Properties

Label 1056.2.bp.a.271.4
Level $1056$
Weight $2$
Character 1056.271
Analytic conductor $8.432$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1056,2,Mod(79,1056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1056, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 5, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1056.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1056 = 2^{5} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1056.bp (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.43220245345\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 264)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 271.4
Character \(\chi\) \(=\) 1056.271
Dual form 1056.2.bp.a.943.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{3} +(-1.03968 - 1.43099i) q^{5} +(0.430909 + 1.32620i) q^{7} +(-0.809017 - 0.587785i) q^{9} +(2.97889 - 1.45816i) q^{11} +(-2.66400 - 1.93551i) q^{13} +(-1.68223 + 0.546590i) q^{15} +(-2.21773 - 3.05245i) q^{17} +(0.399566 + 0.129827i) q^{19} +1.39445 q^{21} +1.44940i q^{23} +(0.578275 - 1.77975i) q^{25} +(-0.809017 + 0.587785i) q^{27} +(-2.45128 - 7.54427i) q^{29} +(-0.816325 + 1.12358i) q^{31} +(-0.466268 - 3.28369i) q^{33} +(1.44978 - 1.99544i) q^{35} +(-8.91884 + 2.89791i) q^{37} +(-2.66400 + 1.93551i) q^{39} +(3.29058 + 1.06918i) q^{41} -3.60336i q^{43} +1.76880i q^{45} +(0.727433 + 0.236357i) q^{47} +(4.08999 - 2.97155i) q^{49} +(-3.58836 + 1.16593i) q^{51} +(2.54374 - 3.50116i) q^{53} +(-5.18369 - 2.74674i) q^{55} +(0.246945 - 0.339891i) q^{57} +(-3.69578 - 11.3745i) q^{59} +(-8.45451 + 6.14256i) q^{61} +(0.430909 - 1.32620i) q^{63} +5.82447i q^{65} -9.95011 q^{67} +(1.37846 + 0.447890i) q^{69} +(-7.57332 - 10.4238i) q^{71} +(-9.14630 + 2.97181i) q^{73} +(-1.51394 - 1.09994i) q^{75} +(3.21744 + 3.32227i) q^{77} +(4.69761 + 3.41302i) q^{79} +(0.309017 + 0.951057i) q^{81} +(8.86730 + 12.2048i) q^{83} +(-2.06230 + 6.34711i) q^{85} -7.93251 q^{87} +10.9210 q^{89} +(1.41893 - 4.36703i) q^{91} +(0.816325 + 1.12358i) q^{93} +(-0.229638 - 0.706752i) q^{95} +(-11.2144 - 8.14771i) q^{97} +(-3.26706 - 0.571268i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{3} - 12 q^{9} - 4 q^{11} - 4 q^{25} - 12 q^{27} - 4 q^{33} - 60 q^{41} - 12 q^{49} + 8 q^{59} - 8 q^{67} + 36 q^{75} - 12 q^{81} + 100 q^{83} + 96 q^{89} + 20 q^{91} - 40 q^{97} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1056\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(353\) \(673\) \(991\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.309017 0.951057i 0.178411 0.549093i
\(4\) 0 0
\(5\) −1.03968 1.43099i −0.464957 0.639959i 0.510570 0.859836i \(-0.329434\pi\)
−0.975528 + 0.219877i \(0.929434\pi\)
\(6\) 0 0
\(7\) 0.430909 + 1.32620i 0.162868 + 0.501257i 0.998873 0.0474657i \(-0.0151145\pi\)
−0.836005 + 0.548722i \(0.815114\pi\)
\(8\) 0 0
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 0 0
\(11\) 2.97889 1.45816i 0.898168 0.439652i
\(12\) 0 0
\(13\) −2.66400 1.93551i −0.738862 0.536815i 0.153493 0.988150i \(-0.450948\pi\)
−0.892355 + 0.451335i \(0.850948\pi\)
\(14\) 0 0
\(15\) −1.68223 + 0.546590i −0.434350 + 0.141129i
\(16\) 0 0
\(17\) −2.21773 3.05245i −0.537879 0.740327i 0.450427 0.892813i \(-0.351272\pi\)
−0.988306 + 0.152487i \(0.951272\pi\)
\(18\) 0 0
\(19\) 0.399566 + 0.129827i 0.0916666 + 0.0297843i 0.354491 0.935059i \(-0.384654\pi\)
−0.262825 + 0.964844i \(0.584654\pi\)
\(20\) 0 0
\(21\) 1.39445 0.304294
\(22\) 0 0
\(23\) 1.44940i 0.302222i 0.988517 + 0.151111i \(0.0482850\pi\)
−0.988517 + 0.151111i \(0.951715\pi\)
\(24\) 0 0
\(25\) 0.578275 1.77975i 0.115655 0.355950i
\(26\) 0 0
\(27\) −0.809017 + 0.587785i −0.155695 + 0.113119i
\(28\) 0 0
\(29\) −2.45128 7.54427i −0.455191 1.40094i −0.870910 0.491442i \(-0.836470\pi\)
0.415719 0.909493i \(-0.363530\pi\)
\(30\) 0 0
\(31\) −0.816325 + 1.12358i −0.146616 + 0.201800i −0.876008 0.482296i \(-0.839803\pi\)
0.729392 + 0.684096i \(0.239803\pi\)
\(32\) 0 0
\(33\) −0.466268 3.28369i −0.0811668 0.571616i
\(34\) 0 0
\(35\) 1.44978 1.99544i 0.245057 0.337292i
\(36\) 0 0
\(37\) −8.91884 + 2.89791i −1.46625 + 0.476413i −0.929972 0.367630i \(-0.880169\pi\)
−0.536276 + 0.844043i \(0.680169\pi\)
\(38\) 0 0
\(39\) −2.66400 + 1.93551i −0.426582 + 0.309930i
\(40\) 0 0
\(41\) 3.29058 + 1.06918i 0.513903 + 0.166977i 0.554476 0.832199i \(-0.312919\pi\)
−0.0405736 + 0.999177i \(0.512919\pi\)
\(42\) 0 0
\(43\) 3.60336i 0.549507i −0.961515 0.274753i \(-0.911404\pi\)
0.961515 0.274753i \(-0.0885962\pi\)
\(44\) 0 0
\(45\) 1.76880i 0.263678i
\(46\) 0 0
\(47\) 0.727433 + 0.236357i 0.106107 + 0.0344763i 0.361589 0.932337i \(-0.382234\pi\)
−0.255482 + 0.966814i \(0.582234\pi\)
\(48\) 0 0
\(49\) 4.08999 2.97155i 0.584285 0.424508i
\(50\) 0 0
\(51\) −3.58836 + 1.16593i −0.502472 + 0.163263i
\(52\) 0 0
\(53\) 2.54374 3.50116i 0.349410 0.480921i −0.597751 0.801682i \(-0.703939\pi\)
0.947160 + 0.320761i \(0.103939\pi\)
\(54\) 0 0
\(55\) −5.18369 2.74674i −0.698969 0.370371i
\(56\) 0 0
\(57\) 0.246945 0.339891i 0.0327087 0.0450196i
\(58\) 0 0
\(59\) −3.69578 11.3745i −0.481150 1.48083i −0.837480 0.546468i \(-0.815972\pi\)
0.356330 0.934360i \(-0.384028\pi\)
\(60\) 0 0
\(61\) −8.45451 + 6.14256i −1.08249 + 0.786474i −0.978115 0.208064i \(-0.933284\pi\)
−0.104373 + 0.994538i \(0.533284\pi\)
\(62\) 0 0
\(63\) 0.430909 1.32620i 0.0542894 0.167086i
\(64\) 0 0
\(65\) 5.82447i 0.722437i
\(66\) 0 0
\(67\) −9.95011 −1.21560 −0.607800 0.794090i \(-0.707948\pi\)
