Properties

Label 792.2.bp.d.667.10
Level $792$
Weight $2$
Character 792.667
Analytic conductor $6.324$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(19,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 5, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.bp (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 264)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 667.10
Character \(\chi\) \(=\) 792.667
Dual form 792.2.bp.d.19.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.23741 + 0.684696i) q^{2} +(1.06238 + 1.69450i) q^{4} +(0.409298 + 0.563350i) q^{5} +(-0.510340 - 1.57067i) q^{7} +(0.154385 + 2.82421i) q^{8} +(0.120747 + 0.977341i) q^{10} +(-2.08351 + 2.58050i) q^{11} +(4.92015 + 3.57470i) q^{13} +(0.443927 - 2.29299i) q^{14} +(-1.74269 + 3.60042i) q^{16} +(-2.23176 - 3.07176i) q^{17} +(5.66454 + 1.84052i) q^{19} +(-0.519768 + 1.29205i) q^{20} +(-4.34502 + 1.76658i) q^{22} +8.64584i q^{23} +(1.39525 - 4.29413i) q^{25} +(3.64068 + 7.79219i) q^{26} +(2.11932 - 2.53342i) q^{28} +(-1.33248 - 4.10095i) q^{29} +(-4.09860 + 5.64124i) q^{31} +(-4.62162 + 3.26200i) q^{32} +(-0.658392 - 5.32912i) q^{34} +(0.675953 - 0.930370i) q^{35} +(2.02338 - 0.657436i) q^{37} +(5.74918 + 6.15598i) q^{38} +(-1.52783 + 1.24292i) q^{40} +(-0.736879 - 0.239427i) q^{41} -10.1720i q^{43} +(-6.58615 - 0.789033i) q^{44} +(-5.91977 + 10.6985i) q^{46} +(5.29780 + 1.72136i) q^{47} +(3.45658 - 2.51135i) q^{49} +(4.66667 - 4.35829i) q^{50} +(-0.830261 + 12.1349i) q^{52} +(2.57874 - 3.54933i) q^{53} +(-2.30650 - 0.117551i) q^{55} +(4.35710 - 1.68380i) q^{56} +(1.15908 - 5.98691i) q^{58} +(-3.78102 - 11.6368i) q^{59} +(0.239653 - 0.174118i) q^{61} +(-8.93420 + 4.17425i) q^{62} +(-7.95233 + 0.872033i) q^{64} +4.23488i q^{65} -10.7130 q^{67} +(2.83412 - 7.04512i) q^{68} +(1.47345 - 0.688429i) q^{70} +(-1.14044 - 1.56968i) q^{71} +(-6.90989 + 2.24516i) q^{73} +(2.95390 + 0.571881i) q^{74} +(2.89914 + 11.5539i) q^{76} +(5.11640 + 1.95556i) q^{77} +(-2.76926 - 2.01198i) q^{79} +(-2.74158 + 0.491902i) q^{80} +(-0.747889 - 0.800808i) q^{82} +(1.90883 + 2.62729i) q^{83} +(0.817020 - 2.51453i) q^{85} +(6.96476 - 12.5870i) q^{86} +(-7.60955 - 5.48587i) q^{88} +6.63247 q^{89} +(3.10371 - 9.55222i) q^{91} +(-14.6504 + 9.18519i) q^{92} +(5.37696 + 5.75742i) q^{94} +(1.28163 + 3.94444i) q^{95} +(-3.48568 - 2.53250i) q^{97} +(5.99672 - 0.740872i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{4} - 4 q^{11} + 16 q^{14} + 20 q^{16} - 25 q^{20} + 3 q^{22} - 4 q^{25} - 4 q^{26} - 25 q^{28} - 26 q^{38} - 65 q^{40} + 60 q^{41} + 43 q^{44} - 5 q^{46} - 12 q^{49} + 80 q^{50} - 15 q^{52}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.23741 + 0.684696i 0.874983 + 0.484153i
\(3\) 0 0
\(4\) 1.06238 + 1.69450i 0.531191 + 0.847252i
\(5\) 0.409298 + 0.563350i 0.183044 + 0.251938i 0.890672 0.454647i \(-0.150235\pi\)
−0.707628 + 0.706585i \(0.750235\pi\)
\(6\) 0 0
\(7\) −0.510340 1.57067i −0.192890 0.593656i −0.999995 0.00324682i \(-0.998967\pi\)
0.807104 0.590409i \(-0.201033\pi\)
\(8\) 0.154385 + 2.82421i 0.0545835 + 0.998509i
\(9\) 0 0
\(10\) 0.120747 + 0.977341i 0.0381835 + 0.309062i
\(11\) −2.08351 + 2.58050i −0.628201 + 0.778051i
\(12\) 0 0
\(13\) 4.92015 + 3.57470i 1.36460 + 0.991443i 0.998137 + 0.0610124i \(0.0194329\pi\)
0.366468 + 0.930431i \(0.380567\pi\)
\(14\) 0.443927 2.29299i 0.118644 0.612827i
\(15\) 0 0
\(16\) −1.74269 + 3.60042i −0.435672 + 0.900106i
\(17\) −2.23176 3.07176i −0.541282 0.745011i 0.447515 0.894277i \(-0.352309\pi\)
−0.988797 + 0.149265i \(0.952309\pi\)
\(18\) 0 0
\(19\) 5.66454 + 1.84052i 1.29954 + 0.422245i 0.875420 0.483364i \(-0.160585\pi\)
0.424116 + 0.905608i \(0.360585\pi\)
\(20\) −0.519768 + 1.29205i −0.116224 + 0.288911i
\(21\) 0 0
\(22\) −4.34502 + 1.76658i −0.926362 + 0.376636i
\(23\) 8.64584i 1.80278i 0.433006 + 0.901391i \(0.357453\pi\)
−0.433006 + 0.901391i \(0.642547\pi\)
\(24\) 0 0
\(25\) 1.39525 4.29413i 0.279049 0.858825i
\(26\) 3.64068 + 7.79219i 0.713996 + 1.52817i
\(27\) 0 0
\(28\) 2.11932 2.53342i 0.400514 0.478771i
\(29\) −1.33248 4.10095i −0.247435 0.761526i −0.995226 0.0975928i \(-0.968886\pi\)
0.747791 0.663934i \(-0.231114\pi\)
\(30\) 0 0
\(31\) −4.09860 + 5.64124i −0.736131 + 1.01320i 0.262701 + 0.964877i \(0.415387\pi\)
−0.998832 + 0.0483198i \(0.984613\pi\)
\(32\) −4.62162 + 3.26200i −0.816995 + 0.576645i
\(33\) 0 0
\(34\) −0.658392 5.32912i −0.112913 0.913936i
\(35\) 0.675953 0.930370i 0.114257 0.157261i
\(36\) 0 0
\(37\) 2.02338 0.657436i 0.332642 0.108082i −0.137934 0.990441i \(-0.544046\pi\)
0.470576 + 0.882360i \(0.344046\pi\)
\(38\) 5.74918 + 6.15598i 0.932640 + 0.998631i
\(39\) 0 0
\(40\) −1.52783 + 1.24292i −0.241571 + 0.196522i
\(41\) −0.736879 0.239427i −0.115081 0.0373921i 0.250910 0.968010i \(-0.419270\pi\)
−0.365991 + 0.930618i \(0.619270\pi\)
\(42\) 0 0
\(43\) 10.1720i 1.55122i −0.631211 0.775611i \(-0.717442\pi\)
0.631211 0.775611i \(-0.282558\pi\)
\(44\) −6.58615 0.789033i −0.992900 0.118951i
\(45\) 0 0
\(46\) −5.91977 + 10.6985i −0.872823 + 1.57740i
\(47\) 5.29780 + 1.72136i 0.772764 + 0.251086i 0.668748 0.743489i \(-0.266831\pi\)
0.104016 + 0.994576i \(0.466831\pi\)
\(48\) 0 0
\(49\) 3.45658 2.51135i 0.493797 0.358764i
\(50\) 4.66667 4.35829i 0.659967 0.616355i
\(51\) 0 0
\(52\) −0.830261 + 12.1349i −0.115136 + 1.68281i
\(53\) 2.57874 3.54933i 0.354217 0.487538i −0.594309 0.804237i \(-0.702574\pi\)
0.948526 + 0.316699i \(0.102574\pi\)
\(54\) 0 0
\(55\) −2.30650 0.117551i −0.311009 0.0158505i
\(56\) 4.35710 1.68380i 0.582242 0.225007i
\(57\) 0 0
\(58\) 1.15908 5.98691i 0.152194 0.786119i
\(59\) −3.78102 11.6368i −0.492247 1.51498i −0.821204 0.570634i \(-0.806697\pi\)
0.328958 0.944345i \(-0.393303\pi\)
\(60\) 0 0
\(61\) 0.239653 0.174118i 0.0306845 0.0222936i −0.572337 0.820018i \(-0.693963\pi\)
0.603022 + 0.797725i \(0.293963\pi\)
\(62\) −8.93420 + 4.17425i −1.13464 + 0.530130i
\(63\) 0 0
\(64\) −7.95233 + 0.872033i −0.994041 + 0.109004i
\(65\) 4.23488i 0.525273i
\(66\) 0 0
\(67\) −10.7130 −1.30880 −0.654402 0.756147i \(-0.727079\pi\)
−0.654402 + 0.756147i \(0.727079\pi\)
\(68\) 2.83412 7.04512i 0.343688 0.854346i
\(69\) 0 0
\(70\) 1.47345 0.688429i 0.176111 0.0822830i
\(71\) −1.14044 1.56968i −0.135345 0.186287i 0.735964 0.677020i \(-0.236729\pi\)
−0.871310 + 0.490733i \(0.836729\pi\)
