Properties

Label 792.2.h.e.307.1
Level $792$
Weight $2$
Character 792.307
Analytic conductor $6.324$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(307,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 6x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 264)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 307.1
Root \(-0.707107 - 1.87083i\) of defining polynomial
Character \(\chi\) \(=\) 792.307
Dual form 792.2.h.e.307.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} +2.00000 q^{4} -3.74166i q^{5} -1.41421 q^{7} -2.82843 q^{8} +5.29150i q^{10} +(2.00000 - 2.64575i) q^{11} +4.24264 q^{13} +2.00000 q^{14} +4.00000 q^{16} +5.29150i q^{17} -5.29150i q^{19} -7.48331i q^{20} +(-2.82843 + 3.74166i) q^{22} -3.74166i q^{23} -9.00000 q^{25} -6.00000 q^{26} -2.82843 q^{28} -2.82843 q^{29} -7.48331i q^{31} -5.65685 q^{32} -7.48331i q^{34} +5.29150i q^{35} +7.48331i q^{37} +7.48331i q^{38} +10.5830i q^{40} -5.29150i q^{43} +(4.00000 - 5.29150i) q^{44} +5.29150i q^{46} +3.74166i q^{47} -5.00000 q^{49} +12.7279 q^{50} +8.48528 q^{52} +3.74166i q^{53} +(-9.89949 - 7.48331i) q^{55} +4.00000 q^{56} +4.00000 q^{58} -4.00000 q^{59} -12.7279 q^{61} +10.5830i q^{62} +8.00000 q^{64} -15.8745i q^{65} +2.00000 q^{67} +10.5830i q^{68} -7.48331i q^{70} -3.74166i q^{71} -10.5830i q^{73} -10.5830i q^{74} -10.5830i q^{76} +(-2.82843 + 3.74166i) q^{77} -1.41421 q^{79} -14.9666i q^{80} -10.5830i q^{83} +19.7990 q^{85} +7.48331i q^{86} +(-5.65685 + 7.48331i) q^{88} -14.0000 q^{89} -6.00000 q^{91} -7.48331i q^{92} -5.29150i q^{94} -19.7990 q^{95} +16.0000 q^{97} +7.07107 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} + 8 q^{11} + 8 q^{14} + 16 q^{16} - 36 q^{25} - 24 q^{26} + 16 q^{44} - 20 q^{49} + 16 q^{56} + 16 q^{58} - 16 q^{59} + 32 q^{64} + 8 q^{67} - 56 q^{89} - 24 q^{91} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −1.00000
\(3\) 0 0
\(4\) 2.00000 1.00000
\(5\) 3.74166i 1.67332i −0.547723 0.836660i \(-0.684505\pi\)
0.547723 0.836660i \(-0.315495\pi\)
\(6\) 0 0
\(7\) −1.41421 −0.534522 −0.267261 0.963624i \(-0.586119\pi\)
−0.267261 + 0.963624i \(0.586119\pi\)
\(8\) −2.82843 −1.00000
\(9\) 0 0
\(10\) 5.29150i 1.67332i
\(11\) 2.00000 2.64575i 0.603023 0.797724i
\(12\) 0 0
\(13\) 4.24264 1.17670 0.588348 0.808608i \(-0.299778\pi\)
0.588348 + 0.808608i \(0.299778\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 5.29150i 1.28338i 0.766965 + 0.641689i \(0.221766\pi\)
−0.766965 + 0.641689i \(0.778234\pi\)
\(18\) 0 0
\(19\) 5.29150i 1.21395i −0.794719 0.606977i \(-0.792382\pi\)
0.794719 0.606977i \(-0.207618\pi\)
\(20\) 7.48331i 1.67332i
\(21\) 0 0
\(22\) −2.82843 + 3.74166i −0.603023 + 0.797724i
\(23\) 3.74166i 0.780189i −0.920775 0.390095i \(-0.872442\pi\)
0.920775 0.390095i \(-0.127558\pi\)
\(24\) 0 0
\(25\) −9.00000 −1.80000
\(26\) −6.00000 −1.17670
\(27\) 0 0
\(28\) −2.82843 −0.534522
\(29\) −2.82843 −0.525226 −0.262613 0.964901i \(-0.584584\pi\)
−0.262613 + 0.964901i \(0.584584\pi\)
\(30\) 0 0
\(31\) 7.48331i 1.34404i −0.740532 0.672022i \(-0.765426\pi\)
0.740532 0.672022i \(-0.234574\pi\)
\(32\) −5.65685 −1.00000
\(33\) 0 0
\(34\) 7.48331i 1.28338i
\(35\) 5.29150i 0.894427i
\(36\) 0 0
\(37\) 7.48331i 1.23025i 0.788430 + 0.615125i \(0.210894\pi\)
−0.788430 + 0.615125i \(0.789106\pi\)
\(38\) 7.48331i 1.21395i
\(39\) 0 0
\(40\) 10.5830i 1.67332i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 5.29150i 0.806947i −0.914991 0.403473i \(-0.867803\pi\)
0.914991 0.403473i \(-0.132197\pi\)
\(44\) 4.00000 5.29150i 0.603023 0.797724i
\(45\) 0 0
\(46\) 5.29150i 0.780189i
\(47\) 3.74166i 0.545777i 0.962046 + 0.272888i \(0.0879790\pi\)
−0.962046 + 0.272888i \(0.912021\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 12.7279 1.80000
\(51\) 0 0
\(52\) 8.48528 1.17670
\(53\) 3.74166i 0.513956i 0.966417 + 0.256978i \(0.0827268\pi\)
−0.966417 + 0.256978i \(0.917273\pi\)
\(54\) 0 0
\(55\) −9.89949 7.48331i −1.33485 1.00905i
\(56\) 4.00000 0.534522
\(57\) 0 0
\(58\) 4.00000 0.525226
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −12.7279 −1.62964 −0.814822 0.579712i \(-0.803165\pi\)
−0.814822 + 0.579712i \(0.803165\pi\)
\(62\) 10.5830i 1.34404i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 15.8745i 1.96899i
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 10.5830i 1.28338i
\(69\) 0 0
\(70\) 7.48331i 0.894427i
\(71\) 3.74166i 0.444053i −0.975041 0.222027i \(-0.928733\pi\)
