Properties

Label 792.2.bp.d.19.12
Level $792$
Weight $2$
Character 792.19
Analytic conductor $6.324$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(19,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 5, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.bp (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 264)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 19.12
Character \(\chi\) \(=\) 792.19
Dual form 792.2.bp.d.667.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40421 + 0.167908i) q^{2} +(1.94361 + 0.471557i) q^{4} +(1.03968 - 1.43099i) q^{5} +(-0.430909 + 1.32620i) q^{7} +(2.65006 + 0.988513i) q^{8} +(1.70020 - 1.83484i) q^{10} +(2.97889 + 1.45816i) q^{11} +(-2.66400 + 1.93551i) q^{13} +(-0.827766 + 1.78991i) q^{14} +(3.55527 + 1.83305i) q^{16} +(2.21773 - 3.05245i) q^{17} +(-0.399566 + 0.129827i) q^{19} +(2.69552 - 2.29103i) q^{20} +(3.93815 + 2.54775i) q^{22} -1.44940i q^{23} +(0.578275 + 1.77975i) q^{25} +(-4.06581 + 2.27056i) q^{26} +(-1.46290 + 2.37442i) q^{28} +(2.45128 - 7.54427i) q^{29} +(0.816325 + 1.12358i) q^{31} +(4.68456 + 3.17094i) q^{32} +(3.62669 - 3.91390i) q^{34} +(1.44978 + 1.99544i) q^{35} +(-8.91884 - 2.89791i) q^{37} +(-0.582873 + 0.115214i) q^{38} +(4.16976 - 2.76449i) q^{40} +(-3.29058 + 1.06918i) q^{41} -3.60336i q^{43} +(5.10220 + 4.23882i) q^{44} +(0.243367 - 2.03527i) q^{46} +(0.727433 - 0.236357i) q^{47} +(4.08999 + 2.97155i) q^{49} +(0.513186 + 2.59624i) q^{50} +(-6.09050 + 2.50566i) q^{52} +(-2.54374 - 3.50116i) q^{53} +(5.18369 - 2.74674i) q^{55} +(-2.45290 + 3.08856i) q^{56} +(4.70886 - 10.1821i) q^{58} +(-3.69578 + 11.3745i) q^{59} +(-8.45451 - 6.14256i) q^{61} +(0.957635 + 1.71480i) q^{62} +(6.04568 + 5.23925i) q^{64} +5.82447i q^{65} +9.95011 q^{67} +(5.74981 - 4.88699i) q^{68} +(1.70074 + 3.04545i) q^{70} +(-7.57332 + 10.4238i) q^{71} +(-9.14630 - 2.97181i) q^{73} +(-12.0373 - 5.56681i) q^{74} +(-0.837822 + 0.0639152i) q^{76} +(-3.21744 + 3.32227i) q^{77} +(-4.69761 + 3.41302i) q^{79} +(6.31940 - 3.18178i) q^{80} +(-4.80020 + 0.948832i) q^{82} +(8.86730 - 12.2048i) q^{83} +(-2.06230 - 6.34711i) q^{85} +(0.605033 - 5.05987i) q^{86} +(6.45283 + 6.80889i) q^{88} -10.9210 q^{89} +(-1.41893 - 4.36703i) q^{91} +(0.683476 - 2.81708i) q^{92} +(1.06116 - 0.209753i) q^{94} +(-0.229638 + 0.706752i) q^{95} +(-11.2144 + 8.14771i) q^{97} +(5.24426 + 4.85943i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{4} - 4 q^{11} + 16 q^{14} + 20 q^{16} - 25 q^{20} + 3 q^{22} - 4 q^{25} - 4 q^{26} - 25 q^{28} - 26 q^{38} - 65 q^{40} + 60 q^{41} + 43 q^{44} - 5 q^{46} - 12 q^{49} + 80 q^{50} - 15 q^{52}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40421 + 0.167908i 0.992927 + 0.118729i
\(3\) 0 0
\(4\) 1.94361 + 0.471557i 0.971807 + 0.235778i
\(5\) 1.03968 1.43099i 0.464957 0.639959i −0.510570 0.859836i \(-0.670566\pi\)
0.975528 + 0.219877i \(0.0705657\pi\)
\(6\) 0 0
\(7\) −0.430909 + 1.32620i −0.162868 + 0.501257i −0.998873 0.0474657i \(-0.984886\pi\)
0.836005 + 0.548722i \(0.184886\pi\)
\(8\) 2.65006 + 0.988513i 0.936939 + 0.349492i
\(9\) 0 0
\(10\) 1.70020 1.83484i 0.537650 0.580228i
\(11\) 2.97889 + 1.45816i 0.898168 + 0.439652i
\(12\) 0 0
\(13\) −2.66400 + 1.93551i −0.738862 + 0.536815i −0.892355 0.451335i \(-0.850948\pi\)
0.153493 + 0.988150i \(0.450948\pi\)
\(14\) −0.827766 + 1.78991i −0.221230 + 0.478374i
\(15\) 0 0
\(16\) 3.55527 + 1.83305i 0.888817 + 0.458262i
\(17\) 2.21773 3.05245i 0.537879 0.740327i −0.450427 0.892813i \(-0.648728\pi\)
0.988306 + 0.152487i \(0.0487281\pi\)
\(18\) 0 0
\(19\) −0.399566 + 0.129827i −0.0916666 + 0.0297843i −0.354491 0.935059i \(-0.615346\pi\)
0.262825 + 0.964844i \(0.415346\pi\)
\(20\) 2.69552 2.29103i 0.602737 0.512289i
\(21\) 0 0
\(22\) 3.93815 + 2.54775i 0.839616 + 0.543181i
\(23\) 1.44940i 0.302222i −0.988517 0.151111i \(-0.951715\pi\)
0.988517 0.151111i \(-0.0482850\pi\)
\(24\) 0 0
\(25\) 0.578275 + 1.77975i 0.115655 + 0.355950i
\(26\) −4.06581 + 2.27056i −0.797371 + 0.445293i
\(27\) 0 0
\(28\) −1.46290 + 2.37442i −0.276462 + 0.448724i
\(29\) 2.45128 7.54427i 0.455191 1.40094i −0.415719 0.909493i \(-0.636470\pi\)
0.870910 0.491442i \(-0.163530\pi\)
\(30\) 0 0
\(31\) 0.816325 + 1.12358i 0.146616 + 0.201800i 0.876008 0.482296i \(-0.160197\pi\)
−0.729392 + 0.684096i \(0.760197\pi\)
\(32\) 4.68456 + 3.17094i 0.828121 + 0.560549i
\(33\) 0 0
\(34\) 3.62669 3.91390i 0.621972 0.671228i
\(35\) 1.44978 + 1.99544i 0.245057 + 0.337292i
\(36\) 0 0
\(37\) −8.91884 2.89791i −1.46625 0.476413i −0.536276 0.844043i \(-0.680169\pi\)
−0.929972 + 0.367630i \(0.880169\pi\)
\(38\) −0.582873 + 0.115214i −0.0945545 + 0.0186901i
\(39\) 0 0
\(40\) 4.16976 2.76449i 0.659297 0.437104i
\(41\) −3.29058 + 1.06918i −0.513903 + 0.166977i −0.554476 0.832199i \(-0.687081\pi\)
0.0405736 + 0.999177i \(0.487081\pi\)
\(42\) 0 0
\(43\) 3.60336i 0.549507i −0.961515 0.274753i \(-0.911404\pi\)
0.961515 0.274753i \(-0.0885962\pi\)
\(44\) 5.10220 + 4.23882i 0.769185 + 0.639026i
\(45\) 0 0
\(46\) 0.243367 2.03527i 0.0358824 0.300084i
\(47\) 0.727433 0.236357i 0.106107 0.0344763i −0.255482 0.966814i \(-0.582234\pi\)
0.361589 + 0.932337i \(0.382234\pi\)
\(48\) 0 0
\(49\) 4.08999 + 2.97155i 0.584285 + 0.424508i
\(50\) 0.513186 + 2.59624i 0.0725754 + 0.367163i
\(51\) 0 0
\(52\) −6.09050 + 2.50566i −0.844600 + 0.347472i
\(53\) −2.54374 3.50116i −0.349410 0.480921i 0.597751 0.801682i \(-0.296061\pi\)
−0.947160 + 0.320761i \(0.896061\pi\)
\(54\) 0 0
\(55\) 5.18369 2.74674i 0.698969 0.370371i
\(56\) −2.45290 + 3.08856i −0.327783 + 0.412726i
\(57\) 0 0
\(58\) 4.70886 10.1821i 0.618303 1.33698i
\(59\) −3.69578 + 11.3745i −0.481150 + 1.48083i 0.356330 + 0.934360i \(0.384028\pi\)
−0.837480 + 0.546468i \(0.815972\pi\)
\(60\) 0 0
\(61\) −8.45451 6.14256i −1.08249 0.786474i −0.104373 0.994538i \(-0.533284\pi\)
−0.978115 + 0.208064i \(0.933284\pi\)
\(62\) 0.957635 + 1.71480i 0.121620 + 0.217780i
\(63\) 0 0
\(64\) 6.04568 + 5.23925i 0.755710 + 0.654906i
\(65\) 5.82447i 0.722437i
\(66\) 0 0
\(67\) 9.95011 1.21560 0.607800 0.794090i \(-0.292052\pi\)
0.607800 + 0.794090i \(0.292052\pi\)
\(68\) 5.74981 4.88699i 0.697267 0.592634i
\(69\) 0 0
\(70\) 1.70074 + 3.04545i 0.203277 + 0.364001i
\(71\) −7.57332 + 10.4238i −0.898788 + 1.23708i 0.0720652 + 0.997400i \(0.477041\pi\)
