Properties

Label 792.2.h.i.307.8
Level $792$
Weight $2$
Character 792.307
Analytic conductor $6.324$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(307,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.3342602057661458415616.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 20x^{14} + 164x^{12} - 666x^{10} + 1300x^{8} - 924x^{6} + 273x^{4} + 404x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 307.8
Root \(-0.946412 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 792.307
Dual form 792.2.h.i.307.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.927153 + 1.06789i) q^{2} +(-0.280776 - 1.98019i) q^{4} +2.00000i q^{5} -0.936426 q^{7} +(2.37495 + 1.53610i) q^{8} +(-2.13578 - 1.85431i) q^{10} +(3.09218 - 1.19935i) q^{11} -4.27156 q^{13} +(0.868210 - 1.00000i) q^{14} +(-3.84233 + 1.11198i) q^{16} +3.33513i q^{17} +2.89560i q^{19} +(3.96039 - 0.561553i) q^{20} +(-1.58614 + 4.41409i) q^{22} +5.12311i q^{23} +1.00000 q^{25} +(3.96039 - 4.56155i) q^{26} +(0.262926 + 1.85431i) q^{28} -6.60421 q^{29} -1.73642i q^{31} +(2.37495 - 5.13416i) q^{32} +(-3.56155 - 3.09218i) q^{34} -1.87285i q^{35} -6.18435i q^{37} +(-3.09218 - 2.68466i) q^{38} +(-3.07221 + 4.74990i) q^{40} +1.46228i q^{41} +10.3128i q^{43} +(-3.24316 - 5.78636i) q^{44} +(-5.47091 - 4.74990i) q^{46} +6.00000i q^{47} -6.12311 q^{49} +(-0.927153 + 1.06789i) q^{50} +(1.19935 + 8.45851i) q^{52} +8.24621i q^{53} +(2.39871 + 6.18435i) q^{55} +(-2.22397 - 1.43845i) q^{56} +(6.12311 - 7.05256i) q^{58} -9.65719 q^{59} -9.06897 q^{61} +(1.85431 + 1.60993i) q^{62} +(3.28078 + 7.29634i) q^{64} -8.54312i q^{65} -10.2462 q^{67} +(6.60421 - 0.936426i) q^{68} +(2.00000 + 1.73642i) q^{70} +4.24621i q^{71} -13.2084i q^{73} +(6.60421 + 5.73384i) q^{74} +(5.73384 - 0.813015i) q^{76} +(-2.89560 + 1.12311i) q^{77} +3.86098 q^{79} +(-2.22397 - 7.68466i) q^{80} +(-1.56155 - 1.35576i) q^{82} +2.39871i q^{83} -6.67026 q^{85} +(-11.0129 - 9.56155i) q^{86} +(9.18609 + 1.90150i) q^{88} -3.47284 q^{89} +4.00000 q^{91} +(10.1447 - 1.43845i) q^{92} +(-6.40734 - 5.56292i) q^{94} -5.79119 q^{95} +11.3693 q^{97} +(5.67705 - 6.53880i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{4} - 12 q^{16} + 4 q^{22} + 16 q^{25} - 24 q^{34} - 32 q^{49} + 32 q^{58} + 36 q^{64} - 32 q^{67} + 32 q^{70} + 8 q^{82} - 20 q^{88} + 64 q^{91} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.927153 + 1.06789i −0.655596 + 0.755112i
\(3\) 0 0
\(4\) −0.280776 1.98019i −0.140388 0.990097i
\(5\) 2.00000i 0.894427i 0.894427 + 0.447214i \(0.147584\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) −0.936426 −0.353936 −0.176968 0.984217i \(-0.556629\pi\)
−0.176968 + 0.984217i \(0.556629\pi\)
\(8\) 2.37495 + 1.53610i 0.839672 + 0.543094i
\(9\) 0 0
\(10\) −2.13578 1.85431i −0.675393 0.586383i
\(11\) 3.09218 1.19935i 0.932326 0.361618i
\(12\) 0 0
\(13\) −4.27156 −1.18472 −0.592359 0.805674i \(-0.701803\pi\)
−0.592359 + 0.805674i \(0.701803\pi\)
\(14\) 0.868210 1.00000i 0.232039 0.267261i
\(15\) 0 0
\(16\) −3.84233 + 1.11198i −0.960582 + 0.277996i
\(17\) 3.33513i 0.808888i 0.914563 + 0.404444i \(0.132535\pi\)
−0.914563 + 0.404444i \(0.867465\pi\)
\(18\) 0 0
\(19\) 2.89560i 0.664295i 0.943227 + 0.332148i \(0.107773\pi\)
−0.943227 + 0.332148i \(0.892227\pi\)
\(20\) 3.96039 0.561553i 0.885569 0.125567i
\(21\) 0 0
\(22\) −1.58614 + 4.41409i −0.338167 + 0.941086i
\(23\) 5.12311i 1.06824i 0.845408 + 0.534121i \(0.179357\pi\)
−0.845408 + 0.534121i \(0.820643\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 3.96039 4.56155i 0.776696 0.894594i
\(27\) 0 0
\(28\) 0.262926 + 1.85431i 0.0496884 + 0.350431i
\(29\) −6.60421 −1.22637 −0.613185 0.789939i \(-0.710112\pi\)
−0.613185 + 0.789939i \(0.710112\pi\)
\(30\) 0 0
\(31\) 1.73642i 0.311870i −0.987767 0.155935i \(-0.950161\pi\)
0.987767 0.155935i \(-0.0498391\pi\)
\(32\) 2.37495 5.13416i 0.419836 0.907600i
\(33\) 0 0
\(34\) −3.56155 3.09218i −0.610801 0.530304i
\(35\) 1.87285i 0.316570i
\(36\) 0 0
\(37\) 6.18435i 1.01670i −0.861150 0.508351i \(-0.830255\pi\)
0.861150 0.508351i \(-0.169745\pi\)
\(38\) −3.09218 2.68466i −0.501617 0.435509i
\(39\) 0 0
\(40\) −3.07221 + 4.74990i −0.485758 + 0.751025i
\(41\) 1.46228i 0.228370i 0.993460 + 0.114185i \(0.0364256\pi\)
−0.993460 + 0.114185i \(0.963574\pi\)
\(42\) 0 0
\(43\) 10.3128i 1.57269i 0.617788 + 0.786345i \(0.288029\pi\)
−0.617788 + 0.786345i \(0.711971\pi\)
\(44\) −3.24316 5.78636i −0.488925 0.872326i
\(45\) 0 0
\(46\) −5.47091 4.74990i −0.806642 0.700335i
\(47\) 6.00000i 0.875190i 0.899172 + 0.437595i \(0.144170\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(48\) 0 0
\(49\) −6.12311 −0.874729
\(50\) −0.927153 + 1.06789i −0.131119 + 0.151022i
\(51\) 0 0
\(52\) 1.19935 + 8.45851i 0.166320 + 1.17298i
\(53\) 8.24621i 1.13270i 0.824163 + 0.566352i \(0.191646\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 2.39871 + 6.18435i 0.323441 + 0.833898i
\(56\) −2.22397 1.43845i −0.297190 0.192221i
\(57\) 0 0
\(58\) 6.12311 7.05256i 0.804003 0.926047i
\(59\) −9.65719 −1.25726 −0.628630 0.777705i \(-0.716384\pi\)
−0.628630 + 0.777705i \(0.716384\pi\)
\(60\) 0 0
\(61\) −9.06897 −1.16116 −0.580581 0.814202i \(-0.697175\pi\)
−0.580581 + 0.814202i \(0.697175\pi\)
\(62\) 1.85431 + 1.60993i 0.235497 + 0.204461i
\(63\) 0 0
\(64\) 3.28078 + 7.29634i 0.410097 + 0.912042i
\(65\) 8.54312i 1.05964i
\(66\) 0 0
\(67\) −10.2462 −1.25177 −0.625887 0.779914i \(-0.715263\pi\)
−0.625887 + 0.779914i \(0.715263\pi\)
\(68\) 6.60421 0.936426i 0.800878 0.113558i
\(69\) 0 0
\(70\) 2.00000 + 1.73642i 0.239046 + 0.207542i
\(71\) 4.24621i 0.503933i 0.967736 + 0.251966i \(0.0810772\pi\)
