\(615\) 0 0
\(616\) 0 0
\(617\) − 19.2604i − 0.775395i −0.921787 0.387698i \(-0.873271\pi\)
0.921787 0.387698i \(-0.126729\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 43.3808 1.73941
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 26.5330i 1.06047i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 46.9042 1.86723 0.933613 0.358284i \(-0.116638\pi\)
0.933613 + 0.358284i \(0.116638\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −46.8329 −1.85559
\(638\) − 31.1127i − 1.23176i
\(639\) 0 0
\(640\) 0 0
\(641\) − 50.5746i − 1.99758i −0.0492016 0.998789i \(-0.515668\pi\)
0.0492016 0.998789i \(-0.484332\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.7221i 1.12918i 0.825371 + 0.564591i \(0.190966\pi\)
−0.825371 + 0.564591i \(0.809034\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 47.3084i 1.85559i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.63325i 0.258395i 0.991619 + 0.129197i \(0.0412401\pi\)
−0.991619 + 0.129197i \(0.958760\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 18.7617 0.728094
\(665\) 0 0
\(666\) 0 0
\(667\) 34.6192 1.34046
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17.6099i 0.679823i
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −63.5233 −2.44320
\(677\) − 48.0833i − 1.84799i −0.382405 0.923995i \(-0.624904\pi\)
0.382405 0.923995i \(-0.375096\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 44.0000 1.68485
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −50.7617 −1.93527
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) − 13.2665i − 0.504317i
\(693\) 0 0
\(694\) 46.9042 1.78046
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) − 43.4028i − 1.64282i
\(699\) 0 0
\(700\) 0 0
\(701\) 46.4327i 1.75374i 0.480727 + 0.876870i \(0.340373\pi\)
−0.480727 + 0.876870i \(0.659627\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) − 26.5330i − 1.00000i
\(705\) 0 0
\(706\) 35.5233 1.33694
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 41.5233 1.55615
\(713\) 48.9589i 1.83353i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 51.5510i 1.92253i 0.275628 + 0.961264i \(0.411114\pi\)
−0.275628 + 0.961264i \(0.588886\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 26.1959i − 0.974912i
\(723\) 0 0
\(724\) 0 0
\(725\) − 33.1662i − 1.23176i
\(726\) 0 0
\(727\) −46.0000 −1.70605 −0.853023 0.521874i \(-0.825233\pi\)
−0.853023 + 0.521874i \(0.825233\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −42.6904 −1.57681 −0.788403 0.615159i \(-0.789092\pi\)
−0.788403 + 0.615159i \(0.789092\pi\)
\(734\) 36.7696i 1.35719i
\(735\) 0 0
\(736\) 29.5233 1.08824
\(737\) 0 0
\(738\) 0 0
\(739\) −52.8329 −1.94349 −0.971745 0.236033i \(-0.924153\pi\)
−0.971745 + 0.236033i \(0.924153\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 13.3673i 0.489410i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −9.38083 −0.342311 −0.171156 0.985244i \(-0.554750\pi\)
−0.171156 + 0.985244i \(0.554750\pi\)
\(752\) − 54.8173i − 1.99898i
\(753\) 0 0
\(754\) 62.7617 2.28564
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) − 23.5031i − 0.850311i
\(765\) 0 0
\(766\) −28.6192 −1.03405
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 46.9042 1.68485
\(776\) − 53.0660i − 1.90496i
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −10.8329 −0.387632
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) −8.54792 −0.304700 −0.152350 0.988327i \(-0.548684\pi\)
−0.152350 + 0.988327i \(0.548684\pi\)
\(788\) − 39.5980i − 1.41062i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −35.5233 −1.26147
\(794\) 0 0
\(795\) 0 0
\(796\) −4.00000 −0.141776
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) − 28.2843i − 1.00000i
\(801\) 0 0
\(802\) 23.5233 0.830638
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 88.7584i 3.12638i
\(807\) 0 0
\(808\) 8.00000 0.281439
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 35.3096 1.23989 0.619944 0.784646i \(-0.287155\pi\)
0.619944 + 0.784646i \(0.287155\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.76166 0.306532
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 53.7401i 1.87554i 0.347253 + 0.937771i \(0.387115\pi\)
−0.347253 + 0.937771i \(0.612885\pi\)
\(822\) 0 0
\(823\) 50.0000 1.74289 0.871445 0.490493i \(-0.163183\pi\)
0.871445 + 0.490493i \(0.163183\pi\)
\(824\) 26.5330i 0.924321i
\(825\) 0 0
\(826\) 0 0
\(827\) 46.4327i 1.61462i 0.590124 + 0.807312i \(0.299079\pi\)
