Properties

Label 784.3.s.h.705.4
Level $784$
Weight $3$
Character 784.705
Analytic conductor $21.362$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,3,Mod(129,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.129"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 784.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.3624527258\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.339738624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 14x^{4} - 8x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 7^{2} \)
Twist minimal: no (minimal twist has level 49)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 705.4
Root \(0.662827 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 784.705
Dual form 784.3.s.h.129.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.92586 - 1.68925i) q^{3} +(4.13779 + 2.38896i) q^{5} +(1.20711 - 2.09077i) q^{9} +(4.53553 + 7.85578i) q^{11} -7.57675i q^{13} +16.1421 q^{15} +(19.4770 - 11.2451i) q^{17} +(-2.21593 - 1.27937i) q^{19} +(-8.65685 + 14.9941i) q^{23} +(-1.08579 - 1.88064i) q^{25} +22.2500i q^{27} +35.7990 q^{29} +(36.5302 - 21.0907i) q^{31} +(26.5407 + 15.3233i) q^{33} +(1.65685 - 2.86976i) q^{37} +(-12.7990 - 22.1685i) q^{39} +67.8100i q^{41} +27.6985 q^{43} +(9.98951 - 5.76745i) q^{45} +(34.1063 + 19.6913i) q^{47} +(37.9914 - 65.8030i) q^{51} +(-25.1838 - 43.6196i) q^{53} +43.3407i q^{55} -8.64466 q^{57} +(-40.7541 + 23.5294i) q^{59} +(-68.5067 - 39.5524i) q^{61} +(18.1005 - 31.3510i) q^{65} +(-27.2132 - 47.1347i) q^{67} +58.4942i q^{69} +0.402020 q^{71} +(-1.80006 + 1.03926i) q^{73} +(-6.35372 - 3.66832i) q^{75} +(30.4437 - 52.7299i) q^{79} +(48.4497 + 83.9174i) q^{81} +82.9634i q^{83} +107.456 q^{85} +(104.743 - 60.4733i) q^{87} +(6.05966 + 3.49854i) q^{89} +(71.2548 - 123.417i) q^{93} +(-6.11270 - 10.5875i) q^{95} +90.5402i q^{97} +21.8995 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{9} + 8 q^{11} + 16 q^{15} - 24 q^{23} - 20 q^{25} + 128 q^{29} - 32 q^{37} + 56 q^{39} - 16 q^{43} + 72 q^{51} + 104 q^{53} - 352 q^{57} + 224 q^{65} - 48 q^{67} + 320 q^{71} + 368 q^{79} + 348 q^{81}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.92586 1.68925i 0.975287 0.563082i 0.0744430 0.997225i \(-0.476282\pi\)
0.900844 + 0.434143i \(0.142949\pi\)
\(4\) 0 0
\(5\) 4.13779 + 2.38896i 0.827558 + 0.477791i 0.853016 0.521885i \(-0.174771\pi\)
−0.0254576 + 0.999676i \(0.508104\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.20711 2.09077i 0.134123 0.232308i
\(10\) 0 0
\(11\) 4.53553 + 7.85578i 0.412321 + 0.714161i 0.995143 0.0984386i \(-0.0313848\pi\)
−0.582822 + 0.812600i \(0.698051\pi\)
\(12\) 0 0
\(13\) 7.57675i 0.582827i −0.956597 0.291413i \(-0.905875\pi\)
0.956597 0.291413i \(-0.0941255\pi\)
\(14\) 0 0
\(15\) 16.1421 1.07614
\(16\) 0 0
\(17\) 19.4770 11.2451i 1.14571 0.661475i 0.197870 0.980228i \(-0.436598\pi\)
0.947838 + 0.318754i \(0.103264\pi\)
\(18\) 0 0
\(19\) −2.21593 1.27937i −0.116628 0.0673351i 0.440551 0.897727i \(-0.354783\pi\)
−0.557179 + 0.830392i \(0.688116\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.65685 + 14.9941i −0.376385 + 0.651918i −0.990533 0.137273i \(-0.956166\pi\)
0.614148 + 0.789191i \(0.289500\pi\)
\(24\) 0 0
\(25\) −1.08579 1.88064i −0.0434315 0.0752255i
\(26\) 0 0
\(27\) 22.2500i 0.824075i
\(28\) 0 0
\(29\) 35.7990 1.23445 0.617224 0.786788i \(-0.288257\pi\)
0.617224 + 0.786788i \(0.288257\pi\)
\(30\) 0 0
\(31\) 36.5302 21.0907i 1.17839 0.680346i 0.222751 0.974875i \(-0.428496\pi\)
0.955642 + 0.294530i \(0.0951630\pi\)
\(32\) 0 0
\(33\) 26.5407 + 15.3233i 0.804263 + 0.464341i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.65685 2.86976i 0.0447798 0.0775610i −0.842767 0.538279i \(-0.819075\pi\)
0.887547 + 0.460718i \(0.152408\pi\)
\(38\) 0 0
\(39\) −12.7990 22.1685i −0.328179 0.568423i
\(40\) 0 0
\(41\) 67.8100i 1.65390i 0.562274 + 0.826951i \(0.309926\pi\)
−0.562274 + 0.826951i \(0.690074\pi\)
\(42\) 0 0
\(43\) 27.6985 0.644151 0.322075 0.946714i \(-0.395620\pi\)
0.322075 + 0.946714i \(0.395620\pi\)
\(44\) 0 0
\(45\) 9.98951 5.76745i 0.221989 0.128166i
\(46\) 0 0
\(47\) 34.1063 + 19.6913i 0.725667 + 0.418964i 0.816835 0.576872i \(-0.195727\pi\)
−0.0911682 + 0.995836i \(0.529060\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 37.9914 65.8030i 0.744929 1.29025i
\(52\) 0 0
\(53\) −25.1838 43.6196i −0.475165 0.823011i 0.524430 0.851454i \(-0.324278\pi\)
−0.999595 + 0.0284429i \(0.990945\pi\)
\(54\) 0 0
\(55\) 43.3407i 0.788014i
\(56\) 0 0
\(57\) −8.64466 −0.151661
\(58\) 0 0
\(59\) −40.7541 + 23.5294i −0.690748 + 0.398803i −0.803892 0.594775i \(-0.797241\pi\)
0.113144 + 0.993579i \(0.463908\pi\)
\(60\) 0 0
\(61\) −68.5067 39.5524i −1.12306 0.648400i −0.180880 0.983505i \(-0.557895\pi\)
−0.942181 + 0.335105i \(0.891228\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 18.1005 31.3510i 0.278469 0.482323i
\(66\) 0 0
\(67\) −27.2132 47.1347i −0.406167 0.703502i 0.588289 0.808651i \(-0.299802\pi\)
−0.994457 + 0.105148i \(0.966468\pi\)
\(68\) 0 0
\(69\) 58.4942i 0.847743i
\(70\) 0 0
