Properties

Label 792.2.bp.d.19.4
Level $792$
Weight $2$
Character 792.19
Analytic conductor $6.324$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(19,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 5, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.bp (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 264)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 19.4
Character \(\chi\) \(=\) 792.19
Dual form 792.2.bp.d.667.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.03357 + 0.965267i) q^{2} +(0.136519 - 1.99534i) q^{4} +(-0.409298 + 0.563350i) q^{5} +(0.510340 - 1.57067i) q^{7} +(1.78493 + 2.19409i) q^{8} +(-0.120747 - 0.977341i) q^{10} +(-2.08351 - 2.58050i) q^{11} +(-4.92015 + 3.57470i) q^{13} +(0.988641 + 2.11600i) q^{14} +(-3.96273 - 0.544803i) q^{16} +(-2.23176 + 3.07176i) q^{17} +(5.66454 - 1.84052i) q^{19} +(1.06820 + 0.893594i) q^{20} +(4.64432 + 0.655979i) q^{22} +8.64584i q^{23} +(1.39525 + 4.29413i) q^{25} +(1.63476 - 8.44395i) q^{26} +(-3.06433 - 1.23273i) q^{28} +(1.33248 - 4.10095i) q^{29} +(4.09860 + 5.64124i) q^{31} +(4.62162 - 3.26200i) q^{32} +(-0.658392 - 5.32912i) q^{34} +(0.675953 + 0.930370i) q^{35} +(-2.02338 - 0.657436i) q^{37} +(-4.07809 + 7.37010i) q^{38} +(-1.96661 + 0.107505i) q^{40} +(-0.736879 + 0.239427i) q^{41} +10.1720i q^{43} +(-5.43341 + 3.80501i) q^{44} +(-8.34554 - 8.93605i) q^{46} +(-5.29780 + 1.72136i) q^{47} +(3.45658 + 2.51135i) q^{49} +(-5.58706 - 3.09148i) q^{50} +(6.46103 + 10.3054i) q^{52} +(-2.57874 - 3.54933i) q^{53} +(2.30650 - 0.117551i) q^{55} +(4.35710 - 1.68380i) q^{56} +(2.58130 + 5.52480i) q^{58} +(-3.78102 + 11.6368i) q^{59} +(-0.239653 - 0.174118i) q^{61} +(-9.68148 - 1.87435i) q^{62} +(-1.62805 + 7.83259i) q^{64} -4.23488i q^{65} -10.7130 q^{67} +(5.82451 + 4.87247i) q^{68} +(-1.59670 - 0.309124i) q^{70} +(1.14044 - 1.56968i) q^{71} +(-6.90989 - 2.24516i) q^{73} +(2.72590 - 1.27360i) q^{74} +(-2.89914 - 11.5539i) q^{76} +(-5.11640 + 1.95556i) q^{77} +(2.76926 - 2.01198i) q^{79} +(1.92885 - 2.00941i) q^{80} +(0.530503 - 0.958748i) q^{82} +(1.90883 - 2.62729i) q^{83} +(-0.817020 - 2.51453i) q^{85} +(-9.81874 - 10.5135i) q^{86} +(1.94294 - 9.17742i) q^{88} +6.63247 q^{89} +(3.10371 + 9.55222i) q^{91} +(17.2513 + 1.18032i) q^{92} +(3.81406 - 6.89293i) q^{94} +(-1.28163 + 3.94444i) q^{95} +(-3.48568 + 2.53250i) q^{97} +(-5.99672 + 0.740872i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{4} - 4 q^{11} + 16 q^{14} + 20 q^{16} - 25 q^{20} + 3 q^{22} - 4 q^{25} - 4 q^{26} - 25 q^{28} - 26 q^{38} - 65 q^{40} + 60 q^{41} + 43 q^{44} - 5 q^{46} - 12 q^{49} + 80 q^{50} - 15 q^{52}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.03357 + 0.965267i −0.730842 + 0.682547i
\(3\) 0 0
\(4\) 0.136519 1.99534i 0.0682596 0.997668i
\(5\) −0.409298 + 0.563350i −0.183044 + 0.251938i −0.890672 0.454647i \(-0.849765\pi\)
0.707628 + 0.706585i \(0.249765\pi\)
\(6\) 0 0
\(7\) 0.510340 1.57067i 0.192890 0.593656i −0.807104 0.590409i \(-0.798967\pi\)
0.999995 0.00324682i \(-0.00103350\pi\)
\(8\) 1.78493 + 2.19409i 0.631068 + 0.775728i
\(9\) 0 0
\(10\) −0.120747 0.977341i −0.0381835 0.309062i
\(11\) −2.08351 2.58050i −0.628201 0.778051i
\(12\) 0 0
\(13\) −4.92015 + 3.57470i −1.36460 + 0.991443i −0.366468 + 0.930431i \(0.619433\pi\)
−0.998137 + 0.0610124i \(0.980567\pi\)
\(14\) 0.988641 + 2.11600i 0.264225 + 0.565525i
\(15\) 0 0
\(16\) −3.96273 0.544803i −0.990681 0.136201i
\(17\) −2.23176 + 3.07176i −0.541282 + 0.745011i −0.988797 0.149265i \(-0.952309\pi\)
0.447515 + 0.894277i \(0.352309\pi\)
\(18\) 0 0
\(19\) 5.66454 1.84052i 1.29954 0.422245i 0.424116 0.905608i \(-0.360585\pi\)
0.875420 + 0.483364i \(0.160585\pi\)
\(20\) 1.06820 + 0.893594i 0.238856 + 0.199814i
\(21\) 0 0
\(22\) 4.64432 + 0.655979i 0.990172 + 0.139855i
\(23\) 8.64584i 1.80278i 0.433006 + 0.901391i \(0.357453\pi\)
−0.433006 + 0.901391i \(0.642547\pi\)
\(24\) 0 0
\(25\) 1.39525 + 4.29413i 0.279049 + 0.858825i
\(26\) 1.63476 8.44395i 0.320604 1.65599i
\(27\) 0 0
\(28\) −3.06433 1.23273i −0.579104 0.232963i
\(29\) 1.33248 4.10095i 0.247435 0.761526i −0.747791 0.663934i \(-0.768886\pi\)
0.995226 0.0975928i \(-0.0311143\pi\)
\(30\) 0 0
\(31\) 4.09860 + 5.64124i 0.736131 + 1.01320i 0.998832 + 0.0483198i \(0.0153867\pi\)
−0.262701 + 0.964877i \(0.584613\pi\)
\(32\) 4.62162 3.26200i 0.816995 0.576645i
\(33\) 0 0
\(34\) −0.658392 5.32912i −0.112913 0.913936i
\(35\) 0.675953 + 0.930370i 0.114257 + 0.157261i
\(36\) 0 0
\(37\) −2.02338 0.657436i −0.332642 0.108082i 0.137934 0.990441i \(-0.455954\pi\)
−0.470576 + 0.882360i \(0.655954\pi\)
\(38\) −4.07809 + 7.37010i −0.661553 + 1.19559i
\(39\) 0 0
\(40\) −1.96661 + 0.107505i −0.310948 + 0.0169980i
\(41\) −0.736879 + 0.239427i −0.115081 + 0.0373921i −0.365991 0.930618i \(-0.619270\pi\)
0.250910 + 0.968010i \(0.419270\pi\)
\(42\) 0 0
\(43\) 10.1720i 1.55122i 0.631211 + 0.775611i \(0.282558\pi\)
−0.631211 + 0.775611i \(0.717442\pi\)
\(44\) −5.43341 + 3.80501i −0.819117 + 0.573627i
\(45\) 0 0
\(46\) −8.34554 8.93605i −1.23048 1.31755i
\(47\) −5.29780 + 1.72136i −0.772764 + 0.251086i −0.668748 0.743489i \(-0.733169\pi\)
−0.104016 + 0.994576i \(0.533169\pi\)
\(48\) 0 0
\(49\) 3.45658 + 2.51135i 0.493797 + 0.358764i
\(50\) −5.58706 3.09148i −0.790129 0.437201i
\(51\) 0 0
\(52\) 6.46103 + 10.3054i 0.895983 + 1.42910i
\(53\) −2.57874 3.54933i −0.354217 0.487538i 0.594309 0.804237i \(-0.297426\pi\)
−0.948526 + 0.316699i \(0.897426\pi\)
\(54\) 0 0
\(55\) 2.30650 0.117551i 0.311009 0.0158505i
\(56\) 4.35710 1.68380i 0.582242 0.225007i
\(57\) 0 0
\(58\) 2.58130 + 5.52480i 0.338942 + 0.725441i
\(59\) −3.78102 + 11.6368i −0.492247 + 1.51498i 0.328958 + 0.944345i \(0.393303\pi\)
−0.821204 + 0.570634i \(0.806697\pi\)
\(60\) 0 0
\(61\) −0.239653 0.174118i −0.0306845 0.0222936i 0.572337 0.820018i \(-0.306037\pi\)
−0.603022 + 0.797725i \(0.706037\pi\)
\(62\) −9.68148 1.87435i −1.22955 0.238043i
\(63\) 0 0
\(64\) −1.62805 + 7.83259i −0.203507 + 0.979074i
\(65\) 4.23488i 0.525273i
\(66\) 0 0
\(67\) −10.7130 −1.30880 −0.654402 0.756147i \(-0.727079\pi\)
−0.654402 + 0.756147i \(0.727079\pi\)
\(68\) 5.82451 + 4.87247i 0.706326 + 0.590874i
\(69\) 0 0
\(70\) −1.59670 0.309124i −0.190842 0.0369473i
\(71\) 1.14044 1.56968i 0.135345 0.186287i −0.735964 0.677020i \(-0.763271\pi\)