\(72\) 0 0
\(73\) −6.90989 + 2.24516i −0.808741 + 0.262776i −0.684064 0.729422i \(-0.739789\pi\)
−0.124677 + 0.992197i \(0.539789\pi\)
\(74\) 2.95390 + 0.571881i 0.343384 + 0.0664798i
\(75\) 0 0
\(76\) 2.89914 + 11.5539i 0.332554 + 1.32533i
\(77\) 5.11640 + 1.95556i 0.583068 + 0.222857i
\(78\) 0 0
\(79\) −2.76926 2.01198i −0.311566 0.226366i 0.421002 0.907060i \(-0.361678\pi\)
−0.732568 + 0.680694i \(0.761678\pi\)
\(80\) −2.74158 + 0.491902i −0.306518 + 0.0549963i
\(81\) 0 0
\(82\) −0.747889 0.800808i −0.0825906 0.0884344i
\(83\) 1.90883 + 2.62729i 0.209522 + 0.288382i 0.900825 0.434183i \(-0.142963\pi\)
−0.691303 + 0.722565i \(0.742963\pi\)
\(84\) 0 0
\(85\) 0.817020 2.51453i 0.0886183 0.272739i
\(86\) 6.96476 12.5870i 0.751030 1.35729i
\(87\) 0 0
\(88\) −7.60955 5.48587i −0.811180 0.584796i
\(89\) 6.63247 0.703040 0.351520 0.936180i \(-0.385665\pi\)
0.351520 + 0.936180i \(0.385665\pi\)
\(90\) 0 0
\(91\) 3.10371 9.55222i 0.325357 1.00135i
\(92\) −14.6504 + 9.18519i −1.52741 + 0.957622i
\(93\) 0 0
\(94\) 5.37696 + 5.75742i 0.554591 + 0.593832i
\(95\) 1.28163 + 3.94444i 0.131492 + 0.404691i
\(96\) 0 0
\(97\) −3.48568 2.53250i −0.353917 0.257136i 0.396593 0.917994i \(-0.370192\pi\)
−0.750511 + 0.660858i \(0.770192\pi\)
\(98\) 5.99672 0.740872i 0.605761 0.0748394i
\(99\) 0 0
\(100\) 8.75870 2.19775i 0.875870 0.219775i
\(101\) −4.21872 3.06508i −0.419778 0.304987i 0.357770 0.933810i \(-0.383537\pi\)
−0.777549 + 0.628823i \(0.783537\pi\)
\(102\) 0 0
\(103\) 3.29822 1.07166i 0.324983 0.105593i −0.141982 0.989869i \(-0.545347\pi\)
0.466965 + 0.884276i \(0.345347\pi\)
\(104\) −9.33610 + 14.4474i −0.915480 + 1.41669i
\(105\) 0 0
\(106\) 5.62118 2.62634i 0.545977 0.255092i
\(107\) 7.88188 + 2.56098i 0.761970 + 0.247579i 0.664124 0.747623i \(-0.268805\pi\)
0.0978460 + 0.995202i \(0.468805\pi\)
\(108\) 0 0
\(109\) 17.7781 1.70284 0.851419 0.524487i \(-0.175743\pi\)
0.851419 + 0.524487i \(0.175743\pi\)
\(110\) −2.77361 1.72471i −0.264453 0.164445i
\(111\) 0 0
\(112\) 6.54442 + 0.899739i 0.618390 + 0.0850174i
\(113\) 2.30521 7.09472i 0.216856 0.667415i −0.782160 0.623077i \(-0.785882\pi\)
0.999017 0.0443379i \(-0.0141178\pi\)
\(114\) 0 0
\(115\) −4.87063 + 3.53872i −0.454189 + 0.329988i
\(116\) 5.53347 6.61466i 0.513770 0.614156i
\(117\) 0 0
\(118\) 3.28898 16.9883i 0.302775 1.56390i
\(119\) −3.68575 + 5.07300i −0.337872 + 0.465041i
\(120\) 0 0
\(121\) −2.31799 10.7530i −0.210726 0.977545i
\(122\) 0.415768 0.0513666i 0.0376419 0.00465051i
\(123\) 0 0
\(124\) −13.9134 0.951942i −1.24946 0.0854869i
\(125\) 6.30146 2.04747i 0.563619 0.183131i
\(126\) 0 0
\(127\) 5.14844 3.74056i 0.456850 0.331921i −0.335444 0.942060i \(-0.608886\pi\)
0.792294 + 0.610139i \(0.208886\pi\)
\(128\) −10.4374 4.36586i −0.922544 0.385892i
\(129\) 0 0
\(130\) −2.89961 + 5.24030i −0.254313 + 0.459605i
\(131\) 0.239732i 0.0209455i 0.999945 + 0.0104727i \(0.00333363\pi\)
−0.999945 + 0.0104727i \(0.996666\pi\)
\(132\) 0 0
\(133\) 9.83639i 0.852923i
\(134\) −13.2564 7.33516i −1.14518 0.633662i
\(135\) 0 0
\(136\) 8.33075 6.77721i 0.714356 0.581141i
\(137\) 2.39415 1.73945i 0.204546 0.148611i −0.480797 0.876832i \(-0.659652\pi\)
0.685343 + 0.728221i \(0.259652\pi\)
\(138\) 0 0
\(139\) 1.50194 0.488010i 0.127393 0.0413925i −0.244627 0.969617i \(-0.578665\pi\)
0.372020 + 0.928225i \(0.378665\pi\)
\(140\) 2.29464 + 0.156997i 0.193932 + 0.0132687i
\(141\) 0 0
\(142\) −0.336441 2.72320i −0.0282335 0.228526i
\(143\) −19.4757 + 5.24855i −1.62864 + 0.438906i
\(144\) 0 0
\(145\) 1.76489 2.42916i 0.146566 0.201731i
\(146\) −10.0876 1.95298i −0.834859 0.161630i
\(147\) 0 0
\(148\) 3.26363 + 2.73018i 0.268269 + 0.224419i
\(149\) 14.7822 10.7399i 1.21101 0.879849i 0.215687 0.976463i \(-0.430801\pi\)
0.995322 + 0.0966133i \(0.0308010\pi\)
\(150\) 0 0
\(151\) −4.68718 + 14.4256i −0.381437 + 1.17394i 0.557595 + 0.830113i \(0.311724\pi\)
−0.939032 + 0.343829i \(0.888276\pi\)
\(152\) −4.32350 + 16.2820i −0.350682 + 1.32065i
\(153\) 0 0
\(154\) 4.99214 + 5.92302i 0.402278 + 0.477290i
\(155\) −4.85554 −0.390007
\(156\) 0 0
\(157\) −6.33215 2.05744i −0.505360 0.164202i 0.0452308 0.998977i \(-0.485598\pi\)
−0.550591 + 0.834775i \(0.685598\pi\)
\(158\) −2.04912 4.38575i −0.163019 0.348912i
\(159\) 0 0
\(160\) −3.72927 1.26846i −0.294824 0.100281i
\(161\) 13.5797 4.41232i 1.07023 0.347739i
\(162\) 0 0
\(163\) −0.612537 0.445034i −0.0479776 0.0348578i 0.563538 0.826090i \(-0.309440\pi\)
−0.611516 + 0.791232i \(0.709440\pi\)
\(164\) −0.377138 1.50301i −0.0294495 0.117365i
\(165\) 0 0
\(166\) 0.563125 + 4.55801i 0.0437069 + 0.353770i
\(167\) −11.1349 8.08998i −0.861644 0.626021i 0.0666874 0.997774i \(-0.478757\pi\)
−0.928332 + 0.371753i \(0.878757\pi\)
\(168\) 0 0
\(169\) 7.41220 + 22.8124i 0.570169 + 1.75480i
\(170\) 2.73268 2.55210i 0.209587 0.195737i
\(171\) 0 0
\(172\) 17.2366 10.8066i 1.31428 0.823996i
\(173\) 1.35890 4.18227i 0.103315 0.317972i −0.886016 0.463655i \(-0.846538\pi\)
0.989331 + 0.145683i \(0.0465379\pi\)
\(174\) 0 0
\(175\) −7.45669 −0.563672
\(176\) −5.65999 11.9985i −0.426638 0.904422i
\(177\) 0 0
\(178\) 8.20710 + 4.54122i 0.615148 + 0.340379i
\(179\) 5.23266 16.1045i 0.391107 1.20370i −0.540845 0.841122i \(-0.681895\pi\)
0.931952 0.362582i \(-0.118105\pi\)
\(180\) 0 0
\(181\) −10.7847 14.8439i −0.801620 1.10334i −0.992563 0.121734i \(-0.961155\pi\)
0.190943 0.981601i \(-0.438845\pi\)
\(182\) 10.3809 9.69495i 0.769486 0.718638i
\(183\) 0 0
\(184\) −24.4177 + 1.33479i −1.80009 + 0.0984021i
\(185\) 1.19853 + 0.870785i 0.0881178 + 0.0640214i
\(186\) 0 0
\(187\) 12.5766 + 0.640964i 0.919691 + 0.0468719i
\(188\) 2.71144 + 10.8059i 0.197752 + 0.788100i
\(189\) 0 0
\(190\) −1.11484 + 5.75843i −0.0808792 + 0.417760i
\(191\) −23.5927 + 7.66573i −1.70711 + 0.554673i −0.989847 0.142134i \(-0.954604\pi\)
−0.717259 + 0.696806i \(0.754604\pi\)
\(192\) 0 0
\(193\) 0.0138035 + 0.0189988i 0.000993595 + 0.00136757i 0.809514 0.587101i \(-0.199731\pi\)
−0.808520 + 0.588469i \(0.799731\pi\)
\(194\) −2.57924 5.52038i −0.185179 0.396340i
\(195\) 0 0
\(196\) 7.92770 + 3.18917i 0.566264 + 0.227798i
\(197\) −0.183455 −0.0130706 −0.00653530 0.999979i \(-0.502080\pi\)
−0.00653530 + 0.999979i \(0.502080\pi\)
\(198\) 0 0
\(199\) 14.8031i 1.04936i −0.851298 0.524682i \(-0.824184\pi\)