−0.970853 + 0.239675i \(0.922959\pi\)
\(72\) 0 0
\(73\) −9.14630 2.97181i −1.07049 0.347824i −0.279814 0.960054i \(-0.590273\pi\)
−0.790680 + 0.612230i \(0.790273\pi\)
\(74\) −12.0373 5.56681i −1.39931 0.647129i
\(75\) 0 0
\(76\) −0.837822 + 0.0639152i −0.0961047 + 0.00733157i
\(77\) −3.21744 + 3.32227i −0.366662 + 0.378607i
\(78\) 0 0
\(79\) −4.69761 + 3.41302i −0.528523 + 0.383994i −0.819805 0.572643i \(-0.805918\pi\)
0.291282 + 0.956637i \(0.405918\pi\)
\(80\) 6.31940 3.18178i 0.706531 0.355734i
\(81\) 0 0
\(82\) −4.80020 + 0.948832i −0.530093 + 0.104781i
\(83\) 8.86730 12.2048i 0.973313 1.33965i 0.0329578 0.999457i \(-0.489507\pi\)
0.940355 0.340194i \(-0.110493\pi\)
\(84\) 0 0
\(85\) −2.06230 6.34711i −0.223688 0.688441i
\(86\) 0.605033 5.05987i 0.0652424 0.545620i
\(87\) 0 0
\(88\) 6.45283 + 6.80889i 0.687874 + 0.725830i
\(89\) −10.9210 −1.15763 −0.578814 0.815460i \(-0.696484\pi\)
−0.578814 + 0.815460i \(0.696484\pi\)
\(90\) 0 0
\(91\) −1.41893 4.36703i −0.148745 0.457789i
\(92\) 0.683476 2.81708i 0.0712573 0.293701i
\(93\) 0 0
\(94\) 1.06116 0.209753i 0.109450 0.0216344i
\(95\) −0.229638 + 0.706752i −0.0235603 + 0.0725113i
\(96\) 0 0
\(97\) −11.2144 + 8.14771i −1.13865 + 0.827275i −0.986930 0.161149i \(-0.948480\pi\)
−0.151716 + 0.988424i \(0.548480\pi\)
\(98\) 5.24426 + 4.85943i 0.529751 + 0.490877i
\(99\) 0 0
\(100\) 0.284692 + 3.73183i 0.0284692 + 0.373183i
\(101\) −6.49406 + 4.71821i −0.646183 + 0.469480i −0.861969 0.506961i \(-0.830769\pi\)
0.215786 + 0.976441i \(0.430769\pi\)
\(102\) 0 0
\(103\) −11.7338 3.81254i −1.15617 0.375661i −0.332703 0.943032i \(-0.607961\pi\)
−0.823463 + 0.567370i \(0.807961\pi\)
\(104\) −8.97306 + 2.49583i −0.879881 + 0.244736i
\(105\) 0 0
\(106\) −2.98407 5.34348i −0.289839 0.519004i
\(107\) 6.82340 2.21706i 0.659643 0.214331i 0.0399817 0.999200i \(-0.487270\pi\)
0.619661 + 0.784869i \(0.287270\pi\)
\(108\) 0 0
\(109\) 9.38007 0.898448 0.449224 0.893419i \(-0.351700\pi\)
0.449224 + 0.893419i \(0.351700\pi\)
\(110\) 7.74020 2.98662i 0.737999 0.284763i
\(111\) 0 0
\(112\) −3.96298 + 3.92512i −0.374467 + 0.370889i
\(113\) −0.566005 1.74198i −0.0532452 0.163872i 0.920898 0.389804i \(-0.127457\pi\)
−0.974143 + 0.225932i \(0.927457\pi\)
\(114\) 0 0
\(115\) −2.07408 1.50691i −0.193409 0.140520i
\(116\) 8.32189 13.5072i 0.772668 1.25411i
\(117\) 0 0
\(118\) −7.09952 + 15.3516i −0.653564 + 1.41323i
\(119\) 3.09251 + 4.25648i 0.283490 + 0.390191i
\(120\) 0 0
\(121\) 6.74753 + 8.68740i 0.613412 + 0.789763i
\(122\) −10.8405 10.0450i −0.981455 0.909434i
\(123\) 0 0
\(124\) 1.05679 + 2.56874i 0.0949027 + 0.230680i
\(125\) 11.5592 + 3.75580i 1.03388 + 0.335929i
\(126\) 0 0
\(127\) 5.77997 + 4.19940i 0.512890 + 0.372636i 0.813919 0.580979i \(-0.197330\pi\)
−0.301029 + 0.953615i \(0.597330\pi\)
\(128\) 7.60970 + 8.37213i 0.672609 + 0.739998i
\(129\) 0 0
\(130\) −0.977976 + 8.17879i −0.0857742 + 0.717327i
\(131\) 8.74918i 0.764420i −0.924076 0.382210i \(-0.875163\pi\)
0.924076 0.382210i \(-0.124837\pi\)
\(132\) 0 0
\(133\) 0.585847i 0.0507994i
\(134\) 13.9721 + 1.67070i 1.20700 + 0.144327i
\(135\) 0 0
\(136\) 8.89451 5.89692i 0.762698 0.505657i
\(137\) −6.84644 4.97423i −0.584930 0.424977i 0.255568 0.966791i \(-0.417738\pi\)
−0.840498 + 0.541814i \(0.817738\pi\)
\(138\) 0 0
\(139\) −5.45350 1.77195i −0.462560 0.150295i 0.0684604 0.997654i \(-0.478191\pi\)
−0.531021 + 0.847359i \(0.678191\pi\)
\(140\) 1.87684 + 4.56203i 0.158622 + 0.385562i
\(141\) 0 0
\(142\) −12.3848 + 13.3656i −1.03931 + 1.12161i
\(143\) −10.7581 + 1.88112i −0.899634 + 0.157307i
\(144\) 0 0
\(145\) −8.24724 11.3514i −0.684896 0.942679i
\(146\) −12.3443 5.70879i −1.02162 0.472463i
\(147\) 0 0
\(148\) −15.9682 9.83815i −1.31258 0.808691i
\(149\) −15.6781 11.3908i −1.28440 0.933168i −0.284720 0.958611i \(-0.591901\pi\)
−0.999676 + 0.0254423i \(0.991901\pi\)
\(150\) 0 0
\(151\) −3.22214 9.91672i −0.262214 0.807011i −0.992322 0.123680i \(-0.960530\pi\)
0.730108 0.683331i \(-0.239470\pi\)
\(152\) −1.18721 0.0509267i −0.0962954 0.00413070i
\(153\) 0 0
\(154\) −5.07580 + 4.12492i −0.409020 + 0.332396i
\(155\) 2.45654 0.197314
\(156\) 0 0
\(157\) 16.9246 5.49914i 1.35073 0.438879i 0.457792 0.889059i \(-0.348640\pi\)
0.892938 + 0.450180i \(0.148640\pi\)
\(158\) −7.16951 + 4.00383i −0.570376 + 0.318527i
\(159\) 0 0
\(160\) 9.40802 3.40681i 0.743769 0.269332i
\(161\) 1.92220 + 0.624560i 0.151491 + 0.0492223i
\(162\) 0 0
\(163\) −4.84269 + 3.51842i −0.379308 + 0.275584i −0.761060 0.648681i \(-0.775321\pi\)
0.381752 + 0.924265i \(0.375321\pi\)
\(164\) −6.89980 + 0.526367i −0.538784 + 0.0411024i
\(165\) 0 0
\(166\) 14.5008 15.6492i 1.12548 1.21461i
\(167\) −4.20600 + 3.05584i −0.325470 + 0.236468i −0.738506 0.674247i \(-0.764468\pi\)
0.413036 + 0.910715i \(0.364468\pi\)
\(168\) 0 0
\(169\) −0.666510 + 2.05131i −0.0512700 + 0.157793i
\(170\) −1.83017 9.25895i −0.140368 0.710129i
\(171\) 0 0
\(172\) 1.69919 7.00353i 0.129562 0.534014i
\(173\) −4.33891 13.3538i −0.329881 1.01527i −0.969189 0.246319i \(-0.920779\pi\)
0.639307 0.768951i \(-0.279221\pi\)
\(174\) 0 0
\(175\) −2.60949 −0.197259
\(176\) 7.91786 + 10.6446i 0.596831 + 0.802367i
\(177\) 0 0
\(178\) −15.3354 1.83373i −1.14944 0.137444i
\(179\) −7.11085 21.8849i −0.531490 1.63576i −0.751114 0.660173i \(-0.770483\pi\)
0.219624 0.975585i \(-0.429517\pi\)
\(180\) 0 0
\(181\) −11.4700 + 15.7871i −0.852559 + 1.17345i 0.130734 + 0.991418i \(0.458267\pi\)
−0.983293 + 0.182030i \(0.941733\pi\)
\(182\) −1.25922 6.37048i −0.0933398 0.472212i
\(183\) 0 0
\(184\) 1.43275 3.84101i 0.105624 0.283163i
\(185\) −13.4196 + 9.74989i −0.986627 + 0.716827i
\(186\) 0 0
\(187\) 11.0573 5.85908i 0.808592 0.428458i
\(188\) 1.52530 0.116361i 0.111244 0.00848653i
\(189\) 0 0
\(190\) −0.441129 + 0.953871i −0.0320029 + 0.0692011i
\(191\) 24.3481 + 7.91117i 1.76177 + 0.572432i 0.997381 0.0723280i \(-0.0230428\pi\)
0.764385 + 0.644760i \(0.223043\pi\)
\(192\) 0 0
\(193\) 12.9917 17.8816i 0.935166 1.28715i −0.0226438 0.999744i \(-0.507208\pi\)
0.957810 0.287402i \(-0.0927917\pi\)
\(194\) −17.1154 + 9.55812i −1.22881 + 0.686233i
\(195\) 0 0
\(196\) 6.54811 + 7.70422i 0.467722 + 0.550301i
\(197\) −18.2227 −1.29832 −0.649158 0.760653i \(-0.724879\pi\)
−0.649158 + 0.760653i \(0.724879\pi\)
\(198\) 0 0
\(199\) 13.2643i 0.940284i 0.882591 + 0.470142i \(0.155797\pi\)
