Properties

Label 787.2.a.b.1.17
Level $787$
Weight $2$
Character 787.1
Self dual yes
Analytic conductor $6.284$
Analytic rank $0$
Dimension $37$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [787,2,Mod(1,787)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("787.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(787, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 787 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 787.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [37] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.28422663907\)
Analytic rank: \(0\)
Dimension: \(37\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 787.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.00817556 q^{2} -0.445090 q^{3} -1.99993 q^{4} -3.45726 q^{5} -0.00363886 q^{6} -1.06207 q^{7} -0.0327017 q^{8} -2.80189 q^{9} -0.0282650 q^{10} +1.20144 q^{11} +0.890150 q^{12} +1.53086 q^{13} -0.00868301 q^{14} +1.53879 q^{15} +3.99960 q^{16} +0.0987406 q^{17} -0.0229071 q^{18} -6.08964 q^{19} +6.91429 q^{20} +0.472717 q^{21} +0.00982243 q^{22} +0.357250 q^{23} +0.0145552 q^{24} +6.95263 q^{25} +0.0125156 q^{26} +2.58237 q^{27} +2.12407 q^{28} +5.47618 q^{29} +0.0125805 q^{30} +5.07703 q^{31} +0.0981023 q^{32} -0.534748 q^{33} +0.000807260 q^{34} +3.67185 q^{35} +5.60360 q^{36} -4.20663 q^{37} -0.0497862 q^{38} -0.681370 q^{39} +0.113058 q^{40} +4.10036 q^{41} +0.00386472 q^{42} +10.5737 q^{43} -2.40280 q^{44} +9.68687 q^{45} +0.00292072 q^{46} -2.20326 q^{47} -1.78018 q^{48} -5.87201 q^{49} +0.0568417 q^{50} -0.0439485 q^{51} -3.06161 q^{52} +1.17618 q^{53} +0.0211123 q^{54} -4.15368 q^{55} +0.0347315 q^{56} +2.71044 q^{57} +0.0447709 q^{58} +4.07464 q^{59} -3.07748 q^{60} +0.772561 q^{61} +0.0415076 q^{62} +2.97581 q^{63} -7.99840 q^{64} -5.29257 q^{65} -0.00437187 q^{66} +0.401418 q^{67} -0.197475 q^{68} -0.159008 q^{69} +0.0300194 q^{70} +3.57752 q^{71} +0.0916267 q^{72} -10.6826 q^{73} -0.0343915 q^{74} -3.09455 q^{75} +12.1789 q^{76} -1.27601 q^{77} -0.00557058 q^{78} -4.24327 q^{79} -13.8276 q^{80} +7.25630 q^{81} +0.0335228 q^{82} +2.80800 q^{83} -0.945402 q^{84} -0.341372 q^{85} +0.0864456 q^{86} -2.43740 q^{87} -0.0392891 q^{88} +12.4928 q^{89} +0.0791956 q^{90} -1.62588 q^{91} -0.714476 q^{92} -2.25974 q^{93} -0.0180129 q^{94} +21.0535 q^{95} -0.0436644 q^{96} -5.02154 q^{97} -0.0480070 q^{98} -3.36630 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 37 q + 12 q^{2} + 6 q^{3} + 42 q^{4} + 31 q^{5} + 4 q^{6} + 9 q^{7} + 36 q^{8} + 47 q^{9} + 4 q^{10} + 18 q^{11} + 15 q^{12} + 13 q^{13} + 8 q^{14} + 3 q^{15} + 48 q^{16} + 18 q^{17} + 17 q^{18} + 40 q^{20}+ \cdots - 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.00817556 0.00578099 0.00289050 0.999996i \(-0.499080\pi\)
0.00289050 + 0.999996i \(0.499080\pi\)
\(3\) −0.445090 −0.256973 −0.128486 0.991711i \(-0.541012\pi\)
−0.128486 + 0.991711i \(0.541012\pi\)
\(4\) −1.99993 −0.999967
\(5\) −3.45726 −1.54613 −0.773066 0.634325i \(-0.781278\pi\)
−0.773066 + 0.634325i \(0.781278\pi\)
\(6\) −0.00363886 −0.00148556
\(7\) −1.06207 −0.401424 −0.200712 0.979650i \(-0.564326\pi\)
−0.200712 + 0.979650i \(0.564326\pi\)
\(8\) −0.0327017 −0.0115618
\(9\) −2.80189 −0.933965
\(10\) −0.0282650 −0.00893818
\(11\) 1.20144 0.362247 0.181124 0.983460i \(-0.442027\pi\)
0.181124 + 0.983460i \(0.442027\pi\)
\(12\) 0.890150 0.256964
\(13\) 1.53086 0.424584 0.212292 0.977206i \(-0.431907\pi\)
0.212292 + 0.977206i \(0.431907\pi\)
\(14\) −0.00868301 −0.00232063
\(15\) 1.53879 0.397314
\(16\) 3.99960 0.999900
\(17\) 0.0987406 0.0239481 0.0119741 0.999928i \(-0.496188\pi\)
0.0119741 + 0.999928i \(0.496188\pi\)
\(18\) −0.0229071 −0.00539924
\(19\) −6.08964 −1.39706 −0.698530 0.715581i \(-0.746162\pi\)
−0.698530 + 0.715581i \(0.746162\pi\)
\(20\) 6.91429 1.54608
\(21\) 0.472717 0.103155
\(22\) 0.00982243 0.00209415
\(23\) 0.357250 0.0744918 0.0372459 0.999306i \(-0.488142\pi\)
0.0372459 + 0.999306i \(0.488142\pi\)
\(24\) 0.0145552 0.00297107
\(25\) 6.95263 1.39053
\(26\) 0.0125156 0.00245452
\(27\) 2.58237 0.496977
\(28\) 2.12407 0.401411
\(29\) 5.47618 1.01690 0.508451 0.861091i \(-0.330218\pi\)
0.508451 + 0.861091i \(0.330218\pi\)
\(30\) 0.0125805 0.00229687
\(31\) 5.07703 0.911862 0.455931 0.890015i \(-0.349306\pi\)
0.455931 + 0.890015i \(0.349306\pi\)
\(32\) 0.0981023 0.0173422
\(33\) −0.534748 −0.0930877
\(34\) 0.000807260 0 0.000138444 0
\(35\) 3.67185 0.620656
\(36\) 5.60360 0.933934
\(37\) −4.20663 −0.691565 −0.345783 0.938315i \(-0.612387\pi\)
−0.345783 + 0.938315i \(0.612387\pi\)
\(38\) −0.0497862 −0.00807640
\(39\) −0.681370 −0.109106
\(40\) 0.113058 0.0178761
\(41\) 4.10036 0.640369 0.320185 0.947355i \(-0.396255\pi\)
0.320185 + 0.947355i \(0.396255\pi\)
\(42\) 0.00386472 0.000596340 0
\(43\) 10.5737 1.61247 0.806235 0.591596i \(-0.201502\pi\)
0.806235 + 0.591596i \(0.201502\pi\)
\(44\) −2.40280 −0.362235
\(45\) 9.68687 1.44403
\(46\) 0.00292072 0.000430636 0
\(47\) −2.20326 −0.321379 −0.160689 0.987005i \(-0.551372\pi\)
−0.160689 + 0.987005i \(0.551372\pi\)
\(48\) −1.78018 −0.256947
\(49\) −5.87201 −0.838858
\(50\) 0.0568417 0.00803863
\(51\) −0.0439485 −0.00615402
\(52\) −3.06161 −0.424570
\(53\) 1.17618 0.161561 0.0807805 0.996732i \(-0.474259\pi\)
0.0807805 + 0.996732i \(0.474259\pi\)
\(54\) 0.0211123 0.00287302
\(55\) −4.15368 −0.560082
\(56\) 0.0347315 0.00464119
\(57\) 2.71044 0.359007
