Properties

Label 792.2.h.i
Level $792$
Weight $2$
Character orbit 792.h
Analytic conductor $6.324$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(307,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.3342602057661458415616.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 20x^{14} + 164x^{12} - 666x^{10} + 1300x^{8} - 924x^{6} + 273x^{4} + 404x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + ( - \beta_{6} + 1) q^{4} - \beta_1 q^{5} + \beta_{12} q^{7} + ( - \beta_{13} + \beta_{9} - \beta_{2}) q^{8} - \beta_{3} q^{10} + ( - \beta_{13} - \beta_{10}) q^{11} + (\beta_{5} - \beta_{3}) q^{13}+ \cdots + ( - 2 \beta_{11} + 2 \beta_{9} + 3 \beta_{2}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{4} - 12 q^{16} + 4 q^{22} + 16 q^{25} - 24 q^{34} - 32 q^{49} + 32 q^{58} + 36 q^{64} - 32 q^{67} + 32 q^{70} + 8 q^{82} - 20 q^{88} + 64 q^{91} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 20x^{14} + 164x^{12} - 666x^{10} + 1300x^{8} - 924x^{6} + 273x^{4} + 404x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 6891 \nu^{15} - 135786 \nu^{13} + 1092346 \nu^{11} - 4305788 \nu^{9} + 7949022 \nu^{7} + \cdots + 3564012 \nu ) / 695368 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 22179 \nu^{14} + 450427 \nu^{12} - 3763783 \nu^{10} + 15736045 \nu^{8} - 32550017 \nu^{6} + \cdots - 3884384 ) / 1390736 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 36955 \nu^{15} - 751451 \nu^{13} + 6309143 \nu^{11} - 26657365 \nu^{9} + 56418201 \nu^{7} + \cdots + 6467816 \nu ) / 695368 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 16228 \nu^{15} + 24213 \nu^{14} + 328656 \nu^{13} - 488205 \nu^{12} - 2729424 \nu^{11} + \cdots + 7615568 ) / 1390736 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 55594 \nu^{15} + 1121031 \nu^{13} - 9302563 \nu^{11} + 38565451 \nu^{9} - 78706669 \nu^{7} + \cdots - 16210140 \nu ) / 695368 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 61033 \nu^{14} - 1229185 \nu^{12} + 10210845 \nu^{10} - 42548751 \nu^{8} + 88260163 \nu^{6} + \cdots + 14879696 ) / 1390736 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 104651 \nu^{15} + 2119985 \nu^{13} - 17712017 \nu^{11} + 74285219 \nu^{9} - 155121315 \nu^{7} + \cdots - 27237648 \nu ) / 695368 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 73833 \nu^{14} - 1482689 \nu^{12} + 12232797 \nu^{10} - 50317679 \nu^{8} + 101452099 \nu^{6} + \cdots + 19843264 ) / 1390736 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 85055 \nu^{14} + 1721967 \nu^{12} - 14375099 \nu^{10} + 60142625 \nu^{8} - 124633021 \nu^{6} + \cdots - 22927136 ) / 1390736 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 310062 \nu^{15} + 24213 \nu^{14} - 6283584 \nu^{13} - 488205 \nu^{12} + 52517600 \nu^{11} + \cdots + 7615568 ) / 1390736 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 134075 \nu^{14} + 2719907 \nu^{12} - 22767383 \nu^{10} + 95787157 \nu^{8} - 201277353 \nu^{6} + \cdots - 33067424 ) / 1390736 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 204751 \nu^{15} + 4145926 \nu^{13} - 34610826 \nu^{11} + 144971388 \nu^{9} - 302181482 \nu^{7} + \cdots - 51983964 \nu ) / 695368 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 182501 \nu^{14} + 3696317 \nu^{12} - 30862185 \nu^{10} + 129277803 \nu^{8} - 269494583 \nu^{6} + \cdots - 48298560 ) / 1390736 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 277964 \nu^{15} - 5630141 \nu^{13} + 47017185 \nu^{11} - 197053317 \nu^{9} + 411261295 \nu^{7} + \cdots + 69700236 \nu ) / 695368 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 221653 \nu^{14} - 4488493 \nu^{12} + 37469369 \nu^{10} - 156947139 \nu^{8} + 327124903 \nu^{6} + \cdots + 56840416 ) / 1390736 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{13} + 