−0.607800 + 0.794090i \(0.707948\pi\)
\(68\) 0 0
\(69\) 1.37846 + 0.447890i 0.165948 + 0.0539197i
\(70\) 0 0
\(71\) −7.57332 10.4238i −0.898788 1.23708i −0.970853 0.239675i \(-0.922959\pi\)
0.0720652 0.997400i \(-0.477041\pi\)
\(72\) 0 0
\(73\) −9.14630 + 2.97181i −1.07049 + 0.347824i −0.790680 0.612230i \(-0.790273\pi\)
−0.279814 + 0.960054i \(0.590273\pi\)
\(74\) 0 0
\(75\) −1.51394 1.09994i −0.174815 0.127011i
\(76\) 0 0
\(77\) 3.21744 + 3.32227i 0.366662 + 0.378607i
\(78\) 0 0
\(79\) 4.69761 + 3.41302i 0.528523 + 0.383994i 0.819805 0.572643i \(-0.194082\pi\)
−0.291282 + 0.956637i \(0.594082\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 0 0
\(83\) 8.86730 + 12.2048i 0.973313 + 1.33965i 0.940355 + 0.340194i \(0.110493\pi\)
0.0329578 + 0.999457i \(0.489507\pi\)
\(84\) 0 0
\(85\) −2.06230 + 6.34711i −0.223688 + 0.688441i
\(86\) 0 0
\(87\) −7.93251 −0.850455
\(88\) 0 0
\(89\) 10.9210 1.15763 0.578814 0.815460i \(-0.303516\pi\)
0.578814 + 0.815460i \(0.303516\pi\)
\(90\) 0 0
\(91\) 1.41893 4.36703i 0.148745 0.457789i
\(92\) 0 0
\(93\) 0.816325 + 1.12358i 0.0846490 + 0.116509i
\(94\) 0 0
\(95\) −0.229638 0.706752i −0.0235603 0.0725113i
\(96\) 0 0
\(97\) −11.2144 8.14771i −1.13865 0.827275i −0.151716 0.988424i \(-0.548480\pi\)
−0.986930 + 0.161149i \(0.948480\pi\)
\(98\) 0 0
\(99\) −3.26706 0.571268i −0.328351 0.0574146i
\(100\) 0 0
\(101\) 6.49406 + 4.71821i 0.646183 + 0.469480i 0.861969 0.506961i \(-0.169231\pi\)
−0.215786 + 0.976441i \(0.569231\pi\)
\(102\) 0 0
\(103\) 11.7338 3.81254i 1.15617 0.375661i 0.332703 0.943032i \(-0.392039\pi\)
0.823463 + 0.567370i \(0.192039\pi\)
\(104\) 0 0
\(105\) −1.44978 1.99544i −0.141484 0.194735i
\(106\) 0 0
\(107\) 6.82340 + 2.21706i 0.659643 + 0.214331i 0.619661 0.784869i \(-0.287270\pi\)
0.0399817 + 0.999200i \(0.487270\pi\)
\(108\) 0 0
\(109\) 9.38007 0.898448 0.449224 0.893419i \(-0.351700\pi\)
0.449224 + 0.893419i \(0.351700\pi\)
\(110\) 0 0
\(111\) 9.37782i 0.890103i
\(112\) 0 0
\(113\) 0.566005 1.74198i 0.0532452 0.163872i −0.920898 0.389804i \(-0.872543\pi\)
0.974143 + 0.225932i \(0.0725427\pi\)
\(114\) 0 0
\(115\) 2.07408 1.50691i 0.193409 0.140520i
\(116\) 0 0
\(117\) 1.01756 + 3.13173i 0.0940734 + 0.289528i
\(118\) 0 0
\(119\) 3.09251 4.25648i 0.283490 0.390191i
\(120\) 0 0
\(121\) 6.74753 8.68740i 0.613412 0.789763i
\(122\) 0 0
\(123\) 2.03369 2.79914i 0.183372 0.252390i
\(124\) 0 0
\(125\) −11.5592 + 3.75580i −1.03388 + 0.335929i
\(126\) 0 0
\(127\) −5.77997 + 4.19940i −0.512890 + 0.372636i −0.813919 0.580979i \(-0.802670\pi\)
0.301029 + 0.953615i \(0.402670\pi\)
\(128\) 0 0
\(129\) −3.42700 1.11350i −0.301730 0.0980381i
\(130\) 0 0
\(131\) 8.74918i 0.764420i 0.924076 + 0.382210i \(0.124837\pi\)
−0.924076 + 0.382210i \(0.875163\pi\)
\(132\) 0 0
\(133\) 0.585847i 0.0507994i
\(134\) 0 0
\(135\) 1.68223 + 0.546590i 0.144783 + 0.0470430i
\(136\) 0 0
\(137\) 6.84644 4.97423i 0.584930 0.424977i −0.255568 0.966791i \(-0.582262\pi\)
0.840498 + 0.541814i \(0.182262\pi\)
\(138\) 0 0
\(139\) 5.45350 1.77195i 0.462560 0.150295i −0.0684604 0.997654i \(-0.521809\pi\)
0.531021 + 0.847359i \(0.321809\pi\)
\(140\) 0 0
\(141\) 0.449578 0.618791i 0.0378613 0.0521116i
\(142\) 0 0
\(143\) −10.7581 1.88112i −0.899634 0.157307i
\(144\) 0 0
\(145\) −8.24724 + 11.3514i −0.684896 + 0.942679i
\(146\) 0 0
\(147\) −1.56224 4.80808i −0.128851 0.396563i
\(148\) 0 0
\(149\) 15.6781 11.3908i 1.28440 0.933168i 0.284720 0.958611i \(-0.408099\pi\)
0.999676 + 0.0254423i \(0.00809940\pi\)
\(150\) 0 0
\(151\) 3.22214 9.91672i 0.262214 0.807011i −0.730108 0.683331i \(-0.760530\pi\)
0.992322 0.123680i \(-0.0394696\pi\)
\(152\) 0 0
\(153\) 3.77303i 0.305031i
\(154\) 0 0
\(155\) 2.45654 0.197314
\(156\) 0 0
\(157\) 16.9246 + 5.49914i 1.35073 + 0.438879i 0.892938 0.450180i \(-0.148640\pi\)
0.457792 + 0.889059i \(0.348640\pi\)
\(158\) 0 0
\(159\) −2.54374 3.50116i −0.201732 0.277660i
\(160\) 0 0
\(161\) −1.92220 + 0.624560i −0.151491 + 0.0492223i
\(162\) 0 0
\(163\) 4.84269 + 3.51842i 0.379308 + 0.275584i 0.761060 0.648681i \(-0.224679\pi\)
−0.381752 + 0.924265i \(0.624679\pi\)
\(164\) 0 0
\(165\) −4.21416 + 4.08119i −0.328072 + 0.317721i
\(166\) 0 0
\(167\) −4.20600 3.05584i −0.325470 0.236468i 0.413036 0.910715i \(-0.364468\pi\)
−0.738506 + 0.674247i \(0.764468\pi\)
\(168\) 0 0
\(169\) −0.666510 2.05131i −0.0512700 0.157793i
\(170\) 0 0
\(171\) −0.246945 0.339891i −0.0188844 0.0259921i
\(172\) 0 0
\(173\) 4.33891 13.3538i 0.329881 1.01527i −0.639307 0.768951i \(-0.720779\pi\)
0.969189 0.246319i \(-0.0792212\pi\)
\(174\) 0 0
\(175\) 2.60949 0.197259
\(176\) 0 0
\(177\) −11.9598 −0.898954
\(178\) 0 0
\(179\) −7.11085 + 21.8849i −0.531490 + 1.63576i 0.219624 + 0.975585i \(0.429517\pi\)
−0.751114 + 0.660173i \(0.770483\pi\)
\(180\) 0 0
\(181\) −11.4700 15.7871i −0.852559 1.17345i −0.983293 0.182030i \(-0.941733\pi\)
0.130734 0.991418i \(-0.458267\pi\)
\(182\) 0 0
\(183\) 3.22933 + 9.93887i 0.238719 + 0.734702i
\(184\) 0 0
\(185\) 13.4196 + 9.74989i 0.986627 + 0.716827i
\(186\) 0 0
\(187\) −11.0573 5.85908i −0.808592 0.428458i
\(188\) 0 0
\(189\) −1.12813 0.819637i −0.0820596 0.0596198i
\(190\) 0 0
\(191\) 24.3481 7.91117i 1.76177 0.572432i 0.764385 0.644760i \(-0.223043\pi\)
0.997381 + 0.0723280i \(0.0230428\pi\)
\(192\) 0 0
\(193\) 12.9917 + 17.8816i 0.935166 + 1.28715i 0.957810 + 0.287402i \(0.0927917\pi\)
−0.0226438 + 0.999744i \(0.507208\pi\)
\(194\) 0 0
\(195\) 5.53940 + 1.79986i 0.396685 + 0.128891i
