Properties

Label 2-787-1.1-c1-0-4
Degree $2$
Conductor $787$
Sign $1$
Analytic cond. $6.28422$
Root an. cond. $2.50683$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.00817·2-s − 0.445·3-s − 1.99·4-s − 3.45·5-s − 0.00363·6-s − 1.06·7-s − 0.0327·8-s − 2.80·9-s − 0.0282·10-s + 1.20·11-s + 0.890·12-s + 1.53·13-s − 0.00868·14-s + 1.53·15-s + 3.99·16-s + 0.0987·17-s − 0.0229·18-s − 6.08·19-s + 6.91·20-s + 0.472·21-s + 0.00982·22-s + 0.357·23-s + 0.0145·24-s + 6.95·25-s + 0.0125·26-s + 2.58·27-s + 2.12·28-s + ⋯
L(s)  = 1  + 0.00578·2-s − 0.256·3-s − 0.999·4-s − 1.54·5-s − 0.00148·6-s − 0.401·7-s − 0.0115·8-s − 0.933·9-s − 0.00893·10-s + 0.362·11-s + 0.256·12-s + 0.424·13-s − 0.00232·14-s + 0.397·15-s + 0.999·16-s + 0.0239·17-s − 0.00539·18-s − 1.39·19-s + 1.54·20-s + 0.103·21-s + 0.00209·22-s + 0.0744·23-s + 0.00297·24-s + 1.39·25-s + 0.00245·26-s + 0.496·27-s + 0.401·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(787\)
Sign: $1$
Analytic conductor: \(6.28422\)
Root analytic conductor: \(2.50683\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 787,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5102085452\)
\(L(\frac12)\) \(\approx\) \(0.5102085452\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad787 \( 1 - T \)
good2 \( 1 - 0.00817T + 2T^{2} \)
3 \( 1 + 0.445T + 3T^{2} \)
5 \( 1 + 3.45T + 5T^{2} \)
7 \( 1 + 1.06T + 7T^{2} \)
11 \( 1 - 1.20T + 11T^{2} \)
13 \( 1 - 1.53T + 13T^{2} \)
17 \( 1 - 0.0987T + 17T^{2} \)
19 \( 1 + 6.08T + 19T^{2} \)
23 \( 1 - 0.357T + 23T^{2} \)
29 \( 1 - 5.47T + 29T^{2} \)
31 \( 1 - 5.07T + 31T^{2} \)
37 \( 1 + 4.20T + 37T^{2} \)
41 \( 1 - 4.10T + 41T^{2} \)
43 \( 1 - 10.5T + 43T^{2} \)
47 \( 1 + 2.20T + 47T^{2} \)
53 \( 1 - 1.17T + 53T^{2} \)
59 \( 1 - 4.07T + 59T^{2} \)
61 \( 1 - 0.772T + 61T^{2} \)
67 \( 1 - 0.401T + 67T^{2} \)
71 \( 1 - 3.57T + 71T^{2} \)
73 \( 1 + 10.6T + 73T^{2} \)
79 \( 1 + 4.24T + 79T^{2} \)
83 \( 1 - 2.80T + 83T^{2} \)
89 \( 1 - 12.4T + 89T^{2} \)
97 \( 1 + 5.02T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42405305271656331849023209183, −9.225746908431225107790453862210, −8.463169621906313974100657666389, −8.056125394889583429597633283451, −6.79109177865438629927512465520, −5.86097818084777284215557610368, −4.63157744308192670905716955033, −3.99143089999125962135307082543, −3.01737842059580651682638764259, −0.58081025361693766335701677893, 0.58081025361693766335701677893, 3.01737842059580651682638764259, 3.99143089999125962135307082543, 4.63157744308192670905716955033, 5.86097818084777284215557610368, 6.79109177865438629927512465520, 8.056125394889583429597633283451, 8.463169621906313974100657666389, 9.225746908431225107790453862210, 10.42405305271656331849023209183

Graph of the $Z$-function along the critical line