\(71\) 0.402020 0.00566226 0.00283113 0.999996i \(-0.499099\pi\)
0.00283113 + 0.999996i \(0.499099\pi\)
\(72\) 0 0
\(73\) −1.80006 + 1.03926i −0.0246583 + 0.0142365i −0.512278 0.858819i \(-0.671198\pi\)
0.487620 + 0.873056i \(0.337865\pi\)
\(74\) 0 0
\(75\) −6.35372 3.66832i −0.0847163 0.0489110i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 30.4437 52.7299i 0.385363 0.667468i −0.606457 0.795116i \(-0.707410\pi\)
0.991819 + 0.127649i \(0.0407430\pi\)
\(80\) 0 0
\(81\) 48.4497 + 83.9174i 0.598145 + 1.03602i
\(82\) 0 0
\(83\) 82.9634i 0.999560i 0.866152 + 0.499780i \(0.166586\pi\)
−0.866152 + 0.499780i \(0.833414\pi\)
\(84\) 0 0
\(85\) 107.456 1.26419
\(86\) 0 0
\(87\) 104.743 60.4733i 1.20394 0.695096i
\(88\) 0 0
\(89\) 6.05966 + 3.49854i 0.0680860 + 0.0393095i 0.533657 0.845701i \(-0.320818\pi\)
−0.465571 + 0.885011i \(0.654151\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 71.2548 123.417i 0.766181 1.32706i
\(94\) 0 0
\(95\) −6.11270 10.5875i −0.0643442 0.111447i
\(96\) 0 0
\(97\) 90.5402i 0.933404i 0.884415 + 0.466702i \(0.154558\pi\)
−0.884415 + 0.466702i \(0.845442\pi\)
\(98\) 0 0
\(99\) 21.8995 0.221207
\(100\) 0 0
\(101\) 29.5527 17.0622i 0.292601 0.168933i −0.346513 0.938045i \(-0.612634\pi\)
0.639114 + 0.769112i \(0.279301\pi\)
\(102\) 0 0
\(103\) −115.026 66.4105i −1.11676 0.644763i −0.176189 0.984356i \(-0.556377\pi\)
−0.940572 + 0.339594i \(0.889710\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 64.7401 112.133i 0.605048 1.04797i −0.386996 0.922081i \(-0.626487\pi\)
0.992044 0.125892i \(-0.0401793\pi\)
\(108\) 0 0
\(109\) −50.2843 87.0949i −0.461324 0.799036i 0.537704 0.843134i \(-0.319292\pi\)
−0.999027 + 0.0440980i \(0.985959\pi\)
\(110\) 0 0
\(111\) 11.1953i 0.100859i
\(112\) 0 0
\(113\) −168.693 −1.49286 −0.746431 0.665463i \(-0.768234\pi\)
−0.746431 + 0.665463i \(0.768234\pi\)
\(114\) 0 0
\(115\) −71.6405 + 41.3617i −0.622961 + 0.359667i
\(116\) 0 0
\(117\) −15.8412 9.14594i −0.135395 0.0781704i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 19.3579 33.5288i 0.159982 0.277098i
\(122\) 0 0
\(123\) 114.548 + 198.402i 0.931282 + 1.61303i
\(124\) 0 0
\(125\) 129.823i 1.03859i
\(126\) 0 0
\(127\) −26.6030 −0.209473 −0.104736 0.994500i \(-0.533400\pi\)
−0.104736 + 0.994500i \(0.533400\pi\)
\(128\) 0 0
\(129\) 81.0419 46.7896i 0.628232 0.362710i
\(130\) 0 0
\(131\) 124.048 + 71.6189i 0.946928 + 0.546709i 0.892125 0.451788i \(-0.149214\pi\)
0.0548030 + 0.998497i \(0.482547\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −53.1543 + 92.0660i −0.393736 + 0.681970i
\(136\) 0 0
\(137\) −33.7365 58.4334i −0.246252 0.426521i 0.716231 0.697864i \(-0.245866\pi\)
−0.962483 + 0.271342i \(0.912532\pi\)
\(138\) 0 0
\(139\) 14.7727i 0.106279i −0.998587 0.0531394i \(-0.983077\pi\)
0.998587 0.0531394i \(-0.0169228\pi\)
\(140\) 0 0
\(141\) 133.054 0.943644
\(142\) 0 0
\(143\) 59.5212 34.3646i 0.416232 0.240312i
\(144\) 0 0
\(145\) 148.129 + 85.5222i 1.02158 + 0.589808i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −43.2426 + 74.8985i −0.290219 + 0.502674i −0.973861 0.227143i \(-0.927062\pi\)
0.683642 + 0.729817i \(0.260395\pi\)
\(150\) 0 0
\(151\) −104.213 180.503i −0.690154 1.19538i −0.971787 0.235859i \(-0.924210\pi\)
0.281634 0.959522i \(-0.409124\pi\)
\(152\) 0 0
\(153\) 54.2960i 0.354876i
\(154\) 0 0
\(155\) 201.539 1.30025
\(156\) 0 0
\(157\) −102.613 + 59.2437i −0.653586 + 0.377348i −0.789829 0.613327i \(-0.789831\pi\)
0.136243 + 0.990676i \(0.456497\pi\)
\(158\) 0 0
\(159\) −147.368 85.0832i −0.926845 0.535114i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −147.104 + 254.792i −0.902479 + 1.56314i −0.0782130 + 0.996937i \(0.524921\pi\)
−0.824266 + 0.566203i \(0.808412\pi\)
\(164\) 0 0
\(165\) 73.2132 + 126.809i 0.443716 + 0.768539i
\(166\) 0 0
\(167\) 59.8525i 0.358398i 0.983813 + 0.179199i \(0.0573506\pi\)
−0.983813 + 0.179199i \(0.942649\pi\)
\(168\) 0 0
\(169\) 111.593 0.660313
\(170\) 0 0
\(171\) −5.34972 + 3.08866i −0.0312849 + 0.0180624i
\(172\) 0 0
\(173\) 72.9386 + 42.1111i 0.421610 + 0.243417i 0.695766 0.718268i \(-0.255065\pi\)
−0.274156 + 0.961685i \(0.588398\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −79.4939 + 137.687i −0.449118 + 0.777895i
\(178\) 0 0
\(179\) −1.11775 1.93600i −0.00624441 0.0108156i 0.862886 0.505398i \(-0.168654\pi\)
−0.869131 + 0.494582i \(0.835321\pi\)
\(180\) 0 0
\(181\) 7.57675i 0.0418605i 0.999781 + 0.0209302i \(0.00666279\pi\)
−0.999781 + 0.0209302i \(0.993337\pi\)
\(182\) 0 0
\(183\) −267.255 −1.46041
\(184\) 0 0
\(185\) 13.7114 7.91630i 0.0741159 0.0427908i
\(186\) 0 0
\(187\) 176.677 + 102.005i 0.944799 + 0.545480i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.0589 + 31.2789i −0.0945491 + 0.163764i −0.909420 0.415878i \(-0.863474\pi\)
0.814871 + 0.579642i \(0.196808\pi\)
\(192\) 0 0
\(193\) −9.83705 17.0383i −0.0509692 0.0882812i 0.839415 0.543491i \(-0.182898\pi\)
−0.890384 + 0.455210i \(0.849564\pi\)
\(194\) 0 0
\(195\) 122.305i 0.627204i
\(196\) 0 0
\(197\) −256.794 −1.30352 −0.651761 0.758424i \(-0.725970\pi\)
−0.651761 + 0.758424i \(0.725970\pi\)