\(196\) 0 0
\(197\) 18.2227 1.29832 0.649158 0.760653i \(-0.275121\pi\)
0.649158 + 0.760653i \(0.275121\pi\)
\(198\) 0 0
\(199\) 13.2643i 0.940284i 0.882591 + 0.470142i \(0.155797\pi\)
−0.882591 + 0.470142i \(0.844203\pi\)
\(200\) 0 0
\(201\) −3.07475 + 9.46312i −0.216876 + 0.667477i
\(202\) 0 0
\(203\) 8.94893 6.50178i 0.628092 0.456335i
\(204\) 0 0
\(205\) −1.89116 5.82039i −0.132084 0.406514i
\(206\) 0 0
\(207\) 0.851938 1.17259i 0.0592138 0.0815008i
\(208\) 0 0
\(209\) 1.37957 0.195892i 0.0954268 0.0135501i
\(210\) 0 0
\(211\) −11.2460 + 15.4787i −0.774204 + 1.06560i 0.221694 + 0.975116i \(0.428841\pi\)
−0.995898 + 0.0904841i \(0.971159\pi\)
\(212\) 0 0
\(213\) −12.2539 + 3.98153i −0.839623 + 0.272810i
\(214\) 0 0
\(215\) −5.15637 + 3.74632i −0.351662 + 0.255497i
\(216\) 0 0
\(217\) −1.84185 0.598452i −0.125033 0.0406256i
\(218\) 0 0
\(219\) 9.61699i 0.649856i
\(220\) 0 0
\(221\) 12.4242i 0.835740i
\(222\) 0 0
\(223\) 1.64768 + 0.535364i 0.110337 + 0.0358507i 0.363665 0.931530i \(-0.381525\pi\)
−0.253328 + 0.967380i \(0.581525\pi\)
\(224\) 0 0
\(225\) −1.51394 + 1.09994i −0.100930 + 0.0733296i
\(226\) 0 0
\(227\) −5.99045 + 1.94642i −0.397600 + 0.129188i −0.500991 0.865453i \(-0.667031\pi\)
0.103390 + 0.994641i \(0.467031\pi\)
\(228\) 0 0
\(229\) −2.03611 + 2.80246i −0.134550 + 0.185192i −0.870975 0.491327i \(-0.836512\pi\)
0.736426 + 0.676519i \(0.236512\pi\)
\(230\) 0 0
\(231\) 4.15391 2.03333i 0.273307 0.133783i
\(232\) 0 0
\(233\) −8.63879 + 11.8903i −0.565946 + 0.778958i −0.992067 0.125708i \(-0.959880\pi\)
0.426121 + 0.904666i \(0.359880\pi\)
\(234\) 0 0
\(235\) −0.418069 1.28669i −0.0272718 0.0839341i
\(236\) 0 0
\(237\) 4.69761 3.41302i 0.305143 0.221699i
\(238\) 0 0
\(239\) 6.25422 19.2485i 0.404552 1.24508i −0.516717 0.856156i \(-0.672846\pi\)
0.921269 0.388927i \(-0.127154\pi\)
\(240\) 0 0
\(241\) 8.76302i 0.564476i 0.959344 + 0.282238i \(0.0910768\pi\)
−0.959344 + 0.282238i \(0.908923\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −8.50454 2.76329i −0.543335 0.176540i
\(246\) 0 0
\(247\) −0.813163 1.11922i −0.0517403 0.0712145i
\(248\) 0 0
\(249\) 14.3476 4.66182i 0.909242 0.295431i
\(250\) 0 0
\(251\) 4.24381 + 3.08331i 0.267867 + 0.194617i 0.713608 0.700545i \(-0.247060\pi\)
−0.445741 + 0.895162i \(0.647060\pi\)
\(252\) 0 0
\(253\) 2.11346 + 4.31761i 0.132872 + 0.271446i
\(254\) 0 0
\(255\) 5.39917 + 3.92273i 0.338109 + 0.245651i
\(256\) 0 0
\(257\) −1.45063 4.46459i −0.0904879 0.278493i 0.895564 0.444933i \(-0.146773\pi\)
−0.986052 + 0.166440i \(0.946773\pi\)
\(258\) 0 0
\(259\) −7.68641 10.5794i −0.477610 0.657374i
\(260\) 0 0
\(261\) −2.45128 + 7.54427i −0.151730 + 0.466978i
\(262\) 0 0
\(263\) 23.0463 1.42110 0.710548 0.703648i \(-0.248447\pi\)
0.710548 + 0.703648i \(0.248447\pi\)
\(264\) 0 0
\(265\) −7.65479 −0.470230
\(266\) 0 0
\(267\) 3.37479 10.3865i 0.206534 0.635645i
\(268\) 0 0
\(269\) −5.66339 7.79498i −0.345303 0.475268i 0.600678 0.799491i \(-0.294897\pi\)
−0.945981 + 0.324223i \(0.894897\pi\)
\(270\) 0 0
\(271\) 7.25330 + 22.3234i 0.440607 + 1.35605i 0.887230 + 0.461326i \(0.152626\pi\)
−0.446624 + 0.894722i \(0.647374\pi\)
\(272\) 0 0
\(273\) −3.71482 2.69897i −0.224831 0.163349i
\(274\) 0 0
\(275\) −0.872544 6.14489i −0.0526164 0.370551i
\(276\) 0 0
\(277\) 16.1312 + 11.7200i 0.969227 + 0.704185i 0.955275 0.295718i \(-0.0955588\pi\)
0.0139521 + 0.999903i \(0.495559\pi\)
\(278\) 0 0
\(279\) 1.32084 0.429168i 0.0790767 0.0256936i
\(280\) 0 0
\(281\) −3.73754 5.14428i −0.222963 0.306882i 0.682851 0.730557i \(-0.260740\pi\)
−0.905814 + 0.423675i \(0.860740\pi\)
\(282\) 0 0
\(283\) 8.30006 + 2.69685i 0.493387 + 0.160311i 0.545134 0.838349i \(-0.316479\pi\)
−0.0517465 + 0.998660i \(0.516479\pi\)
\(284\) 0 0
\(285\) −0.743124 −0.0440188
\(286\) 0 0
\(287\) 4.82469i 0.284792i
\(288\) 0 0
\(289\) 0.854199 2.62895i 0.0502470 0.154644i
\(290\) 0 0
\(291\) −11.2144 + 8.14771i −0.657398 + 0.477627i
\(292\) 0 0
\(293\) −6.37463 19.6191i −0.372410 1.14616i −0.945209 0.326465i \(-0.894143\pi\)
0.572799 0.819696i \(-0.305857\pi\)
\(294\) 0 0
\(295\) −12.4343 + 17.1144i −0.723955 + 0.996438i
\(296\) 0 0
\(297\) −1.55288 + 2.93062i −0.0901075 + 0.170052i
\(298\) 0 0
\(299\) 2.80534 3.86122i 0.162237 0.223300i
\(300\) 0 0
\(301\) 4.77877 1.55272i 0.275444 0.0894971i
\(302\) 0 0
\(303\) 6.49406 4.71821i 0.373074 0.271054i
\(304\) 0 0
\(305\) 17.5799 + 5.71205i 1.00662 + 0.327071i
\(306\) 0 0
\(307\) 24.6574i 1.40727i 0.710560 + 0.703637i \(0.248442\pi\)
−0.710560 + 0.703637i \(0.751558\pi\)
\(308\) 0 0
\(309\) 12.3377i 0.701864i
\(310\) 0 0
\(311\) 24.3504 + 7.91194i 1.38079 + 0.448645i 0.902928 0.429792i \(-0.141413\pi\)
0.477859 + 0.878437i \(0.341413\pi\)
\(312\) 0 0
\(313\) 3.15731 2.29392i 0.178462 0.129660i −0.494968 0.868911i \(-0.664820\pi\)
0.673430 + 0.739251i \(0.264820\pi\)
\(314\) 0 0
\(315\) −2.34579 + 0.762192i −0.132170 + 0.0429447i
\(316\) 0 0
\(317\) −3.74958 + 5.16085i −0.210597 + 0.289862i −0.901228 0.433345i \(-0.857333\pi\)
0.690631 + 0.723208i \(0.257333\pi\)
\(318\) 0 0
\(319\) −18.3028 18.8991i −1.02476 1.05815i
\(320\) 0 0
\(321\) 4.21709 5.80433i 0.235375 0.323966i
\(322\) 0 0
\(323\) −0.489840 1.50757i −0.0272554 0.0838836i
\(324\) 0 0
\(325\) −4.98525 + 3.62200i −0.276532 + 0.200912i
\(326\) 0 0
\(327\) 2.89860 8.92098i 0.160293 0.493331i
\(328\) 0 0
\(329\) 1.06657i 0.0588019i
\(330\) 0 0
\(331\) 4.34773 0.238973 0.119486 0.992836i \(-0.461875\pi\)
0.119486 + 0.992836i \(0.461875\pi\)