0.975041 0.222027i \(-0.0712672\pi\)
\(72\) 0 0
\(73\) 10.5830i 1.23865i −0.785136 0.619324i \(-0.787407\pi\)
0.785136 0.619324i \(-0.212593\pi\)
\(74\) 10.5830i 1.23025i
\(75\) 0 0
\(76\) 10.5830i 1.21395i
\(77\) −2.82843 + 3.74166i −0.322329 + 0.426401i
\(78\) 0 0
\(79\) −1.41421 −0.159111 −0.0795557 0.996830i \(-0.525350\pi\)
−0.0795557 + 0.996830i \(0.525350\pi\)
\(80\) 14.9666i 1.67332i
\(81\) 0 0
\(82\) 0 0
\(83\) 10.5830i 1.16164i −0.814034 0.580818i \(-0.802733\pi\)
0.814034 0.580818i \(-0.197267\pi\)
\(84\) 0 0
\(85\) 19.7990 2.14750
\(86\) 7.48331i 0.806947i
\(87\) 0 0
\(88\) −5.65685 + 7.48331i −0.603023 + 0.797724i
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) −6.00000 −0.628971
\(92\) 7.48331i 0.780189i
\(93\) 0 0
\(94\) 5.29150i 0.545777i
\(95\) −19.7990 −2.03133
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 7.07107 0.714286
\(99\) 0 0
\(100\) −18.0000 −1.80000
\(101\) 11.3137 1.12576 0.562878 0.826540i \(-0.309694\pi\)
0.562878 + 0.826540i \(0.309694\pi\)
\(102\) 0 0
\(103\) 7.48331i 0.737353i 0.929558 + 0.368676i \(0.120189\pi\)
−0.929558 + 0.368676i \(0.879811\pi\)
\(104\) −12.0000 −1.17670
\(105\) 0 0
\(106\) 5.29150i 0.513956i
\(107\) 15.8745i 1.53465i −0.641260 0.767323i \(-0.721588\pi\)
0.641260 0.767323i \(-0.278412\pi\)
\(108\) 0 0
\(109\) 1.41421 0.135457 0.0677285 0.997704i \(-0.478425\pi\)
0.0677285 + 0.997704i \(0.478425\pi\)
\(110\) 14.0000 + 10.5830i 1.33485 + 1.00905i
\(111\) 0 0
\(112\) −5.65685 −0.534522
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) −14.0000 −1.30551
\(116\) −5.65685 −0.525226
\(117\) 0 0
\(118\) 5.65685 0.520756
\(119\) 7.48331i 0.685994i
\(120\) 0 0
\(121\) −3.00000 10.5830i −0.272727 0.962091i
\(122\) 18.0000 1.62964
\(123\) 0 0
\(124\) 14.9666i 1.34404i
\(125\) 14.9666i 1.33866i
\(126\) 0 0
\(127\) 7.07107 0.627456 0.313728 0.949513i \(-0.398422\pi\)
0.313728 + 0.949513i \(0.398422\pi\)
\(128\) −11.3137 −1.00000
\(129\) 0 0
\(130\) 22.4499i 1.96899i
\(131\) 21.1660i 1.84928i 0.380839 + 0.924641i \(0.375635\pi\)
−0.380839 + 0.924641i \(0.624365\pi\)
\(132\) 0 0
\(133\) 7.48331i 0.648886i
\(134\) −2.82843 −0.244339
\(135\) 0 0
\(136\) 14.9666i 1.28338i
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 15.8745i 1.34646i 0.739434 + 0.673229i \(0.235093\pi\)
−0.739434 + 0.673229i \(0.764907\pi\)
\(140\) 10.5830i 0.894427i
\(141\) 0 0
\(142\) 5.29150i 0.444053i
\(143\) 8.48528 11.2250i 0.709575 0.938679i
\(144\) 0 0
\(145\) 10.5830i 0.878871i
\(146\) 14.9666i 1.23865i
\(147\) 0 0
\(148\) 14.9666i 1.23025i
\(149\) 16.9706 1.39028 0.695141 0.718873i \(-0.255342\pi\)
0.695141 + 0.718873i \(0.255342\pi\)
\(150\) 0 0
\(151\) −4.24264 −0.345261 −0.172631 0.984987i \(-0.555227\pi\)
−0.172631 + 0.984987i \(0.555227\pi\)
\(152\) 14.9666i 1.21395i
\(153\) 0 0
\(154\) 4.00000 5.29150i 0.322329 0.426401i
\(155\) −28.0000 −2.24901
\(156\) 0 0
\(157\) 14.9666i 1.19447i 0.802067 + 0.597234i \(0.203733\pi\)
−0.802067 + 0.597234i \(0.796267\pi\)
\(158\) 2.00000 0.159111
\(159\) 0 0
\(160\) 21.1660i 1.67332i
\(161\) 5.29150i 0.417029i
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 14.9666i 1.16164i
\(167\) 14.1421 1.09435 0.547176 0.837018i \(-0.315703\pi\)
0.547176 + 0.837018i \(0.315703\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) −28.0000 −2.14750
\(171\) 0 0
\(172\) 10.5830i 0.806947i
\(173\) −2.82843 −0.215041 −0.107521 0.994203i \(-0.534291\pi\)
−0.107521 + 0.994203i \(0.534291\pi\)
\(174\) 0 0
\(175\) 12.7279 0.962140
\(176\) 8.00000 10.5830i 0.603023 0.797724i
\(177\) 0 0
\(178\) 19.7990 1.48400
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 0 0
\(181\) 22.4499i 1.66869i −0.551242 0.834346i \(-0.685846\pi\)
0.551242 0.834346i \(-0.314154\pi\)
\(182\) 8.48528 0.628971
\(183\) 0 0
\(184\) 10.5830i 0.780189i
\(185\) 28.0000 2.05860
\(186\) 0 0
\(187\) 14.0000 + 10.5830i 1.02378 + 0.773906i
\(188\) 7.48331i 0.545777i
\(189\) 0 0
\(190\) 28.0000 2.03133
\(191\) 3.74166i 0.270737i −0.990795 0.135368i \(-0.956778\pi\)
0.990795 0.135368i \(-0.0432218\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) −22.6274 −1.62455
\(195\) 0 0
\(196\) −10.0000 −0.714286
\(197\) 16.9706 1.20910 0.604551 0.796566i \(-0.293352\pi\)
0.604551 + 0.796566i \(0.293352\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 25.4558 1.80000
\(201\) 0 0
\(202\) −16.0000 −1.12576
\(203\) 4.00000 0.280745