\(58\) 0.0447709 0.00587870
\(59\) 4.07464 0.530472 0.265236 0.964183i \(-0.414550\pi\)
0.265236 + 0.964183i \(0.414550\pi\)
\(60\) −3.07748 −0.397301
\(61\) 0.772561 0.0989163 0.0494581 0.998776i \(-0.484251\pi\)
0.0494581 + 0.998776i \(0.484251\pi\)
\(62\) 0.0415076 0.00527147
\(63\) 2.97581 0.374916
\(64\) −7.99840 −0.999799
\(65\) −5.29257 −0.656463
\(66\) −0.00437187 −0.000538139 0
\(67\) 0.401418 0.0490410 0.0245205 0.999699i \(-0.492194\pi\)
0.0245205 + 0.999699i \(0.492194\pi\)
\(68\) −0.197475 −0.0239473
\(69\) −0.159008 −0.0191424
\(70\) 0.0300194 0.00358801
\(71\) 3.57752 0.424574 0.212287 0.977207i \(-0.431909\pi\)
0.212287 + 0.977207i \(0.431909\pi\)
\(72\) 0.0916267 0.0107983
\(73\) −10.6826 −1.25031 −0.625154 0.780501i \(-0.714964\pi\)
−0.625154 + 0.780501i \(0.714964\pi\)
\(74\) −0.0343915 −0.00399793
\(75\) −3.09455 −0.357328
\(76\) 12.1789 1.39701
\(77\) −1.27601 −0.145415
\(78\) −0.00557058 −0.000630744 0
\(79\) −4.24327 −0.477405 −0.238703 0.971093i \(-0.576722\pi\)
−0.238703 + 0.971093i \(0.576722\pi\)
\(80\) −13.8276 −1.54598
\(81\) 7.25630 0.806255
\(82\) 0.0335228 0.00370197
\(83\) 2.80800 0.308218 0.154109 0.988054i \(-0.450749\pi\)
0.154109 + 0.988054i \(0.450749\pi\)
\(84\) −0.945402 −0.103152
\(85\) −0.341372 −0.0370270
\(86\) 0.0864456 0.00932167
\(87\) −2.43740 −0.261316
\(88\) −0.0392891 −0.00418823
\(89\) 12.4928 1.32424 0.662118 0.749399i \(-0.269658\pi\)
0.662118 + 0.749399i \(0.269658\pi\)
\(90\) 0.0791956 0.00834795
\(91\) −1.62588 −0.170438
\(92\) −0.714476 −0.0744893
\(93\) −2.25974 −0.234324
\(94\) −0.0180129 −0.00185789
\(95\) 21.0535 2.16004
\(96\) −0.0436644 −0.00445648
\(97\) −5.02154 −0.509860 −0.254930 0.966959i \(-0.582052\pi\)
−0.254930 + 0.966959i \(0.582052\pi\)
\(98\) −0.0480070 −0.00484943
\(99\) −3.36630 −0.338326
\(100\) −13.9048 −1.39048
\(101\) −15.8086 −1.57301 −0.786506 0.617583i \(-0.788112\pi\)
−0.786506 + 0.617583i \(0.788112\pi\)
\(102\) −0.000359303 0 −3.55763e−5 0
\(103\) 1.35382 0.133396 0.0666978 0.997773i \(-0.478754\pi\)
0.0666978 + 0.997773i \(0.478754\pi\)
\(104\) −0.0500617 −0.00490895
\(105\) −1.63430 −0.159492
\(106\) 0.00961594 0.000933983 0
\(107\) −15.5524 −1.50351 −0.751753 0.659444i \(-0.770792\pi\)
−0.751753 + 0.659444i \(0.770792\pi\)
\(108\) −5.16456 −0.496960
\(109\) 2.96104 0.283616 0.141808 0.989894i \(-0.454708\pi\)
0.141808 + 0.989894i \(0.454708\pi\)
\(110\) −0.0339587 −0.00323783
\(111\) 1.87233 0.177714
\(112\) −4.24785 −0.401384
\(113\) 10.1785 0.957515 0.478758 0.877947i \(-0.341087\pi\)
0.478758 + 0.877947i \(0.341087\pi\)
\(114\) 0.0221594 0.00207541
\(115\) −1.23511 −0.115174
\(116\) −10.9520 −1.01687
\(117\) −4.28930 −0.396546
\(118\) 0.0333124 0.00306666
\(119\) −0.104869 −0.00961336
\(120\) −0.0503211 −0.00459366
\(121\) −9.55655 −0.868777
\(122\) 0.00631612 0.000571834 0
\(123\) −1.82503 −0.164558
\(124\) −10.1537 −0.911832
\(125\) −6.75076 −0.603806
\(126\) 0.0243289 0.00216739
\(127\) 10.4941 0.931197 0.465598 0.884996i \(-0.345839\pi\)
0.465598 + 0.884996i \(0.345839\pi\)
\(128\) −0.261596 −0.0231220
\(129\) −4.70623 −0.414361
\(130\) −0.0432697 −0.00379501
\(131\) 16.4972 1.44136 0.720682 0.693265i \(-0.243829\pi\)
0.720682 + 0.693265i \(0.243829\pi\)
\(132\) 1.06946 0.0930846
\(133\) 6.46763 0.560814
\(134\) 0.00328181 0.000283506 0
\(135\) −8.92791 −0.768392
\(136\) −0.00322899 −0.000276883 0
\(137\) 13.8765 1.18555 0.592773 0.805370i \(-0.298033\pi\)
0.592773 + 0.805370i \(0.298033\pi\)
\(138\) −0.00129998 −0.000110662 0
\(139\) −1.41673 −0.120165 −0.0600827 0.998193i \(-0.519136\pi\)
−0.0600827 + 0.998193i \(0.519136\pi\)
\(140\) −7.34345 −0.620635
\(141\) 0.980650 0.0825856
\(142\) 0.0292482 0.00245446
\(143\) 1.83923 0.153804
\(144\) −11.2065 −0.933871
\(145\) −18.9326 −1.57227
\(146\) −0.0873366 −0.00722803
\(147\) 2.61357 0.215564
\(148\) 8.41298 0.691542
\(149\) 17.1937 1.40856 0.704282 0.709921i \(-0.251269\pi\)
0.704282 + 0.709921i \(0.251269\pi\)
\(150\) −0.0252997 −0.00206571
\(151\) 9.62322 0.783127 0.391563 0.920151i \(-0.371934\pi\)
0.391563 + 0.920151i \(0.371934\pi\)
\(152\) 0.199142 0.0161525
\(153\) −0.276661 −0.0223667
\(154\) −0.0104321 −0.000840643 0
\(155\) −17.5526 −1.40986
\(156\) 1.36269 0.109103
\(157\) 5.65446 0.451275 0.225638 0.974211i \(-0.427553\pi\)
0.225638 + 0.974211i \(0.427553\pi\)
\(158\) −0.0346911 −0.00275988
\(159\) −0.523507 −0.0415168
\(160\) −0.339165 −0.0268134
\(161\) −0.379424 −0.0299028
\(162\) 0.0593243 0.00466096
\(163\) 13.8775 1.08697 0.543484 0.839420i \(-0.317105\pi\)
0.543484 + 0.839420i \(0.317105\pi\)
\(164\) −8.20045 −0.640348
\(165\) 1.84876 0.143926
\(166\) 0.0229569 0.00178180
\(167\) −2.63502 −0.203904 −0.101952 0.994789i \(-0.532509\pi\)
−0.101952 + 0.994789i \(0.532509\pi\)
\(168\) −0.0154586 −0.00119266
\(169\) −10.6565 −0.819729
\(170\) −0.00279091 −0.000214053 0
\(171\) 17.0625 1.30481
\(172\) −21.1466 −1.61242
\(173\) −7.77204 −0.590897 −0.295449 0.955359i \(-0.595469\pi\)
−0.295449 + 0.955359i \(0.595469\pi\)
\(174\) −0.0199271 −0.00151067
\(175\) −7.38418 −0.558192
\(176\) 4.80527 0.362211
\(177\) −1.81358 −0.136317
\(178\) 0.102136 0.00765540
\(179\) 8.89091 0.664537 0.332269 0.943185i \(-0.392186\pi\)
0.332269 + 0.943185i \(0.392186\pi\)
\(180\) −19.3731 −1.44399
\(181\) 22.3928 1.66445 0.832223 0.554441i \(-0.187068\pi\)
0.832223 + 0.554441i \(0.187068\pi\)