0.851298 0.524682i \(-0.175816\pi\)
\(200\) 12.3429 + 3.27752i 0.872776 + 0.231756i
\(201\) 0 0
\(202\) −3.12165 6.68131i −0.219638 0.470095i
\(203\) −5.76120 + 4.18575i −0.404357 + 0.293782i
\(204\) 0 0
\(205\) −0.166722 0.513118i −0.0116444 0.0358377i
\(206\) 4.81501 + 0.932196i 0.335478 + 0.0649491i
\(207\) 0 0
\(208\) −21.4447 + 11.4850i −1.48692 + 0.796344i
\(209\) −16.5516 + 10.7826i −1.14490 + 0.745850i
\(210\) 0 0
\(211\) −6.77305 + 9.32230i −0.466276 + 0.641774i −0.975795 0.218685i \(-0.929823\pi\)
0.509519 + 0.860459i \(0.329823\pi\)
\(212\) 8.75397 + 0.598939i 0.601225 + 0.0411353i
\(213\) 0 0
\(214\) 7.99965 + 8.56568i 0.546845 + 0.585538i
\(215\) 5.73042 4.16340i 0.390812 0.283941i
\(216\) 0 0
\(217\) 10.9522 + 3.55858i 0.743483 + 0.241572i
\(218\) 21.9989 + 12.1726i 1.48995 + 0.824434i
\(219\) 0 0
\(220\) −2.25120 4.03326i −0.151776 0.271922i
\(221\) 23.0914i 1.55330i
\(222\) 0 0
\(223\) −9.63345 3.13010i −0.645104 0.209607i −0.0318497 0.999493i \(-0.510140\pi\)
−0.613254 + 0.789886i \(0.710140\pi\)
\(224\) 7.48211 + 5.59429i 0.499919 + 0.373784i
\(225\) 0 0
\(226\) 7.71023 7.20073i 0.512877 0.478985i
\(227\) 8.77003 2.84955i 0.582087 0.189132i −0.00314828 0.999995i \(-0.501002\pi\)
0.585235 + 0.810863i \(0.301002\pi\)
\(228\) 0 0
\(229\) −15.0976 + 20.7800i −0.997676 + 1.37318i −0.0709359 + 0.997481i \(0.522599\pi\)
−0.926740 + 0.375703i \(0.877401\pi\)
\(230\) −8.44994 + 1.04396i −0.557172 + 0.0688365i
\(231\) 0 0
\(232\) 11.3762 4.39632i 0.746885 0.288633i
\(233\) −14.1060 + 19.4152i −0.924112 + 1.27193i 0.0380001 + 0.999278i \(0.487901\pi\)
−0.962112 + 0.272654i \(0.912099\pi\)
\(234\) 0 0
\(235\) 1.19865 + 3.68907i 0.0781913 + 0.240648i
\(236\) 15.7017 18.7697i 1.02209 1.22180i
\(237\) 0 0
\(238\) −8.03426 + 3.75378i −0.520783 + 0.243321i
\(239\) 4.93373 15.1845i 0.319137 0.982201i −0.654882 0.755731i \(-0.727282\pi\)
0.974018 0.226470i \(-0.0727185\pi\)
\(240\) 0 0
\(241\) 9.42736i 0.607269i −0.952789 0.303635i \(-0.901800\pi\)
0.952789 0.303635i \(-0.0982003\pi\)
\(242\) 4.49423 14.8930i 0.288900 0.957359i
\(243\) 0 0
\(244\) 0.549647 + 0.221113i 0.0351876 + 0.0141553i
\(245\) 2.82954 + 0.919373i 0.180773 + 0.0587366i
\(246\) 0 0
\(247\) 21.2911 + 29.3047i 1.35472 + 1.86461i
\(248\) −16.5648 10.7044i −1.05187 0.679730i
\(249\) 0 0
\(250\) 9.19940 + 1.78102i 0.581821 + 0.112642i
\(251\) 3.20392 + 2.32778i 0.202229 + 0.146928i 0.684291 0.729209i \(-0.260112\pi\)
−0.482062 + 0.876137i \(0.660112\pi\)
\(252\) 0 0
\(253\) −22.3106 18.0137i −1.40266 1.13251i
\(254\) 8.93190 1.10350i 0.560437 0.0692399i
\(255\) 0 0
\(256\) −9.92608 12.5488i −0.620380 0.784301i
\(257\) −6.26844 19.2923i −0.391015 1.20342i −0.932022 0.362401i \(-0.881957\pi\)
0.541008 0.841018i \(-0.318043\pi\)
\(258\) 0 0
\(259\) −2.06522 2.84254i −0.128327 0.176627i
\(260\) −7.17603 + 4.49907i −0.445038 + 0.279020i
\(261\) 0 0
\(262\) −0.164143 + 0.296647i −0.0101408 + 0.0183269i
\(263\) 4.86501 0.299989 0.149995 0.988687i \(-0.452074\pi\)
0.149995 + 0.988687i \(0.452074\pi\)
\(264\) 0 0
\(265\) 3.05499 0.187667
\(266\) 6.73494 12.1717i 0.412946 0.746294i
\(267\) 0 0
\(268\) −11.3813 18.1533i −0.695225 1.10889i
\(269\) 16.9712 + 23.3589i 1.03475 + 1.42422i 0.901318 + 0.433158i \(0.142601\pi\)
0.133435 + 0.991058i \(0.457399\pi\)
\(270\) 0 0
\(271\) 4.51837 + 13.9061i 0.274472 + 0.844737i 0.989359 + 0.145497i \(0.0464781\pi\)
−0.714887 + 0.699240i \(0.753522\pi\)
\(272\) 14.9489 2.68218i 0.906410 0.162631i
\(273\) 0 0
\(274\) 4.15354 0.513155i 0.250925 0.0310008i
\(275\) 8.17400 + 12.5473i 0.492911 + 0.756630i
\(276\) 0 0
\(277\) 22.3661 + 16.2499i 1.34385 + 0.976363i 0.999293 + 0.0375974i \(0.0119705\pi\)
0.344556 + 0.938766i \(0.388030\pi\)
\(278\) 2.19266 + 0.424503i 0.131507 + 0.0254600i
\(279\) 0 0
\(280\) 2.73192 + 1.76540i 0.163263 + 0.105503i
\(281\) 16.8765 + 23.2286i 1.00677 + 1.38570i 0.921078 + 0.389378i \(0.127310\pi\)
0.0856916 + 0.996322i \(0.472690\pi\)
\(282\) 0 0
\(283\) 14.9354 + 4.85281i 0.887818 + 0.288469i 0.717200 0.696868i \(-0.245424\pi\)
0.170618 + 0.985337i \(0.445424\pi\)
\(284\) 1.44825 3.60009i 0.0859378 0.213626i
\(285\) 0 0
\(286\) −27.6931 6.84031i −1.63753 0.404476i
\(287\) 1.27958i 0.0755312i
\(288\) 0 0
\(289\) 0.798350 2.45707i 0.0469618 0.144533i
\(290\) 3.84713 1.79746i 0.225911 0.105551i
\(291\) 0 0
\(292\) −11.1454 9.32361i −0.652233 0.545623i
\(293\) 5.97643 + 18.3936i 0.349147 + 1.07456i 0.959326 + 0.282300i \(0.0910975\pi\)
−0.610179 + 0.792264i \(0.708902\pi\)
\(294\) 0 0
\(295\) 5.00802 6.89294i 0.291578 0.401323i
\(296\) 2.16912 + 5.61296i 0.126077 + 0.326246i
\(297\) 0 0
\(298\) 25.6453 3.16838i 1.48559 0.183539i
\(299\) −30.9063 + 42.5388i −1.78736 + 2.46008i
\(300\) 0 0
\(301\) −15.9769 + 5.19120i −0.920892 + 0.299216i
\(302\) −15.6772 + 14.6412i −0.902119 + 0.842506i
\(303\) 0 0
\(304\) −16.4982 + 17.1873i −0.946236 + 0.985759i
\(305\) 0.196179 + 0.0637424i 0.0112332 + 0.00364988i
\(306\) 0 0
\(307\) 17.8955i 1.02135i 0.859774 + 0.510675i \(0.170604\pi\)
−0.859774 + 0.510675i \(0.829396\pi\)
\(308\) 2.12187 + 10.7473i 0.120905 + 0.612385i
\(309\) 0 0
\(310\) −6.00831 3.32457i −0.341249 0.188823i
\(311\) −0.940857 0.305703i −0.0533511 0.0173348i 0.282220 0.959350i \(-0.408929\pi\)
−0.335571 + 0.942015i \(0.608929\pi\)
\(312\) 0 0
\(313\) −10.9210 + 7.93456i −0.617291 + 0.448488i −0.851974 0.523584i \(-0.824595\pi\)
0.234683 + 0.972072i \(0.424595\pi\)
\(314\) −6.42676 6.88150i −0.362683 0.388345i
\(315\) 0 0
\(316\) 0.467303 6.83001i 0.0262879 0.384218i
\(317\) −5.19658 + 7.15248i −0.291869 + 0.401724i −0.929620 0.368519i \(-0.879865\pi\)
0.637751 + 0.770243i \(0.279865\pi\)
\(318\) 0 0
\(319\) 13.3587 + 5.10589i 0.747945 + 0.285875i
\(320\) −3.74613 4.12302i −0.209415 0.230484i
\(321\) 0 0
\(322\) 19.8248 + 3.83812i 1.10479 + 0.213890i
\(323\) −6.98828 21.5077i −0.388839 1.19672i
\(324\) 0 0
\(325\) 22.2150 16.1402i 1.23227 0.895295i
\(326\) −0.453248 0.970093i −0.0251031 0.0537285i
\(327\) 0 0
\(328\) 0.562428 2.11807i 0.0310549 0.116951i
\(329\) 9.19955i 0.507188i
\(330\) 0 0
\(331\) 9.05146 0.497513 0.248757 0.968566i \(-0.419978\pi\)
0.248757 + 0.968566i \(0.419978\pi\)
\(332\) −2.42403 + 6.02571i −0.133036 + 0.330704i
\(333\) 0 0
\(334\) −8.23929 17.6347i −0.450834 0.964926i
\(335\) −4.38482 6.03518i −0.239568 0.329737i