\(198\) 0 0
\(199\) −10.5272 + 6.07787i −0.0529004 + 0.0305421i −0.526217 0.850350i \(-0.676390\pi\)
0.473317 + 0.880892i \(0.343057\pi\)
\(200\) 0 0
\(201\) −159.244 91.9396i −0.792259 0.457411i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −161.995 + 280.583i −0.790219 + 1.36870i
\(206\) 0 0
\(207\) 20.8995 + 36.1990i 0.100964 + 0.174874i
\(208\) 0 0
\(209\) 23.2104i 0.111055i
\(210\) 0 0
\(211\) 188.201 0.891948 0.445974 0.895046i \(-0.352857\pi\)
0.445974 + 0.895046i \(0.352857\pi\)
\(212\) 0 0
\(213\) 1.17626 0.679111i 0.00552232 0.00318832i
\(214\) 0 0
\(215\) 114.611 + 66.1704i 0.533072 + 0.307769i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −3.51115 + 6.08149i −0.0160326 + 0.0277693i
\(220\) 0 0
\(221\) −85.2010 147.572i −0.385525 0.667749i
\(222\) 0 0
\(223\) 272.001i 1.21974i −0.792503 0.609868i \(-0.791222\pi\)
0.792503 0.609868i \(-0.208778\pi\)
\(224\) 0 0
\(225\) −5.24264 −0.0233006
\(226\) 0 0
\(227\) −328.614 + 189.726i −1.44764 + 0.835795i −0.998341 0.0575860i \(-0.981660\pi\)
−0.449299 + 0.893381i \(0.648326\pi\)
\(228\) 0 0
\(229\) −64.6630 37.3332i −0.282371 0.163027i 0.352125 0.935953i \(-0.385459\pi\)
−0.634496 + 0.772926i \(0.718792\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −48.6899 + 84.3333i −0.208969 + 0.361946i −0.951390 0.307988i \(-0.900344\pi\)
0.742421 + 0.669934i \(0.233678\pi\)
\(234\) 0 0
\(235\) 94.0833 + 162.957i 0.400354 + 0.693434i
\(236\) 0 0
\(237\) 205.707i 0.867963i
\(238\) 0 0
\(239\) −438.985 −1.83676 −0.918378 0.395703i \(-0.870501\pi\)
−0.918378 + 0.395703i \(0.870501\pi\)
\(240\) 0 0
\(241\) −230.332 + 132.982i −0.955735 + 0.551794i −0.894858 0.446351i \(-0.852723\pi\)
−0.0608773 + 0.998145i \(0.519390\pi\)
\(242\) 0 0
\(243\) 110.093 + 63.5620i 0.453056 + 0.261572i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.69343 + 16.7895i −0.0392447 + 0.0679738i
\(248\) 0 0
\(249\) 140.146 + 242.739i 0.562834 + 0.974857i
\(250\) 0 0
\(251\) 391.326i 1.55907i −0.626361 0.779533i \(-0.715457\pi\)
0.626361 0.779533i \(-0.284543\pi\)
\(252\) 0 0
\(253\) −157.054 −0.620766
\(254\) 0 0
\(255\) 314.401 181.519i 1.23294 0.711841i
\(256\) 0 0
\(257\) 28.9289 + 16.7021i 0.112564 + 0.0649887i 0.555225 0.831700i \(-0.312632\pi\)
−0.442661 + 0.896689i \(0.645966\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 43.2132 74.8475i 0.165568 0.286772i
\(262\) 0 0
\(263\) −201.012 348.163i −0.764305 1.32381i −0.940613 0.339480i \(-0.889749\pi\)
0.176308 0.984335i \(-0.443584\pi\)
\(264\) 0 0
\(265\) 240.652i 0.908119i
\(266\) 0 0
\(267\) 23.6396 0.0885379
\(268\) 0 0
\(269\) 11.6530 6.72786i 0.0433197 0.0250106i −0.478184 0.878260i \(-0.658705\pi\)
0.521503 + 0.853249i \(0.325371\pi\)
\(270\) 0 0
\(271\) −432.511 249.710i −1.59598 0.921440i −0.992251 0.124250i \(-0.960348\pi\)
−0.603729 0.797190i \(-0.706319\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.84924 17.0594i 0.0358154 0.0620341i
\(276\) 0 0
\(277\) 240.404 + 416.392i 0.867885 + 1.50322i 0.864154 + 0.503228i \(0.167854\pi\)
0.00373101 + 0.999993i \(0.498812\pi\)
\(278\) 0 0
\(279\) 101.835i 0.365000i
\(280\) 0 0
\(281\) 167.307 0.595397 0.297699 0.954660i \(-0.403781\pi\)
0.297699 + 0.954660i \(0.403781\pi\)
\(282\) 0 0
\(283\) −242.380 + 139.938i −0.856467 + 0.494481i −0.862828 0.505498i \(-0.831309\pi\)
0.00636072 + 0.999980i \(0.497975\pi\)
\(284\) 0 0
\(285\) −35.7698 20.6517i −0.125508 0.0724621i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 108.403 187.760i 0.375097 0.649687i
\(290\) 0 0
\(291\) 152.945 + 264.908i 0.525583 + 0.910337i
\(292\) 0 0
\(293\) 128.043i 0.437007i 0.975836 + 0.218504i \(0.0701176\pi\)
−0.975836 + 0.218504i \(0.929882\pi\)
\(294\) 0 0
\(295\) −224.843 −0.762179
\(296\) 0 0
\(297\) −174.791 + 100.916i −0.588523 + 0.339784i
\(298\) 0 0
\(299\) 113.607 + 65.5908i 0.379955 + 0.219367i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 57.6447 99.8435i 0.190246 0.329516i
\(304\) 0 0
\(305\) −188.978 327.319i −0.619599 1.07318i
\(306\) 0 0
\(307\) 513.315i 1.67204i 0.548702 + 0.836018i \(0.315122\pi\)
−0.548702 + 0.836018i \(0.684878\pi\)
\(308\) 0 0
\(309\) −448.735 −1.45222
\(310\) 0 0
\(311\) −189.750 + 109.552i −0.610130 + 0.352258i −0.773016 0.634386i \(-0.781253\pi\)
0.162887 + 0.986645i \(0.447920\pi\)
\(312\) 0 0
\(313\) −441.339 254.807i −1.41003 0.814080i −0.414637 0.909987i \(-0.636092\pi\)
−0.995390 + 0.0959070i \(0.969425\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 144.556 250.379i 0.456014 0.789839i −0.542732 0.839906i \(-0.682610\pi\)
0.998746 + 0.0500669i \(0.0159435\pi\)
\(318\) 0 0
\(319\) 162.368 + 281.229i 0.508989 + 0.881595i
\(320\) 0 0
\(321\) 437.448i 1.36277i
\(322\) 0 0
\(323\) −57.5462 −0.178162
\(324\) 0 0
\(325\) −14.2491 + 8.22673i −0.0438434 + 0.0253130i
\(326\) 0 0
\(327\) −294.250 169.885i −0.899846 0.519526i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 62.4838 108.225i 0.188773 0.326964i −0.756069 0.654492i \(-0.772882\pi\)
0.944841 + 0.327528i \(0.106216\pi\)
\(332\) 0 0
\(333\) −4.00000 6.92820i −0.0120120 0.0208054i
