Properties

Label 3168.2.h.d.2287.4
Level $3168$
Weight $2$
Character 3168.2287
Analytic conductor $25.297$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3168,2,Mod(2287,3168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3168.2287"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 6x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 264)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2287.4
Root \(0.707107 + 1.87083i\) of defining polynomial
Character \(\chi\) \(=\) 3168.2287
Dual form 3168.2.h.d.2287.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.74166i q^{5} +1.41421 q^{7} +(-2.00000 - 2.64575i) q^{11} +4.24264 q^{13} -5.29150i q^{17} -5.29150i q^{19} -3.74166i q^{23} -9.00000 q^{25} -2.82843 q^{29} -7.48331i q^{31} +5.29150i q^{35} -7.48331i q^{37} -5.29150i q^{43} +3.74166i q^{47} -5.00000 q^{49} -3.74166i q^{53} +(9.89949 - 7.48331i) q^{55} +4.00000 q^{59} -12.7279 q^{61} +15.8745i q^{65} -2.00000 q^{67} -3.74166i q^{71} +10.5830i q^{73} +(-2.82843 - 3.74166i) q^{77} +1.41421 q^{79} -10.5830i q^{83} +19.7990 q^{85} -14.0000 q^{89} +6.00000 q^{91} +19.7990 q^{95} +16.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{11} - 36 q^{25} - 20 q^{49} + 16 q^{59} - 8 q^{67} - 56 q^{89} + 24 q^{91} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.74166i 1.67332i 0.547723 + 0.836660i \(0.315495\pi\)
−0.547723 + 0.836660i \(0.684505\pi\)
\(6\) 0 0
\(7\) 1.41421 0.534522 0.267261 0.963624i \(-0.413881\pi\)
0.267261 + 0.963624i \(0.413881\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 2.64575i −0.603023 0.797724i
\(12\) 0 0
\(13\) 4.24264 1.17670 0.588348 0.808608i \(-0.299778\pi\)
0.588348 + 0.808608i \(0.299778\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.29150i 1.28338i −0.766965 0.641689i \(-0.778234\pi\)
0.766965 0.641689i \(-0.221766\pi\)
\(18\) 0 0
\(19\) 5.29150i 1.21395i −0.794719 0.606977i \(-0.792382\pi\)
0.794719 0.606977i \(-0.207618\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.74166i 0.780189i −0.920775 0.390095i \(-0.872442\pi\)
0.920775 0.390095i \(-0.127558\pi\)
\(24\) 0 0
\(25\) −9.00000 −1.80000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.82843 −0.525226 −0.262613 0.964901i \(-0.584584\pi\)
−0.262613 + 0.964901i \(0.584584\pi\)
\(30\) 0 0
\(31\) 7.48331i 1.34404i −0.740532 0.672022i \(-0.765426\pi\)
0.740532 0.672022i \(-0.234574\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.29150i 0.894427i
\(36\) 0 0
\(37\) 7.48331i 1.23025i −0.788430 0.615125i \(-0.789106\pi\)
0.788430 0.615125i \(-0.210894\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 5.29150i 0.806947i −0.914991 0.403473i \(-0.867803\pi\)
0.914991 0.403473i \(-0.132197\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.74166i 0.545777i 0.962046 + 0.272888i \(0.0879790\pi\)
−0.962046 + 0.272888i \(0.912021\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.74166i 0.513956i −0.966417 0.256978i \(-0.917273\pi\)
0.966417 0.256978i \(-0.0827268\pi\)
\(54\) 0 0
\(55\) 9.89949 7.48331i 1.33485 1.00905i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −12.7279 −1.62964 −0.814822 0.579712i \(-0.803165\pi\)
−0.814822 + 0.579712i \(0.803165\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 15.8745i 1.96899i
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.74166i 0.444053i −0.975041 0.222027i \(-0.928733\pi\)
0.975041 0.222027i \(-0.0712672\pi\)
\(72\) 0 0
\(73\) 10.5830i 1.23865i 0.785136 + 0.619324i \(0.212593\pi\)
−0.785136 + 0.619324i \(0.787407\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.82843 3.74166i −0.322329 0.426401i