\(182\) −0.0132925 −0.000985303 0
\(183\) −0.343859 −0.0254188
\(184\) −0.0116827 −0.000861258 0
\(185\) 14.5434 1.06925
\(186\) −0.0184746 −0.00135462
\(187\) 0.118631 0.00867514
\(188\) 4.40637 0.321368
\(189\) −2.74265 −0.199499
\(190\) 0.172124 0.0124872
\(191\) 5.16308 0.373587 0.186794 0.982399i \(-0.440190\pi\)
0.186794 + 0.982399i \(0.440190\pi\)
\(192\) 3.56001 0.256921
\(193\) 14.1283 1.01698 0.508490 0.861068i \(-0.330204\pi\)
0.508490 + 0.861068i \(0.330204\pi\)
\(194\) −0.0410539 −0.00294750
\(195\) 2.35567 0.168693
\(196\) 11.7436 0.838830
\(197\) −0.696614 −0.0496317 −0.0248159 0.999692i \(-0.507900\pi\)
−0.0248159 + 0.999692i \(0.507900\pi\)
\(198\) −0.0275214 −0.00195586
\(199\) −14.3219 −1.01526 −0.507628 0.861577i \(-0.669477\pi\)
−0.507628 + 0.861577i \(0.669477\pi\)
\(200\) −0.227363 −0.0160770
\(201\) −0.178667 −0.0126022
\(202\) −0.129244 −0.00909357
\(203\) −5.81609 −0.408209
\(204\) 0.0878940 0.00615381
\(205\) −14.1760 −0.990096
\(206\) 0.0110682 0.000771159 0
\(207\) −1.00098 −0.0695727
\(208\) 6.12282 0.424541
\(209\) −7.31633 −0.506081
\(210\) −0.0133613 −0.000922020 0
\(211\) −12.7184 −0.875569 −0.437784 0.899080i \(-0.644237\pi\)
−0.437784 + 0.899080i \(0.644237\pi\)
\(212\) −2.35228 −0.161556
\(213\) −1.59232 −0.109104
\(214\) −0.127150 −0.00869176
\(215\) −36.5559 −2.49309
\(216\) −0.0844477 −0.00574594
\(217\) −5.39216 −0.366044
\(218\) 0.0242081 0.00163958
\(219\) 4.75474 0.321295
\(220\) 8.30709 0.560064
\(221\) 0.151158 0.0101680
\(222\) 0.0153073 0.00102736
\(223\) −16.4361 −1.10064 −0.550322 0.834952i \(-0.685495\pi\)
−0.550322 + 0.834952i \(0.685495\pi\)
\(224\) −0.104191 −0.00696159
\(225\) −19.4805 −1.29870
\(226\) 0.0832151 0.00553539
\(227\) 22.1057 1.46721 0.733603 0.679579i \(-0.237837\pi\)
0.733603 + 0.679579i \(0.237837\pi\)
\(228\) −5.42070 −0.358995
\(229\) 16.9268 1.11856 0.559278 0.828980i \(-0.311079\pi\)
0.559278 + 0.828980i \(0.311079\pi\)
\(230\) −0.0100977 −0.000665821 0
\(231\) 0.567940 0.0373677
\(232\) −0.179080 −0.0117572
\(233\) 13.4921 0.883897 0.441948 0.897040i \(-0.354287\pi\)
0.441948 + 0.897040i \(0.354287\pi\)
\(234\) −0.0350675 −0.00229243
\(235\) 7.61724 0.496894
\(236\) −8.14900 −0.530455
\(237\) 1.88864 0.122680
\(238\) −0.000857366 0 −5.55748e−5 0
\(239\) 3.21795 0.208152 0.104076 0.994569i \(-0.466812\pi\)
0.104076 + 0.994569i \(0.466812\pi\)
\(240\) 6.15455 0.397274
\(241\) −25.2127 −1.62409 −0.812047 0.583592i \(-0.801647\pi\)
−0.812047 + 0.583592i \(0.801647\pi\)
\(242\) −0.0781301 −0.00502239
\(243\) −10.9768 −0.704162
\(244\) −1.54507 −0.0989130
\(245\) 20.3011 1.29699
\(246\) −0.0149206 −0.000951306 0
\(247\) −9.32238 −0.593169
\(248\) −0.166028 −0.0105428
\(249\) −1.24981 −0.0792036
\(250\) −0.0551912 −0.00349060
\(251\) −13.1820 −0.832039 −0.416019 0.909356i \(-0.636575\pi\)
−0.416019 + 0.909356i \(0.636575\pi\)
\(252\) −5.95141 −0.374904
\(253\) 0.429214 0.0269844
\(254\) 0.0857948 0.00538324
\(255\) 0.151941 0.00951493
\(256\) 15.9947 0.999666
\(257\) −2.07497 −0.129433 −0.0647164 0.997904i \(-0.520614\pi\)
−0.0647164 + 0.997904i \(0.520614\pi\)
\(258\) −0.0384761 −0.00239542
\(259\) 4.46773 0.277611
\(260\) 10.5848 0.656441
\(261\) −15.3437 −0.949751
\(262\) 0.134874 0.00833252
\(263\) −24.5387 −1.51312 −0.756560 0.653925i \(-0.773121\pi\)
−0.756560 + 0.653925i \(0.773121\pi\)
\(264\) 0.0174872 0.00107626
\(265\) −4.06636 −0.249795
\(266\) 0.0528764 0.00324206
\(267\) −5.56043 −0.340293
\(268\) −0.802809 −0.0490394
\(269\) 17.7604 1.08287 0.541435 0.840743i \(-0.317881\pi\)
0.541435 + 0.840743i \(0.317881\pi\)
\(270\) −0.0729906 −0.00444207
\(271\) 1.58281 0.0961488 0.0480744 0.998844i \(-0.484692\pi\)
0.0480744 + 0.998844i \(0.484692\pi\)
\(272\) 0.394923 0.0239457
\(273\) 0.723662 0.0437980
\(274\) 0.113448 0.00685363
\(275\) 8.35316 0.503714
\(276\) 0.318006 0.0191417
\(277\) 11.4746 0.689442 0.344721 0.938705i \(-0.387974\pi\)
0.344721 + 0.938705i \(0.387974\pi\)
\(278\) −0.0115826 −0.000694675 0
\(279\) −14.2253 −0.851647
\(280\) −0.120076 −0.00717589
\(281\) 12.2204 0.729009 0.364504 0.931202i \(-0.381238\pi\)
0.364504 + 0.931202i \(0.381238\pi\)
\(282\) 0.00801736 0.000477427 0
\(283\) −28.8609 −1.71560 −0.857800 0.513983i \(-0.828169\pi\)
−0.857800 + 0.513983i \(0.828169\pi\)
\(284\) −7.15481 −0.424560
\(285\) −9.37069 −0.555072
\(286\) 0.0150367 0.000889141 0
\(287\) −4.35487 −0.257060
\(288\) −0.274872 −0.0161970
\(289\) −16.9903 −0.999426
\(290\) −0.154784 −0.00908926
\(291\) 2.23504 0.131020
\(292\) 21.3646 1.25027
\(293\) 21.0437 1.22939 0.614693 0.788766i \(-0.289280\pi\)
0.614693 + 0.788766i \(0.289280\pi\)
\(294\) 0.0213674 0.00124617
\(295\) −14.0871 −0.820181
\(296\) 0.137564 0.00799574
\(297\) 3.10255 0.180028
\(298\) 0.140568 0.00814290
\(299\) 0.546899 0.0316280
\(300\) 6.18889 0.357316
\(301\) −11.2300 −0.647285
\(302\) 0.0786752 0.00452725
\(303\) 7.03624 0.404221
\(304\) −24.3561 −1.39692
\(305\) −2.67094 −0.152938
\(306\) −0.00226186 −0.000129302 0
\(307\) 16.6024 0.947547 0.473773 0.880647i \(-0.342892\pi\)
0.473773 + 0.880647i \(0.342892\pi\)
\(308\) 2.55194 0.145410
\(309\) −0.602570 −0.0342790
\(310\) −0.143502 −0.00815039
\(311\) 5.46022 0.309621 0.154810 0.987944i \(-0.450523\pi\)
0.154810 + 0.987944i \(0.450523\pi\)
\(312\) 0.0222819 0.00126147
\(313\) 24.4129 1.37990 0.689948 0.723859i \(-0.257633\pi\)
0.689948 + 0.723859i \(0.257633\pi\)