0.871310 + 0.490733i \(0.163271\pi\)
\(72\) 0 0
\(73\) −6.90989 2.24516i −0.808741 0.262776i −0.124677 0.992197i \(-0.539789\pi\)
−0.684064 + 0.729422i \(0.739789\pi\)
\(74\) 2.72590 1.27360i 0.316879 0.148053i
\(75\) 0 0
\(76\) −2.89914 11.5539i −0.332554 1.32533i
\(77\) −5.11640 + 1.95556i −0.583068 + 0.222857i
\(78\) 0 0
\(79\) 2.76926 2.01198i 0.311566 0.226366i −0.421002 0.907060i \(-0.638322\pi\)
0.732568 + 0.680694i \(0.238322\pi\)
\(80\) 1.92885 2.00941i 0.215652 0.224659i
\(81\) 0 0
\(82\) 0.530503 0.958748i 0.0585843 0.105876i
\(83\) 1.90883 2.62729i 0.209522 0.288382i −0.691303 0.722565i \(-0.742963\pi\)
0.900825 + 0.434183i \(0.142963\pi\)
\(84\) 0 0
\(85\) −0.817020 2.51453i −0.0886183 0.272739i
\(86\) −9.81874 10.5135i −1.05878 1.13370i
\(87\) 0 0
\(88\) 1.94294 9.17742i 0.207118 0.978316i
\(89\) 6.63247 0.703040 0.351520 0.936180i \(-0.385665\pi\)
0.351520 + 0.936180i \(0.385665\pi\)
\(90\) 0 0
\(91\) 3.10371 + 9.55222i 0.325357 + 1.00135i
\(92\) 17.2513 + 1.18032i 1.79858 + 0.123057i
\(93\) 0 0
\(94\) 3.81406 6.89293i 0.393390 0.710952i
\(95\) −1.28163 + 3.94444i −0.131492 + 0.404691i
\(96\) 0 0
\(97\) −3.48568 + 2.53250i −0.353917 + 0.257136i −0.750511 0.660858i \(-0.770192\pi\)
0.396593 + 0.917994i \(0.370192\pi\)
\(98\) −5.99672 + 0.740872i −0.605761 + 0.0748394i
\(99\) 0 0
\(100\) 8.75870 2.19775i 0.875870 0.219775i
\(101\) 4.21872 3.06508i 0.419778 0.304987i −0.357770 0.933810i \(-0.616463\pi\)
0.777549 + 0.628823i \(0.216463\pi\)
\(102\) 0 0
\(103\) −3.29822 1.07166i −0.324983 0.105593i 0.141982 0.989869i \(-0.454653\pi\)
−0.466965 + 0.884276i \(0.654653\pi\)
\(104\) −16.6253 4.41466i −1.63025 0.432893i
\(105\) 0 0
\(106\) 6.09135 + 1.17930i 0.591645 + 0.114543i
\(107\) 7.88188 2.56098i 0.761970 0.247579i 0.0978460 0.995202i \(-0.468805\pi\)
0.664124 + 0.747623i \(0.268805\pi\)
\(108\) 0 0
\(109\) −17.7781 −1.70284 −0.851419 0.524487i \(-0.824257\pi\)
−0.851419 + 0.524487i \(0.824257\pi\)
\(110\) −2.27046 + 2.34789i −0.216479 + 0.223862i
\(111\) 0 0
\(112\) −2.87804 + 5.94608i −0.271949 + 0.561852i
\(113\) 2.30521 + 7.09472i 0.216856 + 0.667415i 0.999017 + 0.0443379i \(0.0141178\pi\)
−0.782160 + 0.623077i \(0.785882\pi\)
\(114\) 0 0
\(115\) −4.87063 3.53872i −0.454189 0.329988i
\(116\) −8.00085 3.21860i −0.742860 0.298839i
\(117\) 0 0
\(118\) −7.32466 15.6771i −0.674290 1.44319i
\(119\) 3.68575 + 5.07300i 0.337872 + 0.465041i
\(120\) 0 0
\(121\) −2.31799 + 10.7530i −0.210726 + 0.977545i
\(122\) 0.415768 0.0513666i 0.0376419 0.00465051i
\(123\) 0 0
\(124\) 11.8157 7.40795i 1.06108 0.665253i
\(125\) −6.30146 2.04747i −0.563619 0.183131i
\(126\) 0 0
\(127\) −5.14844 3.74056i −0.456850 0.331921i 0.335444 0.942060i \(-0.391114\pi\)
−0.792294 + 0.610139i \(0.791114\pi\)
\(128\) −5.87784 9.66701i −0.519533 0.854451i
\(129\) 0 0
\(130\) 4.08779 + 4.37703i 0.358523 + 0.383891i
\(131\) 0.239732i 0.0209455i −0.999945 0.0104727i \(-0.996666\pi\)
0.999945 0.0104727i \(-0.00333363\pi\)
\(132\) 0 0
\(133\) 9.83639i 0.852923i
\(134\) 11.0726 10.3409i 0.956528 0.893320i
\(135\) 0 0
\(136\) −10.7233 + 0.586186i −0.919512 + 0.0502651i
\(137\) 2.39415 + 1.73945i 0.204546 + 0.148611i 0.685343 0.728221i \(-0.259652\pi\)
−0.480797 + 0.876832i \(0.659652\pi\)
\(138\) 0 0
\(139\) 1.50194 + 0.488010i 0.127393 + 0.0413925i 0.372020 0.928225i \(-0.378665\pi\)
−0.244627 + 0.969617i \(0.578665\pi\)
\(140\) 1.94868 1.22174i 0.164694 0.103256i
\(141\) 0 0
\(142\) 0.336441 + 2.72320i 0.0282335 + 0.228526i
\(143\) 19.4757 + 5.24855i 1.62864 + 0.438906i
\(144\) 0 0
\(145\) 1.76489 + 2.42916i 0.146566 + 0.201731i
\(146\) 9.30900 4.34936i 0.770419 0.359956i
\(147\) 0 0
\(148\) −1.58804 + 3.94757i −0.130536 + 0.324488i
\(149\) −14.7822 10.7399i −1.21101 0.879849i −0.215687 0.976463i \(-0.569199\pi\)
−0.995322 + 0.0966133i \(0.969199\pi\)
\(150\) 0 0
\(151\) 4.68718 + 14.4256i 0.381437 + 1.17394i 0.939032 + 0.343829i \(0.111724\pi\)
−0.557595 + 0.830113i \(0.688276\pi\)
\(152\) 14.1491 + 9.14331i 1.14764 + 0.741620i
\(153\) 0 0
\(154\) 3.40051 6.95990i 0.274021 0.560845i
\(155\) −4.85554 −0.390007
\(156\) 0 0
\(157\) 6.33215 2.05744i 0.505360 0.164202i −0.0452308 0.998977i \(-0.514402\pi\)
0.550591 + 0.834775i \(0.314402\pi\)
\(158\) −0.920110 + 4.75259i −0.0732000 + 0.378096i
\(159\) 0 0
\(160\) −0.0539720 + 3.93872i −0.00426686 + 0.311383i
\(161\) 13.5797 + 4.41232i 1.07023 + 0.347739i
\(162\) 0 0
\(163\) −0.612537 + 0.445034i −0.0479776 + 0.0348578i −0.611516 0.791232i \(-0.709440\pi\)
0.563538 + 0.826090i \(0.309440\pi\)
\(164\) 0.377138 + 1.50301i 0.0294495 + 0.117365i
\(165\) 0 0
\(166\) 0.563125 + 4.55801i 0.0437069 + 0.353770i
\(167\) 11.1349 8.08998i 0.861644 0.626021i −0.0666874 0.997774i \(-0.521243\pi\)
0.928332 + 0.371753i \(0.121243\pi\)
\(168\) 0 0
\(169\) 7.41220 22.8124i 0.570169 1.75480i
\(170\) 3.27164 + 1.81029i 0.250923 + 0.138843i
\(171\) 0 0
\(172\) 20.2966 + 1.38868i 1.54760 + 0.105886i
\(173\) −1.35890 4.18227i −0.103315 0.317972i 0.886016 0.463655i \(-0.153462\pi\)
−0.989331 + 0.145683i \(0.953462\pi\)
\(174\) 0 0
\(175\) 7.45669 0.563672
\(176\) 6.85051 + 11.3609i 0.516376 + 0.856362i
\(177\) 0 0
\(178\) −6.85509 + 6.40210i −0.513811 + 0.479858i
\(179\) 5.23266 + 16.1045i 0.391107 + 1.20370i 0.931952 + 0.362582i \(0.118105\pi\)
−0.540845 + 0.841122i \(0.681895\pi\)
\(180\) 0 0
\(181\) 10.7847 14.8439i 0.801620 1.10334i −0.190943 0.981601i \(-0.561155\pi\)
0.992563 0.121734i \(-0.0388455\pi\)
\(182\) −12.4283 6.87695i −0.921249 0.509754i
\(183\) 0 0
\(184\) −18.9697 + 15.4322i −1.39847 + 1.13768i
\(185\) 1.19853 0.870785i 0.0881178 0.0640214i
\(186\) 0 0
\(187\) 12.5766 0.640964i 0.919691 0.0468719i
\(188\) 2.71144 + 10.8059i 0.197752 + 0.788100i
\(189\) 0 0
\(190\) −2.48279 5.31396i −0.180121 0.385515i
\(191\) 23.5927 + 7.66573i 1.70711 + 0.554673i 0.989847 0.142134i \(-0.0453963\pi\)
0.717259 + 0.696806i \(0.245396\pi\)
\(192\) 0 0
\(193\) 0.0138035 0.0189988i 0.000993595 0.00136757i −0.808520 0.588469i \(-0.799731\pi\)
0.809514 + 0.587101i \(0.199731\pi\)
\(194\) 1.15815 5.98212i 0.0831503 0.429491i
\(195\) 0 0
\(196\) 5.48287 6.55418i 0.391634 0.468156i
\(197\) 0.183455 0.0130706 0.00653530 0.999979i \(-0.497920\pi\)
0.00653530 + 0.999979i \(0.497920\pi\)
\(198\) 0 0
\(199\) 14.8031i 1.04936i −0.851298 0.524682i \(-0.824184\pi\)