\(336\) 0 0
\(337\) −12.9875 + 4.21989i −0.707474 + 0.229872i −0.640584 0.767888i \(-0.721308\pi\)
−0.0668898 + 0.997760i \(0.521308\pi\)
\(338\) −6.44761 + 33.3035i −0.350704 + 1.81147i
\(339\) 0 0
\(340\) 5.12887 1.28695i 0.278152 0.0697945i
\(341\) −6.01777 22.3300i −0.325880 1.20924i
\(342\) 0 0
\(343\) −15.0611 10.9426i −0.813225 0.590842i
\(344\) 28.7280 1.57041i 1.54891 0.0846711i
\(345\) 0 0
\(346\) 4.54510 4.24476i 0.244346 0.228200i
\(347\) −1.37075 1.88668i −0.0735859 0.101282i 0.770638 0.637274i \(-0.219938\pi\)
−0.844223 + 0.535991i \(0.819938\pi\)
\(348\) 0 0
\(349\) 4.49635 13.8383i 0.240684 0.740750i −0.755632 0.654996i \(-0.772670\pi\)
0.996316 0.0857534i \(-0.0273297\pi\)
\(350\) −9.22700 5.10556i −0.493204 0.272904i
\(351\) 0 0
\(352\) 1.21159 18.7225i 0.0645779 0.997913i
\(353\) −23.7432 −1.26372 −0.631861 0.775082i \(-0.717709\pi\)
−0.631861 + 0.775082i \(0.717709\pi\)
\(354\) 0 0
\(355\) 0.417501 1.28494i 0.0221586 0.0681973i
\(356\) 7.04621 + 11.2387i 0.373449 + 0.595652i
\(357\) 0 0
\(358\) 17.5016 16.3451i 0.924990 0.863865i
\(359\) 3.27128 + 10.0680i 0.172652 + 0.531367i 0.999518 0.0310309i \(-0.00987904\pi\)
−0.826867 + 0.562398i \(0.809879\pi\)
\(360\) 0 0
\(361\) 13.3282 + 9.68351i 0.701484 + 0.509658i
\(362\) −3.18159 25.7522i −0.167221 1.35351i
\(363\) 0 0
\(364\) 19.4836 4.88887i 1.02122 0.256247i
\(365\) −4.09301 2.97375i −0.214238 0.155653i
\(366\) 0 0
\(367\) −24.8159 + 8.06317i −1.29538 + 0.420894i −0.873971 0.485978i \(-0.838464\pi\)
−0.421407 + 0.906872i \(0.638464\pi\)
\(368\) −31.1287 15.0670i −1.62269 0.785421i
\(369\) 0 0
\(370\) 0.886856 + 1.89815i 0.0461055 + 0.0986801i
\(371\) −6.89085 2.23897i −0.357755 0.116242i
\(372\) 0 0
\(373\) −16.7165 −0.865549 −0.432774 0.901502i \(-0.642465\pi\)
−0.432774 + 0.901502i \(0.642465\pi\)
\(374\) 15.1236 + 9.40428i 0.782021 + 0.486284i
\(375\) 0 0
\(376\) −4.04358 + 15.2279i −0.208532 + 0.785317i
\(377\) 8.10365 24.9405i 0.417359 1.28450i
\(378\) 0 0
\(379\) −20.2745 + 14.7303i −1.04143 + 0.756643i −0.970564 0.240842i \(-0.922576\pi\)
−0.0708660 + 0.997486i \(0.522576\pi\)
\(380\) −5.32230 + 6.36223i −0.273028 + 0.326375i
\(381\) 0 0
\(382\) −34.4426 6.66815i −1.76224 0.341172i
\(383\) −5.14355 + 7.07949i −0.262823 + 0.361745i −0.919950 0.392035i \(-0.871771\pi\)
0.657127 + 0.753780i \(0.271771\pi\)
\(384\) 0 0
\(385\) 0.992468 + 3.68273i 0.0505808 + 0.187689i
\(386\) 0.00407215 + 0.0329606i 0.000207267 + 0.00167765i
\(387\) 0 0
\(388\) 0.588198 8.59698i 0.0298612 0.436446i
\(389\) 21.4991 6.98549i 1.09005 0.354179i 0.291784 0.956484i \(-0.405751\pi\)
0.798265 + 0.602306i \(0.205751\pi\)
\(390\) 0 0
\(391\) 26.5579 19.2955i 1.34309 0.975814i
\(392\) 7.62623 + 9.37438i 0.385183 + 0.473478i
\(393\) 0 0
\(394\) −0.227009 0.125611i −0.0114366 0.00632817i
\(395\) 2.38356i 0.119930i
\(396\) 0 0
\(397\) 2.78536i 0.139793i −0.997554 0.0698965i \(-0.977733\pi\)
0.997554 0.0698965i \(-0.0222669\pi\)
\(398\) 10.1356 18.3175i 0.508053 0.918175i
\(399\) 0 0
\(400\) 13.0292 + 12.5068i 0.651460 + 0.625340i
\(401\) −5.19019 + 3.77089i −0.259186 + 0.188309i −0.709788 0.704415i \(-0.751209\pi\)
0.450602 + 0.892725i \(0.351209\pi\)
\(402\) 0 0
\(403\) −40.3315 + 13.1045i −2.00905 + 0.652781i
\(404\) 0.711896 10.4049i 0.0354181 0.517664i
\(405\) 0 0
\(406\) −9.99495 + 1.23484i −0.496041 + 0.0612840i
\(407\) −2.51921 + 6.59111i −0.124873 + 0.326709i
\(408\) 0 0
\(409\) −17.5440 + 24.1473i −0.867496 + 1.19401i 0.112234 + 0.993682i \(0.464199\pi\)
−0.979730 + 0.200324i \(0.935801\pi\)
\(410\) 0.145026 0.749092i 0.00716231 0.0369950i
\(411\) 0 0
\(412\) 5.31989 + 4.45033i 0.262092 + 0.219252i
\(413\) −16.3479 + 11.8774i −0.804426 + 0.584450i
\(414\) 0 0
\(415\) −0.698800 + 2.15068i −0.0343027 + 0.105573i
\(416\) −34.3997 0.471378i −1.68659 0.0231112i
\(417\) 0 0
\(418\) −27.8640 + 2.00975i −1.36287 + 0.0983001i
\(419\) 2.52141 0.123179 0.0615895 0.998102i \(-0.480383\pi\)
0.0615895 + 0.998102i \(0.480383\pi\)
\(420\) 0 0
\(421\) 28.8541 + 9.37526i 1.40626 + 0.456922i 0.911210 0.411942i \(-0.135149\pi\)
0.495051 + 0.868864i \(0.335149\pi\)
\(422\) −14.7640 + 6.89806i −0.718701 + 0.335792i
\(423\) 0 0
\(424\) 10.4222 + 6.73494i 0.506146 + 0.327078i
\(425\) −16.3044 + 5.29762i −0.790879 + 0.256972i
\(426\) 0 0
\(427\) −0.395786 0.287555i −0.0191534 0.0139158i
\(428\) 4.03398 + 16.0766i 0.194990 + 0.777092i
\(429\) 0 0
\(430\) 9.94156 1.22824i 0.479425 0.0592311i
\(431\) 21.0004 + 15.2577i 1.01155 + 0.734937i 0.964534 0.263957i \(-0.0850278\pi\)
0.0470191 + 0.998894i \(0.485028\pi\)
\(432\) 0 0
\(433\) −9.50922 29.2664i −0.456984 1.40645i −0.868790 0.495180i \(-0.835102\pi\)
0.411806 0.911271i \(-0.364898\pi\)
\(434\) 11.1158 + 11.9024i 0.533577 + 0.571331i
\(435\) 0 0
\(436\) 18.8872 + 30.1251i 0.904532 + 1.44273i
\(437\) −15.9129 + 48.9747i −0.761215 + 2.34278i
\(438\) 0 0
\(439\) −13.9098 −0.663880 −0.331940 0.943301i \(-0.607703\pi\)
−0.331940 + 0.943301i \(0.607703\pi\)
\(440\) −0.0241025 6.53219i −0.00114904 0.311410i
\(441\) 0 0
\(442\) 15.8106 28.5736i 0.752034 1.35911i
\(443\) −2.80215 + 8.62415i −0.133134 + 0.409746i −0.995295 0.0968892i \(-0.969111\pi\)
0.862161 + 0.506635i \(0.169111\pi\)
\(444\) 0 0
\(445\) 2.71465 + 3.73640i 0.128687 + 0.177122i
\(446\) −9.77739 10.4692i −0.462973 0.495732i
\(447\) 0 0
\(448\) 5.42807 + 12.0454i 0.256452 + 0.569092i
\(449\) 14.5319 + 10.5580i 0.685803 + 0.498265i 0.875278 0.483621i \(-0.160679\pi\)
−0.189475 + 0.981886i \(0.560679\pi\)
\(450\) 0 0
\(451\) 2.15313 1.40267i 0.101387 0.0660492i
\(452\) 14.4711 3.63111i 0.680661 0.170793i
\(453\) 0 0
\(454\) 12.8032 + 2.47873i 0.600885 + 0.116332i
\(455\) 6.65159 2.16123i 0.311831 0.101320i
\(456\) 0 0
\(457\) 12.9937 + 17.8843i 0.607820 + 0.836592i 0.996396 0.0848243i \(-0.0270329\pi\)
−0.388576 + 0.921417i \(0.627033\pi\)
\(458\) −32.9100 + 15.3762i −1.53778 + 0.718484i
\(459\) 0 0
\(460\) −11.1709 4.49383i −0.520844 0.209526i
\(461\) −19.6830 −0.916730 −0.458365 0.888764i \(-0.651565\pi\)
−0.458365 + 0.888764i \(0.651565\pi\)
\(462\) 0 0
\(463\) 10.6767i 0.496188i −0.968736 0.248094i \(-0.920196\pi\)
0.968736 0.248094i \(-0.0798041\pi\)
\(464\) 17.0872 + 2.34918i 0.793255 + 0.109058i
\(465\) 0 0
\(466\) −30.7484 + 14.3663i −1.42439 + 0.665507i