−0.967736 + 0.251966i \(0.918923\pi\)
\(72\) 0 0
\(73\) 13.2084i 1.54593i −0.634450 0.772964i \(-0.718773\pi\)
0.634450 0.772964i \(-0.281227\pi\)
\(74\) 6.60421 + 5.73384i 0.767723 + 0.666545i
\(75\) 0 0
\(76\) 5.73384 0.813015i 0.657716 0.0932592i
\(77\) −2.89560 + 1.12311i −0.329984 + 0.127990i
\(78\) 0 0
\(79\) 3.86098 0.434395 0.217197 0.976128i \(-0.430308\pi\)
0.217197 + 0.976128i \(0.430308\pi\)
\(80\) −2.22397 7.68466i −0.248647 0.859171i
\(81\) 0 0
\(82\) −1.56155 1.35576i −0.172445 0.149718i
\(83\) 2.39871i 0.263292i 0.991297 + 0.131646i \(0.0420262\pi\)
−0.991297 + 0.131646i \(0.957974\pi\)
\(84\) 0 0
\(85\) −6.67026 −0.723492
\(86\) −11.0129 9.56155i −1.18756 1.03105i
\(87\) 0 0
\(88\) 9.18609 + 1.90150i 0.979241 + 0.202700i
\(89\) −3.47284 −0.368120 −0.184060 0.982915i \(-0.558924\pi\)
−0.184060 + 0.982915i \(0.558924\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 10.1447 1.43845i 1.05766 0.149968i
\(93\) 0 0
\(94\) −6.40734 5.56292i −0.660866 0.573771i
\(95\) −5.79119 −0.594164
\(96\) 0 0
\(97\) 11.3693 1.15438 0.577190 0.816610i \(-0.304149\pi\)
0.577190 + 0.816610i \(0.304149\pi\)
\(98\) 5.67705 6.53880i 0.573469 0.660519i
\(99\) 0 0
\(100\) −0.280776 1.98019i −0.0280776 0.198019i
\(101\) 6.60421 0.657143 0.328571 0.944479i \(-0.393433\pi\)
0.328571 + 0.944479i \(0.393433\pi\)
\(102\) 0 0
\(103\) 1.73642i 0.171095i −0.996334 0.0855473i \(-0.972736\pi\)
0.996334 0.0855473i \(-0.0272639\pi\)
\(104\) −10.1447 6.56155i −0.994773 0.643413i
\(105\) 0 0
\(106\) −8.80604 7.64550i −0.855319 0.742596i
\(107\) 9.06897i 0.876730i 0.898797 + 0.438365i \(0.144442\pi\)
−0.898797 + 0.438365i \(0.855558\pi\)
\(108\) 0 0
\(109\) 1.34700 0.129019 0.0645096 0.997917i \(-0.479452\pi\)
0.0645096 + 0.997917i \(0.479452\pi\)
\(110\) −8.82817 3.17228i −0.841733 0.302465i
\(111\) 0 0
\(112\) 3.59806 1.04129i 0.339985 0.0983927i
\(113\) −15.8415 −1.49025 −0.745124 0.666926i \(-0.767610\pi\)
−0.745124 + 0.666926i \(0.767610\pi\)
\(114\) 0 0
\(115\) −10.2462 −0.955464
\(116\) 1.85431 + 13.0776i 0.172168 + 1.21422i
\(117\) 0 0
\(118\) 8.95369 10.3128i 0.824254 0.949372i
\(119\) 3.12311i 0.286295i
\(120\) 0 0
\(121\) 8.12311 7.41722i 0.738464 0.674293i
\(122\) 8.40832 9.68466i 0.761253 0.876808i
\(123\) 0 0
\(124\) −3.43845 + 0.487546i −0.308782 + 0.0437829i
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) 16.1498 1.43306 0.716532 0.697554i \(-0.245728\pi\)
0.716532 + 0.697554i \(0.245728\pi\)
\(128\) −10.8335 3.26131i −0.957552 0.288262i
\(129\) 0 0
\(130\) 9.12311 + 7.92077i 0.800149 + 0.694698i
\(131\) 12.8147i 1.11962i −0.828620 0.559812i \(-0.810873\pi\)
0.828620 0.559812i \(-0.189127\pi\)
\(132\) 0 0
\(133\) 2.71151i 0.235118i
\(134\) 9.49980 10.9418i 0.820658 0.945229i
\(135\) 0 0
\(136\) −5.12311 + 7.92077i −0.439303 + 0.679201i
\(137\) 15.8415 1.35343 0.676717 0.736243i \(-0.263402\pi\)
0.676717 + 0.736243i \(0.263402\pi\)
\(138\) 0 0
\(139\) 10.3128i 0.874722i 0.899286 + 0.437361i \(0.144087\pi\)
−0.899286 + 0.437361i \(0.855913\pi\)
\(140\) −3.70861 + 0.525853i −0.313435 + 0.0444427i
\(141\) 0 0
\(142\) −4.53448 3.93689i −0.380526 0.330376i
\(143\) −13.2084 + 5.12311i −1.10454 + 0.428416i
\(144\) 0 0
\(145\) 13.2084i 1.09690i
\(146\) 14.1051 + 12.2462i 1.16735 + 1.01350i
\(147\) 0 0
\(148\) −12.2462 + 1.73642i −1.00663 + 0.142733i
\(149\) 0.813015 0.0666048 0.0333024 0.999445i \(-0.489398\pi\)
0.0333024 + 0.999445i \(0.489398\pi\)
\(150\) 0 0
\(151\) 20.9472 1.70466 0.852330 0.523004i \(-0.175189\pi\)
0.852330 + 0.523004i \(0.175189\pi\)
\(152\) −4.44793 + 6.87689i −0.360775 + 0.557790i
\(153\) 0 0
\(154\) 1.48531 4.13347i 0.119689 0.333084i
\(155\) 3.47284 0.278945
\(156\) 0 0
\(157\) 15.8415i 1.26429i 0.774849 + 0.632146i \(0.217826\pi\)
−0.774849 + 0.632146i \(0.782174\pi\)
\(158\) −3.57972 + 4.12311i −0.284787 + 0.328017i
\(159\) 0 0
\(160\) 10.2683 + 4.74990i 0.811782 + 0.375513i
\(161\) 4.79741i 0.378089i
\(162\) 0 0
\(163\) 12.4924 0.978482 0.489241 0.872149i \(-0.337274\pi\)
0.489241 + 0.872149i \(0.337274\pi\)
\(164\) 2.89560 0.410574i 0.226108 0.0320604i
\(165\) 0 0
\(166\) −2.56155 2.22397i −0.198815 0.172613i
\(167\) 5.79119 0.448136 0.224068 0.974574i \(-0.428066\pi\)
0.224068 + 0.974574i \(0.428066\pi\)
\(168\) 0 0
\(169\) 5.24621 0.403555
\(170\) 6.18435 7.12311i 0.474318 0.546317i
\(171\) 0 0
\(172\) 20.4214 2.89560i 1.55711 0.220787i
\(173\) −0.813015 −0.0618124 −0.0309062 0.999522i \(-0.509839\pi\)
−0.0309062 + 0.999522i \(0.509839\pi\)
\(174\) 0 0
\(175\) −0.936426 −0.0707872
\(176\) −10.5475 + 8.04676i −0.795048 + 0.606547i
\(177\) 0 0
\(178\) 3.21985 3.70861i 0.241338 0.277972i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 8.89586i 0.661224i −0.943767 0.330612i \(-0.892745\pi\)
0.943767 0.330612i \(-0.107255\pi\)
\(182\) −3.70861 + 4.27156i −0.274900 + 0.316629i
\(183\) 0 0
\(184\) −7.86962 + 12.1671i −0.580156 + 0.896972i
\(185\) 12.3687 0.909365
\(186\) 0 0
\(187\) 4.00000 + 10.3128i 0.292509 + 0.754148i
\(188\) 11.8812 1.68466i 0.866523 0.122866i
\(189\) 0 0
\(190\) 5.36932 6.18435i 0.389531 0.448660i
\(191\) 12.2462i 0.886105i −0.896496 0.443052i \(-0.853896\pi\)
0.896496 0.443052i \(-0.146104\pi\)
\(192\) 0 0
\(193\) 1.62603i 0.117044i 0.998286 + 0.0585221i \(0.0186388\pi\)
−0.998286 + 0.0585221i \(0.981361\pi\)
\(194\) −10.5411 + 12.1412i −0.756806 + 0.871686i
\(195\) 0 0
\(196\) 1.71922 + 12.1249i 0.122802 + 0.866067i
\(197\) 12.3954 0.883135 0.441568 0.897228i \(-0.354423\pi\)
0.441568 + 0.897228i \(0.354423\pi\)
\(198\) 0 0
\(199\) 14.1051i 0.999886i 0.866058 + 0.499943i \(0.166646\pi\)
−0.866058 + 0.499943i \(0.833354\pi\)