\(334\) 0 0
\(335\) 260.044i 0.776252i
\(336\) 0 0
\(337\) −320.583 −0.951284 −0.475642 0.879639i \(-0.657784\pi\)
−0.475642 + 0.879639i \(0.657784\pi\)
\(338\) 0 0
\(339\) −493.573 + 284.965i −1.45597 + 0.840604i
\(340\) 0 0
\(341\) 331.368 + 191.315i 0.971753 + 0.561042i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −139.740 + 242.037i −0.405044 + 0.701556i
\(346\) 0 0
\(347\) 119.933 + 207.729i 0.345627 + 0.598643i 0.985467 0.169864i \(-0.0543330\pi\)
−0.639841 + 0.768508i \(0.721000\pi\)
\(348\) 0 0
\(349\) 278.817i 0.798901i 0.916755 + 0.399451i \(0.130799\pi\)
−0.916755 + 0.399451i \(0.869201\pi\)
\(350\) 0 0
\(351\) 168.583 0.480293
\(352\) 0 0
\(353\) −89.1600 + 51.4766i −0.252578 + 0.145826i −0.620944 0.783855i \(-0.713251\pi\)
0.368366 + 0.929681i \(0.379917\pi\)
\(354\) 0 0
\(355\) 1.66348 + 0.960408i 0.00468585 + 0.00270538i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −206.647 + 357.923i −0.575618 + 0.996999i 0.420357 + 0.907359i \(0.361905\pi\)
−0.995974 + 0.0896401i \(0.971428\pi\)
\(360\) 0 0
\(361\) −177.226 306.965i −0.490932 0.850319i
\(362\) 0 0
\(363\) 130.801i 0.360333i
\(364\) 0 0
\(365\) −9.93102 −0.0272083
\(366\) 0 0
\(367\) 504.739 291.411i 1.37531 0.794036i 0.383720 0.923449i \(-0.374643\pi\)
0.991591 + 0.129413i \(0.0413093\pi\)
\(368\) 0 0
\(369\) 141.775 + 81.8539i 0.384214 + 0.221826i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −142.238 + 246.363i −0.381334 + 0.660490i −0.991253 0.131974i \(-0.957869\pi\)
0.609919 + 0.792464i \(0.291202\pi\)
\(374\) 0 0
\(375\) −219.304 379.845i −0.584810 1.01292i
\(376\) 0 0
\(377\) 271.240i 0.719469i
\(378\) 0 0
\(379\) −158.111 −0.417178 −0.208589 0.978003i \(-0.566887\pi\)
−0.208589 + 0.978003i \(0.566887\pi\)
\(380\) 0 0
\(381\) −77.8368 + 44.9391i −0.204296 + 0.117950i
\(382\) 0 0
\(383\) 64.4698 + 37.2217i 0.168329 + 0.0971845i 0.581797 0.813334i \(-0.302350\pi\)
−0.413469 + 0.910518i \(0.635683\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 33.4350 57.9112i 0.0863954 0.149641i
\(388\) 0 0
\(389\) −28.7868 49.8602i −0.0740020 0.128175i 0.826650 0.562717i \(-0.190244\pi\)
−0.900652 + 0.434541i \(0.856910\pi\)
\(390\) 0 0
\(391\) 389.388i 0.995876i
\(392\) 0 0
\(393\) 483.928 1.23137
\(394\) 0 0
\(395\) 251.939 145.457i 0.637820 0.368246i
\(396\) 0 0
\(397\) 447.692 + 258.475i 1.12769 + 0.651071i 0.943353 0.331792i \(-0.107653\pi\)
0.184336 + 0.982863i \(0.440987\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 205.943 356.704i 0.513574 0.889536i −0.486302 0.873791i \(-0.661654\pi\)
0.999876 0.0157456i \(-0.00501219\pi\)
\(402\) 0 0
\(403\) −159.799 276.780i −0.396524 0.686799i
\(404\) 0 0
\(405\) 462.977i 1.14315i
\(406\) 0 0
\(407\) 30.0589 0.0738547
\(408\) 0 0
\(409\) 149.391 86.2510i 0.365260 0.210883i −0.306126 0.951991i \(-0.599033\pi\)
0.671385 + 0.741108i \(0.265700\pi\)
\(410\) 0 0
\(411\) −197.417 113.979i −0.480333 0.277320i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −198.196 + 343.285i −0.477581 + 0.827194i
\(416\) 0 0
\(417\) −24.9548 43.2230i −0.0598436 0.103652i
\(418\) 0 0
\(419\) 96.5939i 0.230534i 0.993335 + 0.115267i \(0.0367724\pi\)
−0.993335 + 0.115267i \(0.963228\pi\)
\(420\) 0 0
\(421\) 233.377 0.554339 0.277170 0.960821i \(-0.410604\pi\)
0.277170 + 0.960821i \(0.410604\pi\)
\(422\) 0 0
\(423\) 82.3400 47.5390i 0.194657 0.112385i
\(424\) 0 0
\(425\) −42.2958 24.4195i −0.0995195 0.0574576i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 116.101 201.092i 0.270631 0.468746i
\(430\) 0 0
\(431\) −204.203 353.690i −0.473789 0.820627i 0.525761 0.850633i \(-0.323781\pi\)
−0.999550 + 0.0300058i \(0.990447\pi\)
\(432\) 0 0
\(433\) 345.865i 0.798765i 0.916784 + 0.399382i \(0.130775\pi\)
−0.916784 + 0.399382i \(0.869225\pi\)
\(434\) 0 0
\(435\) 577.872 1.32844
\(436\) 0 0
\(437\) 38.3659 22.1506i 0.0877939 0.0506878i
\(438\) 0 0
\(439\) 439.610 + 253.809i 1.00139 + 0.578152i 0.908659 0.417539i \(-0.137107\pi\)
0.0927303 + 0.995691i \(0.470441\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 360.233 623.941i 0.813166 1.40844i −0.0974713 0.995238i \(-0.531075\pi\)
0.910637 0.413207i \(-0.135591\pi\)
\(444\) 0 0
\(445\) 16.7157 + 28.9525i 0.0375634 + 0.0650618i
\(446\) 0 0
\(447\) 292.190i 0.653669i
\(448\) 0 0
\(449\) 363.598 0.809795 0.404898 0.914362i \(-0.367307\pi\)
0.404898 + 0.914362i \(0.367307\pi\)
\(450\) 0 0
\(451\) −532.700 + 307.554i −1.18115 + 0.681939i
\(452\) 0 0
\(453\) −609.827 352.084i −1.34620 0.777226i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −229.986 + 398.348i −0.503252 + 0.871659i 0.496741 + 0.867899i \(0.334530\pi\)
−0.999993 + 0.00375958i \(0.998803\pi\)
\(458\) 0 0
\(459\) 250.203 + 433.364i 0.545105 + 0.944149i
\(460\) 0 0
\(461\) 506.119i 1.09787i −0.835864 0.548936i \(-0.815033\pi\)
0.835864 0.548936i \(-0.184967\pi\)
\(462\) 0 0
\(463\) −12.6030 −0.0272204 −0.0136102 0.999907i \(-0.504332\pi\)
−0.0136102 + 0.999907i \(0.504332\pi\)
\(464\) 0 0
\(465\) 589.675 340.449i 1.26812 0.732149i
\(466\) 0 0