\(78\) 0 0
\(79\) 1.41421 0.159111 0.0795557 0.996830i \(-0.474650\pi\)
0.0795557 + 0.996830i \(0.474650\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.5830i 1.16164i −0.814034 0.580818i \(-0.802733\pi\)
0.814034 0.580818i \(-0.197267\pi\)
\(84\) 0 0
\(85\) 19.7990 2.14750
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 19.7990 2.03133
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 11.3137 1.12576 0.562878 0.826540i \(-0.309694\pi\)
0.562878 + 0.826540i \(0.309694\pi\)
\(102\) 0 0
\(103\) 7.48331i 0.737353i 0.929558 + 0.368676i \(0.120189\pi\)
−0.929558 + 0.368676i \(0.879811\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.8745i 1.53465i −0.641260 0.767323i \(-0.721588\pi\)
0.641260 0.767323i \(-0.278412\pi\)
\(108\) 0 0
\(109\) 1.41421 0.135457 0.0677285 0.997704i \(-0.478425\pi\)
0.0677285 + 0.997704i \(0.478425\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 14.0000 1.30551
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.48331i 0.685994i
\(120\) 0 0
\(121\) −3.00000 + 10.5830i −0.272727 + 0.962091i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 14.9666i 1.33866i
\(126\) 0 0
\(127\) −7.07107 −0.627456 −0.313728 0.949513i \(-0.601578\pi\)
−0.313728 + 0.949513i \(0.601578\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 21.1660i 1.84928i 0.380839 + 0.924641i \(0.375635\pi\)
−0.380839 + 0.924641i \(0.624365\pi\)
\(132\) 0 0
\(133\) 7.48331i 0.648886i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 15.8745i 1.34646i 0.739434 + 0.673229i \(0.235093\pi\)
−0.739434 + 0.673229i \(0.764907\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.48528 11.2250i −0.709575 0.938679i
\(144\) 0 0
\(145\) 10.5830i 0.878871i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.9706 1.39028 0.695141 0.718873i \(-0.255342\pi\)
0.695141 + 0.718873i \(0.255342\pi\)
\(150\) 0 0
\(151\) 4.24264 0.345261 0.172631 0.984987i \(-0.444773\pi\)
0.172631 + 0.984987i \(0.444773\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 28.0000 2.24901
\(156\) 0 0
\(157\) 14.9666i 1.19447i −0.802067 0.597234i \(-0.796267\pi\)
0.802067 0.597234i \(-0.203733\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.29150i 0.417029i
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −14.1421 −1.09435 −0.547176 0.837018i \(-0.684297\pi\)
−0.547176 + 0.837018i \(0.684297\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.82843 −0.215041 −0.107521 0.994203i \(-0.534291\pi\)
−0.107521 + 0.994203i \(0.534291\pi\)
\(174\) 0 0
\(175\) −12.7279 −0.962140
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) 0 0
\(181\) 22.4499i 1.66869i 0.551242 + 0.834346i \(0.314154\pi\)
−0.551242 + 0.834346i \(0.685846\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 28.0000 2.05860
\(186\) 0 0
\(187\) −14.0000 + 10.5830i −1.02378 + 0.773906i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.74166i 0.270737i −0.990795 0.135368i \(-0.956778\pi\)
0.990795 0.135368i \(-0.0432218\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.9706 1.20910 0.604551 0.796566i \(-0.293352\pi\)
0.604551 + 0.796566i \(0.293352\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.00000 −0.280745
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −14.0000 + 10.5830i −0.968400 + 0.732042i
\(210\) 0 0
\(211\) 15.8745i 1.09285i −0.837509 0.546423i \(-0.815989\pi\)
0.837509 0.546423i \(-0.184011\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 19.7990 1.35028
\(216\) 0 0
\(217\) 10.5830i 0.718421i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 22.4499i 1.51015i
