Properties

Label 784.3.s.h.705.1
Level $784$
Weight $3$
Character 784.705
Analytic conductor $21.362$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,3,Mod(129,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.129"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 784.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.3624527258\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.339738624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 14x^{4} - 8x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 7^{2} \)
Twist minimal: no (minimal twist has level 49)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 705.1
Root \(-0.662827 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 784.705
Dual form 784.3.s.h.129.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.92586 + 1.68925i) q^{3} +(-4.13779 - 2.38896i) q^{5} +(1.20711 - 2.09077i) q^{9} +(4.53553 + 7.85578i) q^{11} +7.57675i q^{13} +16.1421 q^{15} +(-19.4770 + 11.2451i) q^{17} +(2.21593 + 1.27937i) q^{19} +(-8.65685 + 14.9941i) q^{23} +(-1.08579 - 1.88064i) q^{25} -22.2500i q^{27} +35.7990 q^{29} +(-36.5302 + 21.0907i) q^{31} +(-26.5407 - 15.3233i) q^{33} +(1.65685 - 2.86976i) q^{37} +(-12.7990 - 22.1685i) q^{39} -67.8100i q^{41} +27.6985 q^{43} +(-9.98951 + 5.76745i) q^{45} +(-34.1063 - 19.6913i) q^{47} +(37.9914 - 65.8030i) q^{51} +(-25.1838 - 43.6196i) q^{53} -43.3407i q^{55} -8.64466 q^{57} +(40.7541 - 23.5294i) q^{59} +(68.5067 + 39.5524i) q^{61} +(18.1005 - 31.3510i) q^{65} +(-27.2132 - 47.1347i) q^{67} -58.4942i q^{69} +0.402020 q^{71} +(1.80006 - 1.03926i) q^{73} +(6.35372 + 3.66832i) q^{75} +(30.4437 - 52.7299i) q^{79} +(48.4497 + 83.9174i) q^{81} -82.9634i q^{83} +107.456 q^{85} +(-104.743 + 60.4733i) q^{87} +(-6.05966 - 3.49854i) q^{89} +(71.2548 - 123.417i) q^{93} +(-6.11270 - 10.5875i) q^{95} -90.5402i q^{97} +21.8995 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{9} + 8 q^{11} + 16 q^{15} - 24 q^{23} - 20 q^{25} + 128 q^{29} - 32 q^{37} + 56 q^{39} - 16 q^{43} + 72 q^{51} + 104 q^{53} - 352 q^{57} + 224 q^{65} - 48 q^{67} + 320 q^{71} + 368 q^{79} + 348 q^{81}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.92586 + 1.68925i −0.975287 + 0.563082i −0.900844 0.434143i \(-0.857051\pi\)
−0.0744430 + 0.997225i \(0.523718\pi\)
\(4\) 0 0
\(5\) −4.13779 2.38896i −0.827558 0.477791i 0.0254576 0.999676i \(-0.491896\pi\)
−0.853016 + 0.521885i \(0.825229\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.20711 2.09077i 0.134123 0.232308i
\(10\) 0 0
\(11\) 4.53553 + 7.85578i 0.412321 + 0.714161i 0.995143 0.0984386i \(-0.0313848\pi\)
−0.582822 + 0.812600i \(0.698051\pi\)
\(12\) 0 0
\(13\) 7.57675i 0.582827i 0.956597 + 0.291413i \(0.0941255\pi\)
−0.956597 + 0.291413i \(0.905875\pi\)
\(14\) 0 0
\(15\) 16.1421 1.07614
\(16\) 0 0
\(17\) −19.4770 + 11.2451i −1.14571 + 0.661475i −0.947838 0.318754i \(-0.896736\pi\)
−0.197870 + 0.980228i \(0.563402\pi\)
\(18\) 0 0
\(19\) 2.21593 + 1.27937i 0.116628 + 0.0673351i 0.557179 0.830392i \(-0.311884\pi\)
−0.440551 + 0.897727i \(0.645217\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.65685 + 14.9941i −0.376385 + 0.651918i −0.990533 0.137273i \(-0.956166\pi\)
