Properties

Label 792.2.m.a
Level $792$
Weight $2$
Character orbit 792.m
Analytic conductor $6.324$
Analytic rank $0$
Dimension $4$
CM discriminant -88
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(197,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.197"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-8,0,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 11x^{2} - 10x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} - 2 q^{4} - 2 \beta_{2} q^{8} + \beta_{3} q^{11} + ( - \beta_1 - 2) q^{13} + 4 q^{16} + ( - \beta_1 + 4) q^{19} - \beta_1 q^{22} + ( - 2 \beta_{3} + \beta_{2}) q^{23} - 5 q^{25} + ( - 2 \beta_{3} - 2 \beta_{2}) q^{26}+ \cdots + 7 \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} - 8 q^{13} + 16 q^{16} + 16 q^{19} - 20 q^{25} - 32 q^{43} - 8 q^{46} + 28 q^{49} + 16 q^{52} + 40 q^{61} - 32 q^{64} - 32 q^{76} + 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} + 11x^{2} - 10x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - \nu + 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{3} - 3\nu^{2} + 19\nu - 9 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 4\nu^{3} - 6\nu^{2} + 44\nu - 21 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 2\beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 2\beta_{2} + 2\beta _1 - 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -8\beta_{3} + 19\beta_{2} + 3\beta _1 - 14 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
197.1
0.500000 0.244099i
0.500000 + 3.07253i
0.500000 3.07253i
0.500000 + 0.244099i
1.41421i 0 −2.00000 0 0 0 2.82843i 0 0
197.2 1.41421i 0 −2.00000 0 0 0 2.82843i 0 0
197.3 1.41421i 0 −2.00000 0 0 0 2.82843i 0 0
197.4 1.41421i 0 −2.00000 0 0 0 2.82843i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
88.b odd 2 1 CM by \(\Q(\sqrt{-22}) \)
3.b odd 2 1 inner
264.m even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 792.2.m.a 4
3.b odd 2 1 inner 792.2.m.a 4
4.b odd 2 1 3168.2.m.a 4
8.b even 2 1 792.2.m.b yes 4
8.d odd 2 1 3168.2.m.b 4
11.b odd 2 1 792.2.m.b yes 4
12.b even 2 1 3168.2.m.a 4
24.f even 2 1 3168.2.m.b 4
24.h odd 2 1 792.2.m.b yes 4
33.d even 2 1 792.2.m.b yes 4
44.c even 2 1 3168.2.m.b 4
88.b odd 2 1 CM 792.2.m.a 4
88.g even 2 1 3168.2.m.a 4
132.d odd 2 1 3168.2.m.b 4
264.m even 2 1 inner 792.2.m.a 4
264.p odd 2 1 3168.2.m.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
792.2.m.a 4 1.a even 1 1 trivial
792.2.m.a 4 3.b odd 2 1 inner
792.2.m.a 4 88.b odd 2 1 CM
792.2.m.a 4 264.m even 2 1 inner
792.2.m.b yes 4 8.b even 2 1
792.2.m.b yes 4 11.b odd 2 1
792.2.m.b yes 4 24.h odd 2 1
792.2.m.b yes 4 33.d even 2 1
3168.2.m.a 4 4.b odd 2 1
3168.2.m.a 4 12.b even 2 1
3168.2.m.a 4 88.g even 2 1
3168.2.m.a 4 264.p odd 2 1
3168.2.m.b 4 8.d odd 2 1
3168.2.m.b 4 24.f even 2 1
3168.2.m.b 4 44.c even 2 1
3168.2.m.b 4 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(792, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} - 18 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 11)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 4 T - 18)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 8 T - 6)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 92T^{2} + 1764 \) Copy content Toggle raw display
$29$ \( (T^{2} + 44)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 88)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 16 T + 42)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 188T^{2} + 36 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 20 T + 78)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} + 284T^{2} + 2916 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 44)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 356 T^{2} + 30276 \) Copy content Toggle raw display
$97$ \( (T^{2} - 352)^{2} \) Copy content Toggle raw display
show more
show less