\(332\) 0 0
\(333\) 8.91884 + 2.89791i 0.488749 + 0.158804i
\(334\) 0 0
\(335\) 10.3449 + 14.2385i 0.565202 + 0.777934i
\(336\) 0 0
\(337\) 9.71778 3.15750i 0.529361 0.172000i −0.0321283 0.999484i \(-0.510229\pi\)
0.561490 + 0.827484i \(0.310229\pi\)
\(338\) 0 0
\(339\) −1.48182 1.07660i −0.0804814 0.0584731i
\(340\) 0 0
\(341\) −0.793386 + 4.53734i −0.0429642 + 0.245711i
\(342\) 0 0
\(343\) 13.6002 + 9.88114i 0.734343 + 0.533531i
\(344\) 0 0
\(345\) −0.792229 2.43823i −0.0426522 0.131270i
\(346\) 0 0
\(347\) −4.37155 6.01692i −0.234677 0.323005i 0.675394 0.737457i \(-0.263973\pi\)
−0.910071 + 0.414452i \(0.863973\pi\)
\(348\) 0 0
\(349\) 1.81469 5.58504i 0.0971382 0.298961i −0.890667 0.454657i \(-0.849762\pi\)
0.987805 + 0.155696i \(0.0497620\pi\)
\(350\) 0 0
\(351\) 3.29289 0.175762
\(352\) 0 0
\(353\) −26.3624 −1.40313 −0.701565 0.712605i \(-0.747515\pi\)
−0.701565 + 0.712605i \(0.747515\pi\)
\(354\) 0 0
\(355\) −7.04254 + 21.6747i −0.373779 + 1.15037i
\(356\) 0 0
\(357\) −3.09251 4.25648i −0.163673 0.225277i
\(358\) 0 0
\(359\) 1.23260 + 3.79354i 0.0650539 + 0.200215i 0.978300 0.207193i \(-0.0664327\pi\)
−0.913246 + 0.407408i \(0.866433\pi\)
\(360\) 0 0
\(361\) −15.2285 11.0642i −0.801501 0.582325i
\(362\) 0 0
\(363\) −6.17710 9.10183i −0.324214 0.477722i
\(364\) 0 0
\(365\) 13.7618 + 9.99855i 0.720327 + 0.523348i
\(366\) 0 0
\(367\) −31.5697 + 10.2576i −1.64792 + 0.535443i −0.978288 0.207248i \(-0.933549\pi\)
−0.669634 + 0.742691i \(0.733549\pi\)
\(368\) 0 0
\(369\) −2.03369 2.79914i −0.105870 0.145717i
\(370\) 0 0
\(371\) 5.73936 + 1.86483i 0.297973 + 0.0968171i
\(372\) 0 0
\(373\) 30.7237 1.59081 0.795407 0.606075i \(-0.207257\pi\)
0.795407 + 0.606075i \(0.207257\pi\)
\(374\) 0 0
\(375\) 12.1540i 0.627632i
\(376\) 0 0
\(377\) −8.07180 + 24.8424i −0.415719 + 1.27945i
\(378\) 0 0
\(379\) 29.7001 21.5784i 1.52559 1.10841i 0.566967 0.823741i \(-0.308117\pi\)
0.958626 0.284667i \(-0.0918832\pi\)
\(380\) 0 0
\(381\) 2.20775 + 6.79476i 0.113107 + 0.348106i
\(382\) 0 0
\(383\) −7.33813 + 10.1001i −0.374961 + 0.516090i −0.954241 0.299039i \(-0.903334\pi\)
0.579280 + 0.815129i \(0.303334\pi\)
\(384\) 0 0
\(385\) 1.40904 8.05821i 0.0718111 0.410684i
\(386\) 0 0
\(387\) −2.11800 + 2.91518i −0.107664 + 0.148187i
\(388\) 0 0
\(389\) −31.6936 + 10.2979i −1.60693 + 0.522122i −0.968807 0.247815i \(-0.920288\pi\)
−0.638120 + 0.769937i \(0.720288\pi\)
\(390\) 0 0
\(391\) 4.42422 3.21439i 0.223743 0.162559i
\(392\) 0 0
\(393\) 8.32097 + 2.70365i 0.419737 + 0.136381i
\(394\) 0 0
\(395\) 10.2707i 0.516774i
\(396\) 0 0
\(397\) 14.1022i 0.707767i −0.935289 0.353884i \(-0.884861\pi\)
0.935289 0.353884i \(-0.115139\pi\)
\(398\) 0 0
\(399\) 0.557174 + 0.181037i 0.0278936 + 0.00906317i
\(400\) 0 0
\(401\) 9.67496 7.02927i 0.483145 0.351025i −0.319397 0.947621i \(-0.603480\pi\)
0.802542 + 0.596596i \(0.203480\pi\)
\(402\) 0 0
\(403\) 4.34939 1.41320i 0.216658 0.0703966i
\(404\) 0 0
\(405\) 1.03968 1.43099i 0.0516619 0.0711065i
\(406\) 0 0
\(407\) −22.3426 + 21.6376i −1.10748 + 1.07254i
\(408\) 0 0
\(409\) −9.59791 + 13.2104i −0.474586 + 0.653212i −0.977453 0.211152i \(-0.932279\pi\)
0.502867 + 0.864364i \(0.332279\pi\)
\(410\) 0 0
\(411\) −2.61511 8.04847i −0.128994 0.397002i
\(412\) 0 0
\(413\) 13.4923 9.80270i 0.663911 0.482359i
\(414\) 0 0
\(415\) 8.24584 25.3781i 0.404772 1.24576i
\(416\) 0 0
\(417\) 5.73415i 0.280803i
\(418\) 0 0
\(419\) −5.36954 −0.262319 −0.131159 0.991361i \(-0.541870\pi\)
−0.131159 + 0.991361i \(0.541870\pi\)
\(420\) 0 0
\(421\) 8.90313 + 2.89280i 0.433912 + 0.140987i 0.517825 0.855487i \(-0.326742\pi\)
−0.0839132 + 0.996473i \(0.526742\pi\)
\(422\) 0 0
\(423\) −0.449578 0.618791i −0.0218592 0.0300867i
\(424\) 0 0
\(425\) −6.71504 + 2.18185i −0.325727 + 0.105835i
\(426\) 0 0
\(427\) −11.7894 8.56549i −0.570528 0.414513i
\(428\) 0 0
\(429\) −5.11348 + 9.65022i −0.246881 + 0.465917i
\(430\) 0 0
\(431\) −30.9429 22.4813i −1.49047 1.08289i −0.973991 0.226587i \(-0.927243\pi\)
−0.516477 0.856301i \(-0.672757\pi\)
\(432\) 0 0
\(433\) 3.07438 + 9.46196i 0.147745 + 0.454713i 0.997354 0.0727008i \(-0.0231618\pi\)
−0.849609 + 0.527414i \(0.823162\pi\)
\(434\) 0 0
\(435\) 8.24724 + 11.3514i 0.395425 + 0.544256i
\(436\) 0 0
\(437\) −0.188171 + 0.579132i −0.00900145 + 0.0277036i
\(438\) 0 0
\(439\) −15.8844 −0.758122 −0.379061 0.925372i \(-0.623753\pi\)
−0.379061 + 0.925372i \(0.623753\pi\)
\(440\) 0 0
\(441\) −5.05551 −0.240739
\(442\) 0 0
\(443\) 1.67612 5.15857i 0.0796349 0.245091i −0.903311 0.428986i \(-0.858871\pi\)
0.982946 + 0.183895i \(0.0588708\pi\)
\(444\) 0 0
\(445\) −11.3543 15.6279i −0.538247 0.740834i
\(446\) 0 0
\(447\) −5.98848 18.4307i −0.283246 0.871740i
\(448\) 0 0
\(449\) −8.05234 5.85037i −0.380013 0.276096i 0.381338 0.924436i \(-0.375464\pi\)
−0.761351 + 0.648340i \(0.775464\pi\)
\(450\) 0 0
\(451\) 11.3613 1.61325i 0.534983 0.0759650i
\(452\) 0 0
\(453\) −8.43566 6.12887i −0.396342 0.287959i
\(454\) 0 0
\(455\) −7.72442 + 2.50982i −0.362126 + 0.117662i
\(456\) 0 0
\(457\) −14.7492 20.3005i −0.689939 0.949619i 0.310061 0.950717i \(-0.399651\pi\)
−0.999999 + 0.00109777i \(0.999651\pi\)
\(458\) 0 0
\(459\) 3.58836 + 1.16593i 0.167491 + 0.0544210i
\(460\) 0 0
\(461\) −34.5074 −1.60717 −0.803585 0.595190i \(-0.797077\pi\)
−0.803585 + 0.595190i \(0.797077\pi\)
\(462\) 0 0
\(463\) 22.7879i 1.05905i −0.848296 0.529523i \(-0.822371\pi\)
0.848296 0.529523i \(-0.177629\pi\)
\(464\) 0 0