\(467\) 26.3995 19.1804i 1.22162 0.887562i 0.225391 0.974268i \(-0.427634\pi\)
0.996234 + 0.0867060i \(0.0276341\pi\)
\(468\) 0 0
\(469\) 5.46728 + 16.8266i 0.252456 + 0.776979i
\(470\) −1.04266 + 5.38561i −0.0480945 + 0.248420i
\(471\) 0 0
\(472\) 32.2810 12.4749i 1.48585 0.574206i
\(473\) 26.2490 + 21.1935i 1.20693 + 0.974480i
\(474\) 0 0
\(475\) 15.8069 21.7563i 0.725269 0.998247i
\(476\) −12.5119 0.856053i −0.573481 0.0392371i
\(477\) 0 0
\(478\) 16.5018 15.4113i 0.754775 0.704899i
\(479\) 12.8754 9.35454i 0.588293 0.427420i −0.253411 0.967359i \(-0.581553\pi\)
0.841704 + 0.539939i \(0.181553\pi\)
\(480\) 0 0
\(481\) 12.3055 + 3.99829i 0.561082 + 0.182306i
\(482\) 6.45488 11.6655i 0.294012 0.531351i
\(483\) 0 0
\(484\) 15.7584 15.3516i 0.716291 0.697801i
\(485\) 3.00021i 0.136232i
\(486\) 0 0
\(487\) −36.0858 11.7250i −1.63520 0.531310i −0.659744 0.751490i \(-0.729335\pi\)
−0.975459 + 0.220180i \(0.929335\pi\)
\(488\) 0.528746 + 0.649950i 0.0239352 + 0.0294218i
\(489\) 0 0
\(490\) 2.87182 + 3.07502i 0.129735 + 0.138915i
\(491\) −0.524914 + 0.170555i −0.0236890 + 0.00769703i −0.320838 0.947134i \(-0.603964\pi\)
0.297149 + 0.954831i \(0.403964\pi\)
\(492\) 0 0
\(493\) −9.62334 + 13.2454i −0.433414 + 0.596543i
\(494\) 6.28108 + 50.8399i 0.282599 + 2.28740i
\(495\) 0 0
\(496\) −13.1683 24.5876i −0.591273 1.10402i
\(497\) −1.88343 + 2.59232i −0.0844835 + 0.116282i
\(498\) 0 0
\(499\) 0.743321 + 2.28771i 0.0332756 + 0.102412i 0.966315 0.257363i \(-0.0828536\pi\)
−0.933039 + 0.359775i \(0.882854\pi\)
\(500\) 10.1640 + 8.50265i 0.454548 + 0.380250i
\(501\) 0 0
\(502\) 2.37074 + 5.07413i 0.105811 + 0.226470i
\(503\) −0.451670 + 1.39010i −0.0201390 + 0.0619814i −0.960621 0.277862i \(-0.910374\pi\)
0.940482 + 0.339844i \(0.110374\pi\)
\(504\) 0 0
\(505\) 3.63114i 0.161584i
\(506\) −15.2735 37.5663i −0.678992 1.67003i
\(507\) 0 0
\(508\) 11.8080 + 4.75015i 0.523896 + 0.210754i
\(509\) −38.7738 12.5984i −1.71862 0.558413i −0.726889 0.686755i \(-0.759035\pi\)
−0.991730 + 0.128342i \(0.959035\pi\)
\(510\) 0 0
\(511\) 7.05278 + 9.70732i 0.311997 + 0.429427i
\(512\) −3.69053 22.3244i −0.163100 0.986610i
\(513\) 0 0
\(514\) 5.45270 28.1645i 0.240508 1.24228i
\(515\) 1.95367 + 1.41942i 0.0860890 + 0.0625473i
\(516\) 0 0
\(517\) −15.4800 + 10.0845i −0.680809 + 0.443517i
\(518\) −0.609261 4.93145i −0.0267694 0.216675i
\(519\) 0 0
\(520\) −11.9602 + 0.653804i −0.524490 + 0.0286712i
\(521\) 0.971088 + 2.98870i 0.0425441 + 0.130937i 0.970073 0.242815i \(-0.0780709\pi\)
−0.927528 + 0.373753i \(0.878071\pi\)
\(522\) 0 0
\(523\) 2.82713 + 3.89121i 0.123622 + 0.170151i 0.866342 0.499451i \(-0.166465\pi\)
−0.742720 + 0.669602i \(0.766465\pi\)
\(524\) −0.406226 + 0.254687i −0.0177461 + 0.0111260i
\(525\) 0 0
\(526\) 6.02003 + 3.33105i 0.262486 + 0.145241i
\(527\) 26.4757 1.15330
\(528\) 0 0
\(529\) −51.7505 −2.25002
\(530\) 3.78028 + 2.09174i 0.164205 + 0.0908594i
\(531\) 0 0
\(532\) 16.6678 10.4500i 0.722641 0.453065i
\(533\) −2.76968 3.81214i −0.119968 0.165122i
\(534\) 0 0
\(535\) 1.78331 + 5.48846i 0.0770991 + 0.237287i
\(536\) −1.65393 30.2558i −0.0714390 1.30685i
\(537\) 0 0
\(538\) 5.00667 + 40.5247i 0.215853 + 1.74714i
\(539\) −0.721261 + 14.1521i −0.0310669 + 0.609575i
\(540\) 0 0
\(541\) 12.8453 + 9.33268i 0.552264 + 0.401243i 0.828620 0.559812i \(-0.189127\pi\)
−0.276355 + 0.961056i \(0.589127\pi\)
\(542\) −3.93038 + 20.3013i −0.168824 + 0.872017i
\(543\) 0 0
\(544\) 20.3344 + 6.91650i 0.871832 + 0.296542i
\(545\) 7.27656 + 10.0153i 0.311693 + 0.429009i
\(546\) 0 0
\(547\) 2.96072 + 0.961995i 0.126591 + 0.0411319i 0.371627 0.928382i \(-0.378800\pi\)
−0.245036 + 0.969514i \(0.578800\pi\)
\(548\) 5.49100 + 2.20893i 0.234564 + 0.0943609i
\(549\) 0 0
\(550\) 1.52353 + 21.1229i 0.0649637 + 0.900683i
\(551\) 25.6824i 1.09411i
\(552\) 0 0
\(553\) −1.74689 + 5.37637i −0.0742852 + 0.228626i
\(554\) 16.5498 + 35.4219i 0.703136 + 1.50493i
\(555\) 0 0
\(556\) 2.42257 + 2.02659i 0.102740 + 0.0859466i
\(557\) −1.84128 5.66686i −0.0780174 0.240113i 0.904440 0.426601i \(-0.140289\pi\)
−0.982457 + 0.186489i \(0.940289\pi\)
\(558\) 0 0
\(559\) 36.3620 50.0480i 1.53795 2.11681i
\(560\) 2.17175 + 4.05506i 0.0917732 + 0.171358i
\(561\) 0 0
\(562\) 4.97874 + 40.2986i 0.210016 + 1.69989i
\(563\) 11.7180 16.1284i 0.493853 0.679730i −0.487240 0.873268i \(-0.661996\pi\)
0.981093 + 0.193538i \(0.0619963\pi\)
\(564\) 0 0
\(565\) 4.94033 1.60521i 0.207841 0.0675317i
\(566\) 15.1586 + 16.2311i 0.637162 + 0.682246i
\(567\) 0 0
\(568\) 4.25705 3.46318i 0.178622 0.145312i
\(569\) 10.2471 + 3.32949i 0.429582 + 0.139580i 0.515824 0.856695i \(-0.327486\pi\)
−0.0862422 + 0.996274i \(0.527486\pi\)
\(570\) 0 0
\(571\) 31.9637i 1.33764i −0.743424 0.668820i \(-0.766800\pi\)
0.743424 0.668820i \(-0.233200\pi\)
\(572\) −29.5843 27.4257i −1.23698 1.14673i
\(573\) 0 0
\(574\) −0.876123 + 1.58337i −0.0365687 + 0.0660885i
\(575\) 37.1263 + 12.0631i 1.54827 + 0.503065i
\(576\) 0 0
\(577\) −0.0764768 + 0.0555637i −0.00318377 + 0.00231315i −0.589376 0.807859i \(-0.700626\pi\)
0.586192 + 0.810172i \(0.300626\pi\)
\(578\) 2.67023 2.49378i 0.111067 0.103728i
\(579\) 0 0
\(580\) 5.99121 + 0.409913i 0.248771 + 0.0170207i
\(581\) 3.15243 4.33895i 0.130785 0.180010i
\(582\) 0 0
\(583\) 3.78623 + 14.0495i 0.156810 + 0.581871i
\(584\) −7.40758 19.1684i −0.306528 0.793192i
\(585\) 0 0
\(586\) −5.19869 + 26.8525i −0.214756 + 1.10927i
\(587\) 1.27747 + 3.93166i 0.0527270 + 0.162277i 0.973953 0.226752i \(-0.0728106\pi\)
−0.921226 + 0.389029i \(0.872811\pi\)
\(588\) 0 0
\(589\) −33.5995 + 24.4115i −1.38444 + 1.00586i
\(590\) 10.9166 5.10045i 0.449428 0.209982i
\(591\) 0 0
\(592\) −1.15907 + 8.43073i −0.0476376 + 0.346501i
\(593\) 35.7489i 1.46803i −0.679133 0.734015i \(-0.737644\pi\)
0.679133 0.734015i \(-0.262356\pi\)
\(594\) 0 0
\(595\) −4.36644 −0.179007
\(596\) 33.9032 + 13.6387i 1.38873 + 0.558661i
\(597\) 0 0
\(598\) −67.3700 + 31.4767i −2.75496 + 1.28718i
\(599\) 7.34693 + 10.1122i 0.300187 + 0.413172i 0.932290 0.361713i \(-0.117808\pi\)
−0.632102 + 0.774885i \(0.717808\pi\)
\(600\) 0 0
\(601\) 21.8025 7.08405i 0.889341 0.288964i 0.171510 0.985182i \(-0.445135\pi\)
0.717830 + 0.696218i \(0.245135\pi\)
\(602\) −23.3244 4.51565i −0.950632 0.184044i
\(603\) 0 0
\(604\) −29.4239 + 7.38311i −1.19724 + 0.300415i