0.614148 + 0.789191i \(0.289500\pi\)
\(24\) 0 0
\(25\) −1.08579 1.88064i −0.0434315 0.0752255i
\(26\) 0 0
\(27\) 22.2500i 0.824075i
\(28\) 0 0
\(29\) 35.7990 1.23445 0.617224 0.786788i \(-0.288257\pi\)
0.617224 + 0.786788i \(0.288257\pi\)
\(30\) 0 0
\(31\) −36.5302 + 21.0907i −1.17839 + 0.680346i −0.955642 0.294530i \(-0.904837\pi\)
−0.222751 + 0.974875i \(0.571504\pi\)
\(32\) 0 0
\(33\) −26.5407 15.3233i −0.804263 0.464341i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.65685 2.86976i 0.0447798 0.0775610i −0.842767 0.538279i \(-0.819075\pi\)
0.887547 + 0.460718i \(0.152408\pi\)
\(38\) 0 0
\(39\) −12.7990 22.1685i −0.328179 0.568423i
\(40\) 0 0
\(41\) 67.8100i 1.65390i −0.562274 0.826951i \(-0.690074\pi\)
0.562274 0.826951i \(-0.309926\pi\)
\(42\) 0 0
\(43\) 27.6985 0.644151 0.322075 0.946714i \(-0.395620\pi\)
0.322075 + 0.946714i \(0.395620\pi\)
\(44\) 0 0
\(45\) −9.98951 + 5.76745i −0.221989 + 0.128166i
\(46\) 0 0
\(47\) −34.1063 19.6913i −0.725667 0.418964i 0.0911682 0.995836i \(-0.470940\pi\)
−0.816835 + 0.576872i \(0.804273\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 37.9914 65.8030i 0.744929 1.29025i
\(52\) 0 0
\(53\) −25.1838 43.6196i −0.475165 0.823011i 0.524430 0.851454i \(-0.324278\pi\)
−0.999595 + 0.0284429i \(0.990945\pi\)
\(54\) 0 0
\(55\) 43.3407i 0.788014i
\(56\) 0 0
\(57\) −8.64466 −0.151661
\(58\) 0 0
\(59\) 40.7541 23.5294i 0.690748 0.398803i −0.113144 0.993579i \(-0.536092\pi\)
0.803892 + 0.594775i \(0.202759\pi\)
\(60\) 0 0
\(61\) 68.5067 + 39.5524i 1.12306 + 0.648400i 0.942181 0.335105i \(-0.108772\pi\)
0.180880 + 0.983505i \(0.442105\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 18.1005 31.3510i 0.278469 0.482323i
\(66\) 0 0
\(67\) −27.2132 47.1347i −0.406167 0.703502i 0.588289 0.808651i \(-0.299802\pi\)
−0.994457 + 0.105148i \(0.966468\pi\)
\(68\) 0 0
\(69\) 58.4942i 0.847743i
\(70\) 0 0
\(71\) 0.402020 0.00566226 0.00283113 0.999996i \(-0.499099\pi\)
0.00283113 + 0.999996i \(0.499099\pi\)
\(72\) 0 0
\(73\) 1.80006 1.03926i 0.0246583 0.0142365i −0.487620 0.873056i \(-0.662135\pi\)
0.512278 + 0.858819i \(0.328802\pi\)
\(74\) 0 0
\(75\) 6.35372 + 3.66832i 0.0847163 + 0.0489110i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 30.4437 52.7299i 0.385363 0.667468i −0.606457 0.795116i \(-0.707410\pi\)
0.991819 + 0.127649i \(0.0407430\pi\)
\(80\) 0 0
\(81\) 48.4497 + 83.9174i 0.598145 + 1.03602i
\(82\) 0 0
\(83\) 82.9634i 0.999560i −0.866152 0.499780i \(-0.833414\pi\)
0.866152 0.499780i \(-0.166586\pi\)
\(84\) 0 0
\(85\) 107.456 1.26419
\(86\) 0 0
\(87\) −104.743 + 60.4733i −1.20394 + 0.695096i
\(88\) 0 0
\(89\) −6.05966 3.49854i −0.0680860 0.0393095i 0.465571 0.885011i \(-0.345849\pi\)
−0.533657 + 0.845701i \(0.679182\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 71.2548 123.417i 0.766181 1.32706i
\(94\) 0 0
\(95\) −6.11270 10.5875i −0.0643442 0.111447i
\(96\) 0 0
\(97\) 90.5402i 0.933404i −0.884415 0.466702i \(-0.845442\pi\)
0.884415 0.466702i \(-0.154558\pi\)
\(98\) 0 0
\(99\) 21.8995 0.221207
\(100\) 0 0
\(101\) −29.5527 + 17.0622i −0.292601 + 0.168933i −0.639114 0.769112i \(-0.720699\pi\)