\(204\) 0 0
\(205\) 0 0
\(206\) 10.5830i 0.737353i
\(207\) 0 0
\(208\) 16.9706 1.17670
\(209\) −14.0000 10.5830i −0.968400 0.732042i
\(210\) 0 0
\(211\) 15.8745i 1.09285i −0.837509 0.546423i \(-0.815989\pi\)
0.837509 0.546423i \(-0.184011\pi\)
\(212\) 7.48331i 0.513956i
\(213\) 0 0
\(214\) 22.4499i 1.53465i
\(215\) −19.7990 −1.35028
\(216\) 0 0
\(217\) 10.5830i 0.718421i
\(218\) −2.00000 −0.135457
\(219\) 0 0
\(220\) −19.7990 14.9666i −1.33485 1.00905i
\(221\) 22.4499i 1.51015i
\(222\) 0 0
\(223\) 14.9666i 1.00224i 0.865378 + 0.501120i \(0.167078\pi\)
−0.865378 + 0.501120i \(0.832922\pi\)
\(224\) 8.00000 0.534522
\(225\) 0 0
\(226\) −8.48528 −0.564433
\(227\) 5.29150i 0.351209i 0.984461 + 0.175605i \(0.0561880\pi\)
−0.984461 + 0.175605i \(0.943812\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 19.7990 1.30551
\(231\) 0 0
\(232\) 8.00000 0.525226
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 14.0000 0.913259
\(236\) −8.00000 −0.520756
\(237\) 0 0
\(238\) 10.5830i 0.685994i
\(239\) 2.82843 0.182956 0.0914779 0.995807i \(-0.470841\pi\)
0.0914779 + 0.995807i \(0.470841\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 4.24264 + 14.9666i 0.272727 + 0.962091i
\(243\) 0 0
\(244\) −25.4558 −1.62964
\(245\) 18.7083i 1.19523i
\(246\) 0 0
\(247\) 22.4499i 1.42846i
\(248\) 21.1660i 1.34404i
\(249\) 0 0
\(250\) 21.1660i 1.33866i
\(251\) 28.0000 1.76734 0.883672 0.468106i \(-0.155064\pi\)
0.883672 + 0.468106i \(0.155064\pi\)
\(252\) 0 0
\(253\) −9.89949 7.48331i −0.622376 0.470472i
\(254\) −10.0000 −0.627456
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 10.5830i 0.657596i
\(260\) 31.7490i 1.96899i
\(261\) 0 0
\(262\) 29.9333i 1.84928i
\(263\) −25.4558 −1.56967 −0.784837 0.619702i \(-0.787254\pi\)
−0.784837 + 0.619702i \(0.787254\pi\)
\(264\) 0 0
\(265\) 14.0000 0.860013
\(266\) 10.5830i 0.648886i
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 11.2250i 0.684399i 0.939627 + 0.342199i \(0.111172\pi\)
−0.939627 + 0.342199i \(0.888828\pi\)
\(270\) 0 0
\(271\) −12.7279 −0.773166 −0.386583 0.922255i \(-0.626345\pi\)
−0.386583 + 0.922255i \(0.626345\pi\)
\(272\) 21.1660i 1.28338i
\(273\) 0 0
\(274\) 2.82843 0.170872
\(275\) −18.0000 + 23.8118i −1.08544 + 1.43590i
\(276\) 0 0
\(277\) 4.24264 0.254916 0.127458 0.991844i \(-0.459318\pi\)
0.127458 + 0.991844i \(0.459318\pi\)
\(278\) 22.4499i 1.34646i
\(279\) 0 0
\(280\) 14.9666i 0.894427i
\(281\) 15.8745i 0.946994i 0.880795 + 0.473497i \(0.157008\pi\)
−0.880795 + 0.473497i \(0.842992\pi\)
\(282\) 0 0
\(283\) 5.29150i 0.314547i −0.987555 0.157274i \(-0.949730\pi\)
0.987555 0.157274i \(-0.0502704\pi\)
\(284\) 7.48331i 0.444053i
\(285\) 0 0
\(286\) −12.0000 + 15.8745i −0.709575 + 0.938679i
\(287\) 0 0
\(288\) 0 0
\(289\) −11.0000 −0.647059
\(290\) 14.9666i 0.878871i
\(291\) 0 0
\(292\) 21.1660i 1.23865i
\(293\) 19.7990 1.15667 0.578335 0.815800i \(-0.303703\pi\)
0.578335 + 0.815800i \(0.303703\pi\)
\(294\) 0 0
\(295\) 14.9666i 0.871391i
\(296\) 21.1660i 1.23025i
\(297\) 0 0
\(298\) −24.0000 −1.39028
\(299\) 15.8745i 0.918046i
\(300\) 0 0
\(301\) 7.48331i 0.431331i
\(302\) 6.00000 0.345261
\(303\) 0 0
\(304\) 21.1660i 1.21395i
\(305\) 47.6235i 2.72692i
\(306\) 0 0
\(307\) 26.4575i 1.51001i 0.655719 + 0.755005i \(0.272366\pi\)
−0.655719 + 0.755005i \(0.727634\pi\)
\(308\) −5.65685 + 7.48331i −0.322329 + 0.426401i
\(309\) 0 0
\(310\) 39.5980 2.24901
\(311\) 18.7083i 1.06085i −0.847732 0.530425i \(-0.822032\pi\)
0.847732 0.530425i \(-0.177968\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 21.1660i 1.19447i
\(315\) 0 0
\(316\) −2.82843 −0.159111
\(317\) 11.2250i 0.630457i −0.949016 0.315229i \(-0.897919\pi\)
0.949016 0.315229i \(-0.102081\pi\)
\(318\) 0 0
\(319\) −5.65685 + 7.48331i −0.316723 + 0.418985i
\(320\) 29.9333i 1.67332i
\(321\) 0 0
\(322\) 7.48331i 0.417029i
\(323\) 28.0000 1.55796
\(324\) 0 0
\(325\) −38.1838 −2.11805
\(326\) 5.65685 0.313304
\(327\) 0 0
\(328\) 0 0
\(329\) 5.29150i 0.291730i
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 21.1660i 1.16164i
\(333\) 0 0
\(334\) −20.0000 −1.09435
\(335\) 7.48331i 0.408857i
\(336\) 0 0
\(337\) 21.1660i 1.15299i 0.817102 + 0.576493i \(0.195579\pi\)
−0.817102 + 0.576493i \(0.804421\pi\)
\(338\) −7.07107 −0.384615
\(339\) 0 0
\(340\) 39.5980 2.14750
\(341\) −19.7990 14.9666i −1.07218 0.810488i
\(342\) 0 0
\(343\) 16.9706 0.916324
\(344\) 14.9666i 0.806947i
\(345\) 0 0