\(314\) 0.0462284 0.00260882
\(315\) −10.2881 −0.579671
\(316\) 8.48625 0.477389
\(317\) 20.1109 1.12954 0.564769 0.825249i \(-0.308965\pi\)
0.564769 + 0.825249i \(0.308965\pi\)
\(318\) −0.00427996 −0.000240008 0
\(319\) 6.57930 0.368370
\(320\) 27.6525 1.54582
\(321\) 6.92222 0.386360
\(322\) −0.00310200 −0.000172868 0
\(323\) −0.601295 −0.0334570
\(324\) −14.5121 −0.806228
\(325\) 10.6435 0.590395
\(326\) 0.113456 0.00628375
\(327\) −1.31793 −0.0728816
\(328\) −0.134089 −0.00740382
\(329\) 2.34002 0.129009
\(330\) 0.0151147 0.000832035 0
\(331\) −12.6556 −0.695613 −0.347806 0.937566i \(-0.613073\pi\)
−0.347806 + 0.937566i \(0.613073\pi\)
\(332\) −5.61580 −0.308207
\(333\) 11.7865 0.645898
\(334\) −0.0215427 −0.00117877
\(335\) −1.38780 −0.0758239
\(336\) 1.89068 0.103145
\(337\) −4.96487 −0.270453 −0.135227 0.990815i \(-0.543176\pi\)
−0.135227 + 0.990815i \(0.543176\pi\)
\(338\) −0.0871226 −0.00473885
\(339\) −4.53036 −0.246055
\(340\) 0.682721 0.0370257
\(341\) 6.09974 0.330320
\(342\) 0.139496 0.00754307
\(343\) 13.6710 0.738163
\(344\) −0.345777 −0.0186430
\(345\) 0.549733 0.0295966
\(346\) −0.0635408 −0.00341597
\(347\) −0.321669 −0.0172681 −0.00863406 0.999963i \(-0.502748\pi\)
−0.00863406 + 0.999963i \(0.502748\pi\)
\(348\) 4.87463 0.261307
\(349\) −5.61439 −0.300531 −0.150266 0.988646i \(-0.548013\pi\)
−0.150266 + 0.988646i \(0.548013\pi\)
\(350\) −0.0603698 −0.00322690
\(351\) 3.95324 0.211008
\(352\) 0.117864 0.00628217
\(353\) 35.7761 1.90417 0.952085 0.305832i \(-0.0989347\pi\)
0.952085 + 0.305832i \(0.0989347\pi\)
\(354\) −0.0148270 −0.000788048 0
\(355\) −12.3684 −0.656447
\(356\) −24.9848 −1.32419
\(357\) 0.0466763 0.00247037
\(358\) 0.0726881 0.00384169
\(359\) 5.32816 0.281209 0.140605 0.990066i \(-0.455095\pi\)
0.140605 + 0.990066i \(0.455095\pi\)
\(360\) −0.316777 −0.0166956
\(361\) 18.0838 0.951778
\(362\) 0.183074 0.00962215
\(363\) 4.25352 0.223252
\(364\) 3.25165 0.170433
\(365\) 36.9326 1.93314
\(366\) −0.00281124 −0.000146946 0
\(367\) 12.9212 0.674482 0.337241 0.941418i \(-0.390506\pi\)
0.337241 + 0.941418i \(0.390506\pi\)
\(368\) 1.42886 0.0744843
\(369\) −11.4888 −0.598082
\(370\) 0.118900 0.00618134
\(371\) −1.24919 −0.0648545
\(372\) 4.51932 0.234316
\(373\) 16.5779 0.858369 0.429185 0.903217i \(-0.358801\pi\)
0.429185 + 0.903217i \(0.358801\pi\)
\(374\) 0.000969873 0 5.01509e−5 0
\(375\) 3.00470 0.155162
\(376\) 0.0720504 0.00371571
\(377\) 8.38326 0.431760
\(378\) −0.0224227 −0.00115330
\(379\) 8.50362 0.436801 0.218401 0.975859i \(-0.429916\pi\)
0.218401 + 0.975859i \(0.429916\pi\)
\(380\) −42.1055 −2.15997
\(381\) −4.67080 −0.239292
\(382\) 0.0422111 0.00215971
\(383\) 21.9089 1.11949 0.559746 0.828664i \(-0.310899\pi\)
0.559746 + 0.828664i \(0.310899\pi\)
\(384\) 0.116434 0.00594174
\(385\) 4.41150 0.224831
\(386\) 0.115507 0.00587916
\(387\) −29.6263 −1.50599
\(388\) 10.0427 0.509843
\(389\) 33.1119 1.67884 0.839420 0.543483i \(-0.182895\pi\)
0.839420 + 0.543483i \(0.182895\pi\)
\(390\) 0.0192589 0.000975214 0
\(391\) 0.0352751 0.00178394
\(392\) 0.192025 0.00969871
\(393\) −7.34273 −0.370392
\(394\) −0.00569521 −0.000286921 0
\(395\) 14.6701 0.738132
\(396\) 6.73238 0.338315
\(397\) 19.6035 0.983873 0.491936 0.870631i \(-0.336289\pi\)
0.491936 + 0.870631i \(0.336289\pi\)
\(398\) −0.117090 −0.00586918
\(399\) −2.87868 −0.144114
\(400\) 27.8077 1.39039
\(401\) −0.544957 −0.0272138 −0.0136069 0.999907i \(-0.504331\pi\)
−0.0136069 + 0.999907i \(0.504331\pi\)
\(402\) −0.00146070 −7.28533e−5 0
\(403\) 7.77222 0.387162
\(404\) 31.6161 1.57296
\(405\) −25.0869 −1.24658
\(406\) −0.0475498 −0.00235986
\(407\) −5.05400 −0.250518
\(408\) 0.00143719 7.11515e−5 0
\(409\) −2.71481 −0.134239 −0.0671193 0.997745i \(-0.521381\pi\)
−0.0671193 + 0.997745i \(0.521381\pi\)
\(410\) −0.115897 −0.00572374
\(411\) −6.17627 −0.304653
\(412\) −2.70754 −0.133391
\(413\) −4.32755 −0.212945
\(414\) −0.00818354 −0.000402199 0
\(415\) −9.70797 −0.476545
\(416\) 0.150181 0.00736322
\(417\) 0.630572 0.0308793
\(418\) −0.0598151 −0.00292565
\(419\) −36.0326 −1.76031 −0.880155 0.474687i \(-0.842561\pi\)
−0.880155 + 0.474687i \(0.842561\pi\)
\(420\) 3.26850 0.159486
\(421\) 2.98907 0.145678 0.0728391 0.997344i \(-0.476794\pi\)
0.0728391 + 0.997344i \(0.476794\pi\)
\(422\) −0.103980 −0.00506166
\(423\) 6.17331 0.300156
\(424\) −0.0384631 −0.00186793
\(425\) 0.686508 0.0333005
\(426\) −0.0130181 −0.000630729 0
\(427\) −0.820513 −0.0397074
\(428\) 31.1037 1.50346
\(429\) −0.818624 −0.0395235
\(430\) −0.298865 −0.0144125
\(431\) −4.83216 −0.232757 −0.116379 0.993205i \(-0.537129\pi\)
−0.116379 + 0.993205i \(0.537129\pi\)
\(432\) 10.3284 0.496927
\(433\) −17.9097 −0.860685 −0.430343 0.902666i \(-0.641607\pi\)
−0.430343 + 0.902666i \(0.641607\pi\)
\(434\) −0.0440839 −0.00211610
\(435\) 8.42671 0.404030
\(436\) −5.92188 −0.283607
\(437\) −2.17553 −0.104069
\(438\) 0.0388726 0.00185741
\(439\) −16.5856 −0.791588 −0.395794 0.918339i \(-0.629531\pi\)
−0.395794 + 0.918339i \(0.629531\pi\)
\(440\) 0.135832 0.00647556
\(441\) 16.4528 0.783464
\(442\) 0.00123580 5.87810e−5 0
\(443\) −16.2470 −0.771919 −0.385959 0.922516i \(-0.626129\pi\)
−0.385959 + 0.922516i \(0.626129\pi\)
\(444\) −3.74453 −0.177708
\(445\) −43.1909 −2.04745
\(446\) −0.134375 −0.00636282
\(447\) −7.65275 −0.361963
\(448\) 8.49485 0.401344