\(200\) 2.37495 + 1.53610i 0.167934 + 0.108619i
\(201\) 0 0
\(202\) −6.12311 + 7.05256i −0.430820 + 0.496217i
\(203\) 6.18435 0.434056
\(204\) 0 0
\(205\) −2.92456 −0.204260
\(206\) 1.85431 + 1.60993i 0.129196 + 0.112169i
\(207\) 0 0
\(208\) 16.4127 4.74990i 1.13802 0.329346i
\(209\) 3.47284 + 8.95369i 0.240221 + 0.619340i
\(210\) 0 0
\(211\) 2.89560i 0.199341i 0.995020 + 0.0996705i \(0.0317789\pi\)
−0.995020 + 0.0996705i \(0.968221\pi\)
\(212\) 16.3291 2.31534i 1.12149 0.159018i
\(213\) 0 0
\(214\) −9.68466 8.40832i −0.662030 0.574781i
\(215\) −20.6256 −1.40666
\(216\) 0 0
\(217\) 1.62603i 0.110382i
\(218\) −1.24887 + 1.43845i −0.0845844 + 0.0974239i
\(219\) 0 0
\(220\) 11.5727 6.48632i 0.780232 0.437308i
\(221\) 14.2462i 0.958304i
\(222\) 0 0
\(223\) 26.4738i 1.77282i 0.462902 + 0.886409i \(0.346808\pi\)
−0.462902 + 0.886409i \(0.653192\pi\)
\(224\) −2.22397 + 4.80776i −0.148595 + 0.321232i
\(225\) 0 0
\(226\) 14.6875 16.9170i 0.977000 1.12530i
\(227\) 26.9764i 1.79048i 0.445581 + 0.895242i \(0.352997\pi\)
−0.445581 + 0.895242i \(0.647003\pi\)
\(228\) 0 0
\(229\) 25.4987i 1.68500i −0.538693 0.842502i \(-0.681082\pi\)
0.538693 0.842502i \(-0.318918\pi\)
\(230\) 9.49980 10.9418i 0.626398 0.721482i
\(231\) 0 0
\(232\) −15.6847 10.1447i −1.02975 0.666035i
\(233\) 2.28343i 0.149592i −0.997199 0.0747961i \(-0.976169\pi\)
0.997199 0.0747961i \(-0.0238306\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 2.71151 + 19.1231i 0.176504 + 1.24481i
\(237\) 0 0
\(238\) 3.33513 + 2.89560i 0.216184 + 0.187694i
\(239\) 20.6256 1.33416 0.667081 0.744986i \(-0.267544\pi\)
0.667081 + 0.744986i \(0.267544\pi\)
\(240\) 0 0
\(241\) 28.0429i 1.80640i −0.429221 0.903199i \(-0.641212\pi\)
0.429221 0.903199i \(-0.358788\pi\)
\(242\) 0.389414 + 15.5515i 0.0250325 + 0.999687i
\(243\) 0 0
\(244\) 2.54635 + 17.9583i 0.163014 + 1.14966i
\(245\) 12.2462i 0.782382i
\(246\) 0 0
\(247\) 12.3687i 0.787002i
\(248\) 2.66732 4.12391i 0.169375 0.261869i
\(249\) 0 0
\(250\) −12.8147 11.1258i −0.810471 0.703659i
\(251\) 3.47284 0.219204 0.109602 0.993976i \(-0.465042\pi\)
0.109602 + 0.993976i \(0.465042\pi\)
\(252\) 0 0
\(253\) 6.14441 + 15.8415i 0.386296 + 0.995949i
\(254\) −14.9733 + 17.2462i −0.939511 + 1.08212i
\(255\) 0 0
\(256\) 13.5270 8.54521i 0.845437 0.534076i
\(257\) −8.89586 −0.554909 −0.277454 0.960739i \(-0.589491\pi\)
−0.277454 + 0.960739i \(0.589491\pi\)
\(258\) 0 0
\(259\) 5.79119i 0.359847i
\(260\) −16.9170 + 2.39871i −1.04915 + 0.148761i
\(261\) 0 0
\(262\) 13.6847 + 11.8812i 0.845441 + 0.734020i
\(263\) 32.2080 1.98603 0.993016 0.117984i \(-0.0376430\pi\)
0.993016 + 0.117984i \(0.0376430\pi\)
\(264\) 0 0
\(265\) −16.4924 −1.01312
\(266\) 2.89560 + 2.51398i 0.177540 + 0.154142i
\(267\) 0 0
\(268\) 2.87689 + 20.2895i 0.175734 + 1.23938i
\(269\) 0.246211i 0.0150118i 0.999972 + 0.00750588i \(0.00238922\pi\)
−0.999972 + 0.00750588i \(0.997611\pi\)
\(270\) 0 0
\(271\) 5.73384 0.348306 0.174153 0.984719i \(-0.444281\pi\)
0.174153 + 0.984719i \(0.444281\pi\)
\(272\) −3.70861 12.8147i −0.224868 0.777004i
\(273\) 0 0
\(274\) −14.6875 + 16.9170i −0.887306 + 1.02199i
\(275\) 3.09218 1.19935i 0.186465 0.0723237i
\(276\) 0 0
\(277\) −2.39871 −0.144124 −0.0720621 0.997400i \(-0.522958\pi\)
−0.0720621 + 0.997400i \(0.522958\pi\)
\(278\) −11.0129 9.56155i −0.660513 0.573464i
\(279\) 0 0
\(280\) 2.87689 4.44793i 0.171927 0.265815i
\(281\) 24.1671i 1.44169i 0.693098 + 0.720843i \(0.256245\pi\)
−0.693098 + 0.720843i \(0.743755\pi\)
\(282\) 0 0
\(283\) 17.7300i 1.05394i −0.849884 0.526971i \(-0.823328\pi\)
0.849884 0.526971i \(-0.176672\pi\)
\(284\) 8.40832 1.19224i 0.498942 0.0707462i
\(285\) 0 0
\(286\) 6.77530 18.8550i 0.400632 1.11492i
\(287\) 1.36932i 0.0808282i
\(288\) 0 0
\(289\) 5.87689 0.345700
\(290\) 14.1051 + 12.2462i 0.828281 + 0.719122i
\(291\) 0 0
\(292\) −26.1552 + 3.70861i −1.53062 + 0.217030i
\(293\) −27.2298 −1.59078 −0.795392 0.606095i \(-0.792735\pi\)
−0.795392 + 0.606095i \(0.792735\pi\)
\(294\) 0 0
\(295\) 19.3144i 1.12453i
\(296\) 9.49980 14.6875i 0.552165 0.853695i
\(297\) 0 0
\(298\) −0.753789 + 0.868210i −0.0436658 + 0.0502941i
\(299\) 21.8836i 1.26556i
\(300\) 0 0
\(301\) 9.65719i 0.556631i
\(302\) −19.4213 + 22.3693i −1.11757 + 1.28721i
\(303\) 0 0
\(304\) −3.21985 11.1258i −0.184671 0.638110i
\(305\) 18.1379i 1.03858i
\(306\) 0 0
\(307\) 4.52162i 0.258063i 0.991641 + 0.129031i \(0.0411868\pi\)
−0.991641 + 0.129031i \(0.958813\pi\)
\(308\) 3.03698 + 5.41850i 0.173048 + 0.308747i
\(309\) 0 0
\(310\) −3.21985 + 3.70861i −0.182875 + 0.210635i
\(311\) 13.1231i 0.744143i −0.928204 0.372072i \(-0.878648\pi\)
0.928204 0.372072i \(-0.121352\pi\)
\(312\) 0 0
\(313\) −5.12311 −0.289575 −0.144788 0.989463i \(-0.546250\pi\)
−0.144788 + 0.989463i \(0.546250\pi\)
\(314\) −16.9170 14.6875i −0.954683 0.828865i
\(315\) 0 0
\(316\) −1.08407 7.64550i −0.0609839 0.430093i
\(317\) 22.4924i 1.26330i −0.775254 0.631650i \(-0.782378\pi\)
0.775254 0.631650i \(-0.217622\pi\)
\(318\) 0 0
\(319\) −20.4214 + 7.92077i −1.14338 + 0.443478i
\(320\) −14.5927 + 6.56155i −0.815755 + 0.366802i
\(321\) 0 0
\(322\) 5.12311 + 4.44793i 0.285500 + 0.247874i
\(323\) −9.65719 −0.537341
\(324\) 0 0
\(325\) −4.27156 −0.236943
\(326\) −11.5824 + 13.3405i −0.641489 + 0.738864i
\(327\) 0 0
\(328\) −2.24621 + 3.47284i −0.124026 + 0.191756i
\(329\) 5.61856i 0.309761i
\(330\) 0 0
\(331\) 1.75379 0.0963969 0.0481985 0.998838i \(-0.484652\pi\)
0.0481985 + 0.998838i \(0.484652\pi\)
\(332\) 4.74990 0.673500i 0.260685 0.0369631i
\(333\) 0 0
\(334\) −5.36932 + 6.18435i −0.293796 + 0.338393i
\(335\) 20.4924i 1.11962i
\(336\) 0 0