\(346\) 4.00000 0.215041
\(347\) 10.5830i 0.568125i −0.958806 0.284063i \(-0.908318\pi\)
0.958806 0.284063i \(-0.0916824\pi\)
\(348\) 0 0
\(349\) 9.89949 0.529908 0.264954 0.964261i \(-0.414643\pi\)
0.264954 + 0.964261i \(0.414643\pi\)
\(350\) −18.0000 −0.962140
\(351\) 0 0
\(352\) −11.3137 + 14.9666i −0.603023 + 0.797724i
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) −14.0000 −0.743043
\(356\) −28.0000 −1.48400
\(357\) 0 0
\(358\) −22.6274 −1.19590
\(359\) −11.3137 −0.597115 −0.298557 0.954392i \(-0.596505\pi\)
−0.298557 + 0.954392i \(0.596505\pi\)
\(360\) 0 0
\(361\) −9.00000 −0.473684
\(362\) 31.7490i 1.66869i
\(363\) 0 0
\(364\) −12.0000 −0.628971
\(365\) −39.5980 −2.07265
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 14.9666i 0.780189i
\(369\) 0 0
\(370\) −39.5980 −2.05860
\(371\) 5.29150i 0.274721i
\(372\) 0 0
\(373\) 21.2132 1.09838 0.549189 0.835698i \(-0.314937\pi\)
0.549189 + 0.835698i \(0.314937\pi\)
\(374\) −19.7990 14.9666i −1.02378 0.773906i
\(375\) 0 0
\(376\) 10.5830i 0.545777i
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) −39.5980 −2.03133
\(381\) 0 0
\(382\) 5.29150i 0.270737i
\(383\) 3.74166i 0.191190i −0.995420 0.0955949i \(-0.969525\pi\)
0.995420 0.0955949i \(-0.0304753\pi\)
\(384\) 0 0
\(385\) 14.0000 + 10.5830i 0.713506 + 0.539360i
\(386\) 0 0
\(387\) 0 0
\(388\) 32.0000 1.62455
\(389\) 18.7083i 0.948548i −0.880377 0.474274i \(-0.842711\pi\)
0.880377 0.474274i \(-0.157289\pi\)
\(390\) 0 0
\(391\) 19.7990 1.00128
\(392\) 14.1421 0.714286
\(393\) 0 0
\(394\) −24.0000 −1.20910
\(395\) 5.29150i 0.266244i
\(396\) 0 0
\(397\) 22.4499i 1.12673i −0.826208 0.563365i \(-0.809506\pi\)
0.826208 0.563365i \(-0.190494\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −36.0000 −1.80000
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) 31.7490i 1.58153i
\(404\) 22.6274 1.12576
\(405\) 0 0
\(406\) −5.65685 −0.280745
\(407\) 19.7990 + 14.9666i 0.981399 + 0.741868i
\(408\) 0 0
\(409\) 21.1660i 1.04659i −0.852151 0.523296i \(-0.824702\pi\)
0.852151 0.523296i \(-0.175298\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 14.9666i 0.737353i
\(413\) 5.65685 0.278356
\(414\) 0 0
\(415\) −39.5980 −1.94379
\(416\) −24.0000 −1.17670
\(417\) 0 0
\(418\) 19.7990 + 14.9666i 0.968400 + 0.732042i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 22.4499i 1.09414i −0.837086 0.547072i \(-0.815743\pi\)
0.837086 0.547072i \(-0.184257\pi\)
\(422\) 22.4499i 1.09285i
\(423\) 0 0
\(424\) 10.5830i 0.513956i
\(425\) 47.6235i 2.31008i
\(426\) 0 0
\(427\) 18.0000 0.871081
\(428\) 31.7490i 1.53465i
\(429\) 0 0
\(430\) 28.0000 1.35028
\(431\) 14.1421 0.681203 0.340601 0.940208i \(-0.389369\pi\)
0.340601 + 0.940208i \(0.389369\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 14.9666i 0.718421i
\(435\) 0 0
\(436\) 2.82843 0.135457
\(437\) −19.7990 −0.947114
\(438\) 0 0
\(439\) 32.5269 1.55242 0.776212 0.630471i \(-0.217138\pi\)
0.776212 + 0.630471i \(0.217138\pi\)
\(440\) 28.0000 + 21.1660i 1.33485 + 1.00905i
\(441\) 0 0
\(442\) 31.7490i 1.51015i
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) 52.3832i 2.48320i
\(446\) 21.1660i 1.00224i
\(447\) 0 0
\(448\) −11.3137 −0.534522
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 12.0000 0.564433
\(453\) 0 0
\(454\) 7.48331i 0.351209i
\(455\) 22.4499i 1.05247i
\(456\) 0 0
\(457\) 31.7490i 1.48516i 0.669759 + 0.742578i \(0.266397\pi\)
−0.669759 + 0.742578i \(0.733603\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −28.0000 −1.30551
\(461\) 25.4558 1.18560 0.592798 0.805351i \(-0.298023\pi\)
0.592798 + 0.805351i \(0.298023\pi\)
\(462\) 0 0
\(463\) 7.48331i 0.347779i −0.984765 0.173890i \(-0.944366\pi\)
0.984765 0.173890i \(-0.0556336\pi\)
\(464\) −11.3137 −0.525226
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −2.82843 −0.130605
\(470\) −19.7990 −0.913259
\(471\) 0 0
\(472\) 11.3137 0.520756
\(473\) −14.0000 10.5830i −0.643721 0.486607i
\(474\) 0 0
\(475\) 47.6235i 2.18512i
\(476\) 14.9666i 0.685994i
\(477\) 0 0
\(478\) −4.00000 −0.182956
\(479\) −8.48528 −0.387702 −0.193851 0.981031i \(-0.562098\pi\)
−0.193851 + 0.981031i \(0.562098\pi\)
\(480\) 0 0
\(481\) 31.7490i 1.44763i
\(482\) 0 0
\(483\) 0 0
\(484\) −6.00000 21.1660i −0.272727 0.962091i
\(485\) 59.8665i 2.71840i
\(486\) 0 0
\(487\) 29.9333i 1.35641i −0.734875 0.678203i \(-0.762759\pi\)
0.734875 0.678203i \(-0.237241\pi\)
\(488\) 36.0000 1.62964