0.851298 0.524682i \(-0.175816\pi\)
\(200\) −6.93128 + 10.7260i −0.490115 + 0.758443i
\(201\) 0 0
\(202\) −1.40171 + 7.24015i −0.0986237 + 0.509415i
\(203\) −5.76120 4.18575i −0.404357 0.293782i
\(204\) 0 0
\(205\) 0.166722 0.513118i 0.0116444 0.0358377i
\(206\) 4.44336 2.07603i 0.309583 0.144644i
\(207\) 0 0
\(208\) 21.4447 11.4850i 1.48692 0.796344i
\(209\) −16.5516 10.7826i −1.14490 0.745850i
\(210\) 0 0
\(211\) −6.77305 9.32230i −0.466276 0.641774i 0.509519 0.860459i \(-0.329823\pi\)
−0.975795 + 0.218685i \(0.929823\pi\)
\(212\) −7.43415 + 4.66090i −0.510580 + 0.320112i
\(213\) 0 0
\(214\) −5.67442 + 10.2551i −0.387895 + 0.701021i
\(215\) −5.73042 4.16340i −0.390812 0.283941i
\(216\) 0 0
\(217\) 10.9522 3.55858i 0.743483 0.241572i
\(218\) 18.3749 17.1607i 1.24450 1.16227i
\(219\) 0 0
\(220\) 0.0803288 4.61829i 0.00541577 0.311365i
\(221\) 23.0914i 1.55330i
\(222\) 0 0
\(223\) 9.63345 3.13010i 0.645104 0.209607i 0.0318497 0.999493i \(-0.489860\pi\)
0.613254 + 0.789886i \(0.289860\pi\)
\(224\) −2.76491 8.92375i −0.184738 0.596243i
\(225\) 0 0
\(226\) −9.23089 5.10772i −0.614030 0.339760i
\(227\) 8.77003 + 2.84955i 0.582087 + 0.189132i 0.585235 0.810863i \(-0.301002\pi\)
−0.00314828 + 0.999995i \(0.501002\pi\)
\(228\) 0 0
\(229\) 15.0976 + 20.7800i 0.997676 + 1.37318i 0.926740 + 0.375703i \(0.122599\pi\)
0.0709359 + 0.997481i \(0.477401\pi\)
\(230\) 8.44994 1.04396i 0.557172 0.0688365i
\(231\) 0 0
\(232\) 11.3762 4.39632i 0.746885 0.288633i
\(233\) −14.1060 19.4152i −0.924112 1.27193i −0.962112 0.272654i \(-0.912099\pi\)
0.0380001 0.999278i \(-0.487901\pi\)
\(234\) 0 0
\(235\) 1.19865 3.68907i 0.0781913 0.240648i
\(236\) 22.7031 + 9.13304i 1.47785 + 0.594510i
\(237\) 0 0
\(238\) −8.70626 1.68555i −0.564343 0.109258i
\(239\) −4.93373 15.1845i −0.319137 0.982201i −0.974018 0.226470i \(-0.927282\pi\)
0.654882 0.755731i \(-0.272718\pi\)
\(240\) 0 0
\(241\) 9.42736i 0.607269i 0.952789 + 0.303635i \(0.0982003\pi\)
−0.952789 + 0.303635i \(0.901800\pi\)
\(242\) −7.98372 13.3514i −0.513213 0.858261i
\(243\) 0 0
\(244\) −0.380142 + 0.454418i −0.0243361 + 0.0290911i
\(245\) −2.82954 + 0.919373i −0.180773 + 0.0587366i
\(246\) 0 0
\(247\) −21.2911 + 29.3047i −1.35472 + 1.86461i
\(248\) −5.06167 + 19.0619i −0.321416 + 1.21043i
\(249\) 0 0
\(250\) 8.48933 3.96639i 0.536912 0.250857i
\(251\) 3.20392 2.32778i 0.202229 0.146928i −0.482062 0.876137i \(-0.660112\pi\)
0.684291 + 0.729209i \(0.260112\pi\)
\(252\) 0 0
\(253\) 22.3106 18.0137i 1.40266 1.13251i
\(254\) 8.93190 1.10350i 0.560437 0.0692399i
\(255\) 0 0
\(256\) 15.4064 + 4.31781i 0.962899 + 0.269863i
\(257\) −6.26844 + 19.2923i −0.391015 + 1.20342i 0.541008 + 0.841018i \(0.318043\pi\)
−0.932022 + 0.362401i \(0.881957\pi\)
\(258\) 0 0
\(259\) −2.06522 + 2.84254i −0.128327 + 0.176627i
\(260\) −8.45001 0.578143i −0.524048 0.0358549i
\(261\) 0 0
\(262\) 0.231405 + 0.247779i 0.0142963 + 0.0153078i
\(263\) −4.86501 −0.299989 −0.149995 0.988687i \(-0.547926\pi\)
−0.149995 + 0.988687i \(0.547926\pi\)
\(264\) 0 0
\(265\) 3.05499 0.187667
\(266\) 9.49475 + 10.1666i 0.582160 + 0.623352i
\(267\) 0 0
\(268\) −1.46253 + 21.3761i −0.0893384 + 1.30575i
\(269\) −16.9712 + 23.3589i −1.03475 + 1.42422i −0.133435 + 0.991058i \(0.542601\pi\)
−0.901318 + 0.433158i \(0.857399\pi\)
\(270\) 0 0
\(271\) −4.51837 + 13.9061i −0.274472 + 0.844737i 0.714887 + 0.699240i \(0.246478\pi\)
−0.989359 + 0.145497i \(0.953522\pi\)
\(272\) 10.5174 10.9567i 0.637709 0.664346i
\(273\) 0 0
\(274\) −4.15354 + 0.513155i −0.250925 + 0.0310008i
\(275\) 8.17400 12.5473i 0.492911 0.756630i
\(276\) 0 0
\(277\) −22.3661 + 16.2499i −1.34385 + 0.976363i −0.344556 + 0.938766i \(0.611970\pi\)
−0.999293 + 0.0375974i \(0.988030\pi\)
\(278\) −2.02342 + 0.945383i −0.121356 + 0.0567003i
\(279\) 0 0
\(280\) −0.834785 + 3.14375i −0.0498880 + 0.187875i
\(281\) 16.8765 23.2286i 1.00677 1.38570i 0.0856916 0.996322i \(-0.472690\pi\)
0.921078 0.389378i \(-0.127310\pi\)
\(282\) 0 0
\(283\) 14.9354 4.85281i 0.887818 0.288469i 0.170618 0.985337i \(-0.445424\pi\)
0.717200 + 0.696868i \(0.245424\pi\)
\(284\) −2.97635 2.48985i −0.176614 0.147746i
\(285\) 0 0
\(286\) −25.1957 + 13.3745i −1.48985 + 0.790852i
\(287\) 1.27958i 0.0755312i
\(288\) 0 0
\(289\) 0.798350 + 2.45707i 0.0469618 + 0.144533i
\(290\) −4.16892 0.807110i −0.244807 0.0473951i
\(291\) 0 0
\(292\) −5.42317 + 13.4810i −0.317367 + 0.788918i
\(293\) −5.97643 + 18.3936i −0.349147 + 1.07456i 0.610179 + 0.792264i \(0.291098\pi\)
−0.959326 + 0.282300i \(0.908902\pi\)
\(294\) 0 0
\(295\) −5.00802 6.89294i −0.291578 0.401323i
\(296\) −2.16912 5.61296i −0.126077 0.326246i
\(297\) 0 0
\(298\) 25.6453 3.16838i 1.48559 0.183539i
\(299\) −30.9063 42.5388i −1.78736 2.46008i
\(300\) 0 0
\(301\) 15.9769 + 5.19120i 0.920892 + 0.299216i
\(302\) −18.7691 10.3855i −1.08004 0.597618i
\(303\) 0 0
\(304\) −23.4497 + 4.20742i −1.34494 + 0.241312i
\(305\) 0.196179 0.0637424i 0.0112332 0.00364988i
\(306\) 0 0
\(307\) 17.8955i 1.02135i −0.859774 0.510675i \(-0.829396\pi\)
0.859774 0.510675i \(-0.170604\pi\)
\(308\) 3.20351 + 10.4759i 0.182537 + 0.596920i
\(309\) 0 0
\(310\) 5.01853 4.68690i 0.285033 0.266198i
\(311\) 0.940857 0.305703i 0.0533511 0.0173348i −0.282220 0.959350i \(-0.591071\pi\)
0.335571 + 0.942015i \(0.391071\pi\)
\(312\) 0 0
\(313\) −10.9210 7.93456i −0.617291 0.448488i 0.234683 0.972072i \(-0.424595\pi\)
−0.851974 + 0.523584i \(0.824595\pi\)
\(314\) −4.55872 + 8.23871i −0.257263 + 0.464938i
\(315\) 0 0
\(316\) −3.63652 5.80027i −0.204570 0.326290i
\(317\) 5.19658 + 7.15248i 0.291869 + 0.401724i 0.929620 0.368519i \(-0.120135\pi\)
−0.637751 + 0.770243i \(0.720135\pi\)
\(318\) 0 0
\(319\) −13.3587 + 5.10589i −0.747945 + 0.285875i
\(320\) −3.74613 4.12302i −0.209415 0.230484i
\(321\) 0 0
\(322\) −18.2946 + 8.54763i −1.01952 + 0.476341i
\(323\) −6.98828 + 21.5077i −0.388839 + 1.19672i
\(324\) 0 0
\(325\) −22.2150 16.1402i −1.23227 0.895295i
\(326\) 0.203521 1.05123i 0.0112720 0.0582225i
\(327\) 0 0
\(328\) −1.84060 1.18942i −0.101630 0.0656747i
\(329\) 9.19955i 0.507188i
\(330\) 0 0
\(331\) 9.05146 0.497513 0.248757 0.968566i \(-0.419978\pi\)
0.248757 + 0.968566i \(0.419978\pi\)
\(332\) −4.98172 4.16744i −0.273408 0.228718i
\(333\) 0 0
\(334\) −3.69967 + 19.1097i −0.202437 + 1.04564i
\(335\) 4.38482 6.03518i 0.239568 0.329737i