\(465\) 0.759113 2.33631i 0.0352030 0.108344i
\(466\) 0 0
\(467\) −4.94788 + 3.59484i −0.228960 + 0.166349i −0.696351 0.717702i \(-0.745194\pi\)
0.467390 + 0.884051i \(0.345194\pi\)
\(468\) 0 0
\(469\) −4.28759 13.1958i −0.197982 0.609327i
\(470\) 0 0
\(471\) 10.4600 14.3969i 0.481970 0.663375i
\(472\) 0 0
\(473\) −5.25428 10.7340i −0.241592 0.493549i
\(474\) 0 0
\(475\) 0.462118 0.636050i 0.0212034 0.0291840i
\(476\) 0 0
\(477\) −4.11586 + 1.33732i −0.188452 + 0.0612318i
\(478\) 0 0
\(479\) −2.50936 + 1.82316i −0.114656 + 0.0833022i −0.643635 0.765332i \(-0.722575\pi\)
0.528980 + 0.848634i \(0.322575\pi\)
\(480\) 0 0
\(481\) 29.3688 + 9.54249i 1.33910 + 0.435100i
\(482\) 0 0
\(483\) 2.02112i 0.0919641i
\(484\) 0 0
\(485\) 24.5186i 1.11333i
\(486\) 0 0
\(487\) −20.1262 6.53939i −0.912003 0.296328i −0.184821 0.982772i \(-0.559171\pi\)
−0.727182 + 0.686444i \(0.759171\pi\)
\(488\) 0 0
\(489\) 4.84269 3.51842i 0.218994 0.159108i
\(490\) 0 0
\(491\) 4.96607 1.61357i 0.224116 0.0728195i −0.194807 0.980842i \(-0.562408\pi\)
0.418922 + 0.908022i \(0.362408\pi\)
\(492\) 0 0
\(493\) −17.5922 + 24.2136i −0.792312 + 1.09052i
\(494\) 0 0
\(495\) 2.57920 + 5.26906i 0.115926 + 0.236827i
\(496\) 0 0
\(497\) 10.5606 14.5354i 0.473708 0.652003i
\(498\) 0 0
\(499\) 9.84802 + 30.3091i 0.440858 + 1.35682i 0.886963 + 0.461840i \(0.152811\pi\)
−0.446105 + 0.894980i \(0.647189\pi\)
\(500\) 0 0
\(501\) −4.20600 + 3.05584i −0.187910 + 0.136525i
\(502\) 0 0
\(503\) 4.38495 13.4955i 0.195515 0.601734i −0.804455 0.594014i \(-0.797542\pi\)
0.999970 0.00772063i \(-0.00245758\pi\)
\(504\) 0 0
\(505\) 14.1984i 0.631819i
\(506\) 0 0
\(507\) −2.15687 −0.0957900
\(508\) 0 0
\(509\) −8.45834 2.74828i −0.374909 0.121815i 0.115500 0.993307i \(-0.463153\pi\)
−0.490410 + 0.871492i \(0.663153\pi\)
\(510\) 0 0
\(511\) −7.88244 10.8492i −0.348699 0.479942i
\(512\) 0 0
\(513\) −0.399566 + 0.129827i −0.0176412 + 0.00573199i
\(514\) 0 0
\(515\) −17.6551 12.8272i −0.777975 0.565232i
\(516\) 0 0
\(517\) 2.51159 0.356633i 0.110459 0.0156847i
\(518\) 0 0
\(519\) −11.3594 8.25310i −0.498623 0.362271i
\(520\) 0 0
\(521\) −8.34024 25.6686i −0.365393 1.12456i −0.949735 0.313056i \(-0.898647\pi\)
0.584342 0.811507i \(-0.301353\pi\)
\(522\) 0 0
\(523\) −25.2868 34.8043i −1.10571 1.52188i −0.827585 0.561341i \(-0.810286\pi\)
−0.278129 0.960544i \(-0.589714\pi\)
\(524\) 0 0
\(525\) 0.806375 2.48177i 0.0351931 0.108313i
\(526\) 0 0
\(527\) 5.24004 0.228260
\(528\) 0 0
\(529\) 20.8992 0.908662
\(530\) 0 0
\(531\) −3.69578 + 11.3745i −0.160383 + 0.493609i
\(532\) 0 0
\(533\) −6.69673 9.21726i −0.290067 0.399244i
\(534\) 0 0
\(535\) −3.92154 12.0692i −0.169543 0.521799i
\(536\) 0 0
\(537\) 18.6164 + 13.5256i 0.803359 + 0.583674i
\(538\) 0 0
\(539\) 7.85062 14.8158i 0.338150 0.638162i
\(540\) 0 0
\(541\) 16.3673 + 11.8916i 0.703686 + 0.511258i 0.881131 0.472873i \(-0.156783\pi\)
−0.177444 + 0.984131i \(0.556783\pi\)
\(542\) 0 0
\(543\) −18.5589 + 6.03014i −0.796437 + 0.258778i
\(544\) 0 0
\(545\) −9.75224 13.4228i −0.417740 0.574970i
\(546\) 0 0
\(547\) −13.6380 4.43124i −0.583117 0.189466i 0.00257925 0.999997i \(-0.499179\pi\)
−0.585697 + 0.810530i \(0.699179\pi\)
\(548\) 0 0
\(549\) 10.4503 0.446010
\(550\) 0 0
\(551\) 3.33267i 0.141977i
\(552\) 0 0
\(553\) −2.50210 + 7.70067i −0.106400 + 0.327466i
\(554\) 0 0
\(555\) 13.4196 9.74989i 0.569629 0.413860i
\(556\) 0 0
\(557\) 9.72693 + 29.9364i 0.412143 + 1.26845i 0.914781 + 0.403949i \(0.132363\pi\)
−0.502638 + 0.864497i \(0.667637\pi\)
\(558\) 0 0
\(559\) −6.97434 + 9.59936i −0.294983 + 0.406010i
\(560\) 0 0
\(561\) −8.98922 + 8.70559i −0.379525 + 0.367550i
\(562\) 0 0
\(563\) −11.5320 + 15.8725i −0.486017 + 0.668946i −0.979647 0.200726i \(-0.935670\pi\)
0.493630 + 0.869672i \(0.335670\pi\)
\(564\) 0 0
\(565\) −3.08122 + 1.00115i −0.129628 + 0.0421187i
\(566\) 0 0
\(567\) −1.12813 + 0.819637i −0.0473771 + 0.0344215i
\(568\) 0 0
\(569\) 25.2020 + 8.18862i 1.05652 + 0.343285i 0.785225 0.619211i \(-0.212547\pi\)
0.271297 + 0.962496i \(0.412547\pi\)
\(570\) 0 0
\(571\) 15.2004i 0.636116i −0.948071 0.318058i \(-0.896969\pi\)
0.948071 0.318058i \(-0.103031\pi\)
\(572\) 0 0
\(573\) 25.6011i 1.06950i
\(574\) 0 0
\(575\) 2.57957 + 0.838154i 0.107576 + 0.0349534i
\(576\) 0 0
\(577\) 17.6624 12.8325i 0.735296 0.534224i −0.155939 0.987767i \(-0.549840\pi\)
0.891234 + 0.453543i \(0.149840\pi\)
\(578\) 0 0
\(579\) 21.0211 6.83016i 0.873606 0.283852i
\(580\) 0 0
\(581\) −12.3650 + 17.0190i −0.512987 + 0.706066i
\(582\) 0 0
\(583\) 2.47226 14.1387i 0.102390 0.585567i
\(584\) 0 0
\(585\) 3.42354 4.71210i 0.141546 0.194821i
\(586\) 0 0
\(587\) −7.06883 21.7556i −0.291762 0.897951i −0.984290 0.176560i \(-0.943503\pi\)
0.692528 0.721391i \(-0.256497\pi\)
\(588\) 0 0
\(589\) −0.472045 + 0.342961i −0.0194503 + 0.0141315i
\(590\) 0 0
\(591\) 5.63114 17.3309i 0.231634 0.712896i
\(592\) 0 0
\(593\) 13.3772i 0.549336i −0.961539 0.274668i \(-0.911432\pi\)
0.961539 0.274668i \(-0.0885679\pi\)
\(594\) 0 0
\(595\) −9.30620 −0.381517
\(596\) 0 0
\(597\) 12.6151 + 4.09891i 0.516303 + 0.167757i
\(598\) 0 0
\(599\) −13.8109 19.0091i −0.564300 0.776692i 0.427565 0.903984i \(-0.359371\pi\)
−0.991865 + 0.127292i \(0.959371\pi\)
\(600\) 0 0
\(601\) 11.5910 3.76616i 0.472809 0.153625i −0.0629138 0.998019i \(-0.520039\pi\)
0.535722 + 0.844394i \(0.320039\pi\)
\(602\) 0 0
\(603\) 8.04981 + 5.84853i 0.327814 + 0.238171i
\(604\) 0 0
\(605\) −19.4468 0.623576i −0.790626 0.0253520i