\(467\) 567.795 + 327.817i 1.21584 + 0.701963i 0.964025 0.265813i \(-0.0856404\pi\)
0.251811 + 0.967776i \(0.418974\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −200.154 + 346.677i −0.424956 + 0.736046i
\(472\) 0 0
\(473\) 125.627 + 217.593i 0.265597 + 0.460028i
\(474\) 0 0
\(475\) 5.55648i 0.0116978i
\(476\) 0 0
\(477\) −121.598 −0.254922
\(478\) 0 0
\(479\) 666.063 384.551i 1.39053 0.802821i 0.397154 0.917752i \(-0.369998\pi\)
0.993374 + 0.114931i \(0.0366646\pi\)
\(480\) 0 0
\(481\) −21.7434 12.5536i −0.0452046 0.0260989i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −216.296 + 374.636i −0.445972 + 0.772446i
\(486\) 0 0
\(487\) 207.184 + 358.853i 0.425429 + 0.736864i 0.996460 0.0840639i \(-0.0267900\pi\)
−0.571032 + 0.820928i \(0.693457\pi\)
\(488\) 0 0
\(489\) 993.980i 2.03268i
\(490\) 0 0
\(491\) 474.995 0.967403 0.483702 0.875233i \(-0.339292\pi\)
0.483702 + 0.875233i \(0.339292\pi\)
\(492\) 0 0
\(493\) 697.258 402.562i 1.41432 0.816556i
\(494\) 0 0
\(495\) 90.6155 + 52.3169i 0.183062 + 0.105691i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −22.1594 + 38.3812i −0.0444076 + 0.0769162i −0.887375 0.461049i \(-0.847473\pi\)
0.842967 + 0.537965i \(0.180807\pi\)
\(500\) 0 0
\(501\) 101.106 + 175.120i 0.201807 + 0.349541i
\(502\) 0 0
\(503\) 182.603i 0.363029i −0.983388 0.181514i \(-0.941900\pi\)
0.983388 0.181514i \(-0.0580999\pi\)
\(504\) 0 0
\(505\) 163.044 0.322859
\(506\) 0 0
\(507\) 326.505 188.508i 0.643995 0.371811i
\(508\) 0 0
\(509\) 577.993 + 333.704i 1.13555 + 0.655608i 0.945324 0.326133i \(-0.105746\pi\)
0.190222 + 0.981741i \(0.439079\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 28.4659 49.3045i 0.0554892 0.0961101i
\(514\) 0 0
\(515\) −317.304 549.586i −0.616124 1.06716i
\(516\) 0 0
\(517\) 357.242i 0.690991i
\(518\) 0 0
\(519\) 284.544 0.548255
\(520\) 0 0
\(521\) −401.675 + 231.907i −0.770969 + 0.445119i −0.833220 0.552942i \(-0.813505\pi\)
0.0622514 + 0.998060i \(0.480172\pi\)
\(522\) 0 0
\(523\) −216.499 124.996i −0.413956 0.238998i 0.278532 0.960427i \(-0.410152\pi\)
−0.692488 + 0.721429i \(0.743485\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 474.333 821.569i 0.900063 1.55895i
\(528\) 0 0
\(529\) 114.618 + 198.524i 0.216669 + 0.375281i
\(530\) 0 0
\(531\) 113.610i 0.213955i
\(532\) 0 0
\(533\) 513.779 0.963938
\(534\) 0 0
\(535\) 535.762 309.322i 1.00142 0.578173i
\(536\) 0 0
\(537\) −6.54076 3.77631i −0.0121802 0.00703223i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 196.044 339.558i 0.362373 0.627648i −0.625978 0.779841i \(-0.715300\pi\)
0.988351 + 0.152192i \(0.0486334\pi\)
\(542\) 0 0
\(543\) 12.7990 + 22.1685i 0.0235709 + 0.0408260i
\(544\) 0 0
\(545\) 480.507i 0.881665i
\(546\) 0 0
\(547\) −209.307 −0.382645 −0.191322 0.981527i \(-0.561278\pi\)
−0.191322 + 0.981527i \(0.561278\pi\)
\(548\) 0 0
\(549\) −165.390 + 95.4879i −0.301257 + 0.173931i
\(550\) 0 0
\(551\) −79.3280 45.8000i −0.143971 0.0831216i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 26.7452 46.3240i 0.0481895 0.0834666i
\(556\) 0 0
\(557\) −104.088 180.286i −0.186873 0.323674i 0.757333 0.653029i \(-0.226502\pi\)
−0.944206 + 0.329355i \(0.893169\pi\)
\(558\) 0 0
\(559\) 209.864i 0.375428i
\(560\) 0 0
\(561\) 689.245 1.22860
\(562\) 0 0
\(563\) 739.970 427.222i 1.31433 0.758831i 0.331523 0.943447i \(-0.392438\pi\)
0.982811 + 0.184617i \(0.0591044\pi\)
\(564\) 0 0
\(565\) −698.018 403.001i −1.23543 0.713276i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 477.948 827.831i 0.839979 1.45489i −0.0499316 0.998753i \(-0.515900\pi\)
0.889911 0.456134i \(-0.150766\pi\)
\(570\) 0 0
\(571\) 119.641 + 207.224i 0.209529 + 0.362915i 0.951566 0.307444i \(-0.0994736\pi\)
−0.742037 + 0.670359i \(0.766140\pi\)
\(572\) 0 0
\(573\) 122.024i 0.212956i
\(574\) 0 0
\(575\) 37.5980 0.0653878
\(576\) 0 0
\(577\) 185.304 106.985i 0.321150 0.185416i −0.330755 0.943717i \(-0.607303\pi\)
0.651905 + 0.758301i \(0.273970\pi\)
\(578\) 0 0
\(579\) −57.5637 33.2344i −0.0994191 0.0573997i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 228.444 395.676i 0.391842 0.678690i
\(584\) 0 0
\(585\) −43.6985 75.6880i −0.0746983 0.129381i
\(586\) 0 0
\(587\) 496.638i 0.846062i 0.906115 + 0.423031i \(0.139034\pi\)
−0.906115 + 0.423031i \(0.860966\pi\)
\(588\) 0 0
\(589\) −107.931 −0.183245
\(590\) 0 0
\(591\) −751.343 + 433.788i −1.27131 + 0.733990i
\(592\) 0 0
\(593\) 720.974 + 416.254i 1.21581 + 0.701947i 0.964018 0.265836i \(-0.0856478\pi\)
0.251789 + 0.967782i \(0.418981\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −20.5341 + 35.5660i −0.0343954 + 0.0595746i
\(598\) 0 0
\(599\) −281.615 487.772i −0.470142 0.814310i 0.529275 0.848450i \(-0.322464\pi\)
−0.999417 + 0.0341402i \(0.989131\pi\)
\(600\) 0 0
\(601\) 679.242i 1.13019i 0.825027 + 0.565093i \(0.191160\pi\)
−0.825027 + 0.565093i \(0.808840\pi\)
\(602\) 0 0
\(603\) −131.397 −0.217905
\(604\) 0 0
\(605\) 160.198 92.4901i 0.264789 0.152876i
\(606\) 0 0
\(607\) −45.8393 26.4653i −0.0755178 0.0436002i 0.461766 0.887002i \(-0.347216\pi\)