\(336\) 0 0
\(337\) −12.9875 4.21989i −0.707474 0.229872i −0.0668898 0.997760i \(-0.521308\pi\)
−0.640584 + 0.767888i \(0.721308\pi\)
\(338\) 14.3591 + 30.7329i 0.781030 + 1.67165i
\(339\) 0 0
\(340\) −5.12887 + 1.28695i −0.278152 + 0.0697945i
\(341\) 6.01777 22.3300i 0.325880 1.20924i
\(342\) 0 0
\(343\) 15.0611 10.9426i 0.813225 0.590842i
\(344\) −22.3184 + 18.1564i −1.20333 + 0.978927i
\(345\) 0 0
\(346\) 5.44152 + 3.01095i 0.292538 + 0.161870i
\(347\) −1.37075 + 1.88668i −0.0735859 + 0.101282i −0.844223 0.535991i \(-0.819938\pi\)
0.770638 + 0.637274i \(0.219938\pi\)
\(348\) 0 0
\(349\) −4.49635 13.8383i −0.240684 0.740750i −0.996316 0.0857534i \(-0.972670\pi\)
0.755632 0.654996i \(-0.227330\pi\)
\(350\) −7.70698 + 7.19769i −0.411955 + 0.384733i
\(351\) 0 0
\(352\) −18.0468 5.12970i −0.961896 0.273414i
\(353\) −23.7432 −1.26372 −0.631861 0.775082i \(-0.717709\pi\)
−0.631861 + 0.775082i \(0.717709\pi\)
\(354\) 0 0
\(355\) 0.417501 + 1.28494i 0.0221586 + 0.0681973i
\(356\) 0.905459 13.2340i 0.0479892 0.701400i
\(357\) 0 0
\(358\) −20.9534 11.5941i −1.10742 0.612768i
\(359\) −3.27128 + 10.0680i −0.172652 + 0.531367i −0.999518 0.0310309i \(-0.990121\pi\)
0.826867 + 0.562398i \(0.190121\pi\)
\(360\) 0 0
\(361\) 13.3282 9.68351i 0.701484 0.509658i
\(362\) 3.18159 + 25.7522i 0.167221 + 1.35351i
\(363\) 0 0
\(364\) 19.4836 4.88887i 1.02122 0.256247i
\(365\) 4.09301 2.97375i 0.214238 0.155653i
\(366\) 0 0
\(367\) 24.8159 + 8.06317i 1.29538 + 0.420894i 0.873971 0.485978i \(-0.161536\pi\)
0.421407 + 0.906872i \(0.361536\pi\)
\(368\) 4.71028 34.2611i 0.245540 1.78598i
\(369\) 0 0
\(370\) −0.398223 + 2.05692i −0.0207026 + 0.106934i
\(371\) −6.89085 + 2.23897i −0.357755 + 0.116242i
\(372\) 0 0
\(373\) 16.7165 0.865549 0.432774 0.901502i \(-0.357535\pi\)
0.432774 + 0.901502i \(0.357535\pi\)
\(374\) −12.3800 + 12.8022i −0.640156 + 0.661988i
\(375\) 0 0
\(376\) −13.2330 8.55134i −0.682441 0.441002i
\(377\) 8.10365 + 24.9405i 0.417359 + 1.28450i
\(378\) 0 0
\(379\) −20.2745 14.7303i −1.04143 0.756643i −0.0708660 0.997486i \(-0.522576\pi\)
−0.970564 + 0.240842i \(0.922576\pi\)
\(380\) 7.69552 + 3.09577i 0.394772 + 0.158810i
\(381\) 0 0
\(382\) −31.7841 + 14.8502i −1.62622 + 0.759802i
\(383\) 5.14355 + 7.07949i 0.262823 + 0.361745i 0.919950 0.392035i \(-0.128229\pi\)
−0.657127 + 0.753780i \(0.728229\pi\)
\(384\) 0 0
\(385\) 0.992468 3.68273i 0.0505808 0.187689i
\(386\) 0.00407215 + 0.0329606i 0.000207267 + 0.00167765i
\(387\) 0 0
\(388\) 4.57732 + 7.30084i 0.232378 + 0.370644i
\(389\) −21.4991 6.98549i −1.09005 0.354179i −0.291784 0.956484i \(-0.594249\pi\)
−0.798265 + 0.602306i \(0.794249\pi\)
\(390\) 0 0
\(391\) −26.5579 19.2955i −1.34309 0.975814i
\(392\) 0.659621 + 12.0666i 0.0333159 + 0.609456i
\(393\) 0 0
\(394\) −0.189613 + 0.177083i −0.00955254 + 0.00892130i
\(395\) 2.38356i 0.119930i
\(396\) 0 0
\(397\) 2.78536i 0.139793i −0.997554 0.0698965i \(-0.977733\pi\)
0.997554 0.0698965i \(-0.0222669\pi\)
\(398\) 14.2889 + 15.3000i 0.716240 + 0.766919i
\(399\) 0 0
\(400\) −3.18953 17.7766i −0.159476 0.888829i
\(401\) −5.19019 3.77089i −0.259186 0.188309i 0.450602 0.892725i \(-0.351209\pi\)
−0.709788 + 0.704415i \(0.751209\pi\)
\(402\) 0 0
\(403\) −40.3315 13.1045i −2.00905 0.652781i
\(404\) −5.53992 8.83620i −0.275621 0.439617i
\(405\) 0 0
\(406\) 9.99495 1.23484i 0.496041 0.0612840i
\(407\) 2.51921 + 6.59111i 0.124873 + 0.326709i
\(408\) 0 0
\(409\) −17.5440 24.1473i −0.867496 1.19401i −0.979730 0.200324i \(-0.935801\pi\)
0.112234 0.993682i \(-0.464199\pi\)
\(410\) 0.322977 + 0.691272i 0.0159507 + 0.0341395i
\(411\) 0 0
\(412\) −2.58858 + 6.43474i −0.127530 + 0.317017i
\(413\) 16.3479 + 11.8774i 0.804426 + 0.584450i
\(414\) 0 0
\(415\) 0.698800 + 2.15068i 0.0343027 + 0.105573i
\(416\) −11.0784 + 32.5704i −0.543164 + 1.59690i
\(417\) 0 0
\(418\) 27.5153 4.83215i 1.34582 0.236348i
\(419\) 2.52141 0.123179 0.0615895 0.998102i \(-0.480383\pi\)
0.0615895 + 0.998102i \(0.480383\pi\)
\(420\) 0 0
\(421\) −28.8541 + 9.37526i −1.40626 + 0.456922i −0.911210 0.411942i \(-0.864851\pi\)
−0.495051 + 0.868864i \(0.664851\pi\)
\(422\) 15.9989 + 3.09742i 0.778815 + 0.150780i
\(423\) 0 0
\(424\) 3.18468 11.9933i 0.154662 0.582446i
\(425\) −16.3044 5.29762i −0.790879 0.256972i
\(426\) 0 0
\(427\) −0.395786 + 0.287555i −0.0191534 + 0.0139158i
\(428\) −4.03398 16.0766i −0.194990 0.777092i
\(429\) 0 0
\(430\) 9.94156 1.22824i 0.479425 0.0592311i
\(431\) −21.0004 + 15.2577i −1.01155 + 0.734937i −0.964534 0.263957i \(-0.914972\pi\)
−0.0470191 + 0.998894i \(0.514972\pi\)
\(432\) 0 0
\(433\) −9.50922 + 29.2664i −0.456984 + 1.40645i 0.411806 + 0.911271i \(0.364898\pi\)
−0.868790 + 0.495180i \(0.835102\pi\)
\(434\) −7.88483 + 14.2498i −0.378484 + 0.684013i
\(435\) 0 0
\(436\) −2.42706 + 35.4734i −0.116235 + 1.69887i
\(437\) 15.9129 + 48.9747i 0.761215 + 2.34278i
\(438\) 0 0
\(439\) 13.9098 0.663880 0.331940 0.943301i \(-0.392297\pi\)
0.331940 + 0.943301i \(0.392297\pi\)
\(440\) 4.37486 + 4.85085i 0.208563 + 0.231255i
\(441\) 0 0
\(442\) 22.2894 + 23.8665i 1.06020 + 1.13521i
\(443\) −2.80215 8.62415i −0.133134 0.409746i 0.862161 0.506635i \(-0.169111\pi\)
−0.995295 + 0.0968892i \(0.969111\pi\)
\(444\) 0 0
\(445\) −2.71465 + 3.73640i −0.128687 + 0.177122i
\(446\) −6.93543 + 12.5340i −0.328402 + 0.593503i
\(447\) 0 0
\(448\) 11.4715 + 6.55441i 0.541978 + 0.309667i
\(449\) 14.5319 10.5580i 0.685803 0.498265i −0.189475 0.981886i \(-0.560679\pi\)
0.875278 + 0.483621i \(0.160679\pi\)
\(450\) 0 0
\(451\) 2.15313 + 1.40267i 0.101387 + 0.0660492i
\(452\) 14.4711 3.63111i 0.680661 0.170793i
\(453\) 0 0
\(454\) −11.8150 + 5.52021i −0.554505 + 0.259076i
\(455\) −6.65159 2.16123i −0.311831 0.101320i
\(456\) 0 0
\(457\) 12.9937 17.8843i 0.607820 0.836592i −0.388576 0.921417i \(-0.627033\pi\)
0.996396 + 0.0848243i \(0.0270329\pi\)
\(458\) −35.6626 6.90435i −1.66641 0.322619i
\(459\) 0 0
\(460\) −7.72587 + 9.23544i −0.360221 + 0.430605i
\(461\) 19.6830 0.916730 0.458365 0.888764i \(-0.348435\pi\)
0.458365 + 0.888764i \(0.348435\pi\)
\(462\) 0 0
\(463\) 10.6767i 0.496188i −0.968736 0.248094i \(-0.920196\pi\)
0.968736 0.248094i \(-0.0798041\pi\)
\(464\) −7.51445 + 15.5250i −0.348850 + 0.720729i
\(465\) 0 0
\(466\) 33.3203 + 6.45087i 1.54353 + 0.298831i