\(606\) 0 0
\(607\) 33.2882 + 24.1853i 1.35113 + 0.981652i 0.998954 + 0.0457169i \(0.0145572\pi\)
0.352173 + 0.935935i \(0.385443\pi\)
\(608\) 0 0
\(609\) −3.41819 10.5201i −0.138512 0.426296i
\(610\) 0 0
\(611\) −1.48041 2.03761i −0.0598911 0.0824330i
\(612\) 0 0
\(613\) −3.01493 + 9.27900i −0.121772 + 0.374775i −0.993299 0.115572i \(-0.963130\pi\)
0.871527 + 0.490347i \(0.163130\pi\)
\(614\) 0 0
\(615\) −6.11992 −0.246779
\(616\) 0 0
\(617\) −19.8476 −0.799035 −0.399518 0.916725i \(-0.630822\pi\)
−0.399518 + 0.916725i \(0.630822\pi\)
\(618\) 0 0
\(619\) −0.849909 + 2.61575i −0.0341607 + 0.105136i −0.966683 0.255977i \(-0.917603\pi\)
0.932522 + 0.361113i \(0.117603\pi\)
\(620\) 0 0
\(621\) −0.851938 1.17259i −0.0341871 0.0470545i
\(622\) 0 0
\(623\) 4.70597 + 14.4835i 0.188541 + 0.580269i
\(624\) 0 0
\(625\) 9.82260 + 7.13654i 0.392904 + 0.285462i
\(626\) 0 0
\(627\) 0.240006 1.37258i 0.00958490 0.0548156i
\(628\) 0 0
\(629\) 28.6253 + 20.7975i 1.14136 + 0.829250i
\(630\) 0 0
\(631\) 5.16849 1.67934i 0.205754 0.0668536i −0.204327 0.978903i \(-0.565500\pi\)
0.410081 + 0.912049i \(0.365500\pi\)
\(632\) 0 0
\(633\) 11.2460 + 15.4787i 0.446987 + 0.615225i
\(634\) 0 0
\(635\) 12.0186 + 3.90508i 0.476943 + 0.154968i
\(636\) 0 0
\(637\) −16.6472 −0.659588
\(638\) 0 0
\(639\) 12.8845i 0.509703i
\(640\) 0 0
\(641\) −5.69933 + 17.5407i −0.225110 + 0.692817i 0.773170 + 0.634198i \(0.218670\pi\)
−0.998280 + 0.0586191i \(0.981330\pi\)
\(642\) 0 0
\(643\) 36.3473 26.4078i 1.43340 1.04142i 0.444024 0.896015i \(-0.353551\pi\)
0.989372 0.145408i \(-0.0464495\pi\)
\(644\) 0 0
\(645\) 1.96956 + 6.06168i 0.0775513 + 0.238678i
\(646\) 0 0
\(647\) −12.0677 + 16.6098i −0.474430 + 0.652997i −0.977423 0.211294i \(-0.932232\pi\)
0.502993 + 0.864291i \(0.332232\pi\)
\(648\) 0 0
\(649\) −27.5951 28.4942i −1.08320 1.11849i
\(650\) 0 0
\(651\) −1.13832 + 1.56677i −0.0446144 + 0.0614065i
\(652\) 0 0
\(653\) 4.82108 1.56646i 0.188664 0.0613005i −0.213161 0.977017i \(-0.568376\pi\)
0.401825 + 0.915717i \(0.368376\pi\)
\(654\) 0 0
\(655\) 12.5200 9.09632i 0.489197 0.355423i
\(656\) 0 0
\(657\) 9.14630 + 2.97181i 0.356831 + 0.115941i
\(658\) 0 0
\(659\) 24.6770i 0.961279i −0.876918 0.480640i \(-0.840405\pi\)
0.876918 0.480640i \(-0.159595\pi\)
\(660\) 0 0
\(661\) 29.9755i 1.16591i −0.812504 0.582956i \(-0.801896\pi\)
0.812504 0.582956i \(-0.198104\pi\)
\(662\) 0 0
\(663\) 11.8161 + 3.83928i 0.458899 + 0.149105i
\(664\) 0 0
\(665\) 0.838342 0.609091i 0.0325095 0.0236196i
\(666\) 0 0
\(667\) 10.9347 3.55289i 0.423393 0.137569i
\(668\) 0 0
\(669\) 1.01832 1.40160i 0.0393707 0.0541891i
\(670\) 0 0
\(671\) −16.2282 + 30.6260i −0.626482 + 1.18230i
\(672\) 0 0
\(673\) −0.00676354 + 0.00930921i −0.000260715 + 0.000358844i −0.809147 0.587606i \(-0.800071\pi\)
0.808887 + 0.587965i \(0.200071\pi\)
\(674\) 0 0
\(675\) 0.578275 + 1.77975i 0.0222578 + 0.0685025i
\(676\) 0 0
\(677\) 0.292248 0.212331i 0.0112320 0.00816054i −0.582155 0.813078i \(-0.697790\pi\)
0.593387 + 0.804917i \(0.297790\pi\)
\(678\) 0 0
\(679\) 5.97313 18.3834i 0.229228 0.705491i
\(680\) 0 0
\(681\) 6.29873i 0.241368i
\(682\) 0 0
\(683\) −16.8584 −0.645070 −0.322535 0.946557i \(-0.604535\pi\)
−0.322535 + 0.946557i \(0.604535\pi\)
\(684\) 0 0
\(685\) −14.2362 4.62561i −0.543935 0.176735i
\(686\) 0 0
\(687\) 2.03611 + 2.80246i 0.0776824 + 0.106921i
\(688\) 0 0
\(689\) −13.5531 + 4.40366i −0.516331 + 0.167766i
\(690\) 0 0
\(691\) −33.4931 24.3341i −1.27414 0.925714i −0.274777 0.961508i \(-0.588604\pi\)
−0.999359 + 0.0357938i \(0.988604\pi\)
\(692\) 0 0
\(693\) −0.650187 4.57893i −0.0246986 0.173939i
\(694\) 0 0
\(695\) −8.20552 5.96166i −0.311253 0.226139i
\(696\) 0 0
\(697\) −4.03403 12.4155i −0.152800 0.470269i
\(698\) 0 0
\(699\) 8.63879 + 11.8903i 0.326749 + 0.449732i
\(700\) 0 0
\(701\) 9.88537 30.4240i 0.373365 1.14910i −0.571210 0.820804i \(-0.693526\pi\)
0.944575 0.328296i \(-0.106474\pi\)
\(702\) 0 0
\(703\) −3.93989 −0.148596
\(704\) 0 0
\(705\) −1.35290 −0.0509532
\(706\) 0 0
\(707\) −3.45895 + 10.6455i −0.130087 + 0.400367i
\(708\) 0 0
\(709\) −20.2031 27.8072i −0.758743 1.04432i −0.997318 0.0731963i \(-0.976680\pi\)
0.238574 0.971124i \(-0.423320\pi\)
\(710\) 0 0
\(711\) −1.79433 5.52238i −0.0672926 0.207105i
\(712\) 0 0
\(713\) −1.62851 1.18318i −0.0609883 0.0443106i
\(714\) 0 0
\(715\) 8.49302 + 17.3504i 0.317621 + 0.648870i
\(716\) 0 0
\(717\) −16.3738 11.8962i −0.611489 0.444273i
\(718\) 0 0
\(719\) −25.4856 + 8.28077i −0.950452 + 0.308821i −0.742899 0.669403i \(-0.766550\pi\)
−0.207553 + 0.978224i \(0.566550\pi\)
\(720\) 0 0
\(721\) 10.1124 + 13.9185i 0.376605 + 0.518353i
\(722\) 0 0
\(723\) 8.33413 + 2.70792i 0.309950 + 0.100709i
\(724\) 0 0
\(725\) −14.8444 −0.551307
\(726\) 0 0
\(727\) 26.4551i 0.981165i 0.871395 + 0.490583i \(0.163216\pi\)
−0.871395 + 0.490583i \(0.836784\pi\)
\(728\) 0 0
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) 0 0
\(731\) −10.9990 + 7.99128i −0.406814 + 0.295568i
\(732\) 0 0
\(733\) 0.587267 + 1.80742i 0.0216912 + 0.0667586i 0.961316 0.275447i \(-0.0888260\pi\)
−0.939625 + 0.342206i \(0.888826\pi\)
\(734\) 0 0
\(735\) −5.25609 + 7.23439i −0.193874 + 0.266845i
\(736\) 0 0
\(737\) −29.6403 + 14.5089i −1.09181 + 0.534441i
\(738\) 0 0
\(739\) −8.35357 + 11.4977i −0.307291 + 0.422950i −0.934534 0.355874i \(-0.884183\pi\)
0.627243 + 0.778824i \(0.284183\pi\)
\(740\) 0 0
\(741\) −1.31573 + 0.427505i −0.0483344 + 0.0157048i
\(742\) 0 0