\(449\) 17.0533 0.804793 0.402396 0.915466i \(-0.368177\pi\)
0.402396 + 0.915466i \(0.368177\pi\)
\(450\) −0.159264 −0.00750779
\(451\) 4.92633 0.231972
\(452\) −20.3564 −0.957483
\(453\) −4.28320 −0.201242
\(454\) 0.180726 0.00848190
\(455\) 5.62108 0.263520
\(456\) −0.0886360 −0.00415076
\(457\) −16.1782 −0.756786 −0.378393 0.925645i \(-0.623523\pi\)
−0.378393 + 0.925645i \(0.623523\pi\)
\(458\) 0.138386 0.00646636
\(459\) 0.254984 0.0119017
\(460\) 2.47013 0.115170
\(461\) 9.86052 0.459250 0.229625 0.973279i \(-0.426250\pi\)
0.229625 + 0.973279i \(0.426250\pi\)
\(462\) 0.00464322 0.000216022 0
\(463\) −5.45892 −0.253698 −0.126849 0.991922i \(-0.540486\pi\)
−0.126849 + 0.991922i \(0.540486\pi\)
\(464\) 21.9025 1.01680
\(465\) 7.81250 0.362296
\(466\) 0.110305 0.00510980
\(467\) −22.3321 −1.03340 −0.516702 0.856165i \(-0.672841\pi\)
−0.516702 + 0.856165i \(0.672841\pi\)
\(468\) 8.57832 0.396533
\(469\) −0.426334 −0.0196863
\(470\) 0.0622752 0.00287254
\(471\) −2.51675 −0.115966
\(472\) −0.133247 −0.00613321
\(473\) 12.7036 0.584112
\(474\) 0.0154407 0.000709213 0
\(475\) −42.3391 −1.94265
\(476\) 0.209732 0.00961304
\(477\) −3.29554 −0.150892
\(478\) 0.0263085 0.00120332
\(479\) 1.27952 0.0584627 0.0292313 0.999573i \(-0.490694\pi\)
0.0292313 + 0.999573i \(0.490694\pi\)
\(480\) 0.150959 0.00689031
\(481\) −6.43975 −0.293627
\(482\) −0.206128 −0.00938888
\(483\) 0.168878 0.00768421
\(484\) 19.1125 0.868748
\(485\) 17.3608 0.788311
\(486\) −0.0897415 −0.00407076
\(487\) −23.4380 −1.06208 −0.531039 0.847347i \(-0.678198\pi\)
−0.531039 + 0.847347i \(0.678198\pi\)
\(488\) −0.0252640 −0.00114365
\(489\) −6.17673 −0.279321
\(490\) 0.165972 0.00749787
\(491\) 16.9198 0.763582 0.381791 0.924249i \(-0.375307\pi\)
0.381791 + 0.924249i \(0.375307\pi\)
\(492\) 3.64994 0.164552
\(493\) 0.540722 0.0243529
\(494\) −0.0762157 −0.00342911
\(495\) 11.6382 0.523097
\(496\) 20.3061 0.911771
\(497\) −3.79958 −0.170434
\(498\) −0.0102179 −0.000457875 0
\(499\) 2.14471 0.0960103 0.0480051 0.998847i \(-0.484714\pi\)
0.0480051 + 0.998847i \(0.484714\pi\)
\(500\) 13.5011 0.603786
\(501\) 1.17282 0.0523977
\(502\) −0.107770 −0.00481001
\(503\) 33.0397 1.47317 0.736583 0.676347i \(-0.236438\pi\)
0.736583 + 0.676347i \(0.236438\pi\)
\(504\) −0.0973139 −0.00433471
\(505\) 54.6543 2.43208
\(506\) 0.00350906 0.000155997 0
\(507\) 4.74309 0.210648
\(508\) −20.9874 −0.931166
\(509\) −14.2329 −0.630862 −0.315431 0.948948i \(-0.602149\pi\)
−0.315431 + 0.948948i \(0.602149\pi\)
\(510\) 0.00124220 5.50057e−5 0
\(511\) 11.3457 0.501904
\(512\) 0.653957 0.0289011
\(513\) −15.7257 −0.694306
\(514\) −0.0169640 −0.000748250 0
\(515\) −4.68049 −0.206247
\(516\) 9.41215 0.414347
\(517\) −2.64708 −0.116419
\(518\) 0.0365262 0.00160487
\(519\) 3.45926 0.151845
\(520\) 0.173076 0.00758989
\(521\) −15.3143 −0.670931 −0.335465 0.942053i \(-0.608894\pi\)
−0.335465 + 0.942053i \(0.608894\pi\)
\(522\) −0.125443 −0.00549050
\(523\) 9.16522 0.400767 0.200384 0.979718i \(-0.435781\pi\)
0.200384 + 0.979718i \(0.435781\pi\)
\(524\) −32.9932 −1.44132
\(525\) 3.28663 0.143440
\(526\) −0.200617 −0.00874733
\(527\) 0.501310 0.0218374
\(528\) −2.13878 −0.0930784
\(529\) −22.8724 −0.994451
\(530\) −0.0332448 −0.00144406
\(531\) −11.4167 −0.495443
\(532\) −12.9348 −0.560795
\(533\) 6.27708 0.271890
\(534\) −0.0454596 −0.00196723
\(535\) 53.7686 2.32462
\(536\) −0.0131270 −0.000567002 0
\(537\) −3.95725 −0.170768
\(538\) 0.145201 0.00626006
\(539\) −7.05485 −0.303874
\(540\) 17.8552 0.768366
\(541\) −0.910723 −0.0391550 −0.0195775 0.999808i \(-0.506232\pi\)
−0.0195775 + 0.999808i \(0.506232\pi\)
\(542\) 0.0129403 0.000555836 0
\(543\) −9.96683 −0.427717
\(544\) 0.00968669 0.000415313 0
\(545\) −10.2371 −0.438508
\(546\) 0.00591634 0.000253196 0
\(547\) 42.1417 1.80185 0.900924 0.433978i \(-0.142890\pi\)
0.900924 + 0.433978i \(0.142890\pi\)
\(548\) −27.7520 −1.18551
\(549\) −2.16463 −0.0923843
\(550\) 0.0682917 0.00291197
\(551\) −33.3480 −1.42067
\(552\) 0.00519984 0.000221320 0
\(553\) 4.50665 0.191642
\(554\) 0.0938112 0.00398566
\(555\) −6.47312 −0.274769
\(556\) 2.83336 0.120161
\(557\) 42.2744 1.79122 0.895611 0.444838i \(-0.146739\pi\)
0.895611 + 0.444838i \(0.146739\pi\)
\(558\) −0.116300 −0.00492337
\(559\) 16.1868 0.684628
\(560\) 14.6859 0.620593
\(561\) −0.0528014 −0.00222928
\(562\) 0.0999087 0.00421439
\(563\) −32.2915 −1.36093 −0.680463 0.732782i \(-0.738221\pi\)
−0.680463 + 0.732782i \(0.738221\pi\)
\(564\) −1.96123 −0.0825828
\(565\) −35.1898 −1.48045
\(566\) −0.235954 −0.00991787
\(567\) −7.70669 −0.323651
\(568\) −0.116991 −0.00490883
\(569\) −23.1732 −0.971469 −0.485735 0.874106i \(-0.661448\pi\)
−0.485735 + 0.874106i \(0.661448\pi\)
\(570\) −0.0766107 −0.00320887
\(571\) −11.2243 −0.469723 −0.234862 0.972029i \(-0.575464\pi\)
−0.234862 + 0.972029i \(0.575464\pi\)
\(572\) −3.67834 −0.153799
\(573\) −2.29804 −0.0960018
\(574\) −0.0356035 −0.00148606
\(575\) 2.48383 0.103583
\(576\) 22.4107 0.933778
\(577\) 5.55603 0.231300 0.115650 0.993290i \(-0.463105\pi\)
0.115650 + 0.993290i \(0.463105\pi\)
\(578\) −0.138905 −0.00577768
\(579\) −6.28838 −0.261336
\(580\) 37.8639 1.57221
\(581\) −2.98229 −0.123726
\(582\) 0.0182727 0.000757427 0
\(583\) 1.41311 0.0585250
\(584\) 0.349340 0.0144558
\(585\) 14.8292 0.613113
\(586\) 0.172044 0.00710707
\(587\) −13.5097 −0.557603 −0.278802 0.960349i \(-0.589937\pi\)