0.346513 + 0.938045i \(0.387366\pi\)
\(102\) 0 0
\(103\) 115.026 + 66.4105i 1.11676 + 0.644763i 0.940572 0.339594i \(-0.110290\pi\)
0.176189 + 0.984356i \(0.443623\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 64.7401 112.133i 0.605048 1.04797i −0.386996 0.922081i \(-0.626487\pi\)
0.992044 0.125892i \(-0.0401793\pi\)
\(108\) 0 0
\(109\) −50.2843 87.0949i −0.461324 0.799036i 0.537704 0.843134i \(-0.319292\pi\)
−0.999027 + 0.0440980i \(0.985959\pi\)
\(110\) 0 0
\(111\) 11.1953i 0.100859i
\(112\) 0 0
\(113\) −168.693 −1.49286 −0.746431 0.665463i \(-0.768234\pi\)
−0.746431 + 0.665463i \(0.768234\pi\)
\(114\) 0 0
\(115\) 71.6405 41.3617i 0.622961 0.359667i
\(116\) 0 0
\(117\) 15.8412 + 9.14594i 0.135395 + 0.0781704i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 19.3579 33.5288i 0.159982 0.277098i
\(122\) 0 0
\(123\) 114.548 + 198.402i 0.931282 + 1.61303i
\(124\) 0 0
\(125\) 129.823i 1.03859i
\(126\) 0 0
\(127\) −26.6030 −0.209473 −0.104736 0.994500i \(-0.533400\pi\)
−0.104736 + 0.994500i \(0.533400\pi\)
\(128\) 0 0
\(129\) −81.0419 + 46.7896i −0.628232 + 0.362710i
\(130\) 0 0
\(131\) −124.048 71.6189i −0.946928 0.546709i −0.0548030 0.998497i \(-0.517453\pi\)
−0.892125 + 0.451788i \(0.850786\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −53.1543 + 92.0660i −0.393736 + 0.681970i
\(136\) 0 0
\(137\) −33.7365 58.4334i −0.246252 0.426521i 0.716231 0.697864i \(-0.245866\pi\)
−0.962483 + 0.271342i \(0.912532\pi\)
\(138\) 0 0
\(139\) 14.7727i 0.106279i 0.998587 + 0.0531394i \(0.0169228\pi\)
−0.998587 + 0.0531394i \(0.983077\pi\)
\(140\) 0 0
\(141\) 133.054 0.943644
\(142\) 0 0
\(143\) −59.5212 + 34.3646i −0.416232 + 0.240312i
\(144\) 0 0
\(145\) −148.129 85.5222i −1.02158 0.589808i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −43.2426 + 74.8985i −0.290219 + 0.502674i −0.973861 0.227143i \(-0.927062\pi\)
0.683642 + 0.729817i \(0.260395\pi\)
\(150\) 0 0
\(151\) −104.213 180.503i −0.690154 1.19538i −0.971787 0.235859i \(-0.924210\pi\)
0.281634 0.959522i \(-0.409124\pi\)
\(152\) 0 0
\(153\) 54.2960i 0.354876i
\(154\) 0 0
\(155\) 201.539 1.30025
\(156\) 0 0
\(157\) 102.613 59.2437i 0.653586 0.377348i −0.136243 0.990676i \(-0.543503\pi\)
0.789829 + 0.613327i \(0.210169\pi\)
\(158\) 0 0
\(159\) 147.368 + 85.0832i 0.926845 + 0.535114i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −147.104 + 254.792i −0.902479 + 1.56314i −0.0782130 + 0.996937i \(0.524921\pi\)
−0.824266 + 0.566203i \(0.808412\pi\)
\(164\) 0 0
\(165\) 73.2132 + 126.809i 0.443716 + 0.768539i
\(166\) 0 0
\(167\) 59.8525i 0.358398i −0.983813 0.179199i \(-0.942649\pi\)
0.983813 0.179199i \(-0.0573506\pi\)
\(168\) 0 0
\(169\) 111.593 0.660313
\(170\) 0 0
\(171\) 5.34972 3.08866i 0.0312849 0.0180624i
\(172\) 0 0
\(173\) −72.9386 42.1111i −0.421610 0.243417i 0.274156 0.961685i \(-0.411602\pi\)
−0.695766 + 0.718268i \(0.744935\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −79.4939 + 137.687i −0.449118 + 0.777895i
\(178\) 0 0
\(179\) −1.11775 1.93600i −0.00624441 0.0108156i 0.862886 0.505398i \(-0.168654\pi\)
−0.869131 + 0.494582i \(0.835321\pi\)