−0.882591 + 0.470142i \(0.844203\pi\)
\(200\) −0.226838 + 5.28808i −0.0160399 + 0.373924i
\(201\) 0 0
\(202\) −9.91125 + 5.53496i −0.697353 + 0.389438i
\(203\) 8.94893 + 6.50178i 0.628092 + 0.456335i
\(204\) 0 0
\(205\) −1.89116 + 5.82039i −0.132084 + 0.406514i
\(206\) −15.8366 7.32381i −1.10339 0.510274i
\(207\) 0 0
\(208\) −13.0191 + 1.99802i −0.902715 + 0.138538i
\(209\) −1.37957 0.195892i −0.0954268 0.0135501i
\(210\) 0 0
\(211\) 11.2460 + 15.4787i 0.774204 + 1.06560i 0.995898 + 0.0904841i \(0.0288414\pi\)
−0.221694 + 0.975116i \(0.571159\pi\)
\(212\) −3.29305 8.00442i −0.226168 0.549746i
\(213\) 0 0
\(214\) 9.95375 1.96751i 0.680424 0.134496i
\(215\) −5.15637 3.74632i −0.351662 0.255497i
\(216\) 0 0
\(217\) −1.84185 + 0.598452i −0.125033 + 0.0406256i
\(218\) 13.1716 + 1.57499i 0.892093 + 0.106672i
\(219\) 0 0
\(220\) 11.3703 2.89421i 0.766588 0.195127i
\(221\) 12.4242i 0.835740i
\(222\) 0 0
\(223\) −1.64768 + 0.535364i −0.110337 + 0.0358507i −0.363665 0.931530i \(-0.618475\pi\)
0.253328 + 0.967380i \(0.418475\pi\)
\(224\) −6.22392 + 4.84628i −0.415853 + 0.323806i
\(225\) 0 0
\(226\) −0.502296 2.54115i −0.0334123 0.169035i
\(227\) −5.99045 1.94642i −0.397600 0.129188i 0.103390 0.994641i \(-0.467031\pi\)
−0.500991 + 0.865453i \(0.667031\pi\)
\(228\) 0 0
\(229\) −2.03611 2.80246i −0.134550 0.185192i 0.736426 0.676519i \(-0.236512\pi\)
−0.870975 + 0.491327i \(0.836512\pi\)
\(230\) −2.65943 2.46427i −0.175357 0.162489i
\(231\) 0 0
\(232\) 13.9537 17.5697i 0.916103 1.15351i
\(233\) 8.63879 + 11.8903i 0.565946 + 0.778958i 0.992067 0.125708i \(-0.0401203\pi\)
−0.426121 + 0.904666i \(0.640120\pi\)
\(234\) 0 0
\(235\) 0.418069 1.28669i 0.0272718 0.0839341i
\(236\) −12.5469 + 20.3648i −0.816732 + 1.32563i
\(237\) 0 0
\(238\) 3.62784 + 6.49625i 0.235158 + 0.421089i
\(239\) 6.25422 + 19.2485i 0.404552 + 1.24508i 0.921269 + 0.388927i \(0.127154\pi\)
−0.516717 + 0.856156i \(0.672846\pi\)
\(240\) 0 0
\(241\) 8.76302i 0.564476i −0.959344 0.282238i \(-0.908923\pi\)
0.959344 0.282238i \(-0.0910768\pi\)
\(242\) 8.01626 + 13.3319i 0.515305 + 0.857007i
\(243\) 0 0
\(244\) −13.5357 15.9255i −0.866536 1.01953i
\(245\) 8.50454 2.76329i 0.543335 0.176540i
\(246\) 0 0
\(247\) 0.813163 1.11922i 0.0517403 0.0712145i
\(248\) 1.05265 + 3.78450i 0.0668430 + 0.240316i
\(249\) 0 0
\(250\) 15.6009 + 7.21482i 0.986687 + 0.456305i
\(251\) 4.24381 3.08331i 0.267867 0.194617i −0.445741 0.895162i \(-0.647060\pi\)
0.713608 + 0.700545i \(0.247060\pi\)
\(252\) 0 0
\(253\) 2.11346 4.31761i 0.132872 0.271446i
\(254\) 7.41118 + 6.86734i 0.465019 + 0.430895i
\(255\) 0 0
\(256\) 9.27987 + 13.0340i 0.579992 + 0.814622i
\(257\) 1.45063 4.46459i 0.0904879 0.278493i −0.895564 0.444933i \(-0.853227\pi\)
0.986052 + 0.166440i \(0.0532273\pi\)
\(258\) 0 0
\(259\) 7.68641 10.5794i 0.477610 0.657374i
\(260\) −2.74657 + 11.3205i −0.170335 + 0.702069i
\(261\) 0 0
\(262\) 1.46906 12.2857i 0.0907588 0.759013i
\(263\) 23.0463 1.42110 0.710548 0.703648i \(-0.248447\pi\)
0.710548 + 0.703648i \(0.248447\pi\)
\(264\) 0 0
\(265\) −7.65479 −0.470230
\(266\) 0.0983685 0.822653i 0.00603136 0.0504401i
\(267\) 0 0
\(268\) 19.3392 + 4.69204i 1.18133 + 0.286612i
\(269\) 5.66339 7.79498i 0.345303 0.475268i −0.600678 0.799491i \(-0.705103\pi\)
0.945981 + 0.324223i \(0.105103\pi\)
\(270\) 0 0
\(271\) −7.25330 + 22.3234i −0.440607 + 1.35605i 0.446624 + 0.894722i \(0.352626\pi\)
−0.887230 + 0.461326i \(0.847374\pi\)
\(272\) 13.4799 6.78705i 0.817340 0.411526i
\(273\) 0 0
\(274\) −8.77862 8.13443i −0.530336 0.491419i
\(275\) −0.872544 + 6.14489i −0.0526164 + 0.370551i
\(276\) 0 0
\(277\) 16.1312 11.7200i 0.969227 0.704185i 0.0139521 0.999903i \(-0.495559\pi\)
0.955275 + 0.295718i \(0.0955588\pi\)
\(278\) −7.36034 3.40388i −0.441444 0.204151i
\(279\) 0 0
\(280\) 1.86947 + 6.72118i 0.111722 + 0.401667i
\(281\) 3.73754 5.14428i 0.222963 0.306882i −0.682851 0.730557i \(-0.739260\pi\)
0.905814 + 0.423675i \(0.139260\pi\)
\(282\) 0 0
\(283\) −8.30006 + 2.69685i −0.493387 + 0.160311i −0.545134 0.838349i \(-0.683521\pi\)
0.0517465 + 0.998660i \(0.483521\pi\)
\(284\) −19.6350 + 16.6886i −1.16512 + 0.990284i
\(285\) 0 0
\(286\) −15.4224 + 0.835126i −0.911948 + 0.0493821i
\(287\) 4.82469i 0.284792i
\(288\) 0 0
\(289\) 0.854199 + 2.62895i 0.0502470 + 0.154644i
\(290\) −9.67488 17.3245i −0.568128 1.01733i
\(291\) 0 0
\(292\) −16.3755 10.0891i −0.958303 0.590417i
\(293\) 6.37463 19.6191i 0.372410 1.14616i −0.572799 0.819696i \(-0.694143\pi\)
0.945209 0.326465i \(-0.105857\pi\)
\(294\) 0 0
\(295\) 12.4343 + 17.1144i 0.723955 + 0.996438i
\(296\) −20.7709 16.4960i −1.20728 0.958812i
\(297\) 0 0
\(298\) −20.1027 18.6275i −1.16452 1.07906i
\(299\) 2.80534 + 3.86122i 0.162237 + 0.223300i
\(300\) 0 0
\(301\) 4.77877 + 1.55272i 0.275444 + 0.0894971i
\(302\) −2.85946 14.4662i −0.164543 0.832435i
\(303\) 0 0
\(304\) −1.65854 0.270854i −0.0951239 0.0155345i
\(305\) −17.5799 + 5.71205i −1.00662 + 0.327071i
\(306\) 0 0
\(307\) 24.6574i 1.40727i 0.710560 + 0.703637i \(0.248442\pi\)
−0.710560 + 0.703637i \(0.751558\pi\)
\(308\) −7.82010 + 4.93999i −0.445592 + 0.281482i
\(309\) 0 0
\(310\) 3.44950 + 0.412473i 0.195918 + 0.0234269i
\(311\) 24.3504 7.91194i 1.38079 0.448645i 0.477859 0.878437i \(-0.341413\pi\)
0.902928 + 0.429792i \(0.141413\pi\)
\(312\) 0 0
\(313\) 3.15731 + 2.29392i 0.178462 + 0.129660i 0.673430 0.739251i \(-0.264820\pi\)
−0.494968 + 0.868911i \(0.664820\pi\)
\(314\) 24.6890 4.88017i 1.39328 0.275404i
\(315\) 0 0
\(316\) −10.7398 + 4.41839i −0.604160 + 0.248554i
\(317\) 3.74958 + 5.16085i 0.210597 + 0.289862i 0.901228 0.433345i \(-0.142667\pi\)
−0.690631 + 0.723208i \(0.742667\pi\)
\(318\) 0 0
\(319\) 18.3028 18.8991i 1.02476 1.05815i
\(320\) 13.7829 3.20420i 0.770486 0.179120i
\(321\) 0 0
\(322\) 2.59430 + 1.19977i 0.144575 + 0.0668604i
\(323\) −0.489840 + 1.50757i −0.0272554 + 0.0838836i
\(324\) 0 0
\(325\) −4.98525 3.62200i −0.276532 0.200912i
\(326\) −7.39092 + 4.12747i −0.409345 + 0.228600i
\(327\) 0 0
\(328\) −9.77715 0.419402i −0.539853 0.0231576i
\(329\) 1.06657i 0.0588019i
\(330\) 0 0
\(331\) −4.34773 −0.238973 −0.119486 0.992836i \(-0.538125\pi\)
−0.119486 + 0.992836i \(0.538125\pi\)
\(332\) 22.9899 19.5400i 1.26173 1.07240i
\(333\) 0 0
\(334\) −6.41922 + 3.58482i −0.351244 + 0.196153i