\(743\) −19.8113 + 14.3937i −0.726806 + 0.528055i −0.888551 0.458777i \(-0.848288\pi\)
0.161746 + 0.986832i \(0.448288\pi\)
\(744\) 0 0
\(745\) −32.6002 10.5924i −1.19438 0.388077i
\(746\) 0 0
\(747\) 15.0860i 0.551966i
\(748\) 0 0
\(749\) 10.0045i 0.365558i
\(750\) 0 0
\(751\) 38.6132 + 12.5462i 1.40901 + 0.457817i 0.912095 0.409980i \(-0.134464\pi\)
0.496920 + 0.867796i \(0.334464\pi\)
\(752\) 0 0
\(753\) 4.24381 3.08331i 0.154653 0.112362i
\(754\) 0 0
\(755\) −17.5407 + 5.69932i −0.638372 + 0.207420i
\(756\) 0 0
\(757\) −7.32712 + 10.0849i −0.266309 + 0.366542i −0.921139 0.389233i \(-0.872740\pi\)
0.654831 + 0.755776i \(0.272740\pi\)
\(758\) 0 0
\(759\) 4.75939 0.675810i 0.172755 0.0245304i
\(760\) 0 0
\(761\) 19.4146 26.7219i 0.703779 0.968668i −0.296130 0.955148i \(-0.595696\pi\)
0.999909 0.0135207i \(-0.00430390\pi\)
\(762\) 0 0
\(763\) 4.04195 + 12.4399i 0.146329 + 0.450353i
\(764\) 0 0
\(765\) 5.39917 3.92273i 0.195207 0.141827i
\(766\) 0 0
\(767\) −12.1698 + 37.4548i −0.439427 + 1.35242i
\(768\) 0 0
\(769\) 45.9291i 1.65625i 0.560546 + 0.828123i \(0.310591\pi\)
−0.560546 + 0.828123i \(0.689409\pi\)
\(770\) 0 0
\(771\) −4.69434 −0.169063
\(772\) 0 0
\(773\) 13.4151 + 4.35884i 0.482509 + 0.156777i 0.540164 0.841560i \(-0.318362\pi\)
−0.0576547 + 0.998337i \(0.518362\pi\)
\(774\) 0 0
\(775\) 1.52762 + 2.10259i 0.0548737 + 0.0755272i
\(776\) 0 0
\(777\) −12.4369 + 4.04098i −0.446170 + 0.144969i
\(778\) 0 0
\(779\) 1.17600 + 0.854411i 0.0421344 + 0.0306125i
\(780\) 0 0
\(781\) −37.7596 20.0081i −1.35115 0.715947i
\(782\) 0 0
\(783\) 6.41754 + 4.66261i 0.229344 + 0.166628i
\(784\) 0 0
\(785\) −9.72688 29.9363i −0.347167 1.06847i
\(786\) 0 0
\(787\) 18.5090 + 25.4755i 0.659776 + 0.908104i 0.999474 0.0324309i \(-0.0103249\pi\)
−0.339698 + 0.940535i \(0.610325\pi\)
\(788\) 0 0
\(789\) 7.12170 21.9184i 0.253539 0.780314i
\(790\) 0 0
\(791\) 2.55411 0.0908138
\(792\) 0 0
\(793\) 34.4118 1.22200
\(794\) 0 0
\(795\) −2.36546 + 7.28014i −0.0838943 + 0.258200i
\(796\) 0 0
\(797\) 19.3111 + 26.5794i 0.684033 + 0.941490i 0.999973 0.00728889i \(-0.00232015\pi\)
−0.315941 + 0.948779i \(0.602320\pi\)
\(798\) 0 0
\(799\) −0.891783 2.74463i −0.0315490 0.0970979i
\(800\) 0 0
\(801\) −8.83531 6.41923i −0.312180 0.226812i
\(802\) 0 0
\(803\) −22.9124 + 22.1895i −0.808561 + 0.783050i
\(804\) 0 0
\(805\) 2.89220 + 2.10131i 0.101937 + 0.0740614i
\(806\) 0 0
\(807\) −9.16355 + 2.97742i −0.322572 + 0.104810i
\(808\) 0 0
\(809\) 3.52470 + 4.85134i 0.123922 + 0.170564i 0.866470 0.499228i \(-0.166383\pi\)
−0.742549 + 0.669792i \(0.766383\pi\)
\(810\) 0 0
\(811\) 39.0150 + 12.6767i 1.37000 + 0.445140i 0.899369 0.437189i \(-0.144026\pi\)
0.470632 + 0.882330i \(0.344026\pi\)
\(812\) 0 0
\(813\) 23.4722 0.823205
\(814\) 0 0
\(815\) 10.5879i 0.370876i
\(816\) 0 0
\(817\) 0.467812 1.43978i 0.0163667 0.0503714i
\(818\) 0 0
\(819\) −3.71482 + 2.69897i −0.129806 + 0.0943098i
\(820\) 0 0
\(821\) −7.86487 24.2056i −0.274486 0.844781i −0.989355 0.145523i \(-0.953514\pi\)
0.714869 0.699258i \(-0.246486\pi\)
\(822\) 0 0
\(823\) 8.33462 11.4716i 0.290526 0.399875i −0.638659 0.769490i \(-0.720510\pi\)
0.929185 + 0.369615i \(0.120510\pi\)
\(824\) 0 0
\(825\) −6.11376 1.06903i −0.212854 0.0372190i
\(826\) 0 0
\(827\) −16.3323 + 22.4795i −0.567931 + 0.781690i −0.992308 0.123796i \(-0.960493\pi\)
0.424377 + 0.905486i \(0.360493\pi\)
\(828\) 0 0
\(829\) 47.9834 15.5908i 1.66653 0.541490i 0.684308 0.729193i \(-0.260104\pi\)
0.982226 + 0.187703i \(0.0601044\pi\)
\(830\) 0 0
\(831\) 16.1312 11.7200i 0.559584 0.406561i
\(832\) 0 0
\(833\) −18.1410 5.89437i −0.628549 0.204228i
\(834\) 0 0
\(835\) 9.19584i 0.318235i
\(836\) 0 0
\(837\) 1.38882i 0.0480045i
\(838\) 0 0
\(839\) 44.3548 + 14.4117i 1.53130 + 0.497548i 0.948959 0.315399i \(-0.102138\pi\)
0.582337 + 0.812947i \(0.302138\pi\)
\(840\) 0 0
\(841\) −27.4457 + 19.9405i −0.946403 + 0.687602i
\(842\) 0 0
\(843\) −6.04746 + 1.96494i −0.208286 + 0.0676761i
\(844\) 0 0
\(845\) −2.24245 + 3.08646i −0.0771425 + 0.106178i
\(846\) 0 0
\(847\) 14.4288 + 5.20510i 0.495779 + 0.178849i
\(848\) 0 0
\(849\) 5.12972 7.06045i 0.176052 0.242314i
\(850\) 0 0
\(851\) −4.20023 12.9270i −0.143982 0.443132i
\(852\) 0 0
\(853\) −41.5877 + 30.2152i −1.42394 + 1.03455i −0.432829 + 0.901476i \(0.642485\pi\)
−0.991106 + 0.133073i \(0.957515\pi\)
\(854\) 0 0
\(855\) −0.229638 + 0.706752i −0.00785345 + 0.0241704i
\(856\) 0 0
\(857\) 17.4541i 0.596221i 0.954531 + 0.298111i \(0.0963565\pi\)
−0.954531 + 0.298111i \(0.903644\pi\)
\(858\) 0 0
\(859\) 35.3164 1.20498 0.602489 0.798127i \(-0.294176\pi\)
0.602489 + 0.798127i \(0.294176\pi\)
\(860\) 0 0
\(861\) 4.58855 + 1.49091i 0.156377 + 0.0508101i
\(862\) 0 0
\(863\) 3.84304 + 5.28949i 0.130819 + 0.180056i 0.869401 0.494106i \(-0.164505\pi\)
−0.738583 + 0.674163i \(0.764505\pi\)
\(864\) 0 0
\(865\) −23.6202 + 7.67468i −0.803112 + 0.260947i
\(866\) 0 0
\(867\) −2.23632 1.62478i −0.0759495 0.0551805i
\(868\) 0 0
\(869\) 18.9704 + 3.31711i 0.643526 + 0.112525i
\(870\) 0 0
\(871\) 26.5071 + 19.2586i 0.898160 + 0.652552i
\(872\) 0 0
\(873\) 4.28351 + 13.1833i 0.144975 + 0.446186i
\(874\) 0 0
\(875\) −9.96190 13.7114i −0.336774 0.463529i
\(876\) 0 0
\(877\) 9.06904 27.9116i 0.306240 0.942509i −0.672972 0.739668i \(-0.734982\pi\)
0.979212 0.202841i \(-0.0650175\pi\)
\(878\) 0 0
\(879\) −20.6288 −0.695790
\(880\) 0 0
\(881\) 1.12915 0.0380420 0.0190210 0.999819i \(-0.493945\pi\)
0.0190210 + 0.999819i \(0.493945\pi\)