\(222\) 0 0
\(223\) 14.9666i 1.00224i 0.865378 + 0.501120i \(0.167078\pi\)
−0.865378 + 0.501120i \(0.832922\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.29150i 0.351209i 0.984461 + 0.175605i \(0.0561880\pi\)
−0.984461 + 0.175605i \(0.943812\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) −14.0000 −0.913259
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.82843 −0.182956 −0.0914779 0.995807i \(-0.529159\pi\)
−0.0914779 + 0.995807i \(0.529159\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 18.7083i 1.19523i
\(246\) 0 0
\(247\) 22.4499i 1.42846i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 0 0
\(253\) −9.89949 + 7.48331i −0.622376 + 0.470472i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 10.5830i 0.657596i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 25.4558 1.56967 0.784837 0.619702i \(-0.212746\pi\)
0.784837 + 0.619702i \(0.212746\pi\)
\(264\) 0 0
\(265\) 14.0000 0.860013
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 11.2250i 0.684399i −0.939627 0.342199i \(-0.888828\pi\)
0.939627 0.342199i \(-0.111172\pi\)
\(270\) 0 0
\(271\) 12.7279 0.773166 0.386583 0.922255i \(-0.373655\pi\)
0.386583 + 0.922255i \(0.373655\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.0000 + 23.8118i 1.08544 + 1.43590i
\(276\) 0 0
\(277\) 4.24264 0.254916 0.127458 0.991844i \(-0.459318\pi\)
0.127458 + 0.991844i \(0.459318\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.8745i 0.946994i −0.880795 0.473497i \(-0.842992\pi\)
0.880795 0.473497i \(-0.157008\pi\)
\(282\) 0 0
\(283\) 5.29150i 0.314547i −0.987555 0.157274i \(-0.949730\pi\)
0.987555 0.157274i \(-0.0502704\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −11.0000 −0.647059
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 19.7990 1.15667 0.578335 0.815800i \(-0.303703\pi\)
0.578335 + 0.815800i \(0.303703\pi\)
\(294\) 0 0
\(295\) 14.9666i 0.871391i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 15.8745i 0.918046i
\(300\) 0 0
\(301\) 7.48331i 0.431331i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 47.6235i 2.72692i
\(306\) 0 0
\(307\) 26.4575i 1.51001i 0.655719 + 0.755005i \(0.272366\pi\)
−0.655719 + 0.755005i \(0.727634\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.7083i 1.06085i −0.847732 0.530425i \(-0.822032\pi\)
0.847732 0.530425i \(-0.177968\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.2250i 0.630457i 0.949016 + 0.315229i \(0.102081\pi\)
−0.949016 + 0.315229i \(0.897919\pi\)
\(318\) 0 0
\(319\) 5.65685 + 7.48331i 0.316723 + 0.418985i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −28.0000 −1.55796
\(324\) 0 0
\(325\) −38.1838 −2.11805
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.29150i 0.291730i
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.48331i 0.408857i
\(336\) 0 0
\(337\) 21.1660i 1.15299i −0.817102 0.576493i \(-0.804421\pi\)
0.817102 0.576493i \(-0.195579\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −19.7990 + 14.9666i −1.07218 + 0.810488i
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.5830i 0.568125i −0.958806 0.284063i \(-0.908318\pi\)
0.958806 0.284063i \(-0.0916824\pi\)
\(348\) 0 0
\(349\) 9.89949 0.529908 0.264954 0.964261i \(-0.414643\pi\)
0.264954 + 0.964261i \(0.414643\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) 14.0000 0.743043
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.3137 0.597115 0.298557 0.954392i \(-0.403495\pi\)
0.298557 + 0.954392i \(0.403495\pi\)
\(360\) 0 0
\(361\) −9.00000 −0.473684