\(337\) 24.7908i 1.35044i 0.737616 + 0.675220i \(0.235951\pi\)
−0.737616 + 0.675220i \(0.764049\pi\)
\(338\) −4.86404 + 5.60237i −0.264569 + 0.304729i
\(339\) 0 0
\(340\) 1.87285 + 13.2084i 0.101570 + 0.716327i
\(341\) −2.08258 5.36932i −0.112778 0.290765i
\(342\) 0 0
\(343\) 12.2888 0.663534
\(344\) −15.8415 + 24.4924i −0.854119 + 1.32054i
\(345\) 0 0
\(346\) 0.753789 0.868210i 0.0405239 0.0466753i
\(347\) 20.5366i 1.10246i −0.834352 0.551232i \(-0.814158\pi\)
0.834352 0.551232i \(-0.185842\pi\)
\(348\) 0 0
\(349\) −31.7738 −1.70081 −0.850405 0.526128i \(-0.823643\pi\)
−0.850405 + 0.526128i \(0.823643\pi\)
\(350\) 0.868210 1.00000i 0.0464078 0.0534522i
\(351\) 0 0
\(352\) 1.18609 18.7241i 0.0632190 0.998000i
\(353\) −12.3687 −0.658320 −0.329160 0.944274i \(-0.606765\pi\)
−0.329160 + 0.944274i \(0.606765\pi\)
\(354\) 0 0
\(355\) −8.49242 −0.450731
\(356\) 0.975092 + 6.87689i 0.0516798 + 0.364475i
\(357\) 0 0
\(358\) 0 0
\(359\) 9.04325 0.477284 0.238642 0.971108i \(-0.423298\pi\)
0.238642 + 0.971108i \(0.423298\pi\)
\(360\) 0 0
\(361\) 10.6155 0.558712
\(362\) 9.49980 + 8.24782i 0.499298 + 0.433496i
\(363\) 0 0
\(364\) −1.12311 7.92077i −0.0588667 0.415161i
\(365\) 26.4168 1.38272
\(366\) 0 0
\(367\) 29.9467i 1.56320i −0.623778 0.781602i \(-0.714403\pi\)
0.623778 0.781602i \(-0.285597\pi\)
\(368\) −5.69681 19.6847i −0.296967 1.02613i
\(369\) 0 0
\(370\) −11.4677 + 13.2084i −0.596176 + 0.686673i
\(371\) 7.72197i 0.400905i
\(372\) 0 0
\(373\) 11.9935 0.621001 0.310501 0.950573i \(-0.399503\pi\)
0.310501 + 0.950573i \(0.399503\pi\)
\(374\) −14.7216 5.28999i −0.761234 0.273539i
\(375\) 0 0
\(376\) −9.21662 + 14.2497i −0.475311 + 0.734872i
\(377\) 28.2102 1.45290
\(378\) 0 0
\(379\) −14.2462 −0.731779 −0.365889 0.930658i \(-0.619235\pi\)
−0.365889 + 0.930658i \(0.619235\pi\)
\(380\) 1.62603 + 11.4677i 0.0834136 + 0.588279i
\(381\) 0 0
\(382\) 13.0776 + 11.3541i 0.669108 + 0.580927i
\(383\) 0.630683i 0.0322264i −0.999870 0.0161132i \(-0.994871\pi\)
0.999870 0.0161132i \(-0.00512921\pi\)
\(384\) 0 0
\(385\) −2.24621 5.79119i −0.114478 0.295146i
\(386\) −1.73642 1.50758i −0.0883815 0.0767337i
\(387\) 0 0
\(388\) −3.19224 22.5134i −0.162061 1.14295i
\(389\) 30.4924i 1.54603i −0.634389 0.773014i \(-0.718748\pi\)
0.634389 0.773014i \(-0.281252\pi\)
\(390\) 0 0
\(391\) −17.0862 −0.864088
\(392\) −14.5421 9.40572i −0.734485 0.475061i
\(393\) 0 0
\(394\) −11.4924 + 13.2369i −0.578980 + 0.666866i
\(395\) 7.72197i 0.388534i
\(396\) 0 0
\(397\) 18.5531i 0.931151i 0.885008 + 0.465576i \(0.154153\pi\)
−0.885008 + 0.465576i \(0.845847\pi\)
\(398\) −15.0627 13.0776i −0.755026 0.655521i
\(399\) 0 0
\(400\) −3.84233 + 1.11198i −0.192116 + 0.0555991i
\(401\) −24.7374 −1.23533 −0.617664 0.786442i \(-0.711921\pi\)
−0.617664 + 0.786442i \(0.711921\pi\)
\(402\) 0 0
\(403\) 7.41722i 0.369478i
\(404\) −1.85431 13.0776i −0.0922551 0.650635i
\(405\) 0 0
\(406\) −5.73384 + 6.60421i −0.284566 + 0.327761i
\(407\) −7.41722 19.1231i −0.367658 0.947897i
\(408\) 0 0
\(409\) 26.4168i 1.30623i 0.757260 + 0.653114i \(0.226538\pi\)
−0.757260 + 0.653114i \(0.773462\pi\)
\(410\) 2.71151 3.12311i 0.133912 0.154239i
\(411\) 0 0
\(412\) −3.43845 + 0.487546i −0.169400 + 0.0240197i
\(413\) 9.04325 0.444989
\(414\) 0 0
\(415\) −4.79741 −0.235496
\(416\) −10.1447 + 21.9309i −0.497387 + 1.07525i
\(417\) 0 0
\(418\) −12.7814 4.59283i −0.625159 0.224642i
\(419\) 3.47284 0.169659 0.0848297 0.996395i \(-0.472965\pi\)
0.0848297 + 0.996395i \(0.472965\pi\)
\(420\) 0 0
\(421\) 15.8415i 0.772070i 0.922484 + 0.386035i \(0.126156\pi\)
−0.922484 + 0.386035i \(0.873844\pi\)
\(422\) −3.09218 2.68466i −0.150525 0.130687i
\(423\) 0 0
\(424\) −12.6670 + 19.5843i −0.615165 + 0.951100i
\(425\) 3.33513i 0.161778i
\(426\) 0 0
\(427\) 8.49242 0.410977
\(428\) 17.9583 2.54635i 0.868048 0.123083i
\(429\) 0 0
\(430\) 19.1231 22.0259i 0.922198 1.06218i
\(431\) 11.5824 0.557904 0.278952 0.960305i \(-0.410013\pi\)
0.278952 + 0.960305i \(0.410013\pi\)
\(432\) 0 0
\(433\) −6.87689 −0.330482 −0.165241 0.986253i \(-0.552840\pi\)
−0.165241 + 0.986253i \(0.552840\pi\)
\(434\) −1.73642 1.50758i −0.0833508 0.0723660i
\(435\) 0 0
\(436\) −0.378206 2.66732i −0.0181128 0.127741i
\(437\) −14.8344 −0.709628
\(438\) 0 0
\(439\) −30.3115 −1.44669 −0.723344 0.690488i \(-0.757396\pi\)
−0.723344 + 0.690488i \(0.757396\pi\)
\(440\) −3.80299 + 18.3722i −0.181301 + 0.875860i
\(441\) 0 0
\(442\) 15.2134 + 13.2084i 0.723627 + 0.628260i
\(443\) −6.18435 −0.293827 −0.146914 0.989149i \(-0.546934\pi\)
−0.146914 + 0.989149i \(0.546934\pi\)
\(444\) 0 0
\(445\) 6.94568i 0.329257i
\(446\) −28.2711 24.5453i −1.33868 1.16225i
\(447\) 0 0
\(448\) −3.07221 6.83248i −0.145148 0.322804i
\(449\) −28.2102 −1.33132 −0.665662 0.746253i \(-0.731851\pi\)
−0.665662 + 0.746253i \(0.731851\pi\)
\(450\) 0 0
\(451\) 1.75379 + 4.52162i 0.0825827 + 0.212915i
\(452\) 4.44793 + 31.3693i 0.209213 + 1.47549i
\(453\) 0 0
\(454\) −28.8078 25.0112i −1.35202 1.17383i
\(455\) 8.00000i 0.375046i
\(456\) 0 0
\(457\) 11.5824i 0.541801i 0.962607 + 0.270900i \(0.0873214\pi\)
−0.962607 + 0.270900i \(0.912679\pi\)
\(458\) 27.2298 + 23.6412i 1.27237 + 1.10468i
\(459\) 0 0
\(460\) 2.87689 + 20.2895i 0.134136 + 0.946002i
\(461\) 31.3950 1.46221 0.731105 0.682265i \(-0.239005\pi\)
0.731105 + 0.682265i \(0.239005\pi\)
\(462\) 0 0
\(463\) 7.15944i 0.332728i −0.986064 0.166364i \(-0.946797\pi\)
0.986064 0.166364i \(-0.0532026\pi\)
\(464\) 25.3755 7.34376i 1.17803 0.340926i
\(465\) 0 0
\(466\) 2.43845 + 2.11708i 0.112959 + 0.0980720i
\(467\) 6.18435 0.286178 0.143089 0.989710i \(-0.454297\pi\)
0.143089 + 0.989710i \(0.454297\pi\)
\(468\) 0 0