\(467\) 26.3995 + 19.1804i 1.22162 + 0.887562i 0.996234 0.0867060i \(-0.0276341\pi\)
0.225391 + 0.974268i \(0.427634\pi\)
\(468\) 0 0
\(469\) −5.46728 + 16.8266i −0.252456 + 0.776979i
\(470\) 2.32205 + 4.96991i 0.107108 + 0.229245i
\(471\) 0 0
\(472\) −32.2810 + 12.4749i −1.48585 + 0.574206i
\(473\) 26.2490 21.1935i 1.20693 0.974480i
\(474\) 0 0
\(475\) 15.8069 + 21.7563i 0.725269 + 0.998247i
\(476\) 10.6255 6.66174i 0.487019 0.305340i
\(477\) 0 0
\(478\) 19.7564 + 10.9318i 0.903637 + 0.500008i
\(479\) −12.8754 9.35454i −0.588293 0.427420i 0.253411 0.967359i \(-0.418447\pi\)
−0.841704 + 0.539939i \(0.818447\pi\)
\(480\) 0 0
\(481\) 12.3055 3.99829i 0.561082 0.182306i
\(482\) −9.09992 9.74380i −0.414490 0.443818i
\(483\) 0 0
\(484\) 21.1394 + 6.09315i 0.960881 + 0.276961i
\(485\) 3.00021i 0.136232i
\(486\) 0 0
\(487\) 36.0858 11.7250i 1.63520 0.531310i 0.659744 0.751490i \(-0.270665\pi\)
0.975459 + 0.220180i \(0.0706645\pi\)
\(488\) −0.0457332 0.836609i −0.00207025 0.0378715i
\(489\) 0 0
\(490\) 2.03708 3.68149i 0.0920257 0.166313i
\(491\) −0.524914 0.170555i −0.0236890 0.00769703i 0.297149 0.954831i \(-0.403964\pi\)
−0.320838 + 0.947134i \(0.603964\pi\)
\(492\) 0 0
\(493\) 9.62334 + 13.2454i 0.433414 + 0.596543i
\(494\) −6.28108 50.8399i −0.282599 2.28740i
\(495\) 0 0
\(496\) −13.1683 24.5876i −0.591273 1.10402i
\(497\) −1.88343 2.59232i −0.0844835 0.116282i
\(498\) 0 0
\(499\) 0.743321 2.28771i 0.0332756 0.102412i −0.933039 0.359775i \(-0.882854\pi\)
0.966315 + 0.257363i \(0.0828536\pi\)
\(500\) −4.94565 + 12.2940i −0.221176 + 0.549804i
\(501\) 0 0
\(502\) −1.06453 + 5.49855i −0.0475123 + 0.245412i
\(503\) 0.451670 + 1.39010i 0.0201390 + 0.0619814i 0.960621 0.277862i \(-0.0896259\pi\)
−0.940482 + 0.339844i \(0.889626\pi\)
\(504\) 0 0
\(505\) 3.63114i 0.161584i
\(506\) −5.67149 + 40.1540i −0.252128 + 1.78506i
\(507\) 0 0
\(508\) −8.16653 + 9.76221i −0.362331 + 0.433128i
\(509\) 38.7738 12.5984i 1.71862 0.558413i 0.726889 0.686755i \(-0.240965\pi\)
0.991730 + 0.128342i \(0.0409655\pi\)
\(510\) 0 0
\(511\) −7.05278 + 9.70732i −0.311997 + 0.429427i
\(512\) −20.0914 + 10.4085i −0.887921 + 0.459996i
\(513\) 0 0
\(514\) −12.1433 25.9906i −0.535620 1.14639i
\(515\) 1.95367 1.41942i 0.0860890 0.0625473i
\(516\) 0 0
\(517\) 15.4800 + 10.0845i 0.680809 + 0.443517i
\(518\) −0.609261 4.93145i −0.0267694 0.216675i
\(519\) 0 0
\(520\) 9.29171 7.55897i 0.407469 0.331483i
\(521\) 0.971088 2.98870i 0.0425441 0.130937i −0.927528 0.373753i \(-0.878071\pi\)
0.970073 + 0.242815i \(0.0780709\pi\)
\(522\) 0 0
\(523\) 2.82713 3.89121i 0.123622 0.170151i −0.742720 0.669602i \(-0.766465\pi\)
0.866342 + 0.499451i \(0.166465\pi\)
\(524\) −0.478345 0.0327280i −0.0208966 0.00142973i
\(525\) 0 0
\(526\) 5.02831 4.69603i 0.219245 0.204757i
\(527\) −26.4757 −1.15330
\(528\) 0 0
\(529\) −51.7505 −2.25002
\(530\) −3.15753 + 2.94888i −0.137155 + 0.128091i
\(531\) 0 0
\(532\) −19.6269 1.34286i −0.850934 0.0582202i
\(533\) 2.76968 3.81214i 0.119968 0.165122i
\(534\) 0 0
\(535\) −1.78331 + 5.48846i −0.0770991 + 0.237287i
\(536\) −19.1220 23.5053i −0.825944 1.01528i
\(537\) 0 0
\(538\) −5.00667 40.5247i −0.215853 1.74714i
\(539\) −0.721261 14.1521i −0.0310669 0.609575i
\(540\) 0 0
\(541\) −12.8453 + 9.33268i −0.552264 + 0.401243i −0.828620 0.559812i \(-0.810873\pi\)
0.276355 + 0.961056i \(0.410873\pi\)
\(542\) −8.75309 18.7343i −0.375977 0.804709i
\(543\) 0 0
\(544\) −0.294291 + 21.4765i −0.0126176 + 0.920798i
\(545\) 7.27656 10.0153i 0.311693 0.429009i
\(546\) 0 0
\(547\) 2.96072 0.961995i 0.126591 0.0411319i −0.245036 0.969514i \(-0.578800\pi\)
0.371627 + 0.928382i \(0.378800\pi\)
\(548\) 3.79763 4.53966i 0.162227 0.193925i
\(549\) 0 0
\(550\) 3.66311 + 20.8585i 0.156196 + 0.889411i
\(551\) 25.6824i 1.09411i
\(552\) 0 0
\(553\) −1.74689 5.37637i −0.0742852 0.228626i
\(554\) 7.43134 38.3846i 0.315727 1.63081i
\(555\) 0 0
\(556\) 1.17879 2.93025i 0.0499917 0.124270i
\(557\) 1.84128 5.66686i 0.0780174 0.240113i −0.904440 0.426601i \(-0.859711\pi\)
0.982457 + 0.186489i \(0.0597107\pi\)
\(558\) 0 0
\(559\) −36.3620 50.0480i −1.53795 2.11681i
\(560\) −2.17175 4.05506i −0.0917732 0.171358i
\(561\) 0 0
\(562\) 4.97874 + 40.2986i 0.210016 + 1.69989i
\(563\) 11.7180 + 16.1284i 0.493853 + 0.679730i 0.981093 0.193538i \(-0.0619963\pi\)
−0.487240 + 0.873268i \(0.661996\pi\)
\(564\) 0 0
\(565\) −4.94033 1.60521i −0.207841 0.0675317i
\(566\) −10.7525 + 19.4324i −0.451960 + 0.816803i
\(567\) 0 0
\(568\) 5.47963 0.299544i 0.229920 0.0125686i
\(569\) 10.2471 3.32949i 0.429582 0.139580i −0.0862422 0.996274i \(-0.527486\pi\)
0.515824 + 0.856695i \(0.327486\pi\)
\(570\) 0 0
\(571\) 31.9637i 1.33764i 0.743424 + 0.668820i \(0.233200\pi\)
−0.743424 + 0.668820i \(0.766800\pi\)
\(572\) 13.1314 38.1440i 0.549052 1.59488i
\(573\) 0 0
\(574\) −1.23514 1.32253i −0.0515536 0.0552013i
\(575\) −37.1263 + 12.0631i −1.54827 + 0.503065i
\(576\) 0 0
\(577\) −0.0764768 0.0555637i −0.00318377 0.00231315i 0.586192 0.810172i \(-0.300626\pi\)
−0.589376 + 0.807859i \(0.700626\pi\)
\(578\) −3.19688 1.76892i −0.132973 0.0735775i
\(579\) 0 0
\(580\) 5.08793 3.18992i 0.211265 0.132454i
\(581\) −3.15243 4.33895i −0.130785 0.180010i
\(582\) 0 0
\(583\) −3.78623 + 14.0495i −0.156810 + 0.581871i
\(584\) −7.40758 19.1684i −0.306528 0.793192i
\(585\) 0 0
\(586\) −11.5777 24.7798i −0.478269 1.02365i
\(587\) 1.27747 3.93166i 0.0527270 0.162277i −0.921226 0.389029i \(-0.872811\pi\)
0.973953 + 0.226752i \(0.0728106\pi\)
\(588\) 0 0
\(589\) 33.5995 + 24.4115i 1.38444 + 1.00586i
\(590\) 11.8296 + 2.29024i 0.487019 + 0.0942878i
\(591\) 0 0
\(592\) 7.65993 + 3.70758i 0.314821 + 0.152381i
\(593\) 35.7489i 1.46803i 0.679133 + 0.734015i \(0.262356\pi\)
−0.679133 + 0.734015i \(0.737644\pi\)
\(594\) 0 0
\(595\) −4.36644 −0.179007
\(596\) −23.4478 + 28.0293i −0.960460 + 1.14813i
\(597\) 0 0
\(598\) 73.0050 + 14.1339i 2.98540 + 0.577978i
\(599\) −7.34693 + 10.1122i −0.300187 + 0.413172i −0.932290 0.361713i \(-0.882192\pi\)
0.632102 + 0.774885i \(0.282192\pi\)
\(600\) 0 0
\(601\) 21.8025 + 7.08405i 0.889341 + 0.288964i 0.717830 0.696218i \(-0.245135\pi\)
0.171510 + 0.985182i \(0.445135\pi\)
\(602\) −21.5241 + 10.0565i −0.877255 + 0.409872i
\(603\) 0 0
\(604\) 29.4239 7.38311i 1.19724 0.300415i
\(605\) −5.10895 5.70702i −0.207709 0.232023i
\(606\) 0 0