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −39.5980 −2.07265
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.29150i 0.274721i
\(372\) 0 0
\(373\) 21.2132 1.09838 0.549189 0.835698i \(-0.314937\pi\)
0.549189 + 0.835698i \(0.314937\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.74166i 0.191190i −0.995420 0.0955949i \(-0.969525\pi\)
0.995420 0.0955949i \(-0.0304753\pi\)
\(384\) 0 0
\(385\) 14.0000 10.5830i 0.713506 0.539360i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.7083i 0.948548i 0.880377 + 0.474274i \(0.157289\pi\)
−0.880377 + 0.474274i \(0.842711\pi\)
\(390\) 0 0
\(391\) −19.7990 −1.00128
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.29150i 0.266244i
\(396\) 0 0
\(397\) 22.4499i 1.12673i 0.826208 + 0.563365i \(0.190494\pi\)
−0.826208 + 0.563365i \(0.809506\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) 31.7490i 1.58153i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −19.7990 + 14.9666i −0.981399 + 0.741868i
\(408\) 0 0
\(409\) 21.1660i 1.04659i 0.852151 + 0.523296i \(0.175298\pi\)
−0.852151 + 0.523296i \(0.824702\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.65685 0.278356
\(414\) 0 0
\(415\) 39.5980 1.94379
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 22.4499i 1.09414i 0.837086 + 0.547072i \(0.184257\pi\)
−0.837086 + 0.547072i \(0.815743\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 47.6235i 2.31008i
\(426\) 0 0
\(427\) −18.0000 −0.871081
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.1421 −0.681203 −0.340601 0.940208i \(-0.610631\pi\)
−0.340601 + 0.940208i \(0.610631\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −19.7990 −0.947114
\(438\) 0 0
\(439\) −32.5269 −1.55242 −0.776212 0.630471i \(-0.782862\pi\)
−0.776212 + 0.630471i \(0.782862\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 52.3832i 2.48320i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 22.4499i 1.05247i
\(456\) 0 0
\(457\) 31.7490i 1.48516i −0.669759 0.742578i \(-0.733603\pi\)
0.669759 0.742578i \(-0.266397\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 25.4558 1.18560 0.592798 0.805351i \(-0.298023\pi\)
0.592798 + 0.805351i \(0.298023\pi\)
\(462\) 0 0
\(463\) 7.48331i 0.347779i −0.984765 0.173890i \(-0.944366\pi\)
0.984765 0.173890i \(-0.0556336\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −2.82843 −0.130605
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14.0000 + 10.5830i −0.643721 + 0.486607i
\(474\) 0 0
\(475\) 47.6235i 2.18512i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.48528 0.387702 0.193851 0.981031i \(-0.437902\pi\)
0.193851 + 0.981031i \(0.437902\pi\)
\(480\) 0 0
\(481\) 31.7490i 1.44763i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 59.8665i 2.71840i
\(486\) 0 0
\(487\) 29.9333i 1.35641i −0.734875 0.678203i \(-0.762759\pi\)
0.734875 0.678203i \(-0.237241\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15.8745i 0.716407i 0.933644 + 0.358203i \(0.116611\pi\)
−0.933644 + 0.358203i \(0.883389\pi\)
\(492\) 0 0
\(493\) 14.9666i 0.674063i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.29150i 0.237356i
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.1421 −0.630567 −0.315283 0.948998i \(-0.602100\pi\)
−0.315283 + 0.948998i \(0.602100\pi\)
\(504\) 0 0
\(505\) 42.3320i 1.88375i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 41.1582i 1.82431i 0.409849 + 0.912153i \(0.365581\pi\)
−0.409849 + 0.912153i \(0.634419\pi\)
\(510\) 0 0
\(511\) 14.9666i 0.662085i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −28.0000 −1.23383