\(469\) 9.59482 0.443048
\(470\) 11.1258 12.8147i 0.513196 0.591097i
\(471\) 0 0
\(472\) −22.9354 14.8344i −1.05569 0.682810i
\(473\) 12.3687 + 31.8890i 0.568714 + 1.46626i
\(474\) 0 0
\(475\) 2.89560i 0.132859i
\(476\) −6.18435 + 0.876894i −0.283459 + 0.0401924i
\(477\) 0 0
\(478\) −19.1231 + 22.0259i −0.874670 + 1.00744i
\(479\) −14.8344 −0.677803 −0.338901 0.940822i \(-0.610055\pi\)
−0.338901 + 0.940822i \(0.610055\pi\)
\(480\) 0 0
\(481\) 26.4168i 1.20450i
\(482\) 29.9467 + 26.0000i 1.36403 + 1.18427i
\(483\) 0 0
\(484\) −16.9683 14.0027i −0.771287 0.636488i
\(485\) 22.7386i 1.03251i
\(486\) 0 0
\(487\) 21.0508i 0.953903i 0.878930 + 0.476952i \(0.158258\pi\)
−0.878930 + 0.476952i \(0.841742\pi\)
\(488\) −21.5384 13.9309i −0.974995 0.630621i
\(489\) 0 0
\(490\) 13.0776 + 11.3541i 0.590786 + 0.512926i
\(491\) 29.9009i 1.34941i 0.738088 + 0.674705i \(0.235729\pi\)
−0.738088 + 0.674705i \(0.764271\pi\)
\(492\) 0 0
\(493\) 22.0259i 0.991996i
\(494\) 13.2084 + 11.4677i 0.594274 + 0.515955i
\(495\) 0 0
\(496\) 1.93087 + 6.67190i 0.0866986 + 0.299577i
\(497\) 3.97626i 0.178360i
\(498\) 0 0
\(499\) 34.7386 1.55511 0.777557 0.628812i \(-0.216458\pi\)
0.777557 + 0.628812i \(0.216458\pi\)
\(500\) 23.7623 3.36932i 1.06268 0.150680i
\(501\) 0 0
\(502\) −3.21985 + 3.70861i −0.143709 + 0.165523i
\(503\) −11.5824 −0.516433 −0.258216 0.966087i \(-0.583135\pi\)
−0.258216 + 0.966087i \(0.583135\pi\)
\(504\) 0 0
\(505\) 13.2084i 0.587767i
\(506\) −22.6138 8.12598i −1.00531 0.361244i
\(507\) 0 0
\(508\) −4.53448 31.9797i −0.201185 1.41887i
\(509\) 10.0000i 0.443242i 0.975133 + 0.221621i \(0.0711348\pi\)
−0.975133 + 0.221621i \(0.928865\pi\)
\(510\) 0 0
\(511\) 12.3687i 0.547159i
\(512\) −3.41624 + 22.3680i −0.150978 + 0.988537i
\(513\) 0 0
\(514\) 8.24782 9.49980i 0.363796 0.419018i
\(515\) 3.47284 0.153032
\(516\) 0 0
\(517\) 7.19612 + 18.5531i 0.316485 + 0.815962i
\(518\) −6.18435 5.36932i −0.271725 0.235914i
\(519\) 0 0
\(520\) 13.1231 20.2895i 0.575486 0.889752i
\(521\) 24.7374 1.08377 0.541883 0.840454i \(-0.317712\pi\)
0.541883 + 0.840454i \(0.317712\pi\)
\(522\) 0 0
\(523\) 25.1473i 1.09961i −0.835292 0.549806i \(-0.814702\pi\)
0.835292 0.549806i \(-0.185298\pi\)
\(524\) −25.3755 + 3.59806i −1.10854 + 0.157182i
\(525\) 0 0
\(526\) −29.8617 + 34.3946i −1.30203 + 1.49968i
\(527\) 5.79119 0.252268
\(528\) 0 0
\(529\) −3.24621 −0.141140
\(530\) 15.2910 17.6121i 0.664198 0.765020i
\(531\) 0 0
\(532\) −5.36932 + 0.761329i −0.232789 + 0.0330078i
\(533\) 6.24621i 0.270553i
\(534\) 0 0
\(535\) −18.1379 −0.784172
\(536\) −24.3342 15.7392i −1.05108 0.679831i
\(537\) 0 0
\(538\) −0.262926 0.228275i −0.0113356 0.00984165i
\(539\) −18.9337 + 7.34376i −0.815533 + 0.316318i
\(540\) 0 0
\(541\) 14.6875 0.631466 0.315733 0.948848i \(-0.397750\pi\)
0.315733 + 0.948848i \(0.397750\pi\)
\(542\) −5.31614 + 6.12311i −0.228348 + 0.263010i
\(543\) 0 0
\(544\) 17.1231 + 7.92077i 0.734147 + 0.339600i
\(545\) 2.69400i 0.115398i
\(546\) 0 0
\(547\) 23.5212i 1.00570i −0.864375 0.502848i \(-0.832286\pi\)
0.864375 0.502848i \(-0.167714\pi\)
\(548\) −4.44793 31.3693i −0.190006 1.34003i
\(549\) 0 0
\(550\) −1.58614 + 4.41409i −0.0676333 + 0.188217i
\(551\) 19.1231i 0.814672i
\(552\) 0 0
\(553\) −3.61553 −0.153748
\(554\) 2.22397 2.56155i 0.0944873 0.108830i
\(555\) 0 0
\(556\) 20.4214 2.89560i 0.866059 0.122801i
\(557\) −42.0643 −1.78232 −0.891160 0.453689i \(-0.850108\pi\)
−0.891160 + 0.453689i \(0.850108\pi\)
\(558\) 0 0
\(559\) 44.0518i 1.86319i
\(560\) 2.08258 + 7.19612i 0.0880051 + 0.304091i
\(561\) 0 0
\(562\) −25.8078 22.4066i −1.08863 0.945164i
\(563\) 0.295294i 0.0124452i −0.999981 0.00622258i \(-0.998019\pi\)
0.999981 0.00622258i \(-0.00198072\pi\)
\(564\) 0 0
\(565\) 31.6831i 1.33292i
\(566\) 18.9337 + 16.4384i 0.795844 + 0.690959i
\(567\) 0 0
\(568\) −6.52262 + 10.0845i −0.273683 + 0.423138i
\(569\) 34.5830i 1.44980i −0.688856 0.724898i \(-0.741887\pi\)
0.688856 0.724898i \(-0.258113\pi\)
\(570\) 0 0
\(571\) 16.1040i 0.673932i −0.941517 0.336966i \(-0.890599\pi\)
0.941517 0.336966i \(-0.109401\pi\)
\(572\) 13.8533 + 24.7168i 0.579238 + 1.03346i
\(573\) 0 0
\(574\) 1.46228 + 1.26957i 0.0610344 + 0.0529906i
\(575\) 5.12311i 0.213648i
\(576\) 0 0
\(577\) 8.24621 0.343294 0.171647 0.985158i \(-0.445091\pi\)
0.171647 + 0.985158i \(0.445091\pi\)
\(578\) −5.44878 + 6.27587i −0.226639 + 0.261042i
\(579\) 0 0
\(580\) −26.1552 + 3.70861i −1.08604 + 0.153992i
\(581\) 2.24621i 0.0931885i
\(582\) 0 0
\(583\) 9.89012 + 25.4987i 0.409607 + 1.05605i
\(584\) 20.2895 31.3693i 0.839585 1.29807i
\(585\) 0 0
\(586\) 25.2462 29.0785i 1.04291 1.20122i
\(587\) 41.3403 1.70630 0.853148 0.521669i \(-0.174690\pi\)
0.853148 + 0.521669i \(0.174690\pi\)
\(588\) 0 0
\(589\) 5.02797 0.207174
\(590\) 20.6256 + 17.9074i 0.849144 + 0.737235i
\(591\) 0 0
\(592\) 6.87689 + 23.7623i 0.282639 + 0.976625i
\(593\) 17.4968i 0.718508i −0.933240 0.359254i \(-0.883031\pi\)
0.933240 0.359254i \(-0.116969\pi\)
\(594\) 0 0
\(595\) 6.24621 0.256070
\(596\) −0.228275 1.60993i −0.00935052 0.0659452i
\(597\) 0 0
\(598\) 23.3693 + 20.2895i 0.955642 + 0.829698i
\(599\) 8.63068i 0.352640i 0.984333 + 0.176320i \(0.0564194\pi\)
−0.984333 + 0.176320i \(0.943581\pi\)
\(600\) 0 0
\(601\) 24.7908i 1.01124i −0.862757 0.505619i \(-0.831264\pi\)
0.862757 0.505619i \(-0.168736\pi\)
\(602\) 10.3128 + 8.95369i 0.420319 + 0.364925i
\(603\) 0 0
\(604\) −5.88148 41.4795i −0.239314 1.68778i
\(605\) 14.8344 + 16.2462i 0.603106 + 0.660502i
\(606\) 0 0
\(607\) −43.8826 −1.78114 −0.890569 0.454848i \(-0.849694\pi\)
−0.890569 + 0.454848i \(0.849694\pi\)