\(335\) 10.3449 14.2385i 0.565202 0.777934i
\(336\) 0 0
\(337\) 9.71778 + 3.15750i 0.529361 + 0.172000i 0.561490 0.827484i \(-0.310229\pi\)
−0.0321283 + 0.999484i \(0.510229\pi\)
\(338\) −1.28035 + 2.76855i −0.0696419 + 0.150589i
\(339\) 0 0
\(340\) −1.01529 13.3088i −0.0550621 0.721772i
\(341\) 0.793386 + 4.53734i 0.0429642 + 0.245711i
\(342\) 0 0
\(343\) −13.6002 + 9.88114i −0.734343 + 0.533531i
\(344\) 3.56197 9.54913i 0.192048 0.514854i
\(345\) 0 0
\(346\) −3.85054 19.4801i −0.207006 1.04726i
\(347\) −4.37155 + 6.01692i −0.234677 + 0.323005i −0.910071 0.414452i \(-0.863973\pi\)
0.675394 + 0.737457i \(0.263973\pi\)
\(348\) 0 0
\(349\) 1.81469 + 5.58504i 0.0971382 + 0.298961i 0.987805 0.155696i \(-0.0497620\pi\)
−0.890667 + 0.454657i \(0.849762\pi\)
\(350\) −3.66427 0.438154i −0.195863 0.0234203i
\(351\) 0 0
\(352\) 9.33103 + 16.2767i 0.497345 + 0.867553i
\(353\) 26.3624 1.40313 0.701565 0.712605i \(-0.252485\pi\)
0.701565 + 0.712605i \(0.252485\pi\)
\(354\) 0 0
\(355\) 7.04254 + 21.6747i 0.373779 + 1.15037i
\(356\) −21.2263 5.14989i −1.12499 0.272944i
\(357\) 0 0
\(358\) −6.31047 31.9250i −0.333519 1.68729i
\(359\) 1.23260 3.79354i 0.0650539 0.200215i −0.913246 0.407408i \(-0.866433\pi\)
0.978300 + 0.207193i \(0.0664327\pi\)
\(360\) 0 0
\(361\) −15.2285 + 11.0642i −0.801501 + 0.582325i
\(362\) −18.7571 + 20.2425i −0.985851 + 1.06392i
\(363\) 0 0
\(364\) −0.698558 9.15693i −0.0366144 0.479954i
\(365\) −13.7618 + 9.99855i −0.720327 + 0.523348i
\(366\) 0 0
\(367\) 31.5697 + 10.2576i 1.64792 + 0.535443i 0.978288 0.207248i \(-0.0664509\pi\)
0.669634 + 0.742691i \(0.266451\pi\)
\(368\) 2.65683 5.15302i 0.138497 0.268620i
\(369\) 0 0
\(370\) −20.4810 + 11.4376i −1.06476 + 0.594615i
\(371\) 5.73936 1.86483i 0.297973 0.0968171i
\(372\) 0 0
\(373\) 30.7237 1.59081 0.795407 0.606075i \(-0.207257\pi\)
0.795407 + 0.606075i \(0.207257\pi\)
\(374\) 16.5106 6.37076i 0.853743 0.329424i
\(375\) 0 0
\(376\) 2.16139 + 0.0927151i 0.111465 + 0.00478142i
\(377\) 8.07180 + 24.8424i 0.415719 + 1.27945i
\(378\) 0 0
\(379\) −29.7001 21.5784i −1.52559 1.10841i −0.958626 0.284667i \(-0.908117\pi\)
−0.566967 0.823741i \(-0.691883\pi\)
\(380\) −0.779601 + 1.26537i −0.0399927 + 0.0649119i
\(381\) 0 0
\(382\) 32.8615 + 15.1972i 1.68134 + 0.777556i
\(383\) −7.33813 10.1001i −0.374961 0.516090i 0.579280 0.815129i \(-0.303334\pi\)
−0.954241 + 0.299039i \(0.903334\pi\)
\(384\) 0 0
\(385\) 1.40904 + 8.05821i 0.0718111 + 0.410684i
\(386\) 21.2456 22.9281i 1.08137 1.16701i
\(387\) 0 0
\(388\) −25.6385 + 10.5478i −1.30160 + 0.535483i
\(389\) 31.6936 + 10.2979i 1.60693 + 0.522122i 0.968807 0.247815i \(-0.0797124\pi\)
0.638120 + 0.769937i \(0.279712\pi\)
\(390\) 0 0
\(391\) −4.42422 3.21439i −0.223743 0.162559i
\(392\) 7.90133 + 11.9178i 0.399077 + 0.601941i
\(393\) 0 0
\(394\) −25.5886 3.05975i −1.28913 0.154148i
\(395\) 10.2707i 0.516774i
\(396\) 0 0
\(397\) 14.1022i 0.707767i 0.935289 + 0.353884i \(0.115139\pi\)
−0.935289 + 0.353884i \(0.884861\pi\)
\(398\) −2.22719 + 18.6259i −0.111639 + 0.933633i
\(399\) 0 0
\(400\) −1.20644 + 7.38749i −0.0603220 + 0.369374i
\(401\) −9.67496 7.02927i −0.483145 0.351025i 0.319397 0.947621i \(-0.396520\pi\)
−0.802542 + 0.596596i \(0.796520\pi\)
\(402\) 0 0
\(403\) −4.34939 1.41320i −0.216658 0.0703966i
\(404\) −14.8469 + 6.10806i −0.738658 + 0.303887i
\(405\) 0 0
\(406\) 11.4745 + 10.6325i 0.569469 + 0.527680i
\(407\) −22.3426 21.6376i −1.10748 1.07254i
\(408\) 0 0
\(409\) −9.59791 13.2104i −0.474586 0.653212i 0.502867 0.864364i \(-0.332279\pi\)
−0.977453 + 0.211152i \(0.932279\pi\)
\(410\) −3.63288 + 7.85552i −0.179415 + 0.387956i
\(411\) 0 0
\(412\) −21.0082 12.9433i −1.03500 0.637669i
\(413\) −13.4923 9.80270i −0.663911 0.482359i
\(414\) 0 0
\(415\) −8.24584 25.3781i −0.404772 1.24576i
\(416\) −18.6171 + 0.619620i −0.912778 + 0.0303794i
\(417\) 0 0
\(418\) −1.90431 0.506715i −0.0931430 0.0247842i
\(419\) −5.36954 −0.262319 −0.131159 0.991361i \(-0.541870\pi\)
−0.131159 + 0.991361i \(0.541870\pi\)
\(420\) 0 0
\(421\) 8.90313 2.89280i 0.433912 0.140987i −0.0839132 0.996473i \(-0.526742\pi\)
0.517825 + 0.855487i \(0.326742\pi\)
\(422\) 13.1927 + 23.6237i 0.642210 + 1.14998i
\(423\) 0 0
\(424\) −3.28013 11.7928i −0.159297 0.572710i
\(425\) 6.71504 + 2.18185i 0.325727 + 0.105835i
\(426\) 0 0
\(427\) 11.7894 8.56549i 0.570528 0.414513i
\(428\) 14.3075 1.09148i 0.691580 0.0527588i
\(429\) 0 0
\(430\) −6.61159 6.12642i −0.318839 0.295442i
\(431\) −30.9429 + 22.4813i −1.49047 + 1.08289i −0.516477 + 0.856301i \(0.672757\pi\)
−0.973991 + 0.226587i \(0.927243\pi\)
\(432\) 0 0
\(433\) 3.07438 9.46196i 0.147745 0.454713i −0.849609 0.527414i \(-0.823162\pi\)
0.997354 + 0.0727008i \(0.0231618\pi\)
\(434\) −2.68683 + 0.531092i −0.128972 + 0.0254932i
\(435\) 0 0
\(436\) 18.2312 + 4.42324i 0.873118 + 0.211835i
\(437\) 0.188171 + 0.579132i 0.00900145 + 0.0277036i
\(438\) 0 0
\(439\) 15.8844 0.758122 0.379061 0.925372i \(-0.376247\pi\)
0.379061 + 0.925372i \(0.376247\pi\)
\(440\) 16.4523 2.15490i 0.784333 0.102731i
\(441\) 0 0
\(442\) −2.08612 + 17.4462i −0.0992266 + 0.829829i
\(443\) 1.67612 + 5.15857i 0.0796349 + 0.245091i 0.982946 0.183895i \(-0.0588708\pi\)
−0.903311 + 0.428986i \(0.858871\pi\)
\(444\) 0 0
\(445\) −11.3543 + 15.6279i −0.538247 + 0.740834i
\(446\) −2.40358 + 0.475105i −0.113813 + 0.0224969i
\(447\) 0 0
\(448\) −9.55343 + 5.76015i −0.451357 + 0.272141i
\(449\) 8.05234 5.85037i 0.380013 0.276096i −0.381338 0.924436i \(-0.624536\pi\)
0.761351 + 0.648340i \(0.224536\pi\)
\(450\) 0 0
\(451\) −11.3613 1.61325i −0.534983 0.0759650i
\(452\) −0.278651 3.65264i −0.0131066 0.171806i
\(453\) 0 0
\(454\) −8.08504 3.73902i −0.379450 0.175481i
\(455\) −7.72442 2.50982i −0.362126 0.117662i
\(456\) 0 0
\(457\) −14.7492 + 20.3005i −0.689939 + 0.949619i −0.999999 0.00109777i \(-0.999651\pi\)
0.310061 + 0.950717i \(0.399651\pi\)
\(458\) −2.38857 4.27713i −0.111611 0.199857i
\(459\) 0 0
\(460\) −3.32062 3.90690i −0.154825 0.182160i
\(461\) 34.5074 1.60717 0.803585 0.595190i \(-0.202923\pi\)
0.803585 + 0.595190i \(0.202923\pi\)
\(462\) 0 0
\(463\) 22.7879i 1.05905i −0.848296 0.529523i \(-0.822371\pi\)
0.848296 0.529523i \(-0.177629\pi\)
\(464\) 22.5440 22.3286i 1.04658 1.03658i
\(465\) 0 0
\(466\) 10.1342 + 18.1470i 0.469458 + 0.840642i