−0.537283 + 0.843402i \(0.680549\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 149.196 258.415i 0.244183 0.422938i
\(612\) 0 0
\(613\) −150.274 260.282i −0.245145 0.424604i 0.717027 0.697045i \(-0.245502\pi\)
−0.962173 + 0.272441i \(0.912169\pi\)
\(614\) 0 0
\(615\) 1094.60i 1.77983i
\(616\) 0 0
\(617\) −1186.18 −1.92250 −0.961249 0.275683i \(-0.911096\pi\)
−0.961249 + 0.275683i \(0.911096\pi\)
\(618\) 0 0
\(619\) −355.520 + 205.260i −0.574346 + 0.331599i −0.758883 0.651227i \(-0.774255\pi\)
0.184537 + 0.982826i \(0.440921\pi\)
\(620\) 0 0
\(621\) −333.619 192.615i −0.537229 0.310170i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 282.997 490.166i 0.452796 0.784266i
\(626\) 0 0
\(627\) −39.2082 67.9105i −0.0625329 0.108310i
\(628\) 0 0
\(629\) 74.5257i 0.118483i
\(630\) 0 0
\(631\) 743.980 1.17905 0.589524 0.807751i \(-0.299315\pi\)
0.589524 + 0.807751i \(0.299315\pi\)
\(632\) 0 0
\(633\) 550.650 317.918i 0.869905 0.502240i
\(634\) 0 0
\(635\) −110.078 63.5534i −0.173351 0.100084i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.485281 0.840532i 0.000759439 0.00131539i
\(640\) 0 0
\(641\) −257.179 445.447i −0.401215 0.694924i 0.592658 0.805454i \(-0.298079\pi\)
−0.993873 + 0.110530i \(0.964745\pi\)
\(642\) 0 0
\(643\) 514.076i 0.799497i 0.916625 + 0.399748i \(0.130903\pi\)
−0.916625 + 0.399748i \(0.869097\pi\)
\(644\) 0 0
\(645\) 447.113 0.693198
\(646\) 0 0
\(647\) −711.658 + 410.876i −1.09994 + 0.635048i −0.936204 0.351457i \(-0.885686\pi\)
−0.163732 + 0.986505i \(0.552353\pi\)
\(648\) 0 0
\(649\) −369.683 213.437i −0.569620 0.328870i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 494.933 857.249i 0.757937 1.31279i −0.185963 0.982557i \(-0.559541\pi\)
0.943901 0.330229i \(-0.107126\pi\)
\(654\) 0 0
\(655\) 342.189 + 592.688i 0.522426 + 0.904868i
\(656\) 0 0
\(657\) 5.01801i 0.00763777i
\(658\) 0 0
\(659\) −564.281 −0.856269 −0.428135 0.903715i \(-0.640829\pi\)
−0.428135 + 0.903715i \(0.640829\pi\)
\(660\) 0 0
\(661\) −355.800 + 205.421i −0.538275 + 0.310773i −0.744379 0.667757i \(-0.767255\pi\)
0.206105 + 0.978530i \(0.433921\pi\)
\(662\) 0 0
\(663\) −498.573 287.851i −0.751995 0.434164i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −309.907 + 536.774i −0.464628 + 0.804759i
\(668\) 0 0
\(669\) −459.477 795.838i −0.686812 1.18959i
\(670\) 0 0
\(671\) 717.565i 1.06940i
\(672\) 0 0
\(673\) −930.663 −1.38286 −0.691429 0.722445i \(-0.743018\pi\)
−0.691429 + 0.722445i \(0.743018\pi\)
\(674\) 0 0
\(675\) 41.8442 24.1588i 0.0619915 0.0357908i
\(676\) 0 0
\(677\) 122.521 + 70.7374i 0.180976 + 0.104487i 0.587751 0.809042i \(-0.300013\pi\)
−0.406775 + 0.913528i \(0.633347\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −640.986 + 1110.22i −0.941243 + 1.63028i
\(682\) 0 0
\(683\) −83.7960 145.139i −0.122688 0.212502i 0.798139 0.602474i \(-0.205818\pi\)
−0.920827 + 0.389972i \(0.872485\pi\)
\(684\) 0 0
\(685\) 322.380i 0.470628i
\(686\) 0 0
\(687\) −252.260 −0.367191
\(688\) 0 0
\(689\) −330.494 + 190.811i −0.479672 + 0.276939i
\(690\) 0 0
\(691\) −377.163 217.755i −0.545822 0.315130i 0.201613 0.979465i \(-0.435382\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 35.2914 61.1265i 0.0507790 0.0879518i
\(696\) 0 0
\(697\) 762.528 + 1320.74i 1.09401 + 1.89489i
\(698\) 0 0
\(699\) 328.997i 0.470668i
\(700\) 0 0
\(701\) 742.010 1.05850 0.529251 0.848465i \(-0.322473\pi\)
0.529251 + 0.848465i \(0.322473\pi\)
\(702\) 0 0
\(703\) −7.34294 + 4.23945i −0.0104451 + 0.00603051i
\(704\) 0 0
\(705\) 550.549 + 317.860i 0.780921 + 0.450865i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −58.7351 + 101.732i −0.0828421 + 0.143487i −0.904470 0.426538i \(-0.859733\pi\)
0.821628 + 0.570025i \(0.193066\pi\)
\(710\) 0 0
\(711\) −73.4975 127.301i −0.103372 0.179046i
\(712\) 0 0
\(713\) 730.317i 1.02429i
\(714\) 0 0
\(715\) 328.382 0.459275
\(716\) 0 0
\(717\) −1284.41 + 741.554i −1.79136 + 1.03424i
\(718\) 0 0
\(719\) −35.0808 20.2539i −0.0487911 0.0281695i 0.475406 0.879766i \(-0.342301\pi\)
−0.524197 + 0.851597i \(0.675634\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −449.280 + 778.175i −0.621411 + 1.07631i
\(724\) 0 0
\(725\) −38.8701 67.3249i −0.0536139 0.0928620i
\(726\) 0 0
\(727\) 362.922i 0.499205i 0.968348 + 0.249603i \(0.0803000\pi\)
−0.968348 + 0.249603i \(0.919700\pi\)
\(728\) 0 0
\(729\) −442.608 −0.607144
\(730\) 0 0
\(731\) 539.484 311.471i 0.738008 0.426089i
\(732\) 0 0
\(733\) 493.431 + 284.882i 0.673166 + 0.388653i 0.797275 0.603616i \(-0.206274\pi\)
−0.124109 + 0.992269i \(0.539607\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 246.853 427.562i 0.334943 0.580138i
\(738\) 0 0
\(739\) −22.4695 38.9183i −0.0304053 0.0526635i 0.850422 0.526101i \(-0.176346\pi\)
−0.880828 + 0.473437i \(0.843013\pi\)
\(740\) 0 0
\(741\) 65.4984i 0.0883919i
\(742\) 0 0
\(743\) −1256.37 −1.69094 −0.845472 0.534019i \(-0.820681\pi\)
−0.845472 + 0.534019i \(0.820681\pi\)
\(744\) 0 0
\(745\) −357.858 + 206.609i −0.480346 + 0.277328i
\(746\) 0 0
\(747\) 173.458 + 100.146i 0.232206 + 0.134064i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 524.217 907.971i 0.698026 1.20902i −0.271124 0.962544i \(-0.587395\pi\)