\(180\) 0 0
\(181\) 7.57675i 0.0418605i −0.999781 0.0209302i \(-0.993337\pi\)
0.999781 0.0209302i \(-0.00666279\pi\)
\(182\) 0 0
\(183\) −267.255 −1.46041
\(184\) 0 0
\(185\) −13.7114 + 7.91630i −0.0741159 + 0.0427908i
\(186\) 0 0
\(187\) −176.677 102.005i −0.944799 0.545480i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.0589 + 31.2789i −0.0945491 + 0.163764i −0.909420 0.415878i \(-0.863474\pi\)
0.814871 + 0.579642i \(0.196808\pi\)
\(192\) 0 0
\(193\) −9.83705 17.0383i −0.0509692 0.0882812i 0.839415 0.543491i \(-0.182898\pi\)
−0.890384 + 0.455210i \(0.849564\pi\)
\(194\) 0 0
\(195\) 122.305i 0.627204i
\(196\) 0 0
\(197\) −256.794 −1.30352 −0.651761 0.758424i \(-0.725970\pi\)
−0.651761 + 0.758424i \(0.725970\pi\)
\(198\) 0 0
\(199\) 10.5272 6.07787i 0.0529004 0.0305421i −0.473317 0.880892i \(-0.656943\pi\)
0.526217 + 0.850350i \(0.323610\pi\)
\(200\) 0 0
\(201\) 159.244 + 91.9396i 0.792259 + 0.457411i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −161.995 + 280.583i −0.790219 + 1.36870i
\(206\) 0 0
\(207\) 20.8995 + 36.1990i 0.100964 + 0.174874i
\(208\) 0 0
\(209\) 23.2104i 0.111055i
\(210\) 0 0
\(211\) 188.201 0.891948 0.445974 0.895046i \(-0.352857\pi\)
0.445974 + 0.895046i \(0.352857\pi\)
\(212\) 0 0
\(213\) −1.17626 + 0.679111i −0.00552232 + 0.00318832i
\(214\) 0 0
\(215\) −114.611 66.1704i −0.533072 0.307769i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −3.51115 + 6.08149i −0.0160326 + 0.0277693i
\(220\) 0 0
\(221\) −85.2010 147.572i −0.385525 0.667749i
\(222\) 0 0
\(223\) 272.001i 1.21974i 0.792503 + 0.609868i \(0.208778\pi\)
−0.792503 + 0.609868i \(0.791222\pi\)
\(224\) 0 0
\(225\) −5.24264 −0.0233006
\(226\) 0 0
\(227\) 328.614 189.726i 1.44764 0.835795i 0.449299 0.893381i \(-0.351674\pi\)
0.998341 + 0.0575860i \(0.0183403\pi\)
\(228\) 0 0
\(229\) 64.6630 + 37.3332i 0.282371 + 0.163027i 0.634496 0.772926i \(-0.281208\pi\)
−0.352125 + 0.935953i \(0.614541\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −48.6899 + 84.3333i −0.208969 + 0.361946i −0.951390 0.307988i \(-0.900344\pi\)
0.742421 + 0.669934i \(0.233678\pi\)
\(234\) 0 0
\(235\) 94.0833 + 162.957i 0.400354 + 0.693434i
\(236\) 0 0
\(237\) 205.707i 0.867963i
\(238\) 0 0
\(239\) −438.985 −1.83676 −0.918378 0.395703i \(-0.870501\pi\)
−0.918378 + 0.395703i \(0.870501\pi\)
\(240\) 0 0
\(241\) 230.332 132.982i 0.955735 0.551794i 0.0608773 0.998145i \(-0.480610\pi\)
0.894858 + 0.446351i \(0.147277\pi\)
\(242\) 0 0
\(243\) −110.093 63.5620i −0.453056 0.261572i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.69343 + 16.7895i −0.0392447 + 0.0679738i
\(248\) 0 0
\(249\) 140.146 + 242.739i 0.562834 + 0.974857i
\(250\) 0 0
\(251\) 391.326i 1.55907i 0.626361 + 0.779533i \(0.284543\pi\)
−0.626361 + 0.779533i \(0.715457\pi\)
\(252\) 0 0
\(253\) −157.054 −0.620766
\(254\) 0 0
\(255\) −314.401 + 181.519i −1.23294 + 0.711841i
\(256\) 0 0
\(257\) −28.9289 16.7021i −0.112564 0.0649887i 0.442661 0.896689i \(-0.354034\pi\)
−0.555225 + 0.831700i \(0.687368\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 43.2132 74.8475i 0.165568 0.286772i
\(262\) 0 0