\(467\) −4.94788 3.59484i −0.228960 0.166349i 0.467390 0.884051i \(-0.345194\pi\)
−0.696351 + 0.717702i \(0.745194\pi\)
\(468\) 0 0
\(469\) −4.28759 + 13.1958i −0.197982 + 0.609327i
\(470\) 0.803102 1.73658i 0.0370443 0.0801024i
\(471\) 0 0
\(472\) −21.0379 + 26.4897i −0.968346 + 1.21929i
\(473\) 5.25428 10.7340i 0.241592 0.493549i
\(474\) 0 0
\(475\) −0.462118 0.636050i −0.0212034 0.0291840i
\(476\) 4.00348 + 9.73125i 0.183499 + 0.446031i
\(477\) 0 0
\(478\) 5.55026 + 28.0791i 0.253863 + 1.28431i
\(479\) −2.50936 1.82316i −0.114656 0.0833022i 0.528980 0.848634i \(-0.322575\pi\)
−0.643635 + 0.765332i \(0.722575\pi\)
\(480\) 0 0
\(481\) 29.3688 9.54249i 1.33910 0.435100i
\(482\) 1.47138 12.3051i 0.0670197 0.560483i
\(483\) 0 0
\(484\) 9.01799 + 20.0668i 0.409909 + 0.912127i
\(485\) 24.5186i 1.11333i
\(486\) 0 0
\(487\) 20.1262 6.53939i 0.912003 0.296328i 0.184821 0.982772i \(-0.440829\pi\)
0.727182 + 0.686444i \(0.240829\pi\)
\(488\) −16.3330 24.6356i −0.739360 1.11520i
\(489\) 0 0
\(490\) 12.4061 2.45226i 0.560452 0.110782i
\(491\) 4.96607 + 1.61357i 0.224116 + 0.0728195i 0.418922 0.908022i \(-0.362408\pi\)
−0.194807 + 0.980842i \(0.562408\pi\)
\(492\) 0 0
\(493\) −17.5922 24.2136i −0.792312 1.09052i
\(494\) 1.32978 1.43509i 0.0598296 0.0645677i
\(495\) 0 0
\(496\) 0.842688 + 5.49098i 0.0378378 + 0.246552i
\(497\) −10.5606 14.5354i −0.473708 0.652003i
\(498\) 0 0
\(499\) −9.84802 + 30.3091i −0.440858 + 1.35682i 0.446105 + 0.894980i \(0.352811\pi\)
−0.886963 + 0.461840i \(0.847189\pi\)
\(500\) 20.6955 + 12.7506i 0.925531 + 0.570226i
\(501\) 0 0
\(502\) 6.47691 3.61704i 0.289079 0.161437i
\(503\) 4.38495 + 13.4955i 0.195515 + 0.601734i 0.999970 + 0.00772063i \(0.00245758\pi\)
−0.804455 + 0.594014i \(0.797542\pi\)
\(504\) 0 0
\(505\) 14.1984i 0.631819i
\(506\) 3.69271 5.70796i 0.164161 0.253750i
\(507\) 0 0
\(508\) 9.25378 + 10.8876i 0.410570 + 0.483059i
\(509\) 8.45834 2.74828i 0.374909 0.121815i −0.115500 0.993307i \(-0.536847\pi\)
0.490410 + 0.871492i \(0.336847\pi\)
\(510\) 0 0
\(511\) 7.88244 10.8492i 0.348699 0.479942i
\(512\) 10.8424 + 19.8606i 0.479170 + 0.877722i
\(513\) 0 0
\(514\) 2.78663 6.02564i 0.122913 0.265780i
\(515\) −17.6551 + 12.8272i −0.777975 + 0.565232i
\(516\) 0 0
\(517\) 2.51159 + 0.356633i 0.110459 + 0.0156847i
\(518\) 12.5697 13.5651i 0.552281 0.596018i
\(519\) 0 0
\(520\) −5.75757 + 15.4352i −0.252486 + 0.676880i
\(521\) 8.34024 25.6686i 0.365393 1.12456i −0.584342 0.811507i \(-0.698647\pi\)
0.949735 0.313056i \(-0.101353\pi\)
\(522\) 0 0
\(523\) 25.2868 34.8043i 1.10571 1.52188i 0.278129 0.960544i \(-0.410286\pi\)
0.827585 0.561341i \(-0.189714\pi\)
\(524\) 4.12574 17.0050i 0.180234 0.742868i
\(525\) 0 0
\(526\) 32.3619 + 3.86966i 1.41105 + 0.168725i
\(527\) 5.24004 0.228260
\(528\) 0 0
\(529\) 20.8992 0.908662
\(530\) −10.7489 1.28530i −0.466904 0.0558299i
\(531\) 0 0
\(532\) 0.276260 1.13866i 0.0119774 0.0493672i
\(533\) 6.69673 9.21726i 0.290067 0.399244i
\(534\) 0 0
\(535\) 3.92154 12.0692i 0.169543 0.521799i
\(536\) 26.3684 + 9.83582i 1.13894 + 0.424843i
\(537\) 0 0
\(538\) 9.26143 9.99487i 0.399288 0.430909i
\(539\) 7.85062 + 14.8158i 0.338150 + 0.638162i
\(540\) 0 0
\(541\) 16.3673 11.8916i 0.703686 0.511258i −0.177444 0.984131i \(-0.556783\pi\)
0.881131 + 0.472873i \(0.156783\pi\)
\(542\) −13.9334 + 30.1288i −0.598493 + 1.29414i
\(543\) 0 0
\(544\) 20.0682 7.26707i 0.860418 0.311573i
\(545\) 9.75224 13.4228i 0.417740 0.574970i
\(546\) 0 0
\(547\) 13.6380 4.43124i 0.583117 0.189466i −0.00257925 0.999997i \(-0.500821\pi\)
0.585697 + 0.810530i \(0.300821\pi\)
\(548\) −10.9612 12.8965i −0.468239 0.550909i
\(549\) 0 0
\(550\) −2.25701 + 8.48220i −0.0962393 + 0.361682i
\(551\) 3.33267i 0.141977i
\(552\) 0 0
\(553\) −2.50210 7.70067i −0.106400 0.327466i
\(554\) 24.6194 13.7488i 1.04598 0.584129i
\(555\) 0 0
\(556\) −9.76393 6.01562i −0.414083 0.255119i
\(557\) −9.72693 + 29.9364i −0.412143 + 1.26845i 0.502638 + 0.864497i \(0.332363\pi\)
−0.914781 + 0.403949i \(0.867637\pi\)
\(558\) 0 0
\(559\) 6.97434 + 9.59936i 0.294983 + 0.406010i
\(560\) 1.49660 + 9.75185i 0.0632427 + 0.412091i
\(561\) 0 0
\(562\) 6.11206 6.59609i 0.257822 0.278239i
\(563\) −11.5320 15.8725i −0.486017 0.668946i 0.493630 0.869672i \(-0.335670\pi\)
−0.979647 + 0.200726i \(0.935670\pi\)
\(564\) 0 0
\(565\) −3.08122 1.00115i −0.129628 0.0421187i
\(566\) −12.1079 + 2.39330i −0.508931 + 0.100598i
\(567\) 0 0
\(568\) −30.3738 + 20.1374i −1.27446 + 0.844945i
\(569\) −25.2020 + 8.18862i −1.05652 + 0.343285i −0.785225 0.619211i \(-0.787453\pi\)
−0.271297 + 0.962496i \(0.587453\pi\)
\(570\) 0 0
\(571\) 15.2004i 0.636116i −0.948071 0.318058i \(-0.896969\pi\)
0.948071 0.318058i \(-0.103031\pi\)
\(572\) −21.7966 1.41686i −0.911360 0.0592418i
\(573\) 0 0
\(574\) 0.810105 6.77488i 0.0338131 0.282778i
\(575\) 2.57957 0.838154i 0.107576 0.0349534i
\(576\) 0 0
\(577\) 17.6624 + 12.8325i 0.735296 + 0.534224i 0.891234 0.453543i \(-0.149840\pi\)
−0.155939 + 0.987767i \(0.549840\pi\)
\(578\) 0.758053 + 3.83503i 0.0315308 + 0.159516i
\(579\) 0 0
\(580\) −10.6766 25.9517i −0.443324 1.07759i
\(581\) 12.3650 + 17.0190i 0.512987 + 0.706066i
\(582\) 0 0
\(583\) −2.47226 14.1387i −0.102390 0.585567i
\(584\) −21.3006 16.9167i −0.881425 0.700019i
\(585\) 0 0
\(586\) 12.2455 26.4790i 0.505858 1.09384i
\(587\) −7.06883 + 21.7556i −0.291762 + 0.897951i 0.692528 + 0.721391i \(0.256497\pi\)
−0.984290 + 0.176560i \(0.943503\pi\)
\(588\) 0 0
\(589\) −0.472045 0.342961i −0.0194503 0.0141315i
\(590\) 14.5868 + 26.1200i 0.600528 + 1.07534i
\(591\) 0 0
\(592\) −26.3969 26.6515i −1.08490 1.09537i
\(593\) 13.3772i 0.549336i −0.961539 0.274668i \(-0.911432\pi\)
0.961539 0.274668i \(-0.0885679\pi\)
\(594\) 0 0
\(595\) 9.30620 0.381517
\(596\) −25.1007 29.5324i −1.02816 1.20969i
\(597\) 0 0
\(598\) 3.29096 + 5.89300i 0.134577 + 0.240983i
\(599\) −13.8109 + 19.0091i −0.564300 + 0.776692i −0.991865 0.127292i \(-0.959371\pi\)
0.427565 + 0.903984i \(0.359371\pi\)
\(600\) 0 0
\(601\) 11.5910 + 3.76616i 0.472809 + 0.153625i 0.535722 0.844394i \(-0.320039\pi\)
−0.0629138 + 0.998019i \(0.520039\pi\)
\(602\) 6.44969 + 2.98274i 0.262870 + 0.121567i
\(603\) 0 0
\(604\) −1.58630 20.7937i −0.0645454 0.846083i
\(605\) 19.4468 0.623576i 0.790626 0.0253520i
\(606\) 0 0