0.969150 0.246472i \(-0.0792713\pi\)
\(752\) 0 0
\(753\) −661.045 1144.96i −0.877882 1.52054i
\(754\) 0 0
\(755\) 995.843i 1.31900i
\(756\) 0 0
\(757\) 1089.95 1.43983 0.719914 0.694063i \(-0.244181\pi\)
0.719914 + 0.694063i \(0.244181\pi\)
\(758\) 0 0
\(759\) −459.518 + 265.303i −0.605425 + 0.349542i
\(760\) 0 0
\(761\) −192.462 111.118i −0.252907 0.146016i 0.368188 0.929751i \(-0.379978\pi\)
−0.621095 + 0.783736i \(0.713312\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 129.711 224.665i 0.169556 0.293680i
\(766\) 0 0
\(767\) 178.276 + 308.784i 0.232433 + 0.402586i
\(768\) 0 0
\(769\) 776.217i 1.00938i −0.863299 0.504692i \(-0.831606\pi\)
0.863299 0.504692i \(-0.168394\pi\)
\(770\) 0 0
\(771\) 112.856 0.146376
\(772\) 0 0
\(773\) 829.302 478.798i 1.07284 0.619402i 0.143881 0.989595i \(-0.454042\pi\)
0.928955 + 0.370193i \(0.120709\pi\)
\(774\) 0 0
\(775\) −79.3280 45.8000i −0.102359 0.0590968i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 86.7538 150.262i 0.111366 0.192891i
\(780\) 0 0
\(781\) 1.82338 + 3.15818i 0.00233467 + 0.00404377i
\(782\) 0 0
\(783\) 796.529i 1.01728i
\(784\) 0 0
\(785\) −566.122 −0.721174
\(786\) 0 0
\(787\) 519.318 299.828i 0.659871 0.380976i −0.132357 0.991202i \(-0.542255\pi\)
0.792228 + 0.610226i \(0.208921\pi\)
\(788\) 0 0
\(789\) −1176.27 679.118i −1.49083 0.860733i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −299.678 + 519.058i −0.377905 + 0.654550i
\(794\) 0 0
\(795\) −406.520 704.113i −0.511346 0.885677i
\(796\) 0 0
\(797\) 431.874i 0.541875i −0.962597 0.270938i \(-0.912666\pi\)
0.962597 0.270938i \(-0.0873337\pi\)
\(798\) 0 0
\(799\) 885.720 1.10854
\(800\) 0 0
\(801\) 14.6293 8.44623i 0.0182638 0.0105446i
\(802\) 0 0
\(803\) −16.3285 9.42724i −0.0203343 0.0117400i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 22.7300 39.3695i 0.0281661 0.0487851i
\(808\) 0 0
\(809\) 496.153 + 859.362i 0.613292 + 1.06225i 0.990682 + 0.136198i \(0.0434882\pi\)
−0.377390 + 0.926054i \(0.623178\pi\)
\(810\) 0 0
\(811\) 1364.92i 1.68301i −0.540252 0.841503i \(-0.681671\pi\)
0.540252 0.841503i \(-0.318329\pi\)
\(812\) 0 0
\(813\) −1687.29 −2.07538
\(814\) 0 0
\(815\) −1217.37 + 702.850i −1.49371 + 0.862393i
\(816\) 0 0
\(817\) −61.3778 35.4365i −0.0751259 0.0433739i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −287.745 + 498.389i −0.350481 + 0.607051i −0.986334 0.164759i \(-0.947315\pi\)
0.635853 + 0.771811i \(0.280649\pi\)
\(822\) 0 0
\(823\) 301.169 + 521.639i 0.365940 + 0.633827i 0.988927 0.148406i \(-0.0474142\pi\)
−0.622987 + 0.782233i \(0.714081\pi\)
\(824\) 0 0
\(825\) 66.5512i 0.0806681i
\(826\) 0 0
\(827\) −52.3717 −0.0633273 −0.0316637 0.999499i \(-0.510081\pi\)
−0.0316637 + 0.999499i \(0.510081\pi\)
\(828\) 0 0
\(829\) 762.093 439.995i 0.919292 0.530754i 0.0358830 0.999356i \(-0.488576\pi\)
0.883409 + 0.468602i \(0.155242\pi\)
\(830\) 0 0
\(831\) 1406.78 + 812.204i 1.69287 + 0.977381i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −142.985 + 247.657i −0.171239 + 0.296595i
\(836\) 0 0
\(837\) 469.269 + 812.798i 0.560656 + 0.971085i
\(838\) 0 0
\(839\) 1400.14i 1.66882i −0.551147 0.834408i \(-0.685810\pi\)
0.551147 0.834408i \(-0.314190\pi\)
\(840\) 0 0
\(841\) 440.568 0.523862
\(842\) 0 0
\(843\) 489.516 282.622i 0.580683 0.335257i
\(844\) 0 0
\(845\) 461.748 + 266.591i 0.546448 + 0.315492i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −472.780 + 818.879i −0.556867 + 0.964522i
\(850\) 0 0
\(851\) 28.6863 + 49.6861i 0.0337089 + 0.0583856i
\(852\) 0 0
\(853\) 1243.31i 1.45757i −0.684741 0.728786i \(-0.740085\pi\)
0.684741 0.728786i \(-0.259915\pi\)
\(854\) 0 0
\(855\) −29.5147 −0.0345201
\(856\) 0 0
\(857\) 609.720 352.022i 0.711458 0.410761i −0.100143 0.994973i \(-0.531930\pi\)
0.811601 + 0.584213i \(0.198597\pi\)
\(858\) 0 0
\(859\) −21.4346 12.3753i −0.0249529 0.0144066i 0.487472 0.873139i \(-0.337919\pi\)
−0.512425 + 0.858732i \(0.671253\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −794.149 + 1375.51i −0.920219 + 1.59387i −0.121145 + 0.992635i \(0.538656\pi\)
−0.799075 + 0.601232i \(0.794677\pi\)
\(864\) 0 0
\(865\) 201.203 + 348.494i 0.232605 + 0.402883i
\(866\) 0 0
\(867\) 732.478i 0.844842i
\(868\) 0 0
\(869\) 552.313 0.635573
\(870\) 0 0
\(871\) −357.127 + 206.188i −0.410020 + 0.236725i
\(872\) 0 0
\(873\) 189.299 + 109.292i 0.216837 + 0.125191i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −607.841 + 1052.81i −0.693091 + 1.20047i 0.277729 + 0.960659i \(0.410418\pi\)
−0.970820 + 0.239809i \(0.922915\pi\)
\(878\) 0 0
\(879\) 216.296 + 374.636i 0.246071 + 0.426208i
\(880\) 0 0
\(881\) 858.799i 0.974800i −0.873179 0.487400i \(-0.837945\pi\)
0.873179 0.487400i \(-0.162055\pi\)
\(882\) 0 0
\(883\) −974.382 −1.10349 −0.551745 0.834013i \(-0.686038\pi\)
−0.551745 + 0.834013i \(0.686038\pi\)
\(884\) 0 0
\(885\) −657.858 + 379.815i −0.743343 + 0.429169i
\(886\) 0 0
\(887\) 1150.68 + 664.346i 1.29727 + 0.748980i 0.979932 0.199332i \(-0.0638771\pi\)