\(882\) 0 0
\(883\) −4.24530 + 13.0657i −0.142866 + 0.439695i −0.996730 0.0807999i \(-0.974253\pi\)
0.853865 + 0.520495i \(0.174253\pi\)
\(884\) 0 0
\(885\) 12.4343 + 17.1144i 0.417975 + 0.575294i
\(886\) 0 0
\(887\) −1.98190 6.09967i −0.0665458 0.204807i 0.912254 0.409624i \(-0.134340\pi\)
−0.978800 + 0.204817i \(0.934340\pi\)
\(888\) 0 0
\(889\) −8.05988 5.85584i −0.270320 0.196399i
\(890\) 0 0
\(891\) 2.30732 + 2.38249i 0.0772982 + 0.0798165i
\(892\) 0 0
\(893\) 0.259972 + 0.188880i 0.00869962 + 0.00632064i
\(894\) 0 0
\(895\) 38.7101 12.5777i 1.29394 0.420426i
\(896\) 0 0
\(897\) −2.80534 3.86122i −0.0936675 0.128922i
\(898\) 0 0
\(899\) 10.4776 + 3.40438i 0.349447 + 0.113542i
\(900\) 0 0
\(901\) −16.3284 −0.543979
\(902\) 0 0
\(903\) 5.02470i 0.167211i
\(904\) 0 0
\(905\) −10.6661 + 32.8270i −0.354554 + 1.09121i
\(906\) 0 0
\(907\) −9.91808 + 7.20591i −0.329325 + 0.239268i −0.740144 0.672448i \(-0.765243\pi\)
0.410819 + 0.911717i \(0.365243\pi\)
\(908\) 0 0
\(909\) −2.48051 7.63423i −0.0822733 0.253211i
\(910\) 0 0
\(911\) 21.4231 29.4864i 0.709779 0.976927i −0.290023 0.957020i \(-0.593663\pi\)
0.999802 0.0199074i \(-0.00633714\pi\)
\(912\) 0 0
\(913\) 44.2113 + 23.4267i 1.46318 + 0.775312i
\(914\) 0 0
\(915\) 10.8650 14.9544i 0.359185 0.494376i
\(916\) 0 0
\(917\) −11.6032 + 3.77010i −0.383170 + 0.124500i
\(918\) 0 0
\(919\) 10.4315 7.57891i 0.344103 0.250005i −0.402288 0.915513i \(-0.631785\pi\)
0.746391 + 0.665508i \(0.231785\pi\)
\(920\) 0 0
\(921\) 23.4506 + 7.61956i 0.772724 + 0.251073i
\(922\) 0 0
\(923\) 42.4273i 1.39651i
\(924\) 0 0
\(925\) 17.5491i 0.577010i
\(926\) 0 0
\(927\) −11.7338 3.81254i −0.385389 0.125220i
\(928\) 0 0
\(929\) 11.5280 8.37561i 0.378223 0.274795i −0.382390 0.924001i \(-0.624899\pi\)
0.760612 + 0.649206i \(0.224899\pi\)
\(930\) 0 0
\(931\) 2.02001 0.656340i 0.0662031 0.0215107i
\(932\) 0 0
\(933\) 15.0494 20.7137i 0.492695 0.678137i
\(934\) 0 0
\(935\) 3.11175 + 21.9145i 0.101765 + 0.716680i
\(936\) 0 0
\(937\) −29.3763 + 40.4330i −0.959681 + 1.32089i −0.0125913 + 0.999921i \(0.504008\pi\)
−0.947090 + 0.320967i \(0.895992\pi\)
\(938\) 0 0
\(939\) −1.20599 3.71165i −0.0393559 0.121125i
\(940\) 0 0
\(941\) −3.47674 + 2.52600i −0.113338 + 0.0823452i −0.643011 0.765857i \(-0.722315\pi\)
0.529672 + 0.848202i \(0.322315\pi\)
\(942\) 0 0
\(943\) −1.54967 + 4.76938i −0.0504641 + 0.155312i
\(944\) 0 0
\(945\) 2.46651i 0.0802354i
\(946\) 0 0
\(947\) −0.231238 −0.00751424 −0.00375712 0.999993i \(-0.501196\pi\)
−0.00375712 + 0.999993i \(0.501196\pi\)
\(948\) 0 0
\(949\) 30.1178 + 9.78586i 0.977664 + 0.317662i
\(950\) 0 0
\(951\) 3.74958 + 5.16085i 0.121588 + 0.167352i
\(952\) 0 0
\(953\) 50.8341 16.5170i 1.64668 0.535039i 0.668663 0.743566i \(-0.266867\pi\)
0.978017 + 0.208527i \(0.0668670\pi\)
\(954\) 0 0
\(955\) −36.6349 26.6168i −1.18548 0.861301i
\(956\) 0 0
\(957\) −23.6301 + 11.5669i −0.763851 + 0.373904i
\(958\) 0 0
\(959\) 9.54701 + 6.93631i 0.308289 + 0.223985i
\(960\) 0 0
\(961\) 8.98349 + 27.6483i 0.289790 + 0.891882i
\(962\) 0 0
\(963\) −4.21709 5.80433i −0.135894 0.187042i
\(964\) 0 0
\(965\) 12.0812 37.1821i 0.388908 1.19694i
\(966\) 0 0
\(967\) −1.08508 −0.0348938 −0.0174469 0.999848i \(-0.505554\pi\)
−0.0174469 + 0.999848i \(0.505554\pi\)
\(968\) 0 0
\(969\) −1.58516 −0.0509225
\(970\) 0 0
\(971\) 10.1034 31.0950i 0.324233 0.997887i −0.647552 0.762021i \(-0.724207\pi\)
0.971786 0.235866i \(-0.0757927\pi\)
\(972\) 0 0
\(973\) 4.69992 + 6.46889i 0.150673 + 0.207383i
\(974\) 0 0
\(975\) 1.90420 + 5.86052i 0.0609831 + 0.187687i
\(976\) 0 0
\(977\) −40.9534 29.7544i −1.31021 0.951926i −0.999999 0.00125964i \(-0.999599\pi\)
−0.310215 0.950667i \(-0.600401\pi\)
\(978\) 0 0
\(979\) 32.5325 15.9246i 1.03974 0.508954i
\(980\) 0 0
\(981\) −7.58864 5.51347i −0.242287 0.176032i
\(982\) 0 0
\(983\) −23.1688 + 7.52801i −0.738971 + 0.240106i −0.654229 0.756297i \(-0.727007\pi\)
−0.0847421 + 0.996403i \(0.527007\pi\)
\(984\) 0 0
\(985\) −18.9457 26.0766i −0.603662 0.830869i
\(986\) 0 0
\(987\) 1.01437 + 0.329588i 0.0322877 + 0.0104909i
\(988\) 0 0
\(989\) 5.22272 0.166073
\(990\) 0 0
\(991\) 27.0358i 0.858821i −0.903110 0.429410i \(-0.858721\pi\)
0.903110 0.429410i \(-0.141279\pi\)
\(992\) 0 0
\(993\) 1.34352 4.13494i 0.0426354 0.131218i
\(994\) 0 0
\(995\) 18.9812 13.7906i 0.601743 0.437192i
\(996\) 0 0
\(997\) 4.82347 + 14.8451i 0.152761 + 0.470149i 0.997927 0.0643542i \(-0.0204987\pi\)
−0.845166 + 0.534503i \(0.820499\pi\)
\(998\) 0 0
\(999\) 5.51214 7.58682i 0.174397 0.240036i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1056.2.bp.a.271.4 48
4.3 odd 2 264.2.z.b.139.1 yes 48
8.3 odd 2 inner 1056.2.bp.a.271.9 48
8.5 even 2 264.2.z.b.139.7 yes 48
11.8 odd 10 inner 1056.2.bp.a.943.9 48
12.11 even 2 792.2.bp.d.667.12 48
24.5 odd 2 792.2.bp.d.667.6 48
44.19 even 10 264.2.z.b.19.7 yes 48
88.19 even 10 inner 1056.2.bp.a.943.4 48
88.85 odd 10 264.2.z.b.19.1 48
132.107 odd 10 792.2.bp.d.19.6 48
264.173 even 10 792.2.bp.d.19.12 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.z.b.19.1 48 88.85 odd 10
264.2.z.b.19.7 yes 48 44.19 even 10
264.2.z.b.139.1 yes 48 4.3 odd 2
264.2.z.b.139.7 yes 48 8.5 even 2
792.2.bp.d.19.6 48 132.107 odd 10
792.2.bp.d.19.12 48 264.173 even 10
792.2.bp.d.667.6 48 24.5 odd 2
792.2.bp.d.667.12 48 12.11 even 2
1056.2.bp.a.271.4 48 1.1 even 1 trivial
1056.2.bp.a.271.9 48 8.3 odd 2 inner
1056.2.bp.a.943.4 48 88.19 even 10 inner
1056.2.bp.a.943.9 48 11.8 odd 10 inner