\(607\) −33.2882 + 24.1853i −1.35113 + 0.981652i −0.352173 + 0.935935i \(0.614557\pi\)
−0.998954 + 0.0457169i \(0.985443\pi\)
\(608\) −2.28346 0.658819i −0.0926066 0.0267186i
\(609\) 0 0
\(610\) −25.6450 + 5.06912i −1.03833 + 0.205243i
\(611\) −1.48041 + 2.03761i −0.0598911 + 0.0824330i
\(612\) 0 0
\(613\) −3.01493 9.27900i −0.121772 0.374775i 0.871527 0.490347i \(-0.163130\pi\)
−0.993299 + 0.115572i \(0.963130\pi\)
\(614\) −4.14018 + 34.6242i −0.167084 + 1.39732i
\(615\) 0 0
\(616\) −11.8105 + 5.62373i −0.475860 + 0.226587i
\(617\) 19.8476 0.799035 0.399518 0.916725i \(-0.369178\pi\)
0.399518 + 0.916725i \(0.369178\pi\)
\(618\) 0 0
\(619\) 0.849909 + 2.61575i 0.0341607 + 0.105136i 0.966683 0.255977i \(-0.0823970\pi\)
−0.932522 + 0.361113i \(0.882397\pi\)
\(620\) 4.77457 + 1.15840i 0.191751 + 0.0465224i
\(621\) 0 0
\(622\) 35.5216 7.02139i 1.42429 0.281532i
\(623\) 4.70597 14.4835i 0.188541 0.580269i
\(624\) 0 0
\(625\) 9.82260 7.13654i 0.392904 0.285462i
\(626\) 4.04837 + 3.75129i 0.161805 + 0.149932i
\(627\) 0 0
\(628\) 35.4880 2.70729i 1.41613 0.108033i
\(629\) −28.6253 + 20.7975i −1.14136 + 0.829250i
\(630\) 0 0
\(631\) −5.16849 1.67934i −0.205754 0.0668536i 0.204327 0.978903i \(-0.434500\pi\)
−0.410081 + 0.912049i \(0.634500\pi\)
\(632\) −15.8228 + 4.40106i −0.629397 + 0.175065i
\(633\) 0 0
\(634\) 4.39865 + 7.87651i 0.174693 + 0.312816i
\(635\) 12.0186 3.90508i 0.476943 0.154968i
\(636\) 0 0
\(637\) −16.6472 −0.659588
\(638\) 28.8744 23.4652i 1.14315 0.928996i
\(639\) 0 0
\(640\) 19.8921 2.18511i 0.786303 0.0863742i
\(641\) 5.69933 + 17.5407i 0.225110 + 0.692817i 0.998280 + 0.0586191i \(0.0186697\pi\)
−0.773170 + 0.634198i \(0.781330\pi\)
\(642\) 0 0
\(643\) −36.3473 26.4078i −1.43340 1.04142i −0.989372 0.145408i \(-0.953551\pi\)
−0.444024 0.896015i \(-0.646449\pi\)
\(644\) 3.44150 + 2.12033i 0.135614 + 0.0835527i
\(645\) 0 0
\(646\) −0.940972 + 2.03470i −0.0370221 + 0.0800542i
\(647\) −12.0677 16.6098i −0.474430 0.652997i 0.502993 0.864291i \(-0.332232\pi\)
−0.977423 + 0.211294i \(0.932232\pi\)
\(648\) 0 0
\(649\) −27.5951 + 28.4942i −1.08320 + 1.11849i
\(650\) −6.39218 5.92311i −0.250722 0.232324i
\(651\) 0 0
\(652\) −11.0714 + 4.55484i −0.433591 + 0.178381i
\(653\) −4.82108 1.56646i −0.188664 0.0613005i 0.213161 0.977017i \(-0.431624\pi\)
−0.401825 + 0.915717i \(0.631624\pi\)
\(654\) 0 0
\(655\) −12.5200 9.09632i −0.489197 0.355423i
\(656\) −13.6588 2.23059i −0.533285 0.0870900i
\(657\) 0 0
\(658\) −0.179086 + 1.49769i −0.00698149 + 0.0583860i
\(659\) 24.6770i 0.961279i 0.876918 + 0.480640i \(0.159595\pi\)
−0.876918 + 0.480640i \(0.840405\pi\)
\(660\) 0 0
\(661\) 29.9755i 1.16591i 0.812504 + 0.582956i \(0.198104\pi\)
−0.812504 + 0.582956i \(0.801896\pi\)
\(662\) −6.10513 0.730019i −0.237282 0.0283730i
\(663\) 0 0
\(664\) 35.5635 23.5781i 1.38013 0.915006i
\(665\) −0.838342 0.609091i −0.0325095 0.0236196i
\(666\) 0 0
\(667\) −10.9347 3.55289i −0.423393 0.137569i
\(668\) −9.61585 + 3.95601i −0.372048 + 0.153062i
\(669\) 0 0
\(670\) 16.9172 18.2569i 0.653567 0.705325i
\(671\) −16.2282 30.6260i −0.626482 1.18230i
\(672\) 0 0
\(673\) −0.00676354 0.00930921i −0.000260715 0.000358844i 0.808887 0.587965i \(-0.200071\pi\)
−0.809147 + 0.587606i \(0.800071\pi\)
\(674\) 13.1156 + 6.06549i 0.505196 + 0.233634i
\(675\) 0 0
\(676\) −2.26274 + 3.67265i −0.0870286 + 0.141256i
\(677\) −0.292248 0.212331i −0.0112320 0.00816054i 0.582155 0.813078i \(-0.302210\pi\)
−0.593387 + 0.804917i \(0.702210\pi\)
\(678\) 0 0
\(679\) −5.97313 18.3834i −0.229228 0.705491i
\(680\) 0.808972 18.8589i 0.0310227 0.723204i
\(681\) 0 0
\(682\) 0.352224 + 6.50459i 0.0134874 + 0.249074i
\(683\) −16.8584 −0.645070 −0.322535 0.946557i \(-0.604535\pi\)
−0.322535 + 0.946557i \(0.604535\pi\)
\(684\) 0 0
\(685\) −14.2362 + 4.62561i −0.543935 + 0.176735i
\(686\) −20.7567 + 11.5916i −0.792494 + 0.442570i
\(687\) 0 0
\(688\) 6.60513 12.8109i 0.251818 0.488411i
\(689\) 13.5531 + 4.40366i 0.516331 + 0.167766i
\(690\) 0 0
\(691\) 33.4931 24.3341i 1.27414 0.925714i 0.274777 0.961508i \(-0.411396\pi\)
0.999359 + 0.0357938i \(0.0113959\pi\)
\(692\) −2.13610 28.0007i −0.0812022 1.06443i
\(693\) 0 0
\(694\) −7.14886 + 7.71500i −0.271367 + 0.292857i
\(695\) −8.20552 + 5.96166i −0.311253 + 0.226139i
\(696\) 0 0
\(697\) −4.03403 + 12.4155i −0.152800 + 0.470269i
\(698\) 1.61043 + 8.14728i 0.0609558 + 0.308379i
\(699\) 0 0
\(700\) −5.07183 1.23052i −0.191697 0.0465093i
\(701\) −9.88537 30.4240i −0.373365 1.14910i −0.944575 0.328296i \(-0.893526\pi\)
0.571210 0.820804i \(-0.306474\pi\)
\(702\) 0 0
\(703\) 3.93989 0.148596
\(704\) 10.3697 + 24.4227i 0.390824 + 0.920465i
\(705\) 0 0
\(706\) 37.0184 + 4.42647i 1.39321 + 0.166592i
\(707\) −3.45895 10.6455i −0.130087 0.400367i
\(708\) 0 0
\(709\) −20.2031 + 27.8072i −0.758743 + 1.04432i 0.238574 + 0.971124i \(0.423320\pi\)
−0.997318 + 0.0731963i \(0.976680\pi\)
\(710\) 6.24985 + 31.6184i 0.234553 + 1.18662i
\(711\) 0 0
\(712\) −28.9415 10.7956i −1.08463 0.404582i
\(713\) 1.62851 1.18318i 0.0609883 0.0443106i
\(714\) 0 0
\(715\) −8.49302 + 17.3504i −0.317621 + 0.648870i
\(716\) −3.50075 45.8890i −0.130829 1.71495i
\(717\) 0 0
\(718\) 2.36779 5.11997i 0.0883652 0.191075i
\(719\) −25.4856 8.28077i −0.950452 0.308821i −0.207553 0.978224i \(-0.566550\pi\)
−0.742899 + 0.669403i \(0.766550\pi\)
\(720\) 0 0
\(721\) 10.1124 13.9185i 0.376605 0.518353i
\(722\) −23.2418 + 12.9794i −0.864971 + 0.483044i
\(723\) 0 0
\(724\) −29.7378 + 25.2753i −1.10520 + 0.939349i
\(725\) 14.8444 0.551307
\(726\) 0 0
\(727\) 26.4551i 0.981165i 0.871395 + 0.490583i \(0.163216\pi\)
−0.871395 + 0.490583i \(0.836784\pi\)
\(728\) 0.556601 12.9756i 0.0206290 0.480906i
\(729\) 0 0
\(730\) −21.0033 + 11.7293i −0.777368 + 0.434123i
\(731\) −10.9990 7.99128i −0.406814 0.295568i
\(732\) 0 0
\(733\) 0.587267 1.80742i 0.0216912 0.0667586i −0.939625 0.342206i \(-0.888826\pi\)
0.961316 + 0.275447i \(0.0888260\pi\)
\(734\) 42.6081 + 19.7046i 1.57269 + 0.727311i
\(735\) 0 0
\(736\) 4.59598 6.78982i 0.169410 0.250276i
\(737\) 29.6403 + 14.5089i 1.09181 + 0.534441i
\(738\) 0 0
\(739\) 8.35357 + 11.4977i 0.307291 + 0.422950i 0.934534 0.355874i \(-0.115817\pi\)
−0.627243 + 0.778824i \(0.715817\pi\)
\(740\) −30.6801 + 12.6219i −1.12782 + 0.463992i
\(741\) 0 0
\(742\) 8.37238 1.65493i 0.307360 0.0607544i