0.317340 + 0.948312i \(0.397210\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −439.491 + 761.221i −0.493256 + 0.854344i
\(892\) 0 0
\(893\) −50.3848 87.2690i −0.0564219 0.0977256i
\(894\) 0 0
\(895\) 10.6810i 0.0119341i
\(896\) 0 0
\(897\) 443.196 0.494087
\(898\) 0 0
\(899\) 1307.74 755.026i 1.45467 0.839851i
\(900\) 0 0
\(901\) −981.010 566.386i −1.08880 0.628620i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −18.1005 + 31.3510i −0.0200006 + 0.0346420i
\(906\) 0 0
\(907\) −135.319 234.379i −0.149194 0.258411i 0.781736 0.623610i \(-0.214334\pi\)
−0.930930 + 0.365198i \(0.881001\pi\)
\(908\) 0 0
\(909\) 82.3838i 0.0906312i
\(910\) 0 0
\(911\) 399.025 0.438008 0.219004 0.975724i \(-0.429719\pi\)
0.219004 + 0.975724i \(0.429719\pi\)
\(912\) 0 0
\(913\) −651.742 + 376.284i −0.713847 + 0.412140i
\(914\) 0 0
\(915\) −1105.84 638.460i −1.20857 0.697770i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.03658 1.79541i 0.00112794 0.00195366i −0.865461 0.500977i \(-0.832974\pi\)
0.866589 + 0.499023i \(0.166308\pi\)
\(920\) 0 0
\(921\) 867.115 + 1501.89i 0.941493 + 1.63071i
\(922\) 0 0
\(923\) 3.04601i 0.00330011i
\(924\) 0 0
\(925\) −7.19596 −0.00777942
\(926\) 0 0
\(927\) −277.698 + 160.329i −0.299567 + 0.172955i
\(928\) 0 0
\(929\) 942.558 + 544.186i 1.01459 + 0.585776i 0.912533 0.409002i \(-0.134123\pi\)
0.102060 + 0.994778i \(0.467456\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −370.122 + 641.070i −0.396701 + 0.687106i
\(934\) 0 0
\(935\) 487.370 + 844.149i 0.521251 + 0.902833i
\(936\) 0 0
\(937\) 930.797i 0.993380i 0.867928 + 0.496690i \(0.165451\pi\)
−0.867928 + 0.496690i \(0.834549\pi\)
\(938\) 0 0
\(939\) −1721.73 −1.83358
\(940\) 0 0
\(941\) −546.168 + 315.330i −0.580412 + 0.335101i −0.761297 0.648403i \(-0.775437\pi\)
0.180885 + 0.983504i \(0.442104\pi\)
\(942\) 0 0
\(943\) −1016.75 587.021i −1.07821 0.622504i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 199.378 345.333i 0.210537 0.364660i −0.741346 0.671123i \(-0.765812\pi\)
0.951883 + 0.306463i \(0.0991455\pi\)
\(948\) 0 0
\(949\) 7.87424 + 13.6386i 0.00829741 + 0.0143715i
\(950\) 0 0
\(951\) 976.765i 1.02709i
\(952\) 0 0
\(953\) −288.362 −0.302583 −0.151292 0.988489i \(-0.548343\pi\)
−0.151292 + 0.988489i \(0.548343\pi\)
\(954\) 0 0
\(955\) −149.448 + 86.2837i −0.156490 + 0.0903494i
\(956\) 0 0
\(957\) 950.130 + 548.558i 0.992821 + 0.573205i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 409.137 708.645i 0.425741 0.737404i
\(962\) 0 0
\(963\) −156.296 270.713i −0.162302 0.281115i
\(964\) 0 0
\(965\) 94.0011i 0.0974104i
\(966\) 0 0
\(967\) 643.166 0.665114 0.332557 0.943083i \(-0.392089\pi\)
0.332557 + 0.943083i \(0.392089\pi\)
\(968\) 0 0
\(969\) −168.372 + 97.2098i −0.173759 + 0.100320i
\(970\) 0 0
\(971\) 621.221 + 358.662i 0.639775 + 0.369374i 0.784528 0.620094i \(-0.212905\pi\)
−0.144753 + 0.989468i \(0.546239\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −27.7939 + 48.1405i −0.0285066 + 0.0493749i
\(976\) 0 0
\(977\) −701.224 1214.56i −0.717732 1.24315i −0.961896 0.273414i \(-0.911847\pi\)
0.244165 0.969734i \(-0.421486\pi\)
\(978\) 0 0
\(979\) 63.4711i 0.0648325i
\(980\) 0 0
\(981\) −242.794 −0.247496
\(982\) 0 0
\(983\) 81.3360 46.9593i 0.0827426 0.0477715i −0.458058 0.888922i \(-0.651455\pi\)
0.540800 + 0.841151i \(0.318121\pi\)
\(984\) 0 0
\(985\) −1062.56 613.469i −1.07874 0.622811i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −239.782 + 415.314i −0.242449 + 0.419933i
\(990\) 0 0
\(991\) −48.8314 84.5784i −0.0492749 0.0853466i 0.840336 0.542066i \(-0.182358\pi\)
−0.889611 + 0.456719i \(0.849024\pi\)
\(992\) 0 0
\(993\) 422.202i 0.425178i
\(994\) 0 0
\(995\) −58.0791 −0.0583709
\(996\) 0 0
\(997\) −234.779 + 135.550i −0.235485 + 0.135957i −0.613100 0.790005i \(-0.710078\pi\)
0.377615 + 0.925963i \(0.376744\pi\)
\(998\) 0 0
\(999\) 63.8522 + 36.8651i 0.0639161 + 0.0369020i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.3.s.h.705.4 8
4.3 odd 2 49.3.d.b.19.3 8
7.2 even 3 784.3.c.c.97.4 4
7.3 odd 6 inner 784.3.s.h.129.4 8
7.4 even 3 inner 784.3.s.h.129.1 8
7.5 odd 6 784.3.c.c.97.1 4
7.6 odd 2 inner 784.3.s.h.705.1 8
12.11 even 2 441.3.m.l.19.1 8
28.3 even 6 49.3.d.b.31.3 8
28.11 odd 6 49.3.d.b.31.4 8
28.19 even 6 49.3.b.a.48.2 yes 4
28.23 odd 6 49.3.b.a.48.1 4
28.27 even 2 49.3.d.b.19.4 8
84.11 even 6 441.3.m.l.325.2 8
84.23 even 6 441.3.d.e.244.4 4
84.47 odd 6 441.3.d.e.244.3 4
84.59 odd 6 441.3.m.l.325.1 8
84.83 odd 2 441.3.m.l.19.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
49.3.b.a.48.1 4 28.23 odd 6
49.3.b.a.48.2 yes 4 28.19 even 6
49.3.d.b.19.3 8 4.3 odd 2
49.3.d.b.19.4 8 28.27 even 2
49.3.d.b.31.3 8 28.3 even 6
49.3.d.b.31.4 8 28.11 odd 6
441.3.d.e.244.3 4 84.47 odd 6
441.3.d.e.244.4 4 84.23 even 6
441.3.m.l.19.1 8 12.11 even 2
441.3.m.l.19.2 8 84.83 odd 2
441.3.m.l.325.1 8 84.59 odd 6
441.3.m.l.325.2 8 84.11 even 6
784.3.c.c.97.1 4 7.5 odd 6
784.3.c.c.97.4 4 7.2 even 3
784.3.s.h.129.1 8 7.4 even 3 inner
784.3.s.h.129.4 8 7.3 odd 6 inner
784.3.s.h.705.1 8 7.6 odd 2 inner
784.3.s.h.705.4 8 1.1 even 1 trivial