−0.278802 + 0.960349i \(0.589937\pi\)
\(588\) −5.22697 −0.215557
\(589\) −30.9173 −1.27393
\(590\) −0.115170 −0.00474146
\(591\) 0.310056 0.0127540
\(592\) −16.8248 −0.691496
\(593\) 0.742475 0.0304898 0.0152449 0.999884i \(-0.495147\pi\)
0.0152449 + 0.999884i \(0.495147\pi\)
\(594\) 0.0253651 0.00104074
\(595\) 0.362561 0.0148635
\(596\) −34.3863 −1.40852
\(597\) 6.37455 0.260893
\(598\) 0.00447120 0.000182841 0
\(599\) 33.2242 1.35751 0.678753 0.734367i \(-0.262521\pi\)
0.678753 + 0.734367i \(0.262521\pi\)
\(600\) 0.101197 0.00413135
\(601\) −14.3262 −0.584378 −0.292189 0.956361i \(-0.594384\pi\)
−0.292189 + 0.956361i \(0.594384\pi\)
\(602\) −0.0918113 −0.00374195
\(603\) −1.12473 −0.0458026
\(604\) −19.2458 −0.783100
\(605\) 33.0394 1.34324
\(606\) 0.0575252 0.00233680
\(607\) 30.9448 1.25601 0.628004 0.778210i \(-0.283872\pi\)
0.628004 + 0.778210i \(0.283872\pi\)
\(608\) −0.597408 −0.0242281
\(609\) 2.58868 0.104899
\(610\) −0.0218364 −0.000884132 0
\(611\) −3.37288 −0.136452
\(612\) 0.553303 0.0223660
\(613\) −16.2656 −0.656960 −0.328480 0.944511i \(-0.606536\pi\)
−0.328480 + 0.944511i \(0.606536\pi\)
\(614\) 0.135734 0.00547776
\(615\) 6.30960 0.254428
\(616\) 0.0417277 0.00168126
\(617\) −24.0958 −0.970059 −0.485029 0.874498i \(-0.661191\pi\)
−0.485029 + 0.874498i \(0.661191\pi\)
\(618\) −0.00492635 −0.000198167 0
\(619\) −30.3476 −1.21977 −0.609886 0.792489i \(-0.708785\pi\)
−0.609886 + 0.792489i \(0.708785\pi\)
\(620\) 35.1041 1.40981
\(621\) 0.922550 0.0370207
\(622\) 0.0446403 0.00178991
\(623\) −13.2682 −0.531581
\(624\) −2.72521 −0.109096
\(625\) −11.4240 −0.456962
\(626\) 0.199589 0.00797717
\(627\) 3.25643 0.130049
\(628\) −11.3085 −0.451260
\(629\) −0.415365 −0.0165617
\(630\) −0.0841112 −0.00335107
\(631\) −4.93910 −0.196623 −0.0983113 0.995156i \(-0.531344\pi\)
−0.0983113 + 0.995156i \(0.531344\pi\)
\(632\) 0.138762 0.00551966
\(633\) 5.66082 0.224997
\(634\) 0.164418 0.00652986
\(635\) −36.2807 −1.43975
\(636\) 1.04698 0.0415154
\(637\) −8.98921 −0.356166
\(638\) 0.0537894 0.00212954
\(639\) −10.0238 −0.396537
\(640\) 0.904405 0.0357497
\(641\) 2.25217 0.0889553 0.0444776 0.999010i \(-0.485838\pi\)
0.0444776 + 0.999010i \(0.485838\pi\)
\(642\) 0.0565930 0.00223355
\(643\) 3.80037 0.149872 0.0749361 0.997188i \(-0.476125\pi\)
0.0749361 + 0.997188i \(0.476125\pi\)
\(644\) 0.758823 0.0299018
\(645\) 16.2707 0.640657
\(646\) −0.00491593 −0.000193415 0
\(647\) −44.4910 −1.74912 −0.874561 0.484915i \(-0.838850\pi\)
−0.874561 + 0.484915i \(0.838850\pi\)
\(648\) −0.237293 −0.00932176
\(649\) 4.89542 0.192162
\(650\) 0.0870165 0.00341307
\(651\) 2.40000 0.0940633
\(652\) −27.7540 −1.08693
\(653\) 11.2191 0.439039 0.219519 0.975608i \(-0.429551\pi\)
0.219519 + 0.975608i \(0.429551\pi\)
\(654\) −0.0107748 −0.000421328 0
\(655\) −57.0350 −2.22854
\(656\) 16.3998 0.640305
\(657\) 29.9316 1.16774
\(658\) 0.0191309 0.000745802 0
\(659\) 22.3612 0.871068 0.435534 0.900172i \(-0.356560\pi\)
0.435534 + 0.900172i \(0.356560\pi\)
\(660\) −3.69740 −0.143921
\(661\) 43.4338 1.68938 0.844690 0.535255i \(-0.179785\pi\)
0.844690 + 0.535255i \(0.179785\pi\)
\(662\) −0.103466 −0.00402133
\(663\) −0.0672789 −0.00261290
\(664\) −0.0918262 −0.00356355
\(665\) −22.3602 −0.867093
\(666\) 0.0963615 0.00373393
\(667\) 1.95637 0.0757508
\(668\) 5.26985 0.203897
\(669\) 7.31556 0.282836
\(670\) −0.0113461 −0.000438337 0
\(671\) 0.928184 0.0358321
\(672\) 0.0463746 0.00178894
\(673\) −23.7814 −0.916706 −0.458353 0.888770i \(-0.651561\pi\)
−0.458353 + 0.888770i \(0.651561\pi\)
\(674\) −0.0405905 −0.00156349
\(675\) 17.9542 0.691059
\(676\) 21.3122 0.819701
\(677\) −5.41410 −0.208081 −0.104040 0.994573i \(-0.533177\pi\)
−0.104040 + 0.994573i \(0.533177\pi\)
\(678\) −0.0370382 −0.00142244
\(679\) 5.33322 0.204670
\(680\) 0.0111634 0.000428098 0
\(681\) −9.83902 −0.377032
\(682\) 0.0498688 0.00190957
\(683\) 34.0531 1.30301 0.651504 0.758646i \(-0.274139\pi\)
0.651504 + 0.758646i \(0.274139\pi\)
\(684\) −34.1239 −1.30476
\(685\) −47.9745 −1.83301
\(686\) 0.111768 0.00426731
\(687\) −7.53396 −0.287438
\(688\) 42.2904 1.61231
\(689\) 1.80057 0.0685961
\(690\) 0.00449438 0.000171098 0
\(691\) −28.0278 −1.06623 −0.533114 0.846043i \(-0.678978\pi\)
−0.533114 + 0.846043i \(0.678978\pi\)
\(692\) 15.5436 0.590878
\(693\) 3.57525 0.135812
\(694\) −0.00262983 −9.98269e−5 0
\(695\) 4.89800 0.185792
\(696\) 0.0797069 0.00302128
\(697\) 0.404872 0.0153356
\(698\) −0.0459008 −0.00173737
\(699\) −6.00520 −0.227138
\(700\) 14.7679 0.558173
\(701\) 39.4442 1.48979 0.744894 0.667183i \(-0.232500\pi\)
0.744894 + 0.667183i \(0.232500\pi\)
\(702\) 0.0323199 0.00121984
\(703\) 25.6169 0.966159
\(704\) −9.60958 −0.362175
\(705\) −3.39036 −0.127688
\(706\) 0.292490 0.0110080
\(707\) 16.7898 0.631445
\(708\) 3.62704 0.136312
\(709\) 16.0468 0.602652 0.301326 0.953521i \(-0.402571\pi\)
0.301326 + 0.953521i \(0.402571\pi\)
\(710\) −0.101119 −0.00379492
\(711\) 11.8892 0.445880
\(712\) −0.408536 −0.0153105
\(713\) 1.81377 0.0679262
\(714\) 0.000381605 0 1.42812e−5 0
\(715\) −6.35870 −0.237802
\(716\) −17.7812 −0.664515
\(717\) −1.43228 −0.0534893
\(718\) 0.0435607 0.00162567
\(719\) −22.4529 −0.837350 −0.418675 0.908136i \(-0.637505\pi\)
−0.418675 + 0.908136i \(0.637505\pi\)
\(720\) 38.7436 1.44389
\(721\) −1.43785 −0.0535482
\(722\) 0.147845 0.00550222
\(723\) 11.2219 0.417348
\(724\) −44.7842 −1.66439