\(605\) 5.10895 5.70702i 0.207709 0.232023i
\(606\) 0 0
\(607\) −23.1519 16.8209i −0.939708 0.682738i 0.00864207 0.999963i \(-0.497249\pi\)
−0.948350 + 0.317225i \(0.897249\pi\)
\(608\) −32.1831 + 9.97154i −1.30520 + 0.404399i
\(609\) 0 0
\(610\) 0.199110 + 0.213199i 0.00806174 + 0.00863217i
\(611\) 19.9126 + 27.4074i 0.805579 + 1.10878i
\(612\) 0 0
\(613\) −4.21216 + 12.9637i −0.170128 + 0.523599i −0.999378 0.0352789i \(-0.988768\pi\)
0.829250 + 0.558878i \(0.188768\pi\)
\(614\) −12.2530 + 22.1441i −0.494490 + 0.893664i
\(615\) 0 0
\(616\) −4.73302 + 14.7517i −0.190699 + 0.594363i
\(617\) −14.0298 −0.564819 −0.282410 0.959294i \(-0.591134\pi\)
−0.282410 + 0.959294i \(0.591134\pi\)
\(618\) 0 0
\(619\) −7.23719 + 22.2738i −0.290887 + 0.895259i 0.693685 + 0.720279i \(0.255986\pi\)
−0.984572 + 0.174980i \(0.944014\pi\)
\(620\) −5.15844 8.22774i −0.207168 0.330434i
\(621\) 0 0
\(622\) −0.954915 1.02248i −0.0382886 0.0409978i
\(623\) −3.38481 10.4174i −0.135610 0.417364i
\(624\) 0 0
\(625\) −14.5314 10.5577i −0.581256 0.422307i
\(626\) −18.9465 + 2.34077i −0.757256 + 0.0935561i
\(627\) 0 0
\(628\) −3.24082 12.9156i −0.129323 0.515390i
\(629\) −6.53520 4.74810i −0.260575 0.189319i
\(630\) 0 0
\(631\) −16.4648 + 5.34974i −0.655453 + 0.212970i −0.617817 0.786322i \(-0.711983\pi\)
−0.0376362 + 0.999292i \(0.511983\pi\)
\(632\) 5.25473 8.13158i 0.209022 0.323457i
\(633\) 0 0
\(634\) −11.3276 + 5.29250i −0.449876 + 0.210192i
\(635\) 4.21449 + 1.36937i 0.167247 + 0.0543418i
\(636\) 0 0
\(637\) 25.9842 1.02953
\(638\) 13.0343 + 15.4648i 0.516032 + 0.612256i
\(639\) 0 0
\(640\) −1.81249 7.66685i −0.0716451 0.303059i
\(641\) 0.223394 0.687535i 0.00882352 0.0271560i −0.946548 0.322564i \(-0.895455\pi\)
0.955371 + 0.295407i \(0.0954554\pi\)
\(642\) 0 0
\(643\) 3.53380 2.56746i 0.139359 0.101251i −0.515921 0.856636i \(-0.672550\pi\)
0.655281 + 0.755385i \(0.272550\pi\)
\(644\) 21.9035 + 18.3233i 0.863121 + 0.722040i
\(645\) 0 0
\(646\) 6.07886 31.3988i 0.239170 1.23537i
\(647\) 19.5634 26.9267i 0.769115 1.05860i −0.227286 0.973828i \(-0.572985\pi\)
0.996401 0.0847680i \(-0.0270149\pi\)
\(648\) 0 0
\(649\) 37.9065 + 14.4884i 1.48796 + 0.568719i
\(650\) 38.5403 4.76151i 1.51167 0.186762i
\(651\) 0 0
\(652\) 0.103364 1.51074i 0.00404804 0.0591653i
\(653\) 14.5362 4.72309i 0.568845 0.184829i −0.0104521 0.999945i \(-0.503327\pi\)
0.579297 + 0.815116i \(0.303327\pi\)
\(654\) 0 0
\(655\) −0.135053 + 0.0981217i −0.00527695 + 0.00383393i
\(656\) 2.14619 2.23583i 0.0837945 0.0872945i
\(657\) 0 0
\(658\) 6.29890 11.3836i 0.245557 0.443781i
\(659\) 31.0396i 1.20913i −0.796556 0.604565i \(-0.793347\pi\)
0.796556 0.604565i \(-0.206653\pi\)
\(660\) 0 0
\(661\) 30.3454i 1.18030i −0.807294 0.590149i \(-0.799069\pi\)
0.807294 0.590149i \(-0.200931\pi\)
\(662\) 11.2004 + 6.19750i 0.435316 + 0.240873i
\(663\) 0 0
\(664\) −7.12531 + 5.79656i −0.276516 + 0.224950i
\(665\) 5.54133 4.02601i 0.214884 0.156122i
\(666\) 0 0
\(667\) 35.4561 11.5204i 1.37287 0.446071i
\(668\) 1.87898 27.4628i 0.0726999 1.06257i
\(669\) 0 0
\(670\) −1.29356 10.4703i −0.0499747 0.404502i
\(671\) −0.0500069 + 0.981203i −0.00193049 + 0.0378789i
\(672\) 0 0
\(673\) 8.88632 12.2310i 0.342543 0.471469i −0.602639 0.798014i \(-0.705884\pi\)
0.945182 + 0.326544i \(0.105884\pi\)
\(674\) −18.9602 3.67074i −0.730321 0.141391i
\(675\) 0 0
\(676\) −30.7811 + 36.7955i −1.18389 + 1.41521i
\(677\) −29.0399 + 21.0987i −1.11609 + 0.810890i −0.983613 0.180295i \(-0.942295\pi\)
−0.132482 + 0.991185i \(0.542295\pi\)
\(678\) 0 0
\(679\) −2.19882 + 6.76728i −0.0843830 + 0.259704i
\(680\) 7.22770 + 1.91923i 0.277170 + 0.0735991i
\(681\) 0 0
\(682\) 7.84282 31.7518i 0.300317 1.21584i
\(683\) −16.5721 −0.634112 −0.317056 0.948407i \(-0.602694\pi\)
−0.317056 + 0.948407i \(0.602694\pi\)
\(684\) 0 0
\(685\) 1.95984 + 0.636790i 0.0748816 + 0.0243305i
\(686\) −11.1445 23.8528i −0.425500 0.910703i
\(687\) 0 0
\(688\) 36.6237 + 17.7267i 1.39626 + 0.675824i
\(689\) 25.3756 8.24503i 0.966733 0.314111i
\(690\) 0 0
\(691\) 17.4532 + 12.6805i 0.663949 + 0.482387i 0.867994 0.496574i \(-0.165409\pi\)
−0.204045 + 0.978961i \(0.565409\pi\)
\(692\) 8.53054 2.14050i 0.324283 0.0813697i
\(693\) 0 0
\(694\) −0.404385 3.27315i −0.0153503 0.124247i
\(695\) 0.889662 + 0.646377i 0.0337468 + 0.0245185i
\(696\) 0 0
\(697\) 0.909080 + 2.79786i 0.0344338 + 0.105976i
\(698\) 15.0389 14.0451i 0.569231 0.531615i
\(699\) 0 0
\(700\) −7.92185 12.6354i −0.299418 0.477573i
\(701\) −10.2401 + 31.5157i −0.386762 + 1.19033i 0.548432 + 0.836195i \(0.315225\pi\)
−0.935194 + 0.354135i \(0.884775\pi\)
\(702\) 0 0
\(703\) 12.6716 0.477917
\(704\) 14.3185 22.3379i 0.539647 0.841891i
\(705\) 0 0
\(706\) −29.3801 16.2569i −1.10573 0.611835i
\(707\) −2.66123 + 8.19043i −0.100086 + 0.308033i
\(708\) 0 0
\(709\) −11.7145 16.1236i −0.439946 0.605534i 0.530254 0.847839i \(-0.322097\pi\)
−0.970200 + 0.242305i \(0.922097\pi\)
\(710\) 1.39641 1.30413i 0.0524064 0.0489433i
\(711\) 0 0
\(712\) 1.02396 + 18.7315i 0.0383744 + 0.701992i
\(713\) −48.7733 35.4359i −1.82657 1.32708i
\(714\) 0 0
\(715\) −10.9281 8.82342i −0.408689 0.329977i
\(716\) 32.8482 8.24234i 1.22759 0.308031i
\(717\) 0 0
\(718\) −2.84557 + 14.6981i −0.106196 + 0.548527i
\(719\) −8.25695 + 2.68285i −0.307932 + 0.100053i −0.458907 0.888484i \(-0.651759\pi\)
0.150974 + 0.988538i \(0.451759\pi\)
\(720\) 0 0
\(721\) −3.36642 4.63348i −0.125372 0.172560i
\(722\) 9.86223 + 21.1083i 0.367034 + 0.785568i
\(723\) 0 0
\(724\) 13.6955 34.0446i 0.508990 1.26526i
\(725\) −19.4691 −0.723065
\(726\) 0 0
\(727\) 8.14327i 0.302017i 0.988532 + 0.151009i \(0.0482521\pi\)
−0.988532 + 0.151009i \(0.951748\pi\)
\(728\) 27.4567 + 7.29080i 1.01761 + 0.270215i
\(729\) 0 0
\(730\) −3.02863 6.48222i −0.112095 0.239918i
\(731\) −31.2461 + 22.7016i −1.15568 + 0.839649i
\(732\) 0 0
\(733\) 0.185339 + 0.570415i 0.00684566 + 0.0210688i 0.954421 0.298464i \(-0.0964742\pi\)
−0.947575 + 0.319532i \(0.896474\pi\)
\(734\) −36.2283 7.01387i −1.33721 0.258887i
\(735\) 0 0
\(736\) −28.2027 39.9578i −1.03957 1.47286i
\(737\) 22.3207 27.6450i 0.822192 1.01832i
\(738\) 0 0
\(739\) 3.55308 4.89040i 0.130702 0.179896i −0.738650 0.674089i \(-0.764536\pi\)
0.869352 + 0.494193i \(0.164536\pi\)
\(740\) −0.202249 + 2.95602i −0.00743481 + 0.108666i
\(741\) 0 0