\(516\) 0 0
\(517\) 9.89949 7.48331i 0.435379 0.329116i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14.0000 −0.613351 −0.306676 0.951814i \(-0.599217\pi\)
−0.306676 + 0.951814i \(0.599217\pi\)
\(522\) 0 0
\(523\) 5.29150i 0.231381i 0.993285 + 0.115691i \(0.0369081\pi\)
−0.993285 + 0.115691i \(0.963092\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −39.5980 −1.72492
\(528\) 0 0
\(529\) 9.00000 0.391304
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 59.3970 2.56795
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10.0000 + 13.2288i 0.430730 + 0.569803i
\(540\) 0 0
\(541\) 41.0122 1.76325 0.881626 0.471949i \(-0.156449\pi\)
0.881626 + 0.471949i \(0.156449\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.29150i 0.226663i
\(546\) 0 0
\(547\) 5.29150i 0.226248i 0.993581 + 0.113124i \(0.0360858\pi\)
−0.993581 + 0.113124i \(0.963914\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14.9666i 0.637600i
\(552\) 0 0
\(553\) 2.00000 0.0850487
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.48528 −0.359533 −0.179766 0.983709i \(-0.557534\pi\)
−0.179766 + 0.983709i \(0.557534\pi\)
\(558\) 0 0
\(559\) 22.4499i 0.949531i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 15.8745i 0.669031i −0.942390 0.334515i \(-0.891427\pi\)
0.942390 0.334515i \(-0.108573\pi\)
\(564\) 0 0
\(565\) 22.4499i 0.944476i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.29150i 0.221831i 0.993830 + 0.110916i \(0.0353783\pi\)
−0.993830 + 0.110916i \(0.964622\pi\)
\(570\) 0 0
\(571\) 26.4575i 1.10721i 0.832779 + 0.553606i \(0.186749\pi\)
−0.832779 + 0.553606i \(0.813251\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 33.6749i 1.40434i
\(576\) 0 0
\(577\) 32.0000 1.33218 0.666089 0.745873i \(-0.267967\pi\)
0.666089 + 0.745873i \(0.267967\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 14.9666i 0.620920i
\(582\) 0 0
\(583\) −9.89949 + 7.48331i −0.409995 + 0.309927i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.0000 0.660391 0.330195 0.943913i \(-0.392885\pi\)
0.330195 + 0.943913i \(0.392885\pi\)
\(588\) 0 0
\(589\) −39.5980 −1.63161
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.8745i 0.651888i −0.945389 0.325944i \(-0.894318\pi\)
0.945389 0.325944i \(-0.105682\pi\)
\(594\) 0 0
\(595\) 28.0000 1.14789
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.74166i 0.152880i 0.997074 + 0.0764400i \(0.0243554\pi\)
−0.997074 + 0.0764400i \(0.975645\pi\)
\(600\) 0 0
\(601\) 21.1660i 0.863380i 0.902022 + 0.431690i \(0.142082\pi\)
−0.902022 + 0.431690i \(0.857918\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −39.5980 11.2250i −1.60989 0.456360i
\(606\) 0 0
\(607\) 29.6985 1.20542 0.602712 0.797959i \(-0.294087\pi\)
0.602712 + 0.797959i \(0.294087\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.8745i 0.642214i
\(612\) 0 0
\(613\) −1.41421 −0.0571195 −0.0285598 0.999592i \(-0.509092\pi\)
−0.0285598 + 0.999592i \(0.509092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) 42.0000 1.68812 0.844061 0.536247i \(-0.180158\pi\)
0.844061 + 0.536247i \(0.180158\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −19.7990 −0.793230
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −39.5980 −1.57887
\(630\) 0 0
\(631\) 7.48331i 0.297906i −0.988844 0.148953i \(-0.952410\pi\)
0.988844 0.148953i \(-0.0475903\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 26.4575i 1.04993i
\(636\) 0 0
\(637\) −21.2132 −0.840498
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) 26.0000 1.02534 0.512670 0.858586i \(-0.328656\pi\)