\(607\) 23.1519 16.8209i 0.939708 0.682738i −0.00864207 0.999963i \(-0.502751\pi\)
0.948350 + 0.317225i \(0.102751\pi\)
\(608\) 20.1756 26.9839i 0.818228 1.09434i
\(609\) 0 0
\(610\) −0.141236 + 0.255247i −0.00571846 + 0.0103347i
\(611\) 19.9126 27.4074i 0.805579 1.10878i
\(612\) 0 0
\(613\) 4.21216 + 12.9637i 0.170128 + 0.523599i 0.999378 0.0352789i \(-0.0112320\pi\)
−0.829250 + 0.558878i \(0.811232\pi\)
\(614\) 17.2739 + 18.4962i 0.697119 + 0.746445i
\(615\) 0 0
\(616\) −13.4231 7.73531i −0.540832 0.311664i
\(617\) −14.0298 −0.564819 −0.282410 0.959294i \(-0.591134\pi\)
−0.282410 + 0.959294i \(0.591134\pi\)
\(618\) 0 0
\(619\) −7.23719 22.2738i −0.290887 0.895259i −0.984572 0.174980i \(-0.944014\pi\)
0.693685 0.720279i \(-0.255986\pi\)
\(620\) −0.662875 + 9.68844i −0.0266217 + 0.389097i
\(621\) 0 0
\(622\) −0.677353 + 1.22414i −0.0271594 + 0.0490836i
\(623\) 3.38481 10.4174i 0.135610 0.417364i
\(624\) 0 0
\(625\) −14.5314 + 10.5577i −0.581256 + 0.422307i
\(626\) 18.9465 2.34077i 0.757256 0.0935561i
\(627\) 0 0
\(628\) −3.24082 12.9156i −0.129323 0.515390i
\(629\) 6.53520 4.74810i 0.260575 0.189319i
\(630\) 0 0
\(631\) 16.4648 + 5.34974i 0.655453 + 0.212970i 0.617817 0.786322i \(-0.288017\pi\)
0.0376362 + 0.999292i \(0.488017\pi\)
\(632\) 9.35739 + 2.48475i 0.372217 + 0.0988379i
\(633\) 0 0
\(634\) −12.2751 2.37648i −0.487505 0.0943819i
\(635\) 4.21449 1.36937i 0.167247 0.0543418i
\(636\) 0 0
\(637\) −25.9842 −1.02953
\(638\) 8.87859 18.1720i 0.351507 0.719437i
\(639\) 0 0
\(640\) 7.85170 + 0.645403i 0.310366 + 0.0255118i
\(641\) 0.223394 + 0.687535i 0.00882352 + 0.0271560i 0.955371 0.295407i \(-0.0954554\pi\)
−0.946548 + 0.322564i \(0.895455\pi\)
\(642\) 0 0
\(643\) 3.53380 + 2.56746i 0.139359 + 0.101251i 0.655281 0.755385i \(-0.272550\pi\)
−0.515921 + 0.856636i \(0.672550\pi\)
\(644\) 10.6579 26.4937i 0.419982 1.04400i
\(645\) 0 0
\(646\) −13.5378 28.9752i −0.532639 1.14002i
\(647\) −19.5634 26.9267i −0.769115 1.05860i −0.996401 0.0847680i \(-0.972985\pi\)
0.227286 0.973828i \(-0.427015\pi\)
\(648\) 0 0
\(649\) 37.9065 14.4884i 1.48796 0.568719i
\(650\) 38.5403 4.76151i 1.51167 0.186762i
\(651\) 0 0
\(652\) 0.804369 + 1.28297i 0.0315015 + 0.0502451i
\(653\) −14.5362 4.72309i −0.568845 0.184829i 0.0104521 0.999945i \(-0.496673\pi\)
−0.579297 + 0.815116i \(0.696673\pi\)
\(654\) 0 0
\(655\) 0.135053 + 0.0981217i 0.00527695 + 0.00383393i
\(656\) 3.05049 0.547328i 0.119102 0.0213696i
\(657\) 0 0
\(658\) −8.88002 9.50835i −0.346179 0.370674i
\(659\) 31.0396i 1.20913i 0.796556 + 0.604565i \(0.206653\pi\)
−0.796556 + 0.604565i \(0.793347\pi\)
\(660\) 0 0
\(661\) 30.3454i 1.18030i −0.807294 0.590149i \(-0.799069\pi\)
0.807294 0.590149i \(-0.200931\pi\)
\(662\) −9.35529 + 8.73708i −0.363604 + 0.339576i
\(663\) 0 0
\(664\) 9.17163 0.501367i 0.355928 0.0194568i
\(665\) 5.54133 + 4.02601i 0.214884 + 0.156122i
\(666\) 0 0
\(667\) 35.4561 + 11.5204i 1.37287 + 0.446071i
\(668\) −14.6221 23.3223i −0.565746 0.902367i
\(669\) 0 0
\(670\) 1.29356 + 10.4703i 0.0499747 + 0.404502i
\(671\) 0.0500069 + 0.981203i 0.00193049 + 0.0378789i
\(672\) 0 0
\(673\) 8.88632 + 12.2310i 0.342543 + 0.471469i 0.945182 0.326544i \(-0.105884\pi\)
−0.602639 + 0.798014i \(0.705884\pi\)
\(674\) 17.4968 8.17486i 0.673950 0.314884i
\(675\) 0 0
\(676\) −44.5065 17.9041i −1.71179 0.688621i
\(677\) 29.0399 + 21.0987i 1.11609 + 0.810890i 0.983613 0.180295i \(-0.0577053\pi\)
0.132482 + 0.991185i \(0.457705\pi\)
\(678\) 0 0
\(679\) 2.19882 + 6.76728i 0.0843830 + 0.259704i
\(680\) 4.05878 6.28087i 0.155647 0.240860i
\(681\) 0 0
\(682\) 15.3347 + 28.8883i 0.587195 + 1.10619i
\(683\) −16.5721 −0.634112 −0.317056 0.948407i \(-0.602694\pi\)
−0.317056 + 0.948407i \(0.602694\pi\)
\(684\) 0 0
\(685\) −1.95984 + 0.636790i −0.0748816 + 0.0243305i
\(686\) −5.00420 + 25.8479i −0.191061 + 0.986876i
\(687\) 0 0
\(688\) 5.54176 40.3090i 0.211278 1.53677i
\(689\) 25.3756 + 8.24503i 0.966733 + 0.314111i
\(690\) 0 0
\(691\) 17.4532 12.6805i 0.663949 0.482387i −0.204045 0.978961i \(-0.565409\pi\)
0.867994 + 0.496574i \(0.165409\pi\)
\(692\) −8.53054 + 2.14050i −0.324283 + 0.0813697i
\(693\) 0 0
\(694\) −0.404385 3.27315i −0.0153503 0.124247i
\(695\) −0.889662 + 0.646377i −0.0337468 + 0.0245185i
\(696\) 0 0
\(697\) 0.909080 2.79786i 0.0344338 0.105976i
\(698\) 18.0050 + 9.96267i 0.681498 + 0.377093i
\(699\) 0 0
\(700\) 1.01798 14.8786i 0.0384760 0.562358i
\(701\) 10.2401 + 31.5157i 0.386762 + 1.19033i 0.935194 + 0.354135i \(0.115225\pi\)
−0.548432 + 0.836195i \(0.684775\pi\)
\(702\) 0 0
\(703\) −12.6716 −0.477917
\(704\) 23.6041 12.1181i 0.889612 0.456717i
\(705\) 0 0
\(706\) 24.5401 22.9185i 0.923580 0.862549i
\(707\) −2.66123 8.19043i −0.100086 0.308033i
\(708\) 0 0
\(709\) 11.7145 16.1236i 0.439946 0.605534i −0.530254 0.847839i \(-0.677903\pi\)
0.970200 + 0.242305i \(0.0779035\pi\)
\(710\) −1.67182 0.925066i −0.0627423 0.0347171i
\(711\) 0 0
\(712\) 11.8385 + 14.5522i 0.443666 + 0.545368i
\(713\) −48.7733 + 35.4359i −1.82657 + 1.32708i
\(714\) 0 0
\(715\) −10.9281 + 8.82342i −0.408689 + 0.329977i
\(716\) 32.8482 8.24234i 1.22759 0.308031i
\(717\) 0 0
\(718\) −6.33719 13.5636i −0.236502 0.506188i
\(719\) 8.25695 + 2.68285i 0.307932 + 0.100053i 0.458907 0.888484i \(-0.348241\pi\)
−0.150974 + 0.988538i \(0.548241\pi\)
\(720\) 0 0
\(721\) −3.36642 + 4.63348i −0.125372 + 0.172560i
\(722\) −4.42841 + 22.8738i −0.164808 + 0.851275i
\(723\) 0 0
\(724\) −28.1462 23.5455i −1.04604 0.875063i
\(725\) 19.4691 0.723065
\(726\) 0 0
\(727\) 8.14327i 0.302017i 0.988532 + 0.151009i \(0.0482521\pi\)
−0.988532 + 0.151009i \(0.951748\pi\)
\(728\) −15.4185 + 23.8599i −0.571449 + 0.884305i
\(729\) 0 0
\(730\) −1.35994 + 7.02441i −0.0503336 + 0.259985i
\(731\) −31.2461 22.7016i −1.15568 0.839649i
\(732\) 0 0
\(733\) −0.185339 + 0.570415i −0.00684566 + 0.0210688i −0.954421 0.298464i \(-0.903526\pi\)
0.947575 + 0.319532i \(0.103526\pi\)
\(734\) −33.4320 + 15.6201i −1.23400 + 0.576549i
\(735\) 0 0
\(736\) 28.2027 + 39.9578i 1.03957 + 1.47286i
\(737\) 22.3207 + 27.6450i 0.822192 + 1.01832i
\(738\) 0 0
\(739\) 3.55308 + 4.89040i 0.130702 + 0.179896i 0.869352 0.494193i \(-0.164536\pi\)
−0.738650 + 0.674089i \(0.764536\pi\)
\(740\) −1.57388 2.51035i −0.0578571 0.0922824i
\(741\) 0 0
\(742\) 4.96094 8.96563i 0.182122 0.329139i