\(489\) 0 0
\(490\) 26.4575i 1.19523i
\(491\) 15.8745i 0.716407i 0.933644 + 0.358203i \(0.116611\pi\)
−0.933644 + 0.358203i \(0.883389\pi\)
\(492\) 0 0
\(493\) 14.9666i 0.674063i
\(494\) 31.7490i 1.42846i
\(495\) 0 0
\(496\) 29.9333i 1.34404i
\(497\) 5.29150i 0.237356i
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 29.9333i 1.33866i
\(501\) 0 0
\(502\) −39.5980 −1.76734
\(503\) 14.1421 0.630567 0.315283 0.948998i \(-0.397900\pi\)
0.315283 + 0.948998i \(0.397900\pi\)
\(504\) 0 0
\(505\) 42.3320i 1.88375i
\(506\) 14.0000 + 10.5830i 0.622376 + 0.470472i
\(507\) 0 0
\(508\) 14.1421 0.627456
\(509\) 41.1582i 1.82431i −0.409849 0.912153i \(-0.634419\pi\)
0.409849 0.912153i \(-0.365581\pi\)
\(510\) 0 0
\(511\) 14.9666i 0.662085i
\(512\) −22.6274 −1.00000
\(513\) 0 0
\(514\) −8.48528 −0.374270
\(515\) 28.0000 1.23383
\(516\) 0 0
\(517\) 9.89949 + 7.48331i 0.435379 + 0.329116i
\(518\) 14.9666i 0.657596i
\(519\) 0 0
\(520\) 44.8999i 1.96899i
\(521\) −14.0000 −0.613351 −0.306676 0.951814i \(-0.599217\pi\)
−0.306676 + 0.951814i \(0.599217\pi\)
\(522\) 0 0
\(523\) 5.29150i 0.231381i 0.993285 + 0.115691i \(0.0369081\pi\)
−0.993285 + 0.115691i \(0.963092\pi\)
\(524\) 42.3320i 1.84928i
\(525\) 0 0
\(526\) 36.0000 1.56967
\(527\) 39.5980 1.72492
\(528\) 0 0
\(529\) 9.00000 0.391304
\(530\) −19.7990 −0.860013
\(531\) 0 0
\(532\) 14.9666i 0.648886i
\(533\) 0 0
\(534\) 0 0
\(535\) −59.3970 −2.56795
\(536\) −5.65685 −0.244339
\(537\) 0 0
\(538\) 15.8745i 0.684399i
\(539\) −10.0000 + 13.2288i −0.430730 + 0.569803i
\(540\) 0 0
\(541\) 41.0122 1.76325 0.881626 0.471949i \(-0.156449\pi\)
0.881626 + 0.471949i \(0.156449\pi\)
\(542\) 18.0000 0.773166
\(543\) 0 0
\(544\) 29.9333i 1.28338i
\(545\) 5.29150i 0.226663i
\(546\) 0 0
\(547\) 5.29150i 0.226248i 0.993581 + 0.113124i \(0.0360858\pi\)
−0.993581 + 0.113124i \(0.963914\pi\)
\(548\) −4.00000 −0.170872
\(549\) 0 0
\(550\) 25.4558 33.6749i 1.08544 1.43590i
\(551\) 14.9666i 0.637600i
\(552\) 0 0
\(553\) 2.00000 0.0850487
\(554\) −6.00000 −0.254916
\(555\) 0 0
\(556\) 31.7490i 1.34646i
\(557\) −8.48528 −0.359533 −0.179766 0.983709i \(-0.557534\pi\)
−0.179766 + 0.983709i \(0.557534\pi\)
\(558\) 0 0
\(559\) 22.4499i 0.949531i
\(560\) 21.1660i 0.894427i
\(561\) 0 0
\(562\) 22.4499i 0.946994i
\(563\) 15.8745i 0.669031i −0.942390 0.334515i \(-0.891427\pi\)
0.942390 0.334515i \(-0.108573\pi\)
\(564\) 0 0
\(565\) 22.4499i 0.944476i
\(566\) 7.48331i 0.314547i
\(567\) 0 0
\(568\) 10.5830i 0.444053i
\(569\) 5.29150i 0.221831i −0.993830 0.110916i \(-0.964622\pi\)
0.993830 0.110916i \(-0.0353783\pi\)
\(570\) 0 0
\(571\) 26.4575i 1.10721i 0.832779 + 0.553606i \(0.186749\pi\)
−0.832779 + 0.553606i \(0.813251\pi\)
\(572\) 16.9706 22.4499i 0.709575 0.938679i
\(573\) 0 0
\(574\) 0 0
\(575\) 33.6749i 1.40434i
\(576\) 0 0
\(577\) 32.0000 1.33218 0.666089 0.745873i \(-0.267967\pi\)
0.666089 + 0.745873i \(0.267967\pi\)
\(578\) 15.5563 0.647059
\(579\) 0 0
\(580\) 21.1660i 0.878871i
\(581\) 14.9666i 0.620920i
\(582\) 0 0
\(583\) 9.89949 + 7.48331i 0.409995 + 0.309927i
\(584\) 29.9333i 1.23865i
\(585\) 0 0
\(586\) −28.0000 −1.15667
\(587\) −16.0000 −0.660391 −0.330195 0.943913i \(-0.607115\pi\)
−0.330195 + 0.943913i \(0.607115\pi\)
\(588\) 0 0
\(589\) −39.5980 −1.63161
\(590\) 21.1660i 0.871391i
\(591\) 0 0
\(592\) 29.9333i 1.23025i
\(593\) 15.8745i 0.651888i 0.945389 + 0.325944i \(0.105682\pi\)
−0.945389 + 0.325944i \(0.894318\pi\)
\(594\) 0 0
\(595\) −28.0000 −1.14789
\(596\) 33.9411 1.39028
\(597\) 0 0
\(598\) 22.4499i 0.918046i
\(599\) 3.74166i 0.152880i 0.997074 + 0.0764400i \(0.0243554\pi\)
−0.997074 + 0.0764400i \(0.975645\pi\)
\(600\) 0 0
\(601\) 21.1660i 0.863380i −0.902022 0.431690i \(-0.857918\pi\)
0.902022 0.431690i \(-0.142082\pi\)
\(602\) 10.5830i 0.431331i
\(603\) 0 0
\(604\) −8.48528 −0.345261
\(605\) −39.5980 + 11.2250i −1.60989 + 0.456360i
\(606\) 0 0
\(607\) −29.6985 −1.20542 −0.602712 0.797959i \(-0.705913\pi\)
−0.602712 + 0.797959i \(0.705913\pi\)
\(608\) 29.9333i 1.21395i
\(609\) 0 0
\(610\) 67.3498i 2.72692i
\(611\) 15.8745i 0.642214i
\(612\) 0 0
\(613\) −1.41421 −0.0571195 −0.0285598 0.999592i \(-0.509092\pi\)
−0.0285598 + 0.999592i \(0.509092\pi\)
\(614\) 37.4166i 1.51001i
\(615\) 0 0
\(616\) 8.00000 10.5830i 0.322329 0.426401i
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) −42.0000 −1.68812 −0.844061 0.536247i \(-0.819842\pi\)