0.512670 + 0.858586i \(0.328656\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 48.6415i 1.91230i 0.292883 + 0.956148i \(0.405385\pi\)
−0.292883 + 0.956148i \(0.594615\pi\)
\(648\) 0 0
\(649\) −8.00000 10.5830i −0.314027 0.415419i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.2250i 0.439267i 0.975582 + 0.219634i \(0.0704862\pi\)
−0.975582 + 0.219634i \(0.929514\pi\)
\(654\) 0 0
\(655\) −79.1960 −3.09444
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 15.8745i 0.618383i −0.951000 0.309192i \(-0.899942\pi\)
0.951000 0.309192i \(-0.100058\pi\)
\(660\) 0 0
\(661\) 44.8999i 1.74640i −0.487359 0.873202i \(-0.662040\pi\)
0.487359 0.873202i \(-0.337960\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 28.0000 1.08579
\(666\) 0 0
\(667\) 10.5830i 0.409776i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 25.4558 + 33.6749i 0.982712 + 1.30001i
\(672\) 0 0
\(673\) 10.5830i 0.407945i 0.978977 + 0.203972i \(0.0653853\pi\)
−0.978977 + 0.203972i \(0.934615\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −39.5980 −1.52187 −0.760937 0.648826i \(-0.775260\pi\)
−0.760937 + 0.648826i \(0.775260\pi\)
\(678\) 0 0
\(679\) 22.6274 0.868361
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 7.48331i 0.285923i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15.8745i 0.604771i
\(690\) 0 0
\(691\) −34.0000 −1.29342 −0.646710 0.762736i \(-0.723856\pi\)
−0.646710 + 0.762736i \(0.723856\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −59.3970 −2.25306
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 42.4264 1.60242 0.801212 0.598381i \(-0.204189\pi\)
0.801212 + 0.598381i \(0.204189\pi\)
\(702\) 0 0
\(703\) −39.5980 −1.49347
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.0000 0.601742
\(708\) 0 0
\(709\) 14.9666i 0.562084i 0.959696 + 0.281042i \(0.0906800\pi\)
−0.959696 + 0.281042i \(0.909320\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −28.0000 −1.04861
\(714\) 0 0
\(715\) 42.0000 31.7490i 1.57071 1.18735i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 33.6749i 1.25586i −0.778269 0.627931i \(-0.783902\pi\)
0.778269 0.627931i \(-0.216098\pi\)
\(720\) 0 0
\(721\) 10.5830i 0.394132i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 25.4558 0.945406
\(726\) 0 0
\(727\) 14.9666i 0.555082i 0.960714 + 0.277541i \(0.0895194\pi\)
−0.960714 + 0.277541i \(0.910481\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −28.0000 −1.03562
\(732\) 0 0
\(733\) 12.7279 0.470117 0.235058 0.971981i \(-0.424472\pi\)
0.235058 + 0.971981i \(0.424472\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.00000 + 5.29150i 0.147342 + 0.194915i
\(738\) 0 0
\(739\) 37.0405i 1.36256i −0.732024 0.681279i \(-0.761424\pi\)
0.732024 0.681279i \(-0.238576\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.65685 0.207530 0.103765 0.994602i \(-0.466911\pi\)
0.103765 + 0.994602i \(0.466911\pi\)
\(744\) 0 0
\(745\) 63.4980i 2.32639i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 22.4499i 0.820303i
\(750\) 0 0
\(751\) 7.48331i 0.273070i 0.990635 + 0.136535i \(0.0435966\pi\)
−0.990635 + 0.136535i \(0.956403\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.8745i 0.577732i
\(756\) 0 0
\(757\) 22.4499i 0.815957i −0.912992 0.407979i \(-0.866234\pi\)
0.912992 0.407979i \(-0.133766\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15.8745i 0.575450i −0.957713 0.287725i \(-0.907101\pi\)
0.957713 0.287725i \(-0.0928990\pi\)
\(762\) 0 0
\(763\) 2.00000 0.0724049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16.9706 0.612772
\(768\) 0 0