\(742\) −6.99381 7.48867i −0.256751 0.274918i
\(743\) −14.7479 + 10.7149i −0.541046 + 0.393093i −0.824473 0.565901i \(-0.808529\pi\)
0.283427 + 0.958994i \(0.408529\pi\)
\(744\) 0 0
\(745\) 12.1007 + 3.93175i 0.443335 + 0.144048i
\(746\) −20.6852 11.4457i −0.757341 0.419058i
\(747\) 0 0
\(748\) 12.2750 + 21.9920i 0.448819 + 0.804108i
\(749\) 13.6868i 0.500103i
\(750\) 0 0
\(751\) 48.5455 + 15.7734i 1.77145 + 0.575579i 0.998280 0.0586211i \(-0.0186704\pi\)
0.773169 + 0.634200i \(0.218670\pi\)
\(752\) −15.4300 + 16.0745i −0.562676 + 0.586178i
\(753\) 0 0
\(754\) 27.1042 25.3131i 0.987077 0.921850i
\(755\) −10.0451 + 3.26386i −0.365580 + 0.118784i
\(756\) 0 0
\(757\) −4.99944 + 6.88113i −0.181708 + 0.250099i −0.890148 0.455672i \(-0.849399\pi\)
0.708440 + 0.705771i \(0.249399\pi\)
\(758\) −35.1737 + 4.34557i −1.27757 + 0.157838i
\(759\) 0 0
\(760\) −10.9421 + 4.22855i −0.396911 + 0.153386i
\(761\) −20.9441 + 28.8271i −0.759224 + 1.04498i 0.238054 + 0.971252i \(0.423490\pi\)
−0.997278 + 0.0737302i \(0.976510\pi\)
\(762\) 0 0
\(763\) −9.07290 27.9235i −0.328461 1.01090i
\(764\) −38.0541 31.8340i −1.37675 1.15171i
\(765\) 0 0
\(766\) −11.2120 + 5.23848i −0.405106 + 0.189274i
\(767\) 22.9948 70.7707i 0.830294 2.55538i
\(768\) 0 0
\(769\) 45.0073i 1.62300i −0.584350 0.811502i \(-0.698651\pi\)
0.584350 0.811502i \(-0.301349\pi\)
\(770\) −1.29346 + 5.23660i −0.0466131 + 0.188714i
\(771\) 0 0
\(772\) −0.0175290 + 0.0435740i −0.000630884 + 0.00156826i
\(773\) −27.7270 9.00903i −0.997269 0.324032i −0.235495 0.971875i \(-0.575671\pi\)
−0.761774 + 0.647843i \(0.775671\pi\)
\(774\) 0 0
\(775\) 18.5056 + 25.4708i 0.664743 + 0.914940i
\(776\) 6.61417 10.2353i 0.237435 0.367425i
\(777\) 0 0
\(778\) 31.3863 + 6.07644i 1.12525 + 0.217851i
\(779\) −3.73341 2.71248i −0.133763 0.0971848i
\(780\) 0 0
\(781\) 6.42669 + 0.327535i 0.229965 + 0.0117201i
\(782\) 46.0747 5.69235i 1.64763 0.203558i
\(783\) 0 0
\(784\) 3.01819 + 16.8216i 0.107792 + 0.600773i
\(785\) −1.43268 4.40932i −0.0511344 0.157375i
\(786\) 0 0
\(787\) 16.0741 + 22.1241i 0.572980 + 0.788639i 0.992904 0.118920i \(-0.0379432\pi\)
−0.419924 + 0.907559i \(0.637943\pi\)
\(788\) −0.194899 0.310865i −0.00694299 0.0110741i
\(789\) 0 0
\(790\) 1.63201 2.94945i 0.0580645 0.104937i
\(791\) −12.3199 −0.438044
\(792\) 0 0
\(793\) 1.80155 0.0639749
\(794\) 1.90712 3.44664i 0.0676813 0.122317i
\(795\) 0 0
\(796\) 25.0839 15.7265i 0.889075 0.557413i
\(797\) −0.554736 0.763529i −0.0196498 0.0270456i 0.799079 0.601226i \(-0.205321\pi\)
−0.818729 + 0.574180i \(0.805321\pi\)
\(798\) 0 0
\(799\) −6.53584 20.1152i −0.231221 0.711626i
\(800\) 7.55913 + 24.3971i 0.267256 + 0.862568i
\(801\) 0 0
\(802\) −9.00432 + 1.11245i −0.317954 + 0.0392820i
\(803\) 8.60317 22.5088i 0.303599 0.794318i
\(804\) 0 0
\(805\) 8.04383 + 5.84418i 0.283508 + 0.205980i
\(806\) −58.8793 11.3991i −2.07394 0.401518i
\(807\) 0 0
\(808\) 8.00512 12.3877i 0.281619 0.435799i
\(809\) −11.5315 15.8717i −0.405424 0.558019i 0.556671 0.830733i \(-0.312079\pi\)
−0.962095 + 0.272714i \(0.912079\pi\)
\(810\) 0 0
\(811\) −18.2649 5.93462i −0.641367 0.208393i −0.0297632 0.999557i \(-0.509475\pi\)
−0.611604 + 0.791164i \(0.709475\pi\)
\(812\) −13.2134 5.31550i −0.463698 0.186537i
\(813\) 0 0
\(814\) −7.63022 + 6.43103i −0.267439 + 0.225408i
\(815\) 0.527224i 0.0184679i
\(816\) 0 0
\(817\) 18.7219 57.6200i 0.654995 2.01587i
\(818\) −38.2427 + 17.8678i −1.33713 + 0.624734i
\(819\) 0 0
\(820\) 0.692357 0.827638i 0.0241782 0.0289024i
\(821\) 4.88277 + 15.0276i 0.170410 + 0.524467i 0.999394 0.0348046i \(-0.0110809\pi\)
−0.828984 + 0.559272i \(0.811081\pi\)
\(822\) 0 0
\(823\) 23.2795 32.0414i 0.811471 1.11689i −0.179623 0.983735i \(-0.557488\pi\)
0.991095 0.133159i \(-0.0425122\pi\)
\(824\) 3.53578 + 9.14941i 0.123175 + 0.318735i
\(825\) 0 0
\(826\) −28.3615 + 3.50396i −0.986823 + 0.121918i
\(827\) 23.2594 32.0138i 0.808807 1.11323i −0.182699 0.983169i \(-0.558484\pi\)
0.991506 0.130058i \(-0.0415165\pi\)
\(828\) 0 0
\(829\) 14.5137 4.71578i 0.504081 0.163786i −0.0459279 0.998945i \(-0.514624\pi\)
0.550009 + 0.835159i \(0.314624\pi\)
\(830\) −2.33727 + 2.18282i −0.0811278 + 0.0757668i
\(831\) 0 0
\(832\) −42.2439 24.1367i −1.46454 0.836788i
\(833\) −15.4285 5.01303i −0.534567 0.173691i
\(834\) 0 0
\(835\) 9.58406i 0.331670i
\(836\) −35.8553 16.5915i −1.24008 0.573828i
\(837\) 0 0
\(838\) 3.12003 + 1.72640i 0.107780 + 0.0596376i
\(839\) 13.3878 + 4.34995i 0.462197 + 0.150177i 0.530854 0.847463i \(-0.321871\pi\)
−0.0686565 + 0.997640i \(0.521871\pi\)
\(840\) 0 0
\(841\) 8.41924 6.11693i 0.290318 0.210929i
\(842\) 29.2852 + 31.3573i 1.00923 + 1.08065i
\(843\) 0 0
\(844\) −22.9922 1.57311i −0.791426 0.0541487i
\(845\) −9.81757 + 13.5127i −0.337735 + 0.464852i
\(846\) 0 0
\(847\) −15.7064 + 9.12847i −0.539678 + 0.313658i
\(848\) 8.28515 + 15.4699i 0.284513 + 0.531240i
\(849\) 0 0
\(850\) −23.8025 4.60821i −0.816420 0.158060i
\(851\) 5.68409 + 17.4938i 0.194848 + 0.599681i
\(852\) 0 0
\(853\) −15.7626 + 11.4522i −0.539702 + 0.392117i −0.823974 0.566627i \(-0.808248\pi\)
0.284272 + 0.958744i \(0.408248\pi\)
\(854\) −0.292863 0.626818i −0.0100216 0.0214493i
\(855\) 0 0
\(856\) −6.01589 + 22.6555i −0.205619 + 0.774348i
\(857\) 22.1714i 0.757359i 0.925528 + 0.378680i \(0.123622\pi\)
−0.925528 + 0.378680i \(0.876378\pi\)
\(858\) 0 0
\(859\) −2.34314 −0.0799470 −0.0399735 0.999201i \(-0.512727\pi\)
−0.0399735 + 0.999201i \(0.512727\pi\)
\(860\) 13.1428 + 5.28711i 0.448165 + 0.180289i
\(861\) 0 0
\(862\) 15.5393 + 33.2589i 0.529270 + 1.13280i
\(863\) −29.5571 40.6819i −1.00614 1.38483i −0.921484 0.388416i \(-0.873022\pi\)
−0.0846518 0.996411i \(-0.526978\pi\)
\(864\) 0 0
\(865\) 2.91228 0.946256i 0.0990204 0.0321737i
\(866\) 8.27174 42.7255i 0.281085 1.45187i
\(867\) 0 0
\(868\) 5.60538 + 22.3391i 0.190259 + 0.758238i
\(869\) 10.9617 2.95409i 0.371850 0.100211i
\(870\) 0 0
\(871\) −52.7097 38.2958i −1.78600 1.29760i
\(872\) 2.74469 + 50.2092i 0.0929468 + 1.70030i
\(873\) 0 0
\(874\) −53.2236 + 49.7065i −1.80031 + 1.68135i
\(875\) −6.43177 8.85257i −0.217434 0.299272i
\(876\) 0 0
\(877\) 8.48419 26.1117i 0.286491 0.881728i −0.699457 0.714675i \(-0.746575\pi\)
0.985948 0.167053i \(-0.0534252\pi\)
\(878\) −17.2122 9.52401i −0.580884 0.321420i
\(879\) 0 0