\(743\) −19.8113 14.3937i −0.726806 0.528055i 0.161746 0.986832i \(-0.448288\pi\)
−0.888551 + 0.458777i \(0.848288\pi\)
\(744\) 0 0
\(745\) −32.6002 + 10.5924i −1.19438 + 0.388077i
\(746\) 43.1426 + 5.15876i 1.57956 + 0.188876i
\(747\) 0 0
\(748\) 24.2541 6.17362i 0.886816 0.225730i
\(749\) 10.0045i 0.365558i
\(750\) 0 0
\(751\) −38.6132 + 12.5462i −1.40901 + 0.457817i −0.912095 0.409980i \(-0.865536\pi\)
−0.496920 + 0.867796i \(0.665536\pi\)
\(752\) 3.01947 + 0.493106i 0.110109 + 0.0179817i
\(753\) 0 0
\(754\) 7.16326 + 36.2393i 0.260870 + 1.31976i
\(755\) −17.5407 5.69932i −0.638372 0.207420i
\(756\) 0 0
\(757\) −7.32712 10.0849i −0.266309 0.366542i 0.654831 0.755776i \(-0.272740\pi\)
−0.921139 + 0.389233i \(0.872740\pi\)
\(758\) −38.0820 35.2875i −1.38320 1.28170i
\(759\) 0 0
\(760\) −1.30719 + 1.64594i −0.0474167 + 0.0597045i
\(761\) −19.4146 26.7219i −0.703779 0.968668i −0.999909 0.0135207i \(-0.995696\pi\)
0.296130 0.955148i \(-0.404304\pi\)
\(762\) 0 0
\(763\) −4.04195 + 12.4399i −0.146329 + 0.450353i
\(764\) 43.5927 + 26.8578i 1.57713 + 0.971680i
\(765\) 0 0
\(766\) −8.60840 15.4148i −0.311034 0.556958i
\(767\) −12.1698 37.4548i −0.439427 1.35242i
\(768\) 0 0
\(769\) 45.9291i 1.65625i −0.560546 0.828123i \(-0.689409\pi\)
0.560546 0.828123i \(-0.310591\pi\)
\(770\) 0.625543 + 11.5520i 0.0225430 + 0.416306i
\(771\) 0 0
\(772\) 33.6831 28.6286i 1.21228 1.03037i
\(773\) −13.4151 + 4.35884i −0.482509 + 0.156777i −0.540164 0.841560i \(-0.681638\pi\)
0.0576547 + 0.998337i \(0.481638\pi\)
\(774\) 0 0
\(775\) −1.52762 + 2.10259i −0.0548737 + 0.0755272i
\(776\) −37.7729 + 10.5064i −1.35597 + 0.377158i
\(777\) 0 0
\(778\) 42.7753 + 19.7820i 1.53357 + 0.709218i
\(779\) 1.17600 0.854411i 0.0421344 0.0306125i
\(780\) 0 0
\(781\) −37.7596 + 20.0081i −1.35115 + 0.715947i
\(782\) −5.67282 5.25654i −0.202860 0.187973i
\(783\) 0 0
\(784\) 9.09403 + 18.0618i 0.324787 + 0.645065i
\(785\) 9.72688 29.9363i 0.347167 1.06847i
\(786\) 0 0
\(787\) −18.5090 + 25.4755i −0.659776 + 0.908104i −0.999474 0.0324309i \(-0.989675\pi\)
0.339698 + 0.940535i \(0.389675\pi\)
\(788\) −35.4180 8.59306i −1.26171 0.306115i
\(789\) 0 0
\(790\) −1.72453 + 14.4222i −0.0613560 + 0.513118i
\(791\) 2.55411 0.0908138
\(792\) 0 0
\(793\) 34.4118 1.22200
\(794\) −2.36787 + 19.8024i −0.0840325 + 0.702761i
\(795\) 0 0
\(796\) −6.25489 + 25.7808i −0.221699 + 0.913775i
\(797\) −19.3111 + 26.5794i −0.684033 + 0.941490i −0.999973 0.00728889i \(-0.997680\pi\)
0.315941 + 0.948779i \(0.397680\pi\)
\(798\) 0 0
\(799\) 0.891783 2.74463i 0.0315490 0.0970979i
\(800\) −2.93451 + 10.1710i −0.103751 + 0.359600i
\(801\) 0 0
\(802\) −12.4054 11.4951i −0.438050 0.405906i
\(803\) −22.9124 22.1895i −0.808561 0.783050i
\(804\) 0 0
\(805\) 2.89220 2.10131i 0.101937 0.0740614i
\(806\) −5.87017 2.71473i −0.206768 0.0956223i
\(807\) 0 0
\(808\) −21.8737 + 6.08410i −0.769514 + 0.214038i
\(809\) −3.52470 + 4.85134i −0.123922 + 0.170564i −0.866470 0.499228i \(-0.833617\pi\)
0.742549 + 0.669792i \(0.233617\pi\)
\(810\) 0 0
\(811\) −39.0150 + 12.6767i −1.37000 + 0.445140i −0.899369 0.437189i \(-0.855974\pi\)
−0.470632 + 0.882330i \(0.655974\pi\)
\(812\) 14.3273 + 16.8569i 0.502790 + 0.591560i
\(813\) 0 0
\(814\) −27.7406 34.1353i −0.972306 1.19644i
\(815\) 10.5879i 0.370876i
\(816\) 0 0
\(817\) 0.467812 + 1.43978i 0.0163667 + 0.0503714i
\(818\) −11.2594 20.1617i −0.393674 0.704939i
\(819\) 0 0
\(820\) −6.42033 + 10.4208i −0.224208 + 0.363910i
\(821\) 7.86487 24.2056i 0.274486 0.844781i −0.714869 0.699258i \(-0.753514\pi\)
0.989355 0.145523i \(-0.0464863\pi\)
\(822\) 0 0
\(823\) −8.33462 11.4716i −0.290526 0.399875i 0.638659 0.769490i \(-0.279490\pi\)
−0.929185 + 0.369615i \(0.879490\pi\)
\(824\) −27.3266 21.7025i −0.951967 0.756043i
\(825\) 0 0
\(826\) −17.3000 16.0305i −0.601945 0.557773i
\(827\) −16.3323 22.4795i −0.567931 0.781690i 0.424377 0.905486i \(-0.360493\pi\)
−0.992308 + 0.123796i \(0.960493\pi\)
\(828\) 0 0
\(829\) 47.9834 + 15.5908i 1.66653 + 0.541490i 0.982226 0.187703i \(-0.0601044\pi\)
0.684308 + 0.729193i \(0.260104\pi\)
\(830\) −7.31770 37.0207i −0.254001 1.28501i
\(831\) 0 0
\(832\) −26.2464 2.25589i −0.909929 0.0782087i
\(833\) 18.1410 5.89437i 0.628549 0.204228i
\(834\) 0 0
\(835\) 9.19584i 0.318235i
\(836\) −2.58897 1.03128i −0.0895415 0.0356677i
\(837\) 0 0
\(838\) −7.53996 0.901589i −0.260464 0.0311449i
\(839\) 44.3548 14.4117i 1.53130 0.497548i 0.582337 0.812947i \(-0.302138\pi\)
0.948959 + 0.315399i \(0.102138\pi\)
\(840\) 0 0
\(841\) −27.4457 19.9405i −0.946403 0.687602i
\(842\) 12.9876 2.56719i 0.447582 0.0884714i
\(843\) 0 0
\(844\) 14.5587 + 35.3878i 0.501131 + 1.21810i
\(845\) 2.24245 + 3.08646i 0.0771425 + 0.106178i
\(846\) 0 0
\(847\) −14.4288 + 5.20510i −0.495779 + 0.178849i
\(848\) −2.62589 17.1104i −0.0901734 0.587572i
\(849\) 0 0
\(850\) 9.06298 + 4.19129i 0.310858 + 0.143760i
\(851\) −4.20023 + 12.9270i −0.143982 + 0.443132i
\(852\) 0 0
\(853\) −41.5877 30.2152i −1.42394 1.03455i −0.991106 0.133073i \(-0.957515\pi\)
−0.432829 0.901476i \(-0.642485\pi\)
\(854\) 17.9930 10.0482i 0.615707 0.343843i
\(855\) 0 0
\(856\) 20.2740 + 0.869678i 0.692952 + 0.0297250i
\(857\) 17.4541i 0.596221i 0.954531 + 0.298111i \(0.0963565\pi\)
−0.954531 + 0.298111i \(0.903644\pi\)
\(858\) 0 0
\(859\) −35.3164 −1.20498 −0.602489 0.798127i \(-0.705824\pi\)
−0.602489 + 0.798127i \(0.705824\pi\)
\(860\) −8.25539 9.71293i −0.281506 0.331208i
\(861\) 0 0
\(862\) −47.2252 + 26.3730i −1.60850 + 0.898267i
\(863\) 3.84304 5.28949i 0.130819 0.180056i −0.738583 0.674163i \(-0.764505\pi\)
0.869401 + 0.494106i \(0.164505\pi\)
\(864\) 0 0
\(865\) −23.6202 7.67468i −0.803112 0.260947i
\(866\) 5.90581 12.7704i 0.200688 0.433955i
\(867\) 0 0
\(868\) −3.86204 + 0.294625i −0.131086 + 0.0100002i
\(869\) −18.9704 + 3.31711i −0.643526 + 0.112525i
\(870\) 0 0
\(871\) −26.5071 + 19.2586i −0.898160 + 0.652552i
\(872\) 24.8578 + 9.27233i 0.841791 + 0.314001i
\(873\) 0 0
\(874\) 0.166991 + 0.844818i 0.00564856 + 0.0285764i
\(875\) −9.96190 + 13.7114i −0.336774 + 0.463529i
\(876\) 0 0
\(877\) 9.06904 + 27.9116i 0.306240 + 0.942509i 0.979212 + 0.202841i \(0.0650175\pi\)
−0.672972 + 0.739668i \(0.734982\pi\)
\(878\) 22.3051 + 2.66712i 0.752759 + 0.0900110i
\(879\) 0 0
\(880\) 23.4643 0.263455i 0.790983 0.00888108i