−0.590124 + 0.807312i \(0.700921\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 53.5233 1.85559
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 4.57970i 0.158392i
\(837\) 0 0
\(838\) 0 0
\(839\) 9.12462i 0.315017i 0.987518 + 0.157508i \(0.0503461\pi\)
−0.987518 + 0.157508i \(0.949654\pi\)
\(840\) 0 0
\(841\) −15.0000 −0.517241
\(842\) 0 0
\(843\) 0 0
\(844\) 49.3808 1.69976
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 57.4521 1.96712 0.983561 0.180577i \(-0.0577965\pi\)
0.983561 + 0.180577i \(0.0577965\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −16.0000 −0.546869
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 47.6454i − 1.62187i −0.585136 0.810935i \(-0.698959\pi\)
0.585136 0.810935i \(-0.301041\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 53.0660i − 1.80326i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 52.8645i 1.79022i
\(873\) 0 0
\(874\) −5.09584 −0.172369
\(875\) 0 0
\(876\) 0 0
\(877\) −58.8329 −1.98665 −0.993323 0.115365i \(-0.963196\pi\)
−0.993323 + 0.115365i \(0.963196\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 59.0599i − 1.98978i −0.100970 0.994889i \(-0.532195\pi\)
0.100970 0.994889i \(-0.467805\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) 9.46168i 0.316623i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −56.7617 −1.89416
\(899\) − 62.2254i − 2.07533i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 17.5233 0.582817
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 45.2548i 1.50183i
\(909\) 0 0
\(910\) 0 0
\(911\) 60.0363i 1.98909i 0.104301 + 0.994546i \(0.466739\pi\)
−0.104301 + 0.994546i \(0.533261\pi\)
\(912\) 0 0
\(913\) −22.0000 −0.728094
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −9.38083 −0.308941
\(923\) − 21.8525i − 0.719285i
\(924\) 0 0
\(925\) 0 0
\(926\) − 13.2665i − 0.435964i
\(927\) 0 0
\(928\) −37.5233 −1.23176
\(929\) − 27.7457i − 0.910307i −0.890413 0.455153i \(-0.849584\pi\)
0.890413 0.455153i \(-0.150416\pi\)
\(930\) 0 0
\(931\) −4.83291 −0.158392
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 14.1421i − 0.461020i −0.973070 0.230510i \(-0.925960\pi\)
0.973070 0.230510i \(-0.0740395\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 59.5233 1.93527
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 4.88198i 0.158392i
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 57.0000 1.83871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 31.1127i 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) − 48.0833i − 1.54069i
\(975\) 0 0
\(976\) 21.2383 0.679823
\(977\) 8.82234i 0.282252i 0.989992 + 0.141126i \(0.0450722\pi\)
−0.989992 + 0.141126i \(0.954928\pi\)
\(978\) 0 0
\(979\) −48.6904 −1.55615
\(980\) 0 0
\(981\) 0 0
\(982\) 56.0000 1.78703
\(983\) 37.2074i 1.18673i 0.804933 + 0.593365i \(0.202201\pi\)
−0.804933 + 0.593365i \(0.797799\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −9.23834 −0.293911
\(989\) 66.2317i 2.10605i
\(990\) 0 0
\(991\) 46.9042 1.48996 0.744980 0.667087i \(-0.232459\pi\)
0.744980 + 0.667087i \(0.232459\pi\)
\(992\) − 53.0660i − 1.68485i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −14.5479 −0.460737 −0.230369 0.973103i \(-0.573993\pi\)
−0.230369 + 0.973103i \(0.573993\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.m.a.197.4 yes 4
3.2 odd 2 inner 792.2.m.a.197.1 4
4.3 odd 2 3168.2.m.a.593.1 4
8.3 odd 2 3168.2.m.b.593.4 4
8.5 even 2 792.2.m.b.197.1 yes 4
11.10 odd 2 792.2.m.b.197.1 yes 4
12.11 even 2 3168.2.m.a.593.3 4
24.5 odd 2 792.2.m.b.197.4 yes 4
24.11 even 2 3168.2.m.b.593.2 4
33.32 even 2 792.2.m.b.197.4 yes 4
44.43 even 2 3168.2.m.b.593.4 4
88.21 odd 2 CM 792.2.m.a.197.4 yes 4
88.43 even 2 3168.2.m.a.593.1 4
132.131 odd 2 3168.2.m.b.593.2 4
264.131 odd 2 3168.2.m.a.593.3 4
264.197 even 2 inner 792.2.m.a.197.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.m.a.197.1 4 3.2 odd 2 inner
792.2.m.a.197.1 4 264.197 even 2 inner
792.2.m.a.197.4 yes 4 1.1 even 1 trivial
792.2.m.a.197.4 yes 4 88.21 odd 2 CM
792.2.m.b.197.1 yes 4 8.5 even 2
792.2.m.b.197.1 yes 4 11.10 odd 2
792.2.m.b.197.4 yes 4 24.5 odd 2
792.2.m.b.197.4 yes 4 33.32 even 2
3168.2.m.a.593.1 4 4.3 odd 2
3168.2.m.a.593.1 4 88.43 even 2
3168.2.m.a.593.3 4 12.11 even 2
3168.2.m.a.593.3 4 264.131 odd 2
3168.2.m.b.593.2 4 24.11 even 2
3168.2.m.b.593.2 4 132.131 odd 2
3168.2.m.b.593.4 4 8.3 odd 2
3168.2.m.b.593.4 4 44.43 even 2