\(608\) 14.8665 + 6.87689i 0.602914 + 0.278895i
\(609\) 0 0
\(610\) 19.3693 + 16.8166i 0.784241 + 0.680886i
\(611\) 25.6294i 1.03685i
\(612\) 0 0
\(613\) 25.1035 1.01392 0.506960 0.861969i \(-0.330769\pi\)
0.506960 + 0.861969i \(0.330769\pi\)
\(614\) −4.82860 4.19224i −0.194866 0.169185i
\(615\) 0 0
\(616\) −8.60210 1.78061i −0.346588 0.0717429i
\(617\) 40.5790 1.63365 0.816824 0.576888i \(-0.195733\pi\)
0.816824 + 0.576888i \(0.195733\pi\)
\(618\) 0 0
\(619\) −8.49242 −0.341339 −0.170670 0.985328i \(-0.554593\pi\)
−0.170670 + 0.985328i \(0.554593\pi\)
\(620\) −0.975092 6.87689i −0.0391606 0.276183i
\(621\) 0 0
\(622\) 14.0140 + 12.1671i 0.561911 + 0.487857i
\(623\) 3.25206 0.130291
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 4.74990 5.47091i 0.189844 0.218662i
\(627\) 0 0
\(628\) 31.3693 4.44793i 1.25177 0.177492i
\(629\) 20.6256 0.822398
\(630\) 0 0
\(631\) 26.4738i 1.05391i −0.849894 0.526953i \(-0.823334\pi\)
0.849894 0.526953i \(-0.176666\pi\)
\(632\) 9.16965 + 5.93087i 0.364749 + 0.235917i
\(633\) 0 0
\(634\) 24.0194 + 20.8539i 0.953933 + 0.828214i
\(635\) 32.2996i 1.28177i
\(636\) 0 0
\(637\) 26.1552 1.03631
\(638\) 10.4752 29.1515i 0.414718 1.15412i
\(639\) 0 0
\(640\) 6.52262 21.6669i 0.257829 0.856460i
\(641\) −5.42302 −0.214197 −0.107098 0.994248i \(-0.534156\pi\)
−0.107098 + 0.994248i \(0.534156\pi\)
\(642\) 0 0
\(643\) 36.9848 1.45854 0.729270 0.684226i \(-0.239860\pi\)
0.729270 + 0.684226i \(0.239860\pi\)
\(644\) −9.49980 + 1.34700i −0.374345 + 0.0530792i
\(645\) 0 0
\(646\) 8.95369 10.3128i 0.352278 0.405752i
\(647\) 45.1231i 1.77397i 0.461796 + 0.886986i \(0.347205\pi\)
−0.461796 + 0.886986i \(0.652795\pi\)
\(648\) 0 0
\(649\) −29.8617 + 11.5824i −1.17218 + 0.454648i
\(650\) 3.96039 4.56155i 0.155339 0.178919i
\(651\) 0 0
\(652\) −3.50758 24.7374i −0.137367 0.968792i
\(653\) 22.9848i 0.899466i 0.893163 + 0.449733i \(0.148481\pi\)
−0.893163 + 0.449733i \(0.851519\pi\)
\(654\) 0 0
\(655\) 25.6294 1.00142
\(656\) −1.62603 5.61856i −0.0634858 0.219368i
\(657\) 0 0
\(658\) 6.00000 + 5.20926i 0.233904 + 0.203078i
\(659\) 0.525853i 0.0204843i 0.999948 + 0.0102422i \(0.00326024\pi\)
−0.999948 + 0.0102422i \(0.996740\pi\)
\(660\) 0 0
\(661\) 40.5790i 1.57834i 0.614176 + 0.789169i \(0.289489\pi\)
−0.614176 + 0.789169i \(0.710511\pi\)
\(662\) −1.62603 + 1.87285i −0.0631974 + 0.0727905i
\(663\) 0 0
\(664\) −3.68466 + 5.69681i −0.142992 + 0.221079i
\(665\) 5.42302 0.210296
\(666\) 0 0
\(667\) 33.8340i 1.31006i
\(668\) −1.62603 11.4677i −0.0629130 0.443698i
\(669\) 0 0
\(670\) 21.8836 + 18.9996i 0.845439 + 0.734019i
\(671\) −28.0429 + 10.8769i −1.08258 + 0.419898i
\(672\) 0 0
\(673\) 14.8344i 0.571826i 0.958256 + 0.285913i \(0.0922968\pi\)
−0.958256 + 0.285913i \(0.907703\pi\)
\(674\) −26.4738 22.9848i −1.01973 0.885343i
\(675\) 0 0
\(676\) −1.47301 10.3885i −0.0566543 0.399558i
\(677\) 15.6475 0.601381 0.300690 0.953722i \(-0.402783\pi\)
0.300690 + 0.953722i \(0.402783\pi\)
\(678\) 0 0
\(679\) −10.6465 −0.408576
\(680\) −15.8415 10.2462i −0.607496 0.392924i
\(681\) 0 0
\(682\) 7.66471 + 2.75421i 0.293497 + 0.105464i
\(683\) −10.4185 −0.398654 −0.199327 0.979933i \(-0.563876\pi\)
−0.199327 + 0.979933i \(0.563876\pi\)
\(684\) 0 0
\(685\) 31.6831i 1.21055i
\(686\) −11.3936 + 13.1231i −0.435010 + 0.501043i
\(687\) 0 0
\(688\) −11.4677 39.6252i −0.437201 1.51070i
\(689\) 35.2242i 1.34193i
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 0.228275 + 1.60993i 0.00867773 + 0.0612002i
\(693\) 0 0
\(694\) 21.9309 + 19.0406i 0.832484 + 0.722771i
\(695\) −20.6256 −0.782375
\(696\) 0 0
\(697\) −4.87689 −0.184726
\(698\) 29.4591 33.9309i 1.11504 1.28430i
\(699\) 0 0
\(700\) 0.262926 + 1.85431i 0.00993769 + 0.0700861i
\(701\) −27.2298 −1.02846 −0.514228 0.857653i \(-0.671922\pi\)
−0.514228 + 0.857653i \(0.671922\pi\)
\(702\) 0 0
\(703\) 17.9074 0.675390
\(704\) 18.8956 + 18.6267i 0.712155 + 0.702022i
\(705\) 0 0
\(706\) 11.4677 13.2084i 0.431592 0.497105i
\(707\) −6.18435 −0.232586
\(708\) 0 0
\(709\) 18.5531i 0.696775i 0.937351 + 0.348387i \(0.113271\pi\)
−0.937351 + 0.348387i \(0.886729\pi\)
\(710\) 7.87377 9.06897i 0.295497 0.340352i
\(711\) 0 0
\(712\) −8.24782 5.33464i −0.309100 0.199924i
\(713\) 8.89586 0.333153
\(714\) 0 0
\(715\) −10.2462 26.4168i −0.383187 0.987933i
\(716\) 0 0
\(717\) 0 0
\(718\) −8.38447 + 9.65719i −0.312906 + 0.360403i
\(719\) 14.9848i 0.558840i 0.960169 + 0.279420i \(0.0901422\pi\)
−0.960169 + 0.279420i \(0.909858\pi\)
\(720\) 0 0
\(721\) 1.62603i 0.0605565i
\(722\) −9.84221 + 11.3362i −0.366289 + 0.421890i
\(723\) 0 0
\(724\) −17.6155 + 2.49775i −0.654676 + 0.0928281i
\(725\) −6.60421 −0.245274
\(726\) 0 0
\(727\) 14.1051i 0.523130i 0.965186 + 0.261565i \(0.0842386\pi\)
−0.965186 + 0.261565i \(0.915761\pi\)
\(728\) 9.49980 + 6.14441i 0.352086 + 0.227727i
\(729\) 0 0
\(730\) −24.4924 + 28.2102i −0.906505 + 1.04411i
\(731\) −34.3946 −1.27213
\(732\) 0 0
\(733\) 37.6229 1.38963 0.694816 0.719187i \(-0.255486\pi\)
0.694816 + 0.719187i \(0.255486\pi\)
\(734\) 31.9797 + 27.7651i 1.18039 + 1.02483i
\(735\) 0 0
\(736\) 26.3029 + 12.1671i 0.969536 + 0.448486i
\(737\) −31.6831 + 12.2888i −1.16706 + 0.452665i
\(738\) 0 0
\(739\) 14.4780i 0.532581i −0.963893 0.266290i \(-0.914202\pi\)
0.963893 0.266290i \(-0.0857980\pi\)
\(740\) −3.47284 24.4924i −0.127664 0.900359i
\(741\) 0 0
\(742\) 8.24621 + 7.15944i 0.302728 + 0.262831i
\(743\) −41.2513 −1.51336 −0.756681 0.653784i \(-0.773180\pi\)
−0.756681 + 0.653784i \(0.773180\pi\)
\(744\) 0 0
\(745\) 1.62603i 0.0595731i
\(746\) −11.1198 + 12.8078i −0.407126 + 0.468926i
\(747\) 0 0
\(748\) 19.2983 10.8164i 0.705614 0.395486i