\(743\) 14.7479 + 10.7149i 0.541046 + 0.393093i 0.824473 0.565901i \(-0.191471\pi\)
−0.283427 + 0.958994i \(0.591471\pi\)
\(744\) 0 0
\(745\) 12.1007 3.93175i 0.443335 0.144048i
\(746\) −17.2776 + 16.1359i −0.632579 + 0.590778i
\(747\) 0 0
\(748\) 0.438006 25.1820i 0.0160151 0.920745i
\(749\) 13.6868i 0.500103i
\(750\) 0 0
\(751\) −48.5455 + 15.7734i −1.77145 + 0.575579i −0.998280 0.0586211i \(-0.981330\pi\)
−0.773169 + 0.634200i \(0.781330\pi\)
\(752\) 21.9315 3.93502i 0.799761 0.143495i
\(753\) 0 0
\(754\) −32.4499 17.9555i −1.18176 0.653899i
\(755\) −10.0451 3.26386i −0.365580 0.118784i
\(756\) 0 0
\(757\) 4.99944 + 6.88113i 0.181708 + 0.250099i 0.890148 0.455672i \(-0.150601\pi\)
−0.708440 + 0.705771i \(0.750601\pi\)
\(758\) 35.1737 4.34557i 1.27757 0.157838i
\(759\) 0 0
\(760\) −10.9421 + 4.22855i −0.396911 + 0.153386i
\(761\) −20.9441 28.8271i −0.759224 1.04498i −0.997278 0.0737302i \(-0.976510\pi\)
0.238054 0.971252i \(-0.423490\pi\)
\(762\) 0 0
\(763\) −9.07290 + 27.9235i −0.328461 + 1.01090i
\(764\) 18.5166 46.0288i 0.669905 1.66526i
\(765\) 0 0
\(766\) −12.1498 2.35222i −0.438990 0.0849893i
\(767\) −22.9948 70.7707i −0.830294 2.55538i
\(768\) 0 0
\(769\) 45.0073i 1.62300i 0.584350 + 0.811502i \(0.301349\pi\)
−0.584350 + 0.811502i \(0.698651\pi\)
\(770\) 2.52904 + 4.76435i 0.0911403 + 0.171695i
\(771\) 0 0
\(772\) −0.0360246 0.0301362i −0.00129655 0.00108463i
\(773\) 27.7270 9.00903i 0.997269 0.324032i 0.235495 0.971875i \(-0.424329\pi\)
0.761774 + 0.647843i \(0.224329\pi\)
\(774\) 0 0
\(775\) −18.5056 + 25.4708i −0.664743 + 0.914940i
\(776\) −11.7782 3.12757i −0.422814 0.112273i
\(777\) 0 0
\(778\) 28.9636 13.5324i 1.03840 0.485161i
\(779\) −3.73341 + 2.71248i −0.133763 + 0.0971848i
\(780\) 0 0
\(781\) −6.42669 + 0.327535i −0.229965 + 0.0117201i
\(782\) 46.0747 5.69235i 1.64763 0.203558i
\(783\) 0 0
\(784\) −12.3293 11.8349i −0.440331 0.422676i
\(785\) −1.43268 + 4.40932i −0.0511344 + 0.157375i
\(786\) 0 0
\(787\) 16.0741 22.1241i 0.572980 0.788639i −0.419924 0.907559i \(-0.637943\pi\)
0.992904 + 0.118920i \(0.0379432\pi\)
\(788\) 0.0250451 0.366053i 0.000892193 0.0130401i
\(789\) 0 0
\(790\) −2.30077 2.46357i −0.0818578 0.0876498i
\(791\) 12.3199 0.438044
\(792\) 0 0
\(793\) 1.80155 0.0639749
\(794\) 2.68861 + 2.87885i 0.0954153 + 0.102167i
\(795\) 0 0
\(796\) −29.5371 2.02091i −1.04692 0.0716291i
\(797\) 0.554736 0.763529i 0.0196498 0.0270456i −0.799079 0.601226i \(-0.794679\pi\)
0.818729 + 0.574180i \(0.194679\pi\)
\(798\) 0 0
\(799\) 6.53584 20.1152i 0.231221 0.711626i
\(800\) 20.4557 + 15.2945i 0.723219 + 0.540743i
\(801\) 0 0
\(802\) 9.00432 1.11245i 0.317954 0.0392820i
\(803\) 8.60317 + 22.5088i 0.303599 + 0.794318i
\(804\) 0 0
\(805\) −8.04383 + 5.84418i −0.283508 + 0.205980i
\(806\) 54.3346 25.3863i 1.91386 0.894194i
\(807\) 0 0
\(808\) 14.2552 + 3.78529i 0.501495 + 0.133166i
\(809\) −11.5315 + 15.8717i −0.405424 + 0.558019i −0.962095 0.272714i \(-0.912079\pi\)
0.556671 + 0.830733i \(0.312079\pi\)
\(810\) 0 0
\(811\) −18.2649 + 5.93462i −0.641367 + 0.208393i −0.611604 0.791164i \(-0.709475\pi\)
−0.0297632 + 0.999557i \(0.509475\pi\)
\(812\) −9.13850 + 10.9241i −0.320698 + 0.383360i
\(813\) 0 0
\(814\) −8.96596 4.38064i −0.314257 0.153541i
\(815\) 0.527224i 0.0184679i
\(816\) 0 0
\(817\) 18.7219 + 57.6200i 0.654995 + 2.01587i
\(818\) 41.4415 + 8.02314i 1.44897 + 0.280523i
\(819\) 0 0
\(820\) −1.00108 0.402717i −0.0349593 0.0140635i
\(821\) −4.88277 + 15.0276i −0.170410 + 0.524467i −0.999394 0.0348046i \(-0.988919\pi\)
0.828984 + 0.559272i \(0.188919\pi\)
\(822\) 0 0
\(823\) −23.2795 32.0414i −0.811471 1.11689i −0.991095 0.133159i \(-0.957488\pi\)
0.179623 0.983735i \(-0.442512\pi\)
\(824\) −3.53578 9.14941i −0.123175 0.318735i
\(825\) 0 0
\(826\) −28.3615 + 3.50396i −0.986823 + 0.121918i
\(827\) 23.2594 + 32.0138i 0.808807 + 1.11323i 0.991506 + 0.130058i \(0.0415165\pi\)
−0.182699 + 0.983169i \(0.558484\pi\)
\(828\) 0 0
\(829\) −14.5137 4.71578i −0.504081 0.163786i 0.0459279 0.998945i \(-0.485376\pi\)
−0.550009 + 0.835159i \(0.685376\pi\)
\(830\) −2.79824 1.54835i −0.0971283 0.0537439i
\(831\) 0 0
\(832\) −19.9889 44.3573i −0.692990 1.53781i
\(833\) −15.4285 + 5.01303i −0.534567 + 0.173691i
\(834\) 0 0
\(835\) 9.58406i 0.331670i
\(836\) −23.7746 + 31.5539i −0.822260 + 1.09132i
\(837\) 0 0
\(838\) −2.60605 + 2.43384i −0.0900244 + 0.0840755i
\(839\) −13.3878 + 4.34995i −0.462197 + 0.150177i −0.530854 0.847463i \(-0.678129\pi\)
0.0686565 + 0.997640i \(0.478129\pi\)
\(840\) 0 0
\(841\) 8.41924 + 6.11693i 0.290318 + 0.210929i
\(842\) 20.7730 37.5418i 0.715884 1.29378i
\(843\) 0 0
\(844\) −19.5258 + 12.2418i −0.672105 + 0.421381i
\(845\) 9.81757 + 13.5127i 0.337735 + 0.464852i
\(846\) 0 0
\(847\) 15.7064 + 9.12847i 0.539678 + 0.313658i
\(848\) 8.28515 + 15.4699i 0.284513 + 0.531240i
\(849\) 0 0
\(850\) 21.9653 10.2627i 0.753403 0.352006i
\(851\) 5.68409 17.4938i 0.194848 0.599681i
\(852\) 0 0
\(853\) 15.7626 + 11.4522i 0.539702 + 0.392117i 0.823974 0.566627i \(-0.191752\pi\)
−0.284272 + 0.958744i \(0.591752\pi\)
\(854\) 0.131503 0.679247i 0.00449996 0.0232434i
\(855\) 0 0
\(856\) 19.6876 + 12.7224i 0.672909 + 0.434842i
\(857\) 22.1714i 0.757359i −0.925528 0.378680i \(-0.876378\pi\)
0.925528 0.378680i \(-0.123622\pi\)
\(858\) 0 0
\(859\) −2.34314 −0.0799470 −0.0399735 0.999201i \(-0.512727\pi\)
−0.0399735 + 0.999201i \(0.512727\pi\)
\(860\) −9.08968 + 10.8657i −0.309956 + 0.370518i
\(861\) 0 0
\(862\) 6.97757 36.0408i 0.237657 1.22755i
\(863\) 29.5571 40.6819i 1.00614 1.38483i 0.0846518 0.996411i \(-0.473022\pi\)
0.921484 0.388416i \(-0.126978\pi\)
\(864\) 0 0
\(865\) 2.91228 + 0.946256i 0.0990204 + 0.0321737i
\(866\) −18.4214 39.4277i −0.625986 1.33981i
\(867\) 0 0
\(868\) −5.60538 22.3391i −0.190259 0.758238i
\(869\) −10.9617 2.95409i −0.371850 0.100211i
\(870\) 0 0
\(871\) 52.7097 38.2958i 1.78600 1.29760i
\(872\) −31.7327 39.0068i −1.07461 1.32094i
\(873\) 0 0
\(874\) −63.7207 35.2585i −2.15538 1.19264i
\(875\) −6.43177 + 8.85257i −0.217434 + 0.299272i
\(876\) 0 0
\(877\) −8.48419 26.1117i −0.286491 0.881728i −0.985948 0.167053i \(-0.946575\pi\)
0.699457 0.714675i \(-0.253425\pi\)
\(878\) −14.3767 + 13.4267i −0.485191 + 0.453129i
\(879\) 0 0
\(880\) −9.20407 0.790768i −0.310269 0.0266568i