\(725\) 38.0739 1.41403
\(726\) 0.0347749 0.00129062
\(727\) −32.1296 −1.19162 −0.595810 0.803125i \(-0.703169\pi\)
−0.595810 + 0.803125i \(0.703169\pi\)
\(728\) 0.0531689 0.00197057
\(729\) −16.8832 −0.625305
\(730\) 0.301945 0.0111755
\(731\) 1.04405 0.0386156
\(732\) 0.687695 0.0254179
\(733\) −0.354611 −0.0130979 −0.00654893 0.999979i \(-0.502085\pi\)
−0.00654893 + 0.999979i \(0.502085\pi\)
\(734\) 0.105638 0.00389917
\(735\) −9.03580 −0.333290
\(736\) 0.0350471 0.00129185
\(737\) 0.482279 0.0177650
\(738\) −0.0939273 −0.00345751
\(739\) −27.4002 −1.00793 −0.503966 0.863723i \(-0.668126\pi\)
−0.503966 + 0.863723i \(0.668126\pi\)
\(740\) −29.0858 −1.06922
\(741\) 4.14930 0.152428
\(742\) −0.0102128 −0.000374923 0
\(743\) −13.7534 −0.504562 −0.252281 0.967654i \(-0.581181\pi\)
−0.252281 + 0.967654i \(0.581181\pi\)
\(744\) 0.0738972 0.00270920
\(745\) −59.4431 −2.17783
\(746\) 0.135533 0.00496223
\(747\) −7.86771 −0.287864
\(748\) −0.237254 −0.00867485
\(749\) 16.5177 0.603544
\(750\) 0.0245651 0.000896990 0
\(751\) −32.6482 −1.19135 −0.595674 0.803226i \(-0.703115\pi\)
−0.595674 + 0.803226i \(0.703115\pi\)
\(752\) −8.81216 −0.321346
\(753\) 5.86716 0.213811
\(754\) 0.0685379 0.00249600
\(755\) −33.2700 −1.21082
\(756\) 5.48512 0.199492
\(757\) 18.5037 0.672530 0.336265 0.941767i \(-0.390836\pi\)
0.336265 + 0.941767i \(0.390836\pi\)
\(758\) 0.0695218 0.00252515
\(759\) −0.191039 −0.00693427
\(760\) −0.688484 −0.0249739
\(761\) 24.3396 0.882311 0.441155 0.897431i \(-0.354569\pi\)
0.441155 + 0.897431i \(0.354569\pi\)
\(762\) −0.0381864 −0.00138335
\(763\) −3.14483 −0.113850
\(764\) −10.3258 −0.373575
\(765\) 0.956488 0.0345819
\(766\) 0.179117 0.00647177
\(767\) 6.23769 0.225230
\(768\) −7.11906 −0.256887
\(769\) −52.7307 −1.90152 −0.950758 0.309934i \(-0.899693\pi\)
−0.950758 + 0.309934i \(0.899693\pi\)
\(770\) 0.0360665 0.00129975
\(771\) 0.923547 0.0332607
\(772\) −28.2557 −1.01695
\(773\) 12.2488 0.440558 0.220279 0.975437i \(-0.429303\pi\)
0.220279 + 0.975437i \(0.429303\pi\)
\(774\) −0.242212 −0.00870612
\(775\) 35.2988 1.26797
\(776\) 0.164213 0.00589490
\(777\) −1.98854 −0.0713386
\(778\) 0.270708 0.00970536
\(779\) −24.9698 −0.894634
\(780\) −4.71119 −0.168688
\(781\) 4.29817 0.153801
\(782\) 0.000288394 0 1.03129e−5 0
\(783\) 14.1415 0.505376
\(784\) −23.4857 −0.838774
\(785\) −19.5489 −0.697732
\(786\) −0.0600309 −0.00214123
\(787\) 1.00000 0.0356462
\(788\) 1.39318 0.0496301
\(789\) 10.9219 0.388831
\(790\) 0.119936 0.00426713
\(791\) −10.8103 −0.384370
\(792\) 0.110084 0.00391166
\(793\) 1.18268 0.0419982
\(794\) 0.160270 0.00568776
\(795\) 1.80990 0.0641905
\(796\) 28.6429 1.01522
\(797\) 47.5818 1.68543 0.842716 0.538358i \(-0.180955\pi\)
0.842716 + 0.538358i \(0.180955\pi\)
\(798\) −0.0235348 −0.000833122 0
\(799\) −0.217551 −0.00769641
\(800\) 0.682070 0.0241148
\(801\) −35.0036 −1.23679
\(802\) −0.00445533 −0.000157323 0
\(803\) −12.8345 −0.452921
\(804\) 0.357322 0.0126018
\(805\) 1.31177 0.0462337
\(806\) 0.0635422 0.00223818
\(807\) −7.90497 −0.278268
\(808\) 0.516967 0.0181868
\(809\) −20.0143 −0.703667 −0.351833 0.936063i \(-0.614442\pi\)
−0.351833 + 0.936063i \(0.614442\pi\)
\(810\) −0.205099 −0.00720646
\(811\) −47.4322 −1.66557 −0.832784 0.553597i \(-0.813255\pi\)
−0.832784 + 0.553597i \(0.813255\pi\)
\(812\) 11.6318 0.408196
\(813\) −0.704493 −0.0247076
\(814\) −0.0413193 −0.00144824
\(815\) −47.9780 −1.68060
\(816\) −0.175776 −0.00615340
\(817\) −64.3899 −2.25272
\(818\) −0.0221951 −0.000776033 0
\(819\) 4.55554 0.159183
\(820\) 28.3511 0.990063
\(821\) 7.58759 0.264809 0.132404 0.991196i \(-0.457730\pi\)
0.132404 + 0.991196i \(0.457730\pi\)
\(822\) −0.0504945 −0.00176120
\(823\) 45.8737 1.59906 0.799528 0.600629i \(-0.205083\pi\)
0.799528 + 0.600629i \(0.205083\pi\)
\(824\) −0.0442721 −0.00154229
\(825\) −3.71791 −0.129441
\(826\) −0.0353801 −0.00123103
\(827\) 10.8138 0.376033 0.188017 0.982166i \(-0.439794\pi\)
0.188017 + 0.982166i \(0.439794\pi\)
\(828\) 2.00189 0.0695704
\(829\) −31.5870 −1.09706 −0.548531 0.836130i \(-0.684813\pi\)
−0.548531 + 0.836130i \(0.684813\pi\)
\(830\) −0.0793680 −0.00275491
\(831\) −5.10723 −0.177168
\(832\) −12.2444 −0.424499
\(833\) −0.579806 −0.0200891
\(834\) 0.00515528 0.000178513 0
\(835\) 9.10993 0.315262
\(836\) 14.6322 0.506064
\(837\) 13.1108 0.453174
\(838\) −0.294587 −0.0101763
\(839\) −42.7629 −1.47634 −0.738170 0.674615i \(-0.764310\pi\)
−0.738170 + 0.674615i \(0.764310\pi\)
\(840\) 0.0534445 0.00184401
\(841\) 0.988594 0.0340895
\(842\) 0.0244373 0.000842165 0
\(843\) −5.43918 −0.187335
\(844\) 25.4359 0.875540
\(845\) 36.8422 1.26741
\(846\) 0.0504702 0.00173520
\(847\) 10.1497 0.348748
\(848\) 4.70425 0.161545
\(849\) 12.8457 0.440863
\(850\) 0.00561258 0.000192510 0
\(851\) −1.50282 −0.0515159
\(852\) 3.18453 0.109100
\(853\) −13.5092 −0.462545 −0.231272 0.972889i \(-0.574289\pi\)
−0.231272 + 0.972889i \(0.574289\pi\)
\(854\) −0.00670815 −0.000229548 0
\(855\) −58.9896 −2.01740
\(856\) 0.508590 0.0173832
\(857\) 38.3745 1.31085 0.655424 0.755261i \(-0.272490\pi\)
0.655424 + 0.755261i \(0.272490\pi\)
\(858\) −0.00669271 −0.000228485 0
\(859\) −2.64915 −0.0903877 −0.0451938 0.998978i \(-0.514391\pi\)
−0.0451938 + 0.998978i \(0.514391\pi\)
\(860\) 73.1093 2.49301
\(861\) 1.93831 0.0660574
\(862\) −0.0395056 −0.00134557
\(863\) −27.0771 −0.921714 −0.460857 0.887475i \(-0.652458\pi\)