2\beta_{12} - \beta_{11} + 2\beta_{10} - \beta_{5} + \beta_{3} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{15} + \beta_{13} - 3\beta_{11} + \beta_{8} + \beta_{6} - 4\beta_{2} + 9 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{14} + 3\beta_{13} + 10\beta_{12} - 3\beta_{11} + 6\beta_{10} - 3\beta_{5} + 9\beta_{3} + 9\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -18\beta_{15} - \beta_{13} - 21\beta_{11} + 9\beta_{8} + \beta_{6} - 12\beta_{2} + 29 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 10 \beta_{14} + 3 \beta_{13} + 34 \beta_{12} - 3 \beta_{11} + 16 \beta_{10} + 7 \beta_{5} + \cdots + 61 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -124\beta_{15} - 55\beta_{13} - 107\beta_{11} + 8\beta_{9} + 51\beta_{8} - 7\beta_{6} - 20\beta_{2} + 37 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 22 \beta_{14} - 49 \beta_{13} + 18 \beta_{12} + 49 \beta_{11} + 28 \beta_{7} + 157 \beta_{5} + \cdots + 339 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( -710\beta_{15} - 529\beta_{13} - 405\beta_{11} + 32\beta_{9} + 219\beta_{8} - 77\beta_{6} + 100\beta_{2} - 477 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 162 \beta_{14} - 551 \beta_{13} - 890 \beta_{12} + 551 \beta_{11} - 418 \beta_{10} + \cdots + 1531 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 3386 \beta_{15} - 3543 \beta_{13} - 795 \beta_{11} - 192 \beta_{9} + 543 \beta_{8} - 397 \beta_{6} + \cdots - 5833 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 2714 \beta_{14} - 3799 \beta_{13} - 9594 \beta_{12} + 3799 \beta_{11} - 3880 \beta_{10} + \cdots + 5011 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 12432 \beta_{15} - 18657 \beta_{13} + 4139 \beta_{11} - 4048 \beta_{9} - 1567 \beta_{8} + \cdots - 44101 ) / 4 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 24126 \beta_{14} - 19823 \beta_{13} - 69514 \beta_{12} + 19823 \beta_{11} - 25164 \beta_{10} + \cdots + 3993 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 21090 \beta_{15} - 74151 \beta_{13} + 64045 \beta_{11} - 38664 \beta_{9} - 32711 \beta_{8} + \cdots - 268279 ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 165206 \beta_{14} - 75189 \beta_{13} - 405126 \beta_{12} + 75189 \beta_{11} - 133058 \beta_{10} + \cdots - 109415 \beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
−0.0131233 + 0.500000i
0.0131233 0.500000i
0.0131233 + 0.500000i
−0.0131233 0.500000i
−0.946412 + 0.500000i
0.946412 0.500000i
0.946412 + 0.500000i
−0.946412 0.500000i
2.14576 + 0.500000i
−2.14576 0.500000i
−2.14576 + 0.500000i
2.14576 0.500000i
−2.34517 + 0.500000i
2.34517 0.500000i
2.34517 + 0.500000i
−2.34517 0.500000i
−1.37491 0.331077i 0 1.78078 + 0.910404i 2.00000i 0 −3.02045 −2.14700 1.84130i 0 −0.662153 + 2.74983i
307.2 −1.37491 0.331077i 0 1.78078 + 0.910404i 2.00000i 0 3.02045 −2.14700 1.84130i 0 0.662153 2.74983i
307.3 −1.37491 + 0.331077i 0 1.78078 0.910404i 2.00000i 0 3.02045 −2.14700 + 1.84130i 0 0.662153 + 2.74983i
307.4 −1.37491 + 0.331077i 0 1.78078 0.910404i 2.00000i 0 −3.02045 −2.14700 + 1.84130i 0 −0.662153 2.74983i
307.5 −0.927153 1.06789i 0 −0.280776 + 1.98019i 2.00000i 0 −0.936426 2.37495 1.53610i 0 −2.13578 + 1.85431i
307.6 −0.927153 1.06789i 0 −0.280776 + 1.98019i 2.00000i 0 0.936426 2.37495 1.53610i 0 2.13578 1.85431i
307.7 −0.927153 + 1.06789i 0 −0.280776 1.98019i 2.00000i 0 0.936426 2.37495 + 1.53610i 0 2.13578 + 1.85431i
307.8 −0.927153 + 1.06789i 0 −0.280776 1.98019i 2.00000i 0 −0.936426 2.37495 + 1.53610i 0 −2.13578 1.85431i
307.9 0.927153 1.06789i 0 −0.280776 1.98019i 2.00000i 0 −0.936426 −2.37495 1.53610i 0 −2.13578 1.85431i
307.10 0.927153 1.06789i 0 −0.280776 1.98019i 2.00000i 0 0.936426 −2.37495 1.53610i 0 2.13578 + 1.85431i