\(769\) 10.5830i 0.381633i −0.981626 0.190816i \(-0.938886\pi\)
0.981626 0.190816i \(-0.0611135\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 41.1582i 1.48036i −0.672410 0.740179i \(-0.734741\pi\)
0.672410 0.740179i \(-0.265259\pi\)
\(774\) 0 0
\(775\) 67.3498i 2.41928i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −9.89949 + 7.48331i −0.354232 + 0.267774i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 56.0000 1.99873
\(786\) 0 0
\(787\) 26.4575i 0.943108i −0.881837 0.471554i \(-0.843693\pi\)
0.881837 0.471554i \(-0.156307\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.48528 0.301702
\(792\) 0 0
\(793\) −54.0000 −1.91760
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 41.1582i 1.45790i 0.684567 + 0.728950i \(0.259991\pi\)
−0.684567 + 0.728950i \(0.740009\pi\)
\(798\) 0 0
\(799\) 19.7990 0.700438
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 28.0000 21.1660i 0.988099 0.746932i
\(804\) 0 0
\(805\) 19.7990 0.697823
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 37.0405i 1.30067i −0.759648 0.650334i \(-0.774629\pi\)
0.759648 0.650334i \(-0.225371\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 14.9666i 0.524258i
\(816\) 0 0
\(817\) −28.0000 −0.979596
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11.3137 0.394851 0.197426 0.980318i \(-0.436742\pi\)
0.197426 + 0.980318i \(0.436742\pi\)
\(822\) 0 0
\(823\) 44.8999i 1.56511i 0.622580 + 0.782556i \(0.286084\pi\)
−0.622580 + 0.782556i \(0.713916\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 31.7490i 1.10402i 0.833837 + 0.552011i \(0.186139\pi\)
−0.833837 + 0.552011i \(0.813861\pi\)
\(828\) 0 0
\(829\) 44.8999i 1.55944i 0.626130 + 0.779719i \(0.284638\pi\)
−0.626130 + 0.779719i \(0.715362\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 26.4575i 0.916698i
\(834\) 0 0
\(835\) 52.9150i 1.83120i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.7083i 0.645882i −0.946419 0.322941i \(-0.895328\pi\)
0.946419 0.322941i \(-0.104672\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 18.7083i 0.643585i
\(846\) 0 0
\(847\) −4.24264 + 14.9666i −0.145779 + 0.514259i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −28.0000 −0.959828
\(852\) 0 0
\(853\) −49.4975 −1.69476 −0.847381 0.530986i \(-0.821822\pi\)
−0.847381 + 0.530986i \(0.821822\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.1660i 0.723017i 0.932369 + 0.361509i \(0.117738\pi\)
−0.932369 + 0.361509i \(0.882262\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 48.6415i 1.65578i 0.560892 + 0.827889i \(0.310458\pi\)
−0.560892 + 0.827889i \(0.689542\pi\)
\(864\) 0 0
\(865\) 10.5830i 0.359833i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.82843 3.74166i −0.0959478 0.126927i
\(870\) 0 0
\(871\) −8.48528 −0.287513
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 21.1660i 0.715542i
\(876\) 0 0
\(877\) 38.1838 1.28937 0.644687 0.764447i \(-0.276988\pi\)
0.644687 + 0.764447i \(0.276988\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) −6.00000 −0.201916 −0.100958 0.994891i \(-0.532191\pi\)
−0.100958 + 0.994891i \(0.532191\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.9706 0.569816 0.284908 0.958555i \(-0.408037\pi\)
0.284908 + 0.958555i \(0.408037\pi\)
\(888\) 0 0
\(889\) −10.0000 −0.335389
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 19.7990 0.662548
\(894\) 0 0
\(895\) 59.8665i 2.00112i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 21.1660i 0.705926i
\(900\) 0 0
\(901\) −19.7990 −0.659600
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −84.0000 −2.79225