\(881\) −15.6647 −0.527756 −0.263878 0.964556i \(-0.585002\pi\)
−0.263878 + 0.964556i \(0.585002\pi\)
\(882\) 0 0
\(883\) 14.0543 + 43.2547i 0.472965 + 1.45564i 0.848682 + 0.528903i \(0.177397\pi\)
−0.375717 + 0.926735i \(0.622603\pi\)
\(884\) −46.0751 3.15242i −1.54967 0.106027i
\(885\) 0 0
\(886\) 11.2208 + 6.20880i 0.376971 + 0.208589i
\(887\) 11.7143 36.0529i 0.393327 1.21054i −0.536930 0.843627i \(-0.680416\pi\)
0.930257 0.366909i \(-0.119584\pi\)
\(888\) 0 0
\(889\) −8.50263 + 6.17752i −0.285169 + 0.207187i
\(890\) −0.800849 6.48218i −0.0268445 0.217283i
\(891\) 0 0
\(892\) −4.93044 19.6493i −0.165084 0.657907i
\(893\) −26.8414 + 19.5014i −0.898214 + 0.652591i
\(894\) 0 0
\(895\) −11.2142 3.64370i −0.374848 0.121796i
\(896\) −18.1833 + 4.29866i −0.607462 + 0.143608i
\(897\) 0 0
\(898\) −4.82835 + 24.9396i −0.161124 + 0.832245i
\(899\) 28.5957 9.29131i 0.953721 0.309883i
\(900\) 0 0
\(901\) 16.6578 0.554953
\(902\) −3.57936 + 0.628596i −0.119180 + 0.0209300i
\(903\) 0 0
\(904\) −11.4518 + 17.7214i −0.380881 + 0.589406i
\(905\) 3.94814 + 12.1511i 0.131241 + 0.403917i
\(906\) 0 0
\(907\) 24.3629 + 17.7007i 0.808957 + 0.587742i 0.913528 0.406776i \(-0.133347\pi\)
−0.104571 + 0.994517i \(0.533347\pi\)
\(908\) 6.88309 17.1101i 0.228423 0.567819i
\(909\) 0 0
\(910\) 8.96102 4.18678i 0.297055 0.138790i
\(911\) 21.2777 + 29.2863i 0.704963 + 0.970298i 0.999891 + 0.0147785i \(0.00470432\pi\)
−0.294928 + 0.955519i \(0.595296\pi\)
\(912\) 0 0
\(913\) −10.7568 + 0.548218i −0.355998 + 0.0181434i
\(914\) 3.83327 + 31.0270i 0.126793 + 1.02628i
\(915\) 0 0
\(916\) 43.5242 27.2879i 1.43808 0.901616i
\(917\) −0.376538 0.122345i −0.0124344 0.00404018i
\(918\) 0 0
\(919\) −22.9541 16.6771i −0.757184 0.550127i 0.140861 0.990029i \(-0.455013\pi\)
−0.898045 + 0.439903i \(0.855013\pi\)
\(920\) −0.929467 17.0030i −0.0306436 0.560571i
\(921\) 0 0
\(922\) −20.3437 + 18.9994i −0.669985 + 0.625711i
\(923\) 11.7998i 0.388395i
\(924\) 0 0
\(925\) 9.60594i 0.315841i
\(926\) 10.3059 + 11.0351i 0.338671 + 0.362635i
\(927\) 0 0
\(928\) −7.21907 23.2996i −0.236978 0.764845i
\(929\) −17.2036 12.4992i −0.564433 0.410084i 0.268646 0.963239i \(-0.413424\pi\)
−0.833079 + 0.553155i \(0.813424\pi\)
\(930\) 0 0
\(931\) 24.2021 + 7.86374i 0.793192 + 0.257724i
\(932\) −40.6655 + 25.4956i −1.33204 + 0.835135i
\(933\) 0 0
\(934\) −45.7999 + 5.65840i −1.49862 + 0.185148i
\(935\) −4.78648 + 7.34737i −0.156535 + 0.240285i
\(936\) 0 0
\(937\) −25.3238 34.8552i −0.827293 1.13867i −0.988421 0.151738i \(-0.951513\pi\)
0.161128 0.986934i \(-0.448487\pi\)
\(938\) −10.5913 22.6688i −0.345819 0.740161i
\(939\) 0 0
\(940\) −7.19728 2.89534i −0.234750 0.0944355i
\(941\) 7.65773 + 5.56367i 0.249635 + 0.181370i 0.705565 0.708645i \(-0.250693\pi\)
−0.455930 + 0.890016i \(0.650693\pi\)
\(942\) 0 0
\(943\) −2.07004 6.37094i −0.0674099 0.207466i
\(944\) 21.3229 44.0534i 0.694001 1.43382i
\(945\) 0 0
\(946\) −6.67265 + 47.2422i −0.216947 + 1.53598i
\(947\) −58.1103 −1.88833 −0.944166 0.329471i \(-0.893130\pi\)
−0.944166 + 0.329471i \(0.893130\pi\)
\(948\) 0 0
\(949\) 42.0235 13.6542i 1.36414 0.443236i
\(950\) −37.3381 7.22872i −1.21141 0.234531i
\(951\) 0 0
\(952\) −4.55181 + 17.1418i −0.147525 + 0.555569i
\(953\) 37.3273 + 12.1284i 1.20915 + 0.392876i 0.843119 0.537727i \(-0.180717\pi\)
0.366030 + 0.930603i \(0.380717\pi\)
\(954\) 0 0
\(955\) −13.9749 + 10.1534i −0.452218 + 0.328556i
\(956\) −30.9716 + 7.77148i −1.00169 + 0.251348i
\(957\) 0 0
\(958\) 22.3372 2.75968i 0.721684 0.0891612i
\(959\) 3.95392 2.87269i 0.127679 0.0927641i
\(960\) 0 0
\(961\) −5.44555 + 16.7597i −0.175663 + 0.540635i
\(962\) −8.85911 + 16.0106i −0.285629 + 0.516202i
\(963\) 0 0
\(964\) 18.8107 + 1.28701i 0.605853 + 0.0414520i
\(965\) 0.00505327 + 0.0155524i 0.000162670 + 0.000500648i
\(966\) 0 0
\(967\) −35.8221 −1.15196 −0.575980 0.817464i \(-0.695379\pi\)
−0.575980 + 0.817464i \(0.695379\pi\)
\(968\) −27.7305 + 14.1075i −0.891291 + 0.453431i
\(969\) 0 0
\(970\) 2.89600 + 3.10091i 0.0929849 + 0.0995643i
\(971\) 9.05079 + 27.8555i 0.290454 + 0.893924i 0.984711 + 0.174197i \(0.0557330\pi\)
−0.694257 + 0.719727i \(0.744267\pi\)
\(972\) 0 0
\(973\) 1.53300 2.11000i 0.0491458 0.0676434i
\(974\) −25.9793 + 46.9510i −0.832431 + 1.50441i
\(975\) 0 0
\(976\) 0.854820 + 0.820547i 0.0273621 + 0.0262651i
\(977\) 19.3774 14.0785i 0.619939 0.450412i −0.232961 0.972486i \(-0.574841\pi\)
0.852900 + 0.522074i \(0.174841\pi\)
\(978\) 0 0
\(979\) −13.8188 17.1151i −0.441651 0.547001i
\(980\) 1.44817 + 5.77139i 0.0462601 + 0.184360i
\(981\) 0 0
\(982\) 0.707164 0.330402i 0.0225665 0.0105436i
\(983\) −15.5566 5.05465i −0.496179 0.161218i 0.0502286 0.998738i \(-0.484005\pi\)
−0.546408 + 0.837519i \(0.684005\pi\)
\(984\) 0 0
\(985\) −0.0750876 + 0.103349i −0.00239249 + 0.00329298i
\(986\) −22.7317 4.40090i −0.723925 0.140153i
\(987\) 0 0
\(988\) 55.5660 + 46.4835i 1.76779 + 1.47884i
\(989\) −87.9459 −2.79652
\(990\) 0 0
\(991\) 54.9239i 1.74471i 0.488870 + 0.872357i \(0.337409\pi\)
−0.488870 + 0.872357i \(0.662591\pi\)
\(992\) 37.3439 + 12.7020i 1.18567 + 0.403290i
\(993\) 0 0
\(994\) 4.44894 + 0.861322i 0.141112 + 0.0273195i
\(995\) 8.33932 + 6.05887i 0.264374 + 0.192079i
\(996\) 0 0
\(997\) 2.82716 8.70110i 0.0895370 0.275567i −0.896254 0.443540i \(-0.853722\pi\)
0.985791 + 0.167974i \(0.0537223\pi\)
\(998\) 1.43998 + 3.08200i 0.0455817 + 0.0975590i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.bp.d.19.4 48
3.2 odd 2 264.2.z.b.19.9 yes 48
8.3 odd 2 inner 792.2.bp.d.19.10 48
11.7 odd 10 inner 792.2.bp.d.667.10 48
12.11 even 2 1056.2.bp.a.943.7 48
24.5 odd 2 1056.2.bp.a.943.6 48
24.11 even 2 264.2.z.b.19.3 48
33.29 even 10 264.2.z.b.139.3 yes 48
88.51 even 10 inner 792.2.bp.d.667.4 48
132.95 odd 10 1056.2.bp.a.271.6 48
264.29 even 10 1056.2.bp.a.271.7 48
264.227 odd 10 264.2.z.b.139.9 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.z.b.19.3 48 24.11 even 2
264.2.z.b.19.9 yes 48 3.2 odd 2
264.2.z.b.139.3 yes 48 33.29 even 10
264.2.z.b.139.9 yes 48 264.227 odd 10
792.2.bp.d.19.4 48 1.1 even 1 trivial
792.2.bp.d.19.10 48 8.3 odd 2 inner
792.2.bp.d.667.4 48 88.51 even 10 inner
792.2.bp.d.667.10 48 11.7 odd 10 inner
1056.2.bp.a.271.6 48 132.95 odd 10
1056.2.bp.a.271.7 48 264.29 even 10
1056.2.bp.a.943.6 48 24.5 odd 2
1056.2.bp.a.943.7 48 12.11 even 2