−0.460857 + 0.887475i \(0.652458\pi\)
\(864\) 0.253336 0.00861867
\(865\) 26.8700 0.913606
\(866\) −0.146422 −0.00497562
\(867\) 7.56219 0.256826
\(868\) 10.7840 0.366032
\(869\) −5.09803 −0.172939
\(870\) 0.0688930 0.00233569
\(871\) 0.614514 0.0208220
\(872\) −0.0968310 −0.00327911
\(873\) 14.0698 0.476191
\(874\) −0.0177861 −0.000601625 0
\(875\) 7.16978 0.242383
\(876\) −9.50916 −0.321285
\(877\) 26.6275 0.899145 0.449573 0.893244i \(-0.351576\pi\)
0.449573 + 0.893244i \(0.351576\pi\)
\(878\) −0.135597 −0.00457616
\(879\) −9.36635 −0.315919
\(880\) −16.6131 −0.560026
\(881\) −25.2361 −0.850225 −0.425112 0.905141i \(-0.639765\pi\)
−0.425112 + 0.905141i \(0.639765\pi\)
\(882\) 0.134510 0.00452920
\(883\) 10.6676 0.358992 0.179496 0.983759i \(-0.442553\pi\)
0.179496 + 0.983759i \(0.442553\pi\)
\(884\) −0.302306 −0.0101676
\(885\) 6.27001 0.210764
\(886\) −0.132828 −0.00446246
\(887\) 6.48531 0.217755 0.108878 0.994055i \(-0.465274\pi\)
0.108878 + 0.994055i \(0.465274\pi\)
\(888\) −0.0612283 −0.00205469
\(889\) −11.1454 −0.373805
\(890\) −0.353110 −0.0118363
\(891\) 8.71799 0.292064
\(892\) 32.8712 1.10061
\(893\) 13.4171 0.448985
\(894\) −0.0625655 −0.00209250
\(895\) −30.7382 −1.02746
\(896\) 0.277833 0.00928175
\(897\) −0.243419 −0.00812753
\(898\) 0.139420 0.00465250
\(899\) 27.8028 0.927274
\(900\) 38.9598 1.29866
\(901\) 0.116137 0.00386908
\(902\) 0.0402755 0.00134103
\(903\) 4.99835 0.166335
\(904\) −0.332855 −0.0110706
\(905\) −77.4178 −2.57345
\(906\) −0.0350176 −0.00116338
\(907\) −42.0834 −1.39736 −0.698678 0.715437i \(-0.746228\pi\)
−0.698678 + 0.715437i \(0.746228\pi\)
\(908\) −44.2099 −1.46716
\(909\) 44.2940 1.46914
\(910\) 0.0459555 0.00152341
\(911\) 2.60814 0.0864117 0.0432058 0.999066i \(-0.486243\pi\)
0.0432058 + 0.999066i \(0.486243\pi\)
\(912\) 10.8407 0.358971
\(913\) 3.37363 0.111651
\(914\) −0.132266 −0.00437498
\(915\) 1.18881 0.0393008
\(916\) −33.8525 −1.11852
\(917\) −17.5211 −0.578599
\(918\) 0.00208464 6.88034e−5 0
\(919\) 22.2966 0.735498 0.367749 0.929925i \(-0.380128\pi\)
0.367749 + 0.929925i \(0.380128\pi\)
\(920\) 0.0403900 0.00133162
\(921\) −7.38955 −0.243494
\(922\) 0.0806153 0.00265492
\(923\) 5.47668 0.180267
\(924\) −1.13584 −0.0373664
\(925\) −29.2471 −0.961640
\(926\) −0.0446297 −0.00146662
\(927\) −3.79325 −0.124587
\(928\) 0.537226 0.0176353
\(929\) −1.75658 −0.0576316 −0.0288158 0.999585i \(-0.509174\pi\)
−0.0288158 + 0.999585i \(0.509174\pi\)
\(930\) 0.0638715 0.00209443
\(931\) 35.7584 1.17194
\(932\) −26.9833 −0.883867
\(933\) −2.43029 −0.0795641
\(934\) −0.182577 −0.00597411
\(935\) −0.410137 −0.0134129
\(936\) 0.140267 0.00458479
\(937\) 15.7354 0.514054 0.257027 0.966404i \(-0.417257\pi\)
0.257027 + 0.966404i \(0.417257\pi\)
\(938\) −0.00348551 −0.000113806 0
\(939\) −10.8659 −0.354596
\(940\) −15.2340 −0.496877
\(941\) −33.2873 −1.08514 −0.542568 0.840012i \(-0.682548\pi\)
−0.542568 + 0.840012i \(0.682548\pi\)
\(942\) −0.0205758 −0.000670396 0
\(943\) 1.46485 0.0477022
\(944\) 16.2969 0.530419
\(945\) 9.48206 0.308451
\(946\) 0.103859 0.00337675
\(947\) 41.2345 1.33994 0.669970 0.742388i \(-0.266307\pi\)
0.669970 + 0.742388i \(0.266307\pi\)
\(948\) −3.77715 −0.122676
\(949\) −16.3536 −0.530861
\(950\) −0.346146 −0.0112304
\(951\) −8.95115 −0.290261
\(952\) 0.00342941 0.000111148 0
\(953\) −6.56705 −0.212728 −0.106364 0.994327i \(-0.533921\pi\)
−0.106364 + 0.994327i \(0.533921\pi\)
\(954\) −0.0269429 −0.000872307 0
\(955\) −17.8501 −0.577616
\(956\) −6.43568 −0.208145
\(957\) −2.92838 −0.0946611
\(958\) 0.0104608 0.000337972 0
\(959\) −14.7378 −0.475907
\(960\) −12.3079 −0.397235
\(961\) −5.22373 −0.168507
\(962\) −0.0526486 −0.00169746
\(963\) 43.5762 1.40422
\(964\) 50.4238 1.62404
\(965\) −48.8453 −1.57239
\(966\) 0.00138067 4.44224e−5 0
\(967\) 46.9509 1.50984 0.754920 0.655817i \(-0.227676\pi\)
0.754920 + 0.655817i \(0.227676\pi\)
\(968\) 0.312515 0.0100446
\(969\) 0.267631 0.00859753
\(970\) 0.141934 0.00455722
\(971\) −33.0339 −1.06011 −0.530054 0.847964i \(-0.677828\pi\)
−0.530054 + 0.847964i \(0.677828\pi\)
\(972\) 21.9529 0.704139
\(973\) 1.50466 0.0482373
\(974\) −0.191619 −0.00613986
\(975\) −4.73732 −0.151716
\(976\) 3.08993 0.0989063
\(977\) 6.26226 0.200348 0.100174 0.994970i \(-0.468060\pi\)
0.100174 + 0.994970i \(0.468060\pi\)
\(978\) −0.0504982 −0.00161475
\(979\) 15.0094 0.479701
\(980\) −40.6007 −1.29694
\(981\) −8.29652 −0.264887
\(982\) 0.138329 0.00441426
\(983\) −13.2316 −0.422023 −0.211011 0.977484i \(-0.567676\pi\)
−0.211011 + 0.977484i \(0.567676\pi\)
\(984\) 0.0596816 0.00190258
\(985\) 2.40838 0.0767372
\(986\) 0.00442070 0.000140784 0
\(987\) −1.04152 −0.0331519
\(988\) 18.6441 0.593149
\(989\) 3.77744 0.120116
\(990\) 0.0951486 0.00302402
\(991\) 27.8792 0.885612 0.442806 0.896617i \(-0.353983\pi\)
0.442806 + 0.896617i \(0.353983\pi\)
\(992\) 0.498069 0.0158137
\(993\) 5.63287 0.178754
\(994\) −0.0310637 −0.000985280 0
\(995\) 49.5146 1.56972
\(996\) 2.49954 0.0792009
\(997\) 13.4478 0.425896 0.212948 0.977063i \(-0.431693\pi\)
0.212948 + 0.977063i \(0.431693\pi\)
\(998\) 0.0175342 0.000555035 0
\(999\) −10.8631 −0.343692
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 787.2.a.b.1.17 37
3.2 odd 2 7083.2.a.g.1.21 37
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
787.2.a.b.1.17 37 1.1 even 1 trivial
7083.2.a.g.1.21 37 3.2 odd 2