−0.844061 + 0.536247i \(0.819842\pi\)
\(620\) −56.0000 −2.24901
\(621\) 0 0
\(622\) 26.4575i 1.06085i
\(623\) 19.7990 0.793230
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 31.1127 1.24351
\(627\) 0 0
\(628\) 29.9333i 1.19447i
\(629\) −39.5980 −1.57887
\(630\) 0 0
\(631\) 7.48331i 0.297906i −0.988844 0.148953i \(-0.952410\pi\)
0.988844 0.148953i \(-0.0475903\pi\)
\(632\) 4.00000 0.159111
\(633\) 0 0
\(634\) 15.8745i 0.630457i
\(635\) 26.4575i 1.04993i
\(636\) 0 0
\(637\) −21.2132 −0.840498
\(638\) 8.00000 10.5830i 0.316723 0.418985i
\(639\) 0 0
\(640\) 42.3320i 1.67332i
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) −26.0000 −1.02534 −0.512670 0.858586i \(-0.671344\pi\)
−0.512670 + 0.858586i \(0.671344\pi\)
\(644\) 10.5830i 0.417029i
\(645\) 0 0
\(646\) −39.5980 −1.55796
\(647\) 48.6415i 1.91230i 0.292883 + 0.956148i \(0.405385\pi\)
−0.292883 + 0.956148i \(0.594615\pi\)
\(648\) 0 0
\(649\) −8.00000 + 10.5830i −0.314027 + 0.415419i
\(650\) 54.0000 2.11805
\(651\) 0 0
\(652\) −8.00000 −0.313304
\(653\) 11.2250i 0.439267i −0.975582 0.219634i \(-0.929514\pi\)
0.975582 0.219634i \(-0.0704862\pi\)
\(654\) 0 0
\(655\) 79.1960 3.09444
\(656\) 0 0
\(657\) 0 0
\(658\) 7.48331i 0.291730i
\(659\) 15.8745i 0.618383i −0.951000 0.309192i \(-0.899942\pi\)
0.951000 0.309192i \(-0.100058\pi\)
\(660\) 0 0
\(661\) 44.8999i 1.74640i 0.487359 + 0.873202i \(0.337960\pi\)
−0.487359 + 0.873202i \(0.662040\pi\)
\(662\) −5.65685 −0.219860
\(663\) 0 0
\(664\) 29.9333i 1.16164i
\(665\) 28.0000 1.08579
\(666\) 0 0
\(667\) 10.5830i 0.409776i
\(668\) 28.2843 1.09435
\(669\) 0 0
\(670\) 10.5830i 0.408857i
\(671\) −25.4558 + 33.6749i −0.982712 + 1.30001i
\(672\) 0 0
\(673\) 10.5830i 0.407945i −0.978977 0.203972i \(-0.934615\pi\)
0.978977 0.203972i \(-0.0653853\pi\)
\(674\) 29.9333i 1.15299i
\(675\) 0 0
\(676\) 10.0000 0.384615
\(677\) −39.5980 −1.52187 −0.760937 0.648826i \(-0.775260\pi\)
−0.760937 + 0.648826i \(0.775260\pi\)
\(678\) 0 0
\(679\) −22.6274 −0.868361
\(680\) −56.0000 −2.14750
\(681\) 0 0
\(682\) 28.0000 + 21.1660i 1.07218 + 0.810488i
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 7.48331i 0.285923i
\(686\) −24.0000 −0.916324
\(687\) 0 0
\(688\) 21.1660i 0.806947i
\(689\) 15.8745i 0.604771i
\(690\) 0 0
\(691\) 34.0000 1.29342 0.646710 0.762736i \(-0.276144\pi\)
0.646710 + 0.762736i \(0.276144\pi\)
\(692\) −5.65685 −0.215041
\(693\) 0 0
\(694\) 14.9666i 0.568125i
\(695\) 59.3970 2.25306
\(696\) 0 0
\(697\) 0 0
\(698\) −14.0000 −0.529908
\(699\) 0 0
\(700\) 25.4558 0.962140
\(701\) 42.4264 1.60242 0.801212 0.598381i \(-0.204189\pi\)
0.801212 + 0.598381i \(0.204189\pi\)
\(702\) 0 0
\(703\) 39.5980 1.49347
\(704\) 16.0000 21.1660i 0.603023 0.797724i
\(705\) 0 0
\(706\) 19.7990 0.745145
\(707\) −16.0000 −0.601742
\(708\) 0 0
\(709\) 14.9666i 0.562084i −0.959696 0.281042i \(-0.909320\pi\)
0.959696 0.281042i \(-0.0906800\pi\)
\(710\) 19.7990 0.743043
\(711\) 0 0
\(712\) 39.5980 1.48400
\(713\) −28.0000 −1.04861
\(714\) 0 0
\(715\) −42.0000 31.7490i −1.57071 1.18735i
\(716\) 32.0000 1.19590
\(717\) 0 0
\(718\) 16.0000 0.597115
\(719\) 33.6749i 1.25586i −0.778269 0.627931i \(-0.783902\pi\)
0.778269 0.627931i \(-0.216098\pi\)
\(720\) 0 0
\(721\) 10.5830i 0.394132i
\(722\) 12.7279 0.473684
\(723\) 0 0
\(724\) 44.8999i 1.66869i
\(725\) 25.4558 0.945406
\(726\) 0 0
\(727\) 14.9666i 0.555082i 0.960714 + 0.277541i \(0.0895194\pi\)
−0.960714 + 0.277541i \(0.910481\pi\)
\(728\) 16.9706 0.628971
\(729\) 0 0
\(730\) 56.0000 2.07265
\(731\) 28.0000 1.03562
\(732\) 0 0
\(733\) 12.7279 0.470117 0.235058 0.971981i \(-0.424472\pi\)
0.235058 + 0.971981i \(0.424472\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 21.1660i 0.780189i
\(737\) 4.00000 5.29150i 0.147342 0.194915i
\(738\) 0 0
\(739\) 37.0405i 1.36256i −0.732024 0.681279i \(-0.761424\pi\)
0.732024 0.681279i \(-0.238576\pi\)
\(740\) 56.0000 2.05860
\(741\) 0 0
\(742\) 7.48331i 0.274721i
\(743\) −5.65685 −0.207530 −0.103765 0.994602i \(-0.533089\pi\)
−0.103765 + 0.994602i \(0.533089\pi\)
\(744\) 0 0
\(745\) 63.4980i 2.32639i
\(746\) −30.0000 −1.09838
\(747\) 0 0
\(748\) 28.0000 + 21.1660i 1.02378 + 0.773906i
\(749\) 22.4499i 0.820303i
\(750\) 0 0
\(751\) 7.48331i 0.273070i 0.990635 + 0.136535i \(0.0435966\pi\)
−0.990635 + 0.136535i \(0.956403\pi\)
\(752\) 14.9666i 0.545777i
\(753\) 0 0
\(754\) 16.9706 0.618031
\(755\) 15.8745i 0.577732i
\(756\) 0 0