307.11 0.927153 + 1.06789i 0 −0.280776 + 1.98019i 2.00000i 0 0.936426 −2.37495 + 1.53610i 0 2.13578 1.85431i
307.12 0.927153 + 1.06789i 0 −0.280776 + 1.98019i 2.00000i 0 −0.936426 −2.37495 + 1.53610i 0 −2.13578 + 1.85431i
307.13 1.37491 0.331077i 0 1.78078 0.910404i 2.00000i 0 −3.02045 2.14700 1.84130i 0 −0.662153 2.74983i
307.14 1.37491 0.331077i 0 1.78078 0.910404i 2.00000i 0 3.02045 2.14700 1.84130i 0 0.662153 + 2.74983i
307.15 1.37491 + 0.331077i 0 1.78078 + 0.910404i 2.00000i 0 3.02045 2.14700 + 1.84130i 0 0.662153 2.74983i
307.16 1.37491 + 0.331077i 0 1.78078 + 0.910404i 2.00000i 0 −3.02045 2.14700 + 1.84130i 0 −0.662153 + 2.74983i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 307.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.d odd 2 1 inner
11.b odd 2 1 inner
24.f even 2 1 inner
33.d even 2 1 inner
88.g even 2 1 inner
264.p odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 792.2.h.i 16
3.b odd 2 1 inner 792.2.h.i 16
4.b odd 2 1 3168.2.h.i 16
8.b even 2 1 3168.2.h.i 16
8.d odd 2 1 inner 792.2.h.i 16
11.b odd 2 1 inner 792.2.h.i 16
12.b even 2 1 3168.2.h.i 16
24.f even 2 1 inner 792.2.h.i 16
24.h odd 2 1 3168.2.h.i 16
33.d even 2 1 inner 792.2.h.i 16
44.c even 2 1 3168.2.h.i 16
88.b odd 2 1 3168.2.h.i 16
88.g even 2 1 inner 792.2.h.i 16
132.d odd 2 1 3168.2.h.i 16
264.m even 2 1 3168.2.h.i 16
264.p odd 2 1 inner 792.2.h.i 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
792.2.h.i 16 1.a even 1 1 trivial
792.2.h.i 16 3.b odd 2 1 inner
792.2.h.i 16 8.d odd 2 1 inner
792.2.h.i 16 11.b odd 2 1 inner
792.2.h.i 16 24.f even 2 1 inner
792.2.h.i 16 33.d even 2 1 inner
792.2.h.i 16 88.g even 2 1 inner
792.2.h.i 16 264.p odd 2 1 inner
3168.2.h.i 16 4.b odd 2 1
3168.2.h.i 16 8.b even 2 1
3168.2.h.i 16 12.b even 2 1
3168.2.h.i 16 24.h odd 2 1
3168.2.h.i 16 44.c even 2 1
3168.2.h.i 16 88.b odd 2 1
3168.2.h.i 16 132.d odd 2 1
3168.2.h.i 16 264.m even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(792, [\chi])\):

\( T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 10T_{7}^{2} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} - 3 T^{6} + 6 T^{4} + \cdots + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( (T^{2} + 4)^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} - 10 T^{2} + 8)^{4} \) Copy content Toggle raw display
$11$ \( (T^{8} - 16 T^{6} + \cdots + 14641)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 20 T^{2} + 32)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 14 T^{2} + 32)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} + 58 T^{2} + 416)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 36 T^{2} + 256)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} - 46 T^{2} + 104)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 72 T^{2} + 208)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} + 60 T^{2} + 832)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 62 T^{2} + 128)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 122 T^{2} + 1664)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 36)^{8} \) Copy content Toggle raw display
$53$ \( (T^{2} + 68)^{8} \) Copy content Toggle raw display
$59$ \( (T^{4} - 236 T^{2} + 13312)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} - 148 T^{2} + 5408)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 4 T - 64)^{8} \) Copy content Toggle raw display
$71$ \( (T^{4} + 168 T^{2} + 2704)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 184 T^{2} + 1664)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 170 T^{2} + 2312)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + 28 T^{2} + 128)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} - 288 T^{2} + 3328)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 2 T - 152)^{8} \) Copy content Toggle raw display
show more
show less