\(749\) 8.49242i 0.310306i
\(750\) 0 0
\(751\) 24.5236i 0.894881i 0.894314 + 0.447440i \(0.147664\pi\)
−0.894314 + 0.447440i \(0.852336\pi\)
\(752\) −6.67190 23.0540i −0.243299 0.840692i
\(753\) 0 0
\(754\) −26.1552 + 30.1254i −0.952516 + 1.09710i
\(755\) 41.8944i 1.52469i
\(756\) 0 0
\(757\) 22.7872i 0.828216i −0.910228 0.414108i \(-0.864094\pi\)
0.910228 0.414108i \(-0.135906\pi\)
\(758\) 13.2084 15.2134i 0.479751 0.552575i
\(759\) 0 0
\(760\) −13.7538 8.89586i −0.498902 0.322687i
\(761\) 29.1950i 1.05832i 0.848522 + 0.529160i \(0.177493\pi\)
−0.848522 + 0.529160i \(0.822507\pi\)
\(762\) 0 0
\(763\) −1.26137 −0.0456645
\(764\) −24.2499 + 3.43845i −0.877329 + 0.124399i
\(765\) 0 0
\(766\) 0.673500 + 0.584739i 0.0243345 + 0.0211275i
\(767\) 41.2513 1.48950
\(768\) 0 0
\(769\) 39.6252i 1.42892i 0.699675 + 0.714461i \(0.253328\pi\)
−0.699675 + 0.714461i \(0.746672\pi\)
\(770\) 8.26693 + 2.97061i 0.297920 + 0.107053i
\(771\) 0 0
\(772\) 3.21985 0.456551i 0.115885 0.0164316i
\(773\) 49.2311i 1.77072i 0.464908 + 0.885359i \(0.346087\pi\)
−0.464908 + 0.885359i \(0.653913\pi\)
\(774\) 0 0
\(775\) 1.73642i 0.0623741i
\(776\) 27.0016 + 17.4644i 0.969300 + 0.626937i
\(777\) 0 0
\(778\) 32.5625 + 28.2711i 1.16742 + 1.01357i
\(779\) −4.23417 −0.151705
\(780\) 0 0
\(781\) 5.09271 + 13.1300i 0.182231 + 0.469830i
\(782\) 15.8415 18.2462i 0.566492 0.652483i
\(783\) 0 0
\(784\) 23.5270 6.80879i 0.840250 0.243171i
\(785\) −31.6831 −1.13082
\(786\) 0 0
\(787\) 48.3120i 1.72214i −0.508489 0.861069i \(-0.669796\pi\)
0.508489 0.861069i \(-0.330204\pi\)
\(788\) −3.48033 24.5453i −0.123982 0.874389i
\(789\) 0 0
\(790\) −8.24621 7.15944i −0.293387 0.254722i
\(791\) 14.8344 0.527452
\(792\) 0 0
\(793\) 38.7386 1.37565
\(794\) −19.8126 17.2015i −0.703123 0.610459i
\(795\) 0 0
\(796\) 27.9309 3.96039i 0.989983 0.140372i
\(797\) 11.7538i 0.416341i 0.978093 + 0.208170i \(0.0667508\pi\)
−0.978093 + 0.208170i \(0.933249\pi\)
\(798\) 0 0
\(799\) −20.0108 −0.707931
\(800\) 2.37495 5.13416i 0.0839672 0.181520i
\(801\) 0 0
\(802\) 22.9354 26.4168i 0.809875 0.932810i
\(803\) −15.8415 40.8427i −0.559036 1.44131i
\(804\) 0 0
\(805\) 9.59482 0.338173
\(806\) −7.92077 6.87689i −0.278997 0.242228i
\(807\) 0 0
\(808\) 15.6847 + 10.1447i 0.551784 + 0.356891i
\(809\) 48.1541i 1.69301i 0.532382 + 0.846504i \(0.321297\pi\)
−0.532382 + 0.846504i \(0.678703\pi\)
\(810\) 0 0
\(811\) 30.9384i 1.08640i 0.839605 + 0.543198i \(0.182787\pi\)
−0.839605 + 0.543198i \(0.817213\pi\)
\(812\) −1.73642 12.2462i −0.0609364 0.429758i
\(813\) 0 0
\(814\) 27.2983 + 9.80926i 0.956804 + 0.343815i
\(815\) 24.9848i 0.875181i
\(816\) 0 0
\(817\) −29.8617 −1.04473
\(818\) −28.2102 24.4924i −0.986348 0.856357i
\(819\) 0 0
\(820\) 0.821147 + 5.79119i 0.0286757 + 0.202237i
\(821\) −28.8559 −1.00708 −0.503538 0.863973i \(-0.667969\pi\)
−0.503538 + 0.863973i \(0.667969\pi\)
\(822\) 0 0
\(823\) 47.7384i 1.66406i −0.554734 0.832028i \(-0.687180\pi\)
0.554734 0.832028i \(-0.312820\pi\)
\(824\) 2.66732 4.12391i 0.0929205 0.143663i
\(825\) 0 0
\(826\) −8.38447 + 9.65719i −0.291733 + 0.336017i
\(827\) 51.7846i 1.80073i −0.435140 0.900363i \(-0.643301\pi\)
0.435140 0.900363i \(-0.356699\pi\)
\(828\) 0 0
\(829\) 25.4987i 0.885608i −0.896618 0.442804i \(-0.853984\pi\)
0.896618 0.442804i \(-0.146016\pi\)
\(830\) 4.44793 5.12311i 0.154390 0.177826i
\(831\) 0 0
\(832\) −14.0140 31.1667i −0.485849 1.08051i
\(833\) 20.4214i 0.707558i
\(834\) 0 0
\(835\) 11.5824i 0.400825i
\(836\) 16.7549 9.39088i 0.579482 0.324790i
\(837\) 0 0
\(838\) −3.21985 + 3.70861i −0.111228 + 0.128112i
\(839\) 18.8769i 0.651703i −0.945421 0.325851i \(-0.894349\pi\)
0.945421 0.325851i \(-0.105651\pi\)
\(840\) 0 0
\(841\) 14.6155 0.503984
\(842\) −16.9170 14.6875i −0.582999 0.506166i
\(843\) 0 0
\(844\) 5.73384 0.813015i 0.197367 0.0279851i
\(845\) 10.4924i 0.360950i
\(846\) 0 0
\(847\) −7.60669 + 6.94568i −0.261369 + 0.238656i
\(848\) −9.16965 31.6847i −0.314887 1.08806i
\(849\) 0 0
\(850\) −3.56155 3.09218i −0.122160 0.106061i
\(851\) 31.6831 1.08608
\(852\) 0 0
\(853\) 17.3815 0.595132 0.297566 0.954701i \(-0.403825\pi\)
0.297566 + 0.954701i \(0.403825\pi\)
\(854\) −7.87377 + 9.06897i −0.269435 + 0.310334i
\(855\) 0 0
\(856\) −13.9309 + 21.5384i −0.476147 + 0.736166i
\(857\) 11.0571i 0.377703i 0.982006 + 0.188852i \(0.0604765\pi\)
−0.982006 + 0.188852i \(0.939523\pi\)
\(858\) 0 0
\(859\) 24.0000 0.818869 0.409435 0.912339i \(-0.365726\pi\)
0.409435 + 0.912339i \(0.365726\pi\)
\(860\) 5.79119 + 40.8427i 0.197478 + 1.39273i
\(861\) 0 0
\(862\) −10.7386 + 12.3687i −0.365759 + 0.421280i
\(863\) 48.3542i 1.64599i 0.568045 + 0.822997i \(0.307700\pi\)
−0.568045 + 0.822997i \(0.692300\pi\)
\(864\) 0 0
\(865\) 1.62603i 0.0552867i
\(866\) 6.37593 7.34376i 0.216663 0.249551i
\(867\) 0 0
\(868\) 3.21985 0.456551i 0.109289 0.0154963i
\(869\) 11.9388 4.63068i 0.404998 0.157085i
\(870\) 0 0
\(871\) 43.7673 1.48300
\(872\) 3.19906 + 2.06913i 0.108334 + 0.0700696i
\(873\) 0 0
\(874\) 13.7538 15.8415i 0.465229 0.535848i
\(875\) 11.2371i 0.379884i
\(876\) 0 0
\(877\) 50.1423 1.69318 0.846592 0.532243i \(-0.178651\pi\)
0.846592 + 0.532243i \(0.178651\pi\)
\(878\) 28.1034 32.3693i 0.948443 1.09241i
\(879\) 0 0
\(880\) −16.0935 21.0950i −0.542512 0.711112i
\(881\) −37.1061 −1.25014 −0.625068 0.780570i \(-0.714929\pi\)
−0.625068 + 0.780570i \(0.714929\pi\)
\(882\) 0 0
\(883\) 5.75379 0.193630 0.0968152 0.995302i \(-0.469134\pi\)
0.0968152 + 0.995302i \(0.469134\pi\)
\(884\) −28.2102 + 4.00000i −0.948813 + 0.134535i
\(885\) 0 0
\(886\) 5.73384 6.60421i 0.192632 0.221873i
\(887\) 29.6689 0.996184 0.498092 0.867124i \(-0.334034\pi\)