\(757\) 22.4499i 0.815957i 0.912992 + 0.407979i \(0.133766\pi\)
−0.912992 + 0.407979i \(0.866234\pi\)
\(758\) −28.2843 −1.02733
\(759\) 0 0
\(760\) 56.0000 2.03133
\(761\) 15.8745i 0.575450i 0.957713 + 0.287725i \(0.0928990\pi\)
−0.957713 + 0.287725i \(0.907101\pi\)
\(762\) 0 0
\(763\) −2.00000 −0.0724049
\(764\) 7.48331i 0.270737i
\(765\) 0 0
\(766\) 5.29150i 0.191190i
\(767\) −16.9706 −0.612772
\(768\) 0 0
\(769\) 10.5830i 0.381633i 0.981626 + 0.190816i \(0.0611135\pi\)
−0.981626 + 0.190816i \(0.938886\pi\)
\(770\) −19.7990 14.9666i −0.713506 0.539360i
\(771\) 0 0
\(772\) 0 0
\(773\) 41.1582i 1.48036i 0.672410 + 0.740179i \(0.265259\pi\)
−0.672410 + 0.740179i \(0.734741\pi\)
\(774\) 0 0
\(775\) 67.3498i 2.41928i
\(776\) −45.2548 −1.62455
\(777\) 0 0
\(778\) 26.4575i 0.948548i
\(779\) 0 0
\(780\) 0 0
\(781\) −9.89949 7.48331i −0.354232 0.267774i
\(782\) −28.0000 −1.00128
\(783\) 0 0
\(784\) −20.0000 −0.714286
\(785\) 56.0000 1.99873
\(786\) 0 0
\(787\) 26.4575i 0.943108i −0.881837 0.471554i \(-0.843693\pi\)
0.881837 0.471554i \(-0.156307\pi\)
\(788\) 33.9411 1.20910
\(789\) 0 0
\(790\) 7.48331i 0.266244i
\(791\) −8.48528 −0.301702
\(792\) 0 0
\(793\) −54.0000 −1.91760
\(794\) 31.7490i 1.12673i
\(795\) 0 0
\(796\) 0 0
\(797\) 41.1582i 1.45790i −0.684567 0.728950i \(-0.740009\pi\)
0.684567 0.728950i \(-0.259991\pi\)
\(798\) 0 0
\(799\) −19.7990 −0.700438
\(800\) 50.9117 1.80000
\(801\) 0 0
\(802\) −14.1421 −0.499376
\(803\) −28.0000 21.1660i −0.988099 0.746932i
\(804\) 0 0
\(805\) 19.7990 0.697823
\(806\) 44.8999i 1.58153i
\(807\) 0 0
\(808\) −32.0000 −1.12576
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 37.0405i 1.30067i −0.759648 0.650334i \(-0.774629\pi\)
0.759648 0.650334i \(-0.225371\pi\)
\(812\) 8.00000 0.280745
\(813\) 0 0
\(814\) −28.0000 21.1660i −0.981399 0.741868i
\(815\) 14.9666i 0.524258i
\(816\) 0 0
\(817\) −28.0000 −0.979596
\(818\) 29.9333i 1.04659i
\(819\) 0 0
\(820\) 0 0
\(821\) 11.3137 0.394851 0.197426 0.980318i \(-0.436742\pi\)
0.197426 + 0.980318i \(0.436742\pi\)
\(822\) 0 0
\(823\) 44.8999i 1.56511i 0.622580 + 0.782556i \(0.286084\pi\)
−0.622580 + 0.782556i \(0.713916\pi\)
\(824\) 21.1660i 0.737353i
\(825\) 0 0
\(826\) −8.00000 −0.278356
\(827\) 31.7490i 1.10402i 0.833837 + 0.552011i \(0.186139\pi\)
−0.833837 + 0.552011i \(0.813861\pi\)
\(828\) 0 0
\(829\) 44.8999i 1.55944i −0.626130 0.779719i \(-0.715362\pi\)
0.626130 0.779719i \(-0.284638\pi\)
\(830\) 56.0000 1.94379
\(831\) 0 0
\(832\) 33.9411 1.17670
\(833\) 26.4575i 0.916698i
\(834\) 0 0
\(835\) 52.9150i 1.83120i
\(836\) −28.0000 21.1660i −0.968400 0.732042i
\(837\) 0 0
\(838\) 0 0
\(839\) 18.7083i 0.645882i −0.946419 0.322941i \(-0.895328\pi\)
0.946419 0.322941i \(-0.104672\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) 31.7490i 1.09414i
\(843\) 0 0
\(844\) 31.7490i 1.09285i
\(845\) 18.7083i 0.643585i
\(846\) 0 0
\(847\) 4.24264 + 14.9666i 0.145779 + 0.514259i
\(848\) 14.9666i 0.513956i
\(849\) 0 0
\(850\) 67.3498i 2.31008i
\(851\) 28.0000 0.959828
\(852\) 0 0
\(853\) −49.4975 −1.69476 −0.847381 0.530986i \(-0.821822\pi\)
−0.847381 + 0.530986i \(0.821822\pi\)
\(854\) −25.4558 −0.871081
\(855\) 0 0
\(856\) 44.8999i 1.53465i
\(857\) 21.1660i 0.723017i −0.932369 0.361509i \(-0.882262\pi\)
0.932369 0.361509i \(-0.117738\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) −39.5980 −1.35028
\(861\) 0 0
\(862\) −20.0000 −0.681203
\(863\) 48.6415i 1.65578i 0.560892 + 0.827889i \(0.310458\pi\)
−0.560892 + 0.827889i \(0.689542\pi\)
\(864\) 0 0
\(865\) 10.5830i 0.359833i
\(866\) −19.7990 −0.672797
\(867\) 0 0
\(868\) 21.1660i 0.718421i
\(869\) −2.82843 + 3.74166i −0.0959478 + 0.126927i
\(870\) 0 0
\(871\) 8.48528 0.287513
\(872\) −4.00000 −0.135457
\(873\) 0 0
\(874\) 28.0000 0.947114
\(875\) 21.1660i 0.715542i
\(876\) 0 0
\(877\) 38.1838 1.28937 0.644687 0.764447i \(-0.276988\pi\)
0.644687 + 0.764447i \(0.276988\pi\)
\(878\) −46.0000 −1.55242
\(879\) 0 0
\(880\) −39.5980 29.9333i −1.33485 1.00905i
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 6.00000 0.201916 0.100958 0.994891i \(-0.467809\pi\)
0.100958 + 0.994891i \(0.467809\pi\)
\(884\) 44.8999i 1.51015i
\(885\) 0 0
\(886\) 50.9117 1.71041
\(887\) −16.9706 −0.569816 −0.284908 0.958555i \(-0.591963\pi\)
−0.284908 + 0.958555i \(0.591963\pi\)
\(888\) 0 0
\(889\) −10.0000 −0.335389
\(890\) 74.0810i 2.48320i
\(891\) 0 0
\(892\) 29.9333i 1.00224i