\(881\) −1.12915 −0.0380420 −0.0190210 0.999819i \(-0.506055\pi\)
−0.0190210 + 0.999819i \(0.506055\pi\)
\(882\) 0 0
\(883\) 4.24530 + 13.0657i 0.142866 + 0.439695i 0.996730 0.0807999i \(-0.0257475\pi\)
−0.853865 + 0.520495i \(0.825747\pi\)
\(884\) −5.85870 + 24.1478i −0.197049 + 0.812178i
\(885\) 0 0
\(886\) 1.48746 + 7.52515i 0.0499722 + 0.252812i
\(887\) −1.98190 + 6.09967i −0.0665458 + 0.204807i −0.978800 0.204817i \(-0.934340\pi\)
0.912254 + 0.409624i \(0.134340\pi\)
\(888\) 0 0
\(889\) −8.05988 + 5.85584i −0.270320 + 0.196399i
\(890\) −18.5679 + 20.0384i −0.622399 + 0.671688i
\(891\) 0 0
\(892\) −3.45491 + 0.263566i −0.115679 + 0.00882485i
\(893\) −0.259972 + 0.188880i −0.00869962 + 0.00632064i
\(894\) 0 0
\(895\) −38.7101 12.5777i −1.29394 0.420426i
\(896\) −14.3822 + 6.48436i −0.480476 + 0.216627i
\(897\) 0 0
\(898\) 12.2895 6.86309i 0.410106 0.229024i
\(899\) 10.4776 3.40438i 0.349447 0.113542i
\(900\) 0 0
\(901\) −16.3284 −0.543979
\(902\) −15.6828 4.17300i −0.522180 0.138946i
\(903\) 0 0
\(904\) 0.222025 5.17587i 0.00738443 0.172147i
\(905\) 10.6661 + 32.8270i 0.354554 + 1.09121i
\(906\) 0 0
\(907\) 9.91808 + 7.20591i 0.329325 + 0.239268i 0.740144 0.672448i \(-0.234757\pi\)
−0.410819 + 0.911717i \(0.634757\pi\)
\(908\) −10.7253 6.60792i −0.355931 0.219291i
\(909\) 0 0
\(910\) −10.4253 4.82130i −0.345595 0.159825i
\(911\) 21.4231 + 29.4864i 0.709779 + 0.976927i 0.999802 + 0.0199074i \(0.00633714\pi\)
−0.290023 + 0.957020i \(0.593663\pi\)
\(912\) 0 0
\(913\) 44.2113 23.4267i 1.46318 0.775312i
\(914\) −24.1196 + 26.0297i −0.797806 + 0.860986i
\(915\) 0 0
\(916\) −2.63589 6.40705i −0.0870923 0.211695i
\(917\) 11.6032 + 3.77010i 0.383170 + 0.124500i
\(918\) 0 0
\(919\) −10.4315 7.57891i −0.344103 0.250005i 0.402288 0.915513i \(-0.368215\pi\)
−0.746391 + 0.665508i \(0.768215\pi\)
\(920\) −4.00685 6.04367i −0.132102 0.199254i
\(921\) 0 0
\(922\) 48.4557 + 5.79407i 1.59580 + 0.190818i
\(923\) 42.4273i 1.39651i
\(924\) 0 0
\(925\) 17.5491i 0.577010i
\(926\) 3.82628 31.9991i 0.125739 1.05155i
\(927\) 0 0
\(928\) 35.4056 27.5687i 1.16225 0.904987i
\(929\) −11.5280 8.37561i −0.378223 0.274795i 0.382390 0.924001i \(-0.375101\pi\)
−0.760612 + 0.649206i \(0.775101\pi\)
\(930\) 0 0
\(931\) −2.02001 0.656340i −0.0662031 0.0215107i
\(932\) 11.1835 + 27.1838i 0.366329 + 0.890435i
\(933\) 0 0
\(934\) −6.34426 5.87870i −0.207590 0.192357i
\(935\) 3.11175 21.9145i 0.101765 0.716680i
\(936\) 0 0
\(937\) −29.3763 40.4330i −0.959681 1.32089i −0.947090 0.320967i \(-0.895992\pi\)
−0.0125913 0.999921i \(-0.504008\pi\)
\(938\) −8.23637 + 17.8098i −0.268927 + 0.581511i
\(939\) 0 0
\(940\) 1.41931 2.30368i 0.0462928 0.0751376i
\(941\) 3.47674 + 2.52600i 0.113338 + 0.0823452i 0.643011 0.765857i \(-0.277685\pi\)
−0.529672 + 0.848202i \(0.677685\pi\)
\(942\) 0 0
\(943\) 1.54967 + 4.76938i 0.0504641 + 0.155312i
\(944\) −33.9894 + 33.6647i −1.10626 + 1.09569i
\(945\) 0 0
\(946\) 9.18043 14.1905i 0.298482 0.461374i
\(947\) −0.231238 −0.00751424 −0.00375712 0.999993i \(-0.501196\pi\)
−0.00375712 + 0.999993i \(0.501196\pi\)
\(948\) 0 0
\(949\) 30.1178 9.78586i 0.977664 0.317662i
\(950\) −0.542112 0.970742i −0.0175884 0.0314950i
\(951\) 0 0
\(952\) 3.98777 + 14.3369i 0.129244 + 0.464663i
\(953\) −50.8341 16.5170i −1.64668 0.535039i −0.668663 0.743566i \(-0.733133\pi\)
−0.978017 + 0.208527i \(0.933133\pi\)
\(954\) 0 0
\(955\) 36.6349 26.6168i 1.18548 0.861301i
\(956\) 3.07903 + 40.3609i 0.0995828 + 1.30536i
\(957\) 0 0
\(958\) −3.21755 2.98144i −0.103954 0.0963259i
\(959\) 9.54701 6.93631i 0.308289 0.223985i
\(960\) 0 0
\(961\) 8.98349 27.6483i 0.289790 0.891882i
\(962\) 42.8422 8.46841i 1.38129 0.273032i
\(963\) 0 0
\(964\) 4.13226 17.0319i 0.133091 0.548562i
\(965\) −12.0812 37.1821i −0.388908 1.19694i
\(966\) 0 0
\(967\) 1.08508 0.0348938 0.0174469 0.999848i \(-0.494446\pi\)
0.0174469 + 0.999848i \(0.494446\pi\)
\(968\) 9.29378 + 29.6922i 0.298713 + 0.954343i
\(969\) 0 0
\(970\) −4.11688 + 34.4293i −0.132185 + 1.10546i
\(971\) 10.1034 + 31.0950i 0.324233 + 0.997887i 0.971786 + 0.235866i \(0.0757927\pi\)
−0.647552 + 0.762021i \(0.724207\pi\)
\(972\) 0 0
\(973\) 4.69992 6.46889i 0.150673 0.207383i
\(974\) 29.3594 5.80333i 0.940735 0.185951i
\(975\) 0 0
\(976\) −18.7984 37.3360i −0.601723 1.19510i
\(977\) 40.9534 29.7544i 1.31021 0.951926i 0.310215 0.950667i \(-0.399599\pi\)
0.999999 0.00125964i \(-0.000400956\pi\)
\(978\) 0 0
\(979\) −32.5325 15.9246i −1.03974 0.508954i
\(980\) 17.8326 1.36040i 0.569641 0.0434564i
\(981\) 0 0
\(982\) 6.70247 + 3.09964i 0.213884 + 0.0989135i
\(983\) −23.1688 7.52801i −0.738971 0.240106i −0.0847421 0.996403i \(-0.527007\pi\)
−0.654229 + 0.756297i \(0.727007\pi\)
\(984\) 0 0
\(985\) −18.9457 + 26.0766i −0.603662 + 0.830869i
\(986\) −20.6375 36.9548i −0.657231 1.17688i
\(987\) 0 0
\(988\) 2.10825 1.79188i 0.0670724 0.0570074i
\(989\) −5.22272 −0.166073
\(990\) 0 0
\(991\) 27.0358i 0.858821i −0.903110 0.429410i \(-0.858721\pi\)
0.903110 0.429410i \(-0.141279\pi\)
\(992\) 0.261332 + 7.85198i 0.00829730 + 0.249301i
\(993\) 0 0
\(994\) −12.3887 22.1840i −0.392946 0.703635i
\(995\) 18.9812 + 13.7906i 0.601743 + 0.437192i
\(996\) 0 0
\(997\) 4.82347 14.8451i 0.152761 0.470149i −0.845166 0.534503i \(-0.820499\pi\)
0.997927 + 0.0643542i \(0.0204987\pi\)
\(998\) −18.9178 + 40.9068i −0.598833 + 1.29488i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.bp.d.19.12 48
3.2 odd 2 264.2.z.b.19.1 48
8.3 odd 2 inner 792.2.bp.d.19.6 48
11.7 odd 10 inner 792.2.bp.d.667.6 48
12.11 even 2 1056.2.bp.a.943.4 48
24.5 odd 2 1056.2.bp.a.943.9 48
24.11 even 2 264.2.z.b.19.7 yes 48
33.29 even 10 264.2.z.b.139.7 yes 48
88.51 even 10 inner 792.2.bp.d.667.12 48
132.95 odd 10 1056.2.bp.a.271.9 48
264.29 even 10 1056.2.bp.a.271.4 48
264.227 odd 10 264.2.z.b.139.1 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.z.b.19.1 48 3.2 odd 2
264.2.z.b.19.7 yes 48 24.11 even 2
264.2.z.b.139.1 yes 48 264.227 odd 10
264.2.z.b.139.7 yes 48 33.29 even 10
792.2.bp.d.19.6 48 8.3 odd 2 inner
792.2.bp.d.19.12 48 1.1 even 1 trivial
792.2.bp.d.667.6 48 11.7 odd 10 inner
792.2.bp.d.667.12 48 88.51 even 10 inner
1056.2.bp.a.271.4 48 264.29 even 10
1056.2.bp.a.271.9 48 132.95 odd 10
1056.2.bp.a.943.4 48 12.11 even 2
1056.2.bp.a.943.9 48 24.5 odd 2