\(880\) 4.44274 8.09953i 0.149765 0.273035i
\(881\) −15.6647 −0.527756 −0.263878 0.964556i \(-0.585002\pi\)
−0.263878 + 0.964556i \(0.585002\pi\)
\(882\) 0 0
\(883\) 14.0543 43.2547i 0.472965 1.45564i −0.375717 0.926735i \(-0.622603\pi\)
0.848682 0.528903i \(-0.177397\pi\)
\(884\) 39.1285 24.5319i 1.31603 0.825097i
\(885\) 0 0
\(886\) −9.37234 + 8.75301i −0.314870 + 0.294063i
\(887\) −11.7143 36.0529i −0.393327 1.21054i −0.930257 0.366909i \(-0.880416\pi\)
0.536930 0.843627i \(-0.319584\pi\)
\(888\) 0 0
\(889\) −8.50263 6.17752i −0.285169 0.207187i
\(890\) 0.800849 + 6.48218i 0.0268445 + 0.217283i
\(891\) 0 0
\(892\) −4.93044 19.6493i −0.165084 0.657907i
\(893\) 26.8414 + 19.5014i 0.898214 + 0.652591i
\(894\) 0 0
\(895\) 11.2142 3.64370i 0.374848 0.121796i
\(896\) −1.53069 + 18.6217i −0.0511368 + 0.622108i
\(897\) 0 0
\(898\) 10.7529 + 23.0146i 0.358829 + 0.768007i
\(899\) 28.5957 + 9.29131i 0.953721 + 0.309883i
\(900\) 0 0
\(901\) −16.6578 −0.554953
\(902\) 3.62472 0.261441i 0.120690 0.00870503i
\(903\) 0 0
\(904\) 20.3929 + 5.41509i 0.678257 + 0.180103i
\(905\) 3.94814 12.1511i 0.131241 0.403917i
\(906\) 0 0
\(907\) 24.3629 17.7007i 0.808957 0.587742i −0.104571 0.994517i \(-0.533347\pi\)
0.913528 + 0.406776i \(0.133347\pi\)
\(908\) 14.1457 + 11.8335i 0.469442 + 0.392709i
\(909\) 0 0
\(910\) 9.71055 + 1.87998i 0.321901 + 0.0623207i
\(911\) −21.2777 + 29.2863i −0.704963 + 0.970298i 0.294928 + 0.955519i \(0.404704\pi\)
−0.999891 + 0.0147785i \(0.995296\pi\)
\(912\) 0 0
\(913\) −10.7568 0.548218i −0.355998 0.0181434i
\(914\) 3.83327 + 31.0270i 0.126793 + 1.02628i
\(915\) 0 0
\(916\) −51.2513 3.50657i −1.69339 0.115860i
\(917\) 0.376538 0.122345i 0.0124344 0.00404018i
\(918\) 0 0
\(919\) 22.9541 16.6771i 0.757184 0.550127i −0.140861 0.990029i \(-0.544987\pi\)
0.898045 + 0.439903i \(0.144987\pi\)
\(920\) −10.7461 13.2094i −0.354287 0.435500i
\(921\) 0 0
\(922\) −24.3560 13.4769i −0.802123 0.443838i
\(923\) 11.7998i 0.388395i
\(924\) 0 0
\(925\) 9.60594i 0.315841i
\(926\) 7.31029 13.2115i 0.240231 0.434156i
\(927\) 0 0
\(928\) 19.5355 + 14.6065i 0.641284 + 0.479481i
\(929\) −17.2036 + 12.4992i −0.564433 + 0.410084i −0.833079 0.553155i \(-0.813424\pi\)
0.268646 + 0.963239i \(0.413424\pi\)
\(930\) 0 0
\(931\) 24.2021 7.86374i 0.793192 0.257724i
\(932\) −47.8850 3.27625i −1.56853 0.107317i
\(933\) 0 0
\(934\) 45.7999 5.65840i 1.49862 0.185148i
\(935\) 4.78648 + 7.34737i 0.156535 + 0.240285i
\(936\) 0 0
\(937\) −25.3238 + 34.8552i −0.827293 + 1.13867i 0.161128 + 0.986934i \(0.448487\pi\)
−0.988421 + 0.151738i \(0.951513\pi\)
\(938\) −4.75580 + 24.5648i −0.155282 + 0.802071i
\(939\) 0 0
\(940\) −4.97771 + 5.95032i −0.162355 + 0.194078i
\(941\) −7.65773 + 5.56367i −0.249635 + 0.181370i −0.705565 0.708645i \(-0.749307\pi\)
0.455930 + 0.890016i \(0.349307\pi\)
\(942\) 0 0
\(943\) 2.07004 6.37094i 0.0674099 0.207466i
\(944\) 48.4864 + 6.66601i 1.57810 + 0.216960i
\(945\) 0 0
\(946\) 17.9697 + 44.1978i 0.584246 + 1.43699i
\(947\) −58.1103 −1.88833 −0.944166 0.329471i \(-0.893130\pi\)
−0.944166 + 0.329471i \(0.893130\pi\)
\(948\) 0 0
\(949\) −42.0235 13.6542i −1.36414 0.443236i
\(950\) 34.4561 16.0986i 1.11790 0.522308i
\(951\) 0 0
\(952\) −14.8962 9.62613i −0.482790 0.311985i
\(953\) 37.3273 12.1284i 1.20915 0.392876i 0.366030 0.930603i \(-0.380717\pi\)
0.843119 + 0.537727i \(0.180717\pi\)
\(954\) 0 0
\(955\) −13.9749 10.1534i −0.452218 0.328556i
\(956\) 30.9716 7.77148i 1.00169 0.251348i
\(957\) 0 0
\(958\) 22.3372 2.75968i 0.721684 0.0891612i
\(959\) −3.95392 2.87269i −0.127679 0.0927641i
\(960\) 0 0
\(961\) −5.44555 16.7597i −0.175663 0.540635i
\(962\) 12.4893 + 13.3731i 0.402673 + 0.431165i
\(963\) 0 0
\(964\) 15.9747 10.0155i 0.514510 0.322576i
\(965\) −0.00505327 + 0.0155524i −0.000162670 + 0.000500648i
\(966\) 0 0
\(967\) 35.8221 1.15196 0.575980 0.817464i \(-0.304621\pi\)
0.575980 + 0.817464i \(0.304621\pi\)
\(968\) 30.0109 8.20659i 0.964586 0.263770i
\(969\) 0 0
\(970\) 2.05423 3.71249i 0.0659573 0.119201i
\(971\) 9.05079 27.8555i 0.290454 0.893924i −0.694257 0.719727i \(-0.744267\pi\)
0.984711 0.174197i \(-0.0557330\pi\)
\(972\) 0 0
\(973\) −1.53300 2.11000i −0.0491458 0.0676434i
\(974\) −36.6250 39.2165i −1.17354 1.25658i
\(975\) 0 0
\(976\) 0.209259 + 1.16629i 0.00669820 + 0.0373319i
\(977\) 19.3774 + 14.0785i 0.619939 + 0.450412i 0.852900 0.522074i \(-0.174841\pi\)
−0.232961 + 0.972486i \(0.574841\pi\)
\(978\) 0 0
\(979\) −13.8188 + 17.1151i −0.441651 + 0.547001i
\(980\) 1.44817 + 5.77139i 0.0462601 + 0.184360i
\(981\) 0 0
\(982\) −0.766314 0.148360i −0.0244540 0.00473435i
\(983\) 15.5566 5.05465i 0.496179 0.161218i −0.0502286 0.998738i \(-0.515995\pi\)
0.546408 + 0.837519i \(0.315995\pi\)
\(984\) 0 0
\(985\) −0.0750876 0.103349i −0.00239249 0.00329298i
\(986\) −20.9771 + 9.80096i −0.668048 + 0.312126i
\(987\) 0 0
\(988\) −27.0376 + 67.2106i −0.860181 + 2.13825i
\(989\) 87.9459 2.79652
\(990\) 0 0
\(991\) 54.9239i 1.74471i 0.488870 + 0.872357i \(0.337409\pi\)
−0.488870 + 0.872357i \(0.662591\pi\)
\(992\) 0.540462 39.4413i 0.0171597 1.25226i
\(993\) 0 0
\(994\) −4.10554 + 1.91820i −0.130220 + 0.0608415i
\(995\) 8.33932 6.05887i 0.264374 0.192079i
\(996\) 0 0
\(997\) −2.82716 8.70110i −0.0895370 0.275567i 0.896254 0.443540i \(-0.146278\pi\)
−0.985791 + 0.167974i \(0.946278\pi\)
\(998\) −0.646589 + 3.33979i −0.0204674 + 0.105719i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.bp.d.667.10 48
3.2 odd 2 264.2.z.b.139.3 yes 48
8.3 odd 2 inner 792.2.bp.d.667.4 48
11.8 odd 10 inner 792.2.bp.d.19.4 48
12.11 even 2 1056.2.bp.a.271.6 48
24.5 odd 2 1056.2.bp.a.271.7 48
24.11 even 2 264.2.z.b.139.9 yes 48
33.8 even 10 264.2.z.b.19.9 yes 48
88.19 even 10 inner 792.2.bp.d.19.10 48
132.107 odd 10 1056.2.bp.a.943.7 48
264.107 odd 10 264.2.z.b.19.3 48
264.173 even 10 1056.2.bp.a.943.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.z.b.19.3 48 264.107 odd 10
264.2.z.b.19.9 yes 48 33.8 even 10
264.2.z.b.139.3 yes 48 3.2 odd 2
264.2.z.b.139.9 yes 48 24.11 even 2
792.2.bp.d.19.4 48 11.8 odd 10 inner
792.2.bp.d.19.10 48 88.19 even 10 inner
792.2.bp.d.667.4 48 8.3 odd 2 inner
792.2.bp.d.667.10 48 1.1 even 1 trivial
1056.2.bp.a.271.6 48 12.11 even 2
1056.2.bp.a.271.7 48 24.5 odd 2
1056.2.bp.a.943.6 48 264.173 even 10
1056.2.bp.a.943.7 48 132.107 odd 10