\(893\) 19.7990 0.662548
\(894\) 0 0
\(895\) 59.8665i 2.00112i
\(896\) 16.0000 0.534522
\(897\) 0 0
\(898\) −42.4264 −1.41579
\(899\) 21.1660i 0.705926i
\(900\) 0 0
\(901\) −19.7990 −0.659600
\(902\) 0 0
\(903\) 0 0
\(904\) −16.9706 −0.564433
\(905\) −84.0000 −2.79225
\(906\) 0 0
\(907\) 38.0000 1.26177 0.630885 0.775877i \(-0.282692\pi\)
0.630885 + 0.775877i \(0.282692\pi\)
\(908\) 10.5830i 0.351209i
\(909\) 0 0
\(910\) 31.7490i 1.05247i
\(911\) 18.7083i 0.619833i −0.950764 0.309917i \(-0.899699\pi\)
0.950764 0.309917i \(-0.100301\pi\)
\(912\) 0 0
\(913\) −28.0000 21.1660i −0.926665 0.700493i
\(914\) 44.8999i 1.48516i
\(915\) 0 0
\(916\) 0 0
\(917\) 29.9333i 0.988483i
\(918\) 0 0
\(919\) 46.6690 1.53947 0.769735 0.638364i \(-0.220388\pi\)
0.769735 + 0.638364i \(0.220388\pi\)
\(920\) 39.5980 1.30551
\(921\) 0 0
\(922\) −36.0000 −1.18560
\(923\) 15.8745i 0.522516i
\(924\) 0 0
\(925\) 67.3498i 2.21445i
\(926\) 10.5830i 0.347779i
\(927\) 0 0
\(928\) 16.0000 0.525226
\(929\) −50.0000 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(930\) 0 0
\(931\) 26.4575i 0.867110i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 39.5980 52.3832i 1.29499 1.71311i
\(936\) 0 0
\(937\) 31.7490i 1.03720i 0.855018 + 0.518598i \(0.173546\pi\)
−0.855018 + 0.518598i \(0.826454\pi\)
\(938\) 4.00000 0.130605
\(939\) 0 0
\(940\) 28.0000 0.913259
\(941\) 11.3137 0.368816 0.184408 0.982850i \(-0.440963\pi\)
0.184408 + 0.982850i \(0.440963\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −16.0000 −0.520756
\(945\) 0 0
\(946\) 19.7990 + 14.9666i 0.643721 + 0.486607i
\(947\) 36.0000 1.16984 0.584921 0.811090i \(-0.301125\pi\)
0.584921 + 0.811090i \(0.301125\pi\)
\(948\) 0 0
\(949\) 44.8999i 1.45751i
\(950\) 67.3498i 2.18512i
\(951\) 0 0
\(952\) 21.1660i 0.685994i
\(953\) 21.1660i 0.685634i 0.939402 + 0.342817i \(0.111381\pi\)
−0.939402 + 0.342817i \(0.888619\pi\)
\(954\) 0 0
\(955\) −14.0000 −0.453029
\(956\) 5.65685 0.182956
\(957\) 0 0
\(958\) 12.0000 0.387702
\(959\) 2.82843 0.0913347
\(960\) 0 0
\(961\) −25.0000 −0.806452
\(962\) 44.8999i 1.44763i
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −15.5563 −0.500258 −0.250129 0.968212i \(-0.580473\pi\)
−0.250129 + 0.968212i \(0.580473\pi\)
\(968\) 8.48528 + 29.9333i 0.272727 + 0.962091i
\(969\) 0 0
\(970\) 84.6640i 2.71840i
\(971\) −36.0000 −1.15529 −0.577647 0.816286i \(-0.696029\pi\)
−0.577647 + 0.816286i \(0.696029\pi\)
\(972\) 0 0
\(973\) 22.4499i 0.719712i
\(974\) 42.3320i 1.35641i
\(975\) 0 0
\(976\) −50.9117 −1.62964
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) −28.0000 + 37.0405i −0.894884 + 1.18382i
\(980\) 37.4166i 1.19523i
\(981\) 0 0
\(982\) 22.4499i 0.716407i
\(983\) 11.2250i 0.358021i 0.983847 + 0.179011i \(0.0572896\pi\)
−0.983847 + 0.179011i \(0.942710\pi\)
\(984\) 0 0
\(985\) 63.4980i 2.02322i
\(986\) 21.1660i 0.674063i
\(987\) 0 0
\(988\) 44.8999i 1.42846i
\(989\) −19.7990 −0.629571
\(990\) 0 0
\(991\) 37.4166i 1.18858i 0.804252 + 0.594288i \(0.202566\pi\)
−0.804252 + 0.594288i \(0.797434\pi\)
\(992\) 42.3320i 1.34404i
\(993\) 0 0
\(994\) 7.48331i 0.237356i
\(995\) 0 0
\(996\) 0 0
\(997\) 29.6985 0.940560 0.470280 0.882517i \(-0.344153\pi\)
0.470280 + 0.882517i \(0.344153\pi\)
\(998\) −28.2843 −0.895323
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.h.e.307.1 4
3.2 odd 2 264.2.h.d.43.4 yes 4
4.3 odd 2 3168.2.h.d.2287.2 4
8.3 odd 2 inner 792.2.h.e.307.4 4
8.5 even 2 3168.2.h.d.2287.3 4
11.10 odd 2 inner 792.2.h.e.307.3 4
12.11 even 2 1056.2.h.d.175.4 4
24.5 odd 2 1056.2.h.d.175.1 4
24.11 even 2 264.2.h.d.43.1 4
33.32 even 2 264.2.h.d.43.2 yes 4
44.43 even 2 3168.2.h.d.2287.1 4
88.21 odd 2 3168.2.h.d.2287.4 4
88.43 even 2 inner 792.2.h.e.307.2 4
132.131 odd 2 1056.2.h.d.175.3 4
264.131 odd 2 264.2.h.d.43.3 yes 4
264.197 even 2 1056.2.h.d.175.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.h.d.43.1 4 24.11 even 2
264.2.h.d.43.2 yes 4 33.32 even 2
264.2.h.d.43.3 yes 4 264.131 odd 2
264.2.h.d.43.4 yes 4 3.2 odd 2
792.2.h.e.307.1 4 1.1 even 1 trivial
792.2.h.e.307.2 4 88.43 even 2 inner
792.2.h.e.307.3 4 11.10 odd 2 inner
792.2.h.e.307.4 4 8.3 odd 2 inner
1056.2.h.d.175.1 4 24.5 odd 2
1056.2.h.d.175.2 4 264.197 even 2
1056.2.h.d.175.3 4 132.131 odd 2
1056.2.h.d.175.4 4 12.11 even 2
3168.2.h.d.2287.1 4 44.43 even 2
3168.2.h.d.2287.2 4 4.3 odd 2
3168.2.h.d.2287.3 4 8.5 even 2
3168.2.h.d.2287.4 4 88.21 odd 2