0.498092 + 0.867124i \(0.334034\pi\)
\(888\) 0 0
\(889\) −15.1231 −0.507213
\(890\) 7.41722 + 6.43971i 0.248626 + 0.215859i
\(891\) 0 0
\(892\) 52.4233 7.43323i 1.75526 0.248883i
\(893\) −17.3736 −0.581384
\(894\) 0 0
\(895\) 0 0
\(896\) 10.1447 + 3.05398i 0.338912 + 0.102026i
\(897\) 0 0
\(898\) 26.1552 30.1254i 0.872810 1.00530i
\(899\) 11.4677i 0.382468i
\(900\) 0 0
\(901\) −27.5022 −0.916231
\(902\) −6.45463 2.31938i −0.214916 0.0772270i
\(903\) 0 0
\(904\) −37.6229 24.3342i −1.25132 0.809345i
\(905\) 17.7917 0.591417
\(906\) 0 0
\(907\) 30.7386 1.02066 0.510330 0.859979i \(-0.329523\pi\)
0.510330 + 0.859979i \(0.329523\pi\)
\(908\) 53.4184 7.57432i 1.77275 0.251363i
\(909\) 0 0
\(910\) −8.54312 7.41722i −0.283202 0.245878i
\(911\) 48.7386i 1.61478i −0.590016 0.807391i \(-0.700879\pi\)
0.590016 0.807391i \(-0.299121\pi\)
\(912\) 0 0
\(913\) 2.87689 + 7.41722i 0.0952113 + 0.245474i
\(914\) −12.3687 10.7386i −0.409120 0.355202i
\(915\) 0 0
\(916\) −50.4924 + 7.15944i −1.66832 + 0.236555i
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) −33.2360 −1.09636 −0.548178 0.836362i \(-0.684678\pi\)
−0.548178 + 0.836362i \(0.684678\pi\)
\(920\) −24.3342 15.7392i −0.802276 0.518907i
\(921\) 0 0
\(922\) −29.1080 + 33.5264i −0.958619 + 1.10413i
\(923\) 18.1379i 0.597018i
\(924\) 0 0
\(925\) 6.18435i 0.203340i
\(926\) 7.64550 + 6.63790i 0.251247 + 0.218135i
\(927\) 0 0
\(928\) −15.6847 + 33.9071i −0.514874 + 1.11305i
\(929\) −28.2102 −0.925548 −0.462774 0.886476i \(-0.653146\pi\)
−0.462774 + 0.886476i \(0.653146\pi\)
\(930\) 0 0
\(931\) 17.7300i 0.581078i
\(932\) −4.52162 + 0.641132i −0.148111 + 0.0210010i
\(933\) 0 0
\(934\) −5.73384 + 6.60421i −0.187617 + 0.216096i
\(935\) −20.6256 + 8.00000i −0.674530 + 0.261628i
\(936\) 0 0
\(937\) 14.8344i 0.484620i −0.970199 0.242310i \(-0.922095\pi\)
0.970199 0.242310i \(-0.0779051\pi\)
\(938\) −8.89586 + 10.2462i −0.290460 + 0.334551i
\(939\) 0 0
\(940\) 3.36932 + 23.7623i 0.109895 + 0.775041i
\(941\) 15.6475 0.510092 0.255046 0.966929i \(-0.417909\pi\)
0.255046 + 0.966929i \(0.417909\pi\)
\(942\) 0 0
\(943\) −7.49141 −0.243954
\(944\) 37.1061 10.7386i 1.20770 0.349513i
\(945\) 0 0
\(946\) −45.5217 16.3576i −1.48004 0.531831i
\(947\) −6.94568 −0.225704 −0.112852 0.993612i \(-0.535999\pi\)
−0.112852 + 0.993612i \(0.535999\pi\)
\(948\) 0 0
\(949\) 56.4205i 1.83149i
\(950\) −3.09218 2.68466i −0.100323 0.0871018i
\(951\) 0 0
\(952\) 4.79741 7.41722i 0.155485 0.240393i
\(953\) 43.9473i 1.42359i −0.702386 0.711796i \(-0.747882\pi\)
0.702386 0.711796i \(-0.252118\pi\)
\(954\) 0 0
\(955\) 24.4924 0.792556
\(956\) −5.79119 40.8427i −0.187300 1.32095i
\(957\) 0 0
\(958\) 13.7538 15.8415i 0.444365 0.511817i
\(959\) −14.8344 −0.479029
\(960\) 0 0
\(961\) 27.9848 0.902737
\(962\) −28.2102 24.4924i −0.909535 0.789667i
\(963\) 0 0
\(964\) −55.5303 + 7.87377i −1.78851 + 0.253597i
\(965\) −3.25206 −0.104687
\(966\) 0 0
\(967\) −26.7963 −0.861712 −0.430856 0.902421i \(-0.641788\pi\)
−0.430856 + 0.902421i \(0.641788\pi\)
\(968\) 30.6856 5.13760i 0.986272 0.165129i
\(969\) 0 0
\(970\) −24.2824 21.0822i −0.779659 0.676908i
\(971\) 30.9218 0.992327 0.496163 0.868229i \(-0.334742\pi\)
0.496163 + 0.868229i \(0.334742\pi\)
\(972\) 0 0
\(973\) 9.65719i 0.309595i
\(974\) −22.4799 19.5173i −0.720304 0.625375i
\(975\) 0 0
\(976\) 34.8460 10.0845i 1.11539 0.322798i
\(977\) −30.1604 −0.964918 −0.482459 0.875919i \(-0.660256\pi\)
−0.482459 + 0.875919i \(0.660256\pi\)
\(978\) 0 0
\(979\) −10.7386 + 4.16516i −0.343208 + 0.133119i
\(980\) −24.2499 + 3.43845i −0.774633 + 0.109837i
\(981\) 0 0
\(982\) −31.9309 27.7227i −1.01895 0.884667i
\(983\) 47.3693i 1.51085i 0.655237 + 0.755423i \(0.272569\pi\)
−0.655237 + 0.755423i \(0.727431\pi\)
\(984\) 0 0
\(985\) 24.7908i 0.789900i
\(986\) 23.5212 + 20.4214i 0.749068 + 0.650349i
\(987\) 0 0
\(988\) −24.4924 + 3.47284i −0.779208 + 0.110486i
\(989\) −52.8336 −1.68001
\(990\) 0 0
\(991\) 47.7384i 1.51646i 0.651987 + 0.758230i \(0.273936\pi\)
−0.651987 + 0.758230i \(0.726064\pi\)
\(992\) −8.91506 4.12391i −0.283053 0.130934i
\(993\) 0 0
\(994\) 4.24621 + 3.68660i 0.134682 + 0.116932i
\(995\) −28.2102 −0.894325
\(996\) 0 0
\(997\) −28.0281 −0.887657 −0.443829 0.896112i \(-0.646380\pi\)
−0.443829 + 0.896112i \(0.646380\pi\)
\(998\) −32.2080 + 37.0970i −1.01953 + 1.17429i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.h.i.307.8 yes 16
3.2 odd 2 inner 792.2.h.i.307.9 yes 16
4.3 odd 2 3168.2.h.i.2287.13 16
8.3 odd 2 inner 792.2.h.i.307.11 yes 16
8.5 even 2 3168.2.h.i.2287.3 16
11.10 odd 2 inner 792.2.h.i.307.10 yes 16
12.11 even 2 3168.2.h.i.2287.6 16
24.5 odd 2 3168.2.h.i.2287.12 16
24.11 even 2 inner 792.2.h.i.307.6 yes 16
33.32 even 2 inner 792.2.h.i.307.7 yes 16
44.43 even 2 3168.2.h.i.2287.11 16
88.21 odd 2 3168.2.h.i.2287.5 16
88.43 even 2 inner 792.2.h.i.307.5 16
132.131 odd 2 3168.2.h.i.2287.4 16
264.131 odd 2 inner 792.2.h.i.307.12 yes 16
264.197 even 2 3168.2.h.i.2287.14 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.h.i.307.5 16 88.43 even 2 inner
792.2.h.i.307.6 yes 16 24.11 even 2 inner
792.2.h.i.307.7 yes 16 33.32 even 2 inner
792.2.h.i.307.8 yes 16 1.1 even 1 trivial
792.2.h.i.307.9 yes 16 3.2 odd 2 inner
792.2.h.i.307.10 yes 16 11.10 odd 2 inner
792.2.h.i.307.11 yes 16 8.3 odd 2 inner
792.2.h.i.307.12 yes 16 264.131 odd 2 inner
3168.2.h.i.2287.3 16 8.5 even 2
3168.2.h.i.2287.4 16 132.131 odd 2
3168.2.h.i.2287.5 16 88.21 odd 2
3168.2.h.i.2287.6 16 12.11 even 2
3168.2.h.i.2287.11 16 44.43 even 2
3168.2.h.i.2287.12 16 24.5 odd 2
3168.2.h.i.2287.13 16 4.3 odd 2
3168.2.h.i.2287.14 16 264.197 even 2