\(906\) 0 0
\(907\) −38.0000 −1.26177 −0.630885 0.775877i \(-0.717308\pi\)
−0.630885 + 0.775877i \(0.717308\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 18.7083i 0.619833i −0.950764 0.309917i \(-0.899699\pi\)
0.950764 0.309917i \(-0.100301\pi\)
\(912\) 0 0
\(913\) −28.0000 + 21.1660i −0.926665 + 0.700493i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 29.9333i 0.988483i
\(918\) 0 0
\(919\) −46.6690 −1.53947 −0.769735 0.638364i \(-0.779612\pi\)
−0.769735 + 0.638364i \(0.779612\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 15.8745i 0.522516i
\(924\) 0 0
\(925\) 67.3498i 2.21445i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −50.0000 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(930\) 0 0
\(931\) 26.4575i 0.867110i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −39.5980 52.3832i −1.29499 1.71311i
\(936\) 0 0
\(937\) 31.7490i 1.03720i −0.855018 0.518598i \(-0.826454\pi\)
0.855018 0.518598i \(-0.173546\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11.3137 0.368816 0.184408 0.982850i \(-0.440963\pi\)
0.184408 + 0.982850i \(0.440963\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.0000 −1.16984 −0.584921 0.811090i \(-0.698875\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(948\) 0 0
\(949\) 44.8999i 1.45751i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.1660i 0.685634i −0.939402 0.342817i \(-0.888619\pi\)
0.939402 0.342817i \(-0.111381\pi\)
\(954\) 0 0
\(955\) 14.0000 0.453029
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.82843 −0.0913347
\(960\) 0 0
\(961\) −25.0000 −0.806452
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 15.5563 0.500258 0.250129 0.968212i \(-0.419527\pi\)
0.250129 + 0.968212i \(0.419527\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) 22.4499i 0.719712i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) 28.0000 + 37.0405i 0.894884 + 1.18382i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11.2250i 0.358021i 0.983847 + 0.179011i \(0.0572896\pi\)
−0.983847 + 0.179011i \(0.942710\pi\)
\(984\) 0 0
\(985\) 63.4980i 2.02322i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −19.7990 −0.629571
\(990\) 0 0
\(991\) 37.4166i 1.18858i 0.804252 + 0.594288i \(0.202566\pi\)
−0.804252 + 0.594288i \(0.797434\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 29.6985 0.940560 0.470280 0.882517i \(-0.344153\pi\)
0.470280 + 0.882517i \(0.344153\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.h.d.2287.4 4
3.2 odd 2 1056.2.h.d.175.2 4
4.3 odd 2 792.2.h.e.307.2 4
8.3 odd 2 inner 3168.2.h.d.2287.1 4
8.5 even 2 792.2.h.e.307.3 4
11.10 odd 2 inner 3168.2.h.d.2287.3 4
12.11 even 2 264.2.h.d.43.3 yes 4
24.5 odd 2 264.2.h.d.43.2 yes 4
24.11 even 2 1056.2.h.d.175.3 4
33.32 even 2 1056.2.h.d.175.1 4
44.43 even 2 792.2.h.e.307.4 4
88.21 odd 2 792.2.h.e.307.1 4
88.43 even 2 inner 3168.2.h.d.2287.2 4
132.131 odd 2 264.2.h.d.43.1 4
264.131 odd 2 1056.2.h.d.175.4 4
264.197 even 2 264.2.h.d.43.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.h.d.43.1 4 132.131 odd 2
264.2.h.d.43.2 yes 4 24.5 odd 2
264.2.h.d.43.3 yes 4 12.11 even 2
264.2.h.d.43.4 yes 4 264.197 even 2
792.2.h.e.307.1 4 88.21 odd 2
792.2.h.e.307.2 4 4.3 odd 2
792.2.h.e.307.3 4 8.5 even 2
792.2.h.e.307.4 4 44.43 even 2
1056.2.h.d.175.1 4 33.32 even 2
1056.2.h.d.175.2 4 3.2 odd 2
1056.2.h.d.175.3 4 24.11 even 2
1056.2.h.d.175.4 4 264.131 odd 2
3168.2.h.d.2287.1 4 8.3 odd 2 inner
3168.2.h.d.2287.2 4 88.43 even 2 inner
3168.2.h.d.2287.3 4 11.10 odd 2 inner
3168.2.h.d.2287.4 4 1.1 even 1 trivial