\(263\) −201.012 348.163i −0.764305 1.32381i −0.940613 0.339480i \(-0.889749\pi\)
0.176308 0.984335i \(-0.443584\pi\)
\(264\) 0 0
\(265\) 240.652i 0.908119i
\(266\) 0 0
\(267\) 23.6396 0.0885379
\(268\) 0 0
\(269\) −11.6530 + 6.72786i −0.0433197 + 0.0250106i −0.521503 0.853249i \(-0.674629\pi\)
0.478184 + 0.878260i \(0.341295\pi\)
\(270\) 0 0
\(271\) 432.511 + 249.710i 1.59598 + 0.921440i 0.992251 + 0.124250i \(0.0396525\pi\)
0.603729 + 0.797190i \(0.293681\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.84924 17.0594i 0.0358154 0.0620341i
\(276\) 0 0
\(277\) 240.404 + 416.392i 0.867885 + 1.50322i 0.864154 + 0.503228i \(0.167854\pi\)
0.00373101 + 0.999993i \(0.498812\pi\)
\(278\) 0 0
\(279\) 101.835i 0.365000i
\(280\) 0 0
\(281\) 167.307 0.595397 0.297699 0.954660i \(-0.403781\pi\)
0.297699 + 0.954660i \(0.403781\pi\)
\(282\) 0 0
\(283\) 242.380 139.938i 0.856467 0.494481i −0.00636072 0.999980i \(-0.502025\pi\)
0.862828 + 0.505498i \(0.168691\pi\)
\(284\) 0 0
\(285\) 35.7698 + 20.6517i 0.125508 + 0.0724621i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 108.403 187.760i 0.375097 0.649687i
\(290\) 0 0
\(291\) 152.945 + 264.908i 0.525583 + 0.910337i
\(292\) 0 0
\(293\) 128.043i 0.437007i −0.975836 0.218504i \(-0.929882\pi\)
0.975836 0.218504i \(-0.0701176\pi\)
\(294\) 0 0
\(295\) −224.843 −0.762179
\(296\) 0 0
\(297\) 174.791 100.916i 0.588523 0.339784i
\(298\) 0 0
\(299\) −113.607 65.5908i −0.379955 0.219367i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 57.6447 99.8435i 0.190246 0.329516i
\(304\) 0 0
\(305\) −188.978 327.319i −0.619599 1.07318i
\(306\) 0 0
\(307\) 513.315i 1.67204i −0.548702 0.836018i \(-0.684878\pi\)
0.548702 0.836018i \(-0.315122\pi\)
\(308\) 0 0
\(309\) −448.735 −1.45222
\(310\) 0 0
\(311\) 189.750 109.552i 0.610130 0.352258i −0.162887 0.986645i \(-0.552080\pi\)
0.773016 + 0.634386i \(0.218747\pi\)
\(312\) 0 0
\(313\) 441.339 + 254.807i 1.41003 + 0.814080i 0.995390 0.0959070i \(-0.0305751\pi\)
0.414637 + 0.909987i \(0.363908\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 144.556 250.379i 0.456014 0.789839i −0.542732 0.839906i \(-0.682610\pi\)
0.998746 + 0.0500669i \(0.0159435\pi\)
\(318\) 0 0
\(319\) 162.368 + 281.229i 0.508989 + 0.881595i
\(320\) 0 0
\(321\) 437.448i 1.36277i
\(322\) 0 0
\(323\) −57.5462 −0.178162
\(324\) 0 0
\(325\) 14.2491 8.22673i 0.0438434 0.0253130i
\(326\) 0 0
\(327\) 294.250 + 169.885i 0.899846 + 0.519526i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 62.4838 108.225i 0.188773 0.326964i −0.756069 0.654492i \(-0.772882\pi\)
0.944841 + 0.327528i \(0.106216\pi\)
\(332\) 0 0
\(333\) −4.00000 6.92820i −0.0120120 0.0208054i
\(334\) 0 0
\(335\) 260.044i 0.776252i
\(336\) 0 0
\(337\) −320.583 −0.951284 −0.475642 0.879639i \(-0.657784\pi\)
−0.475642 + 0.879639i \(0.657784\pi\)
\(338\) 0 0
\(339\) 493.573 284.965i 1.45597 0.840604i
\(340\) 0 0
\(341\) −331.368 191.315i −0.971753 0.561042i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −139.740 + 242.037i −0.405044 + 0.701556i
\(346\) 0 0
\(347\) 119.933 + 207.729i 0.345627 + 0.598643i 0.985467 0.169864i \(-0.0543330\pi\)
−0.639841 + 0.768508i \(0.721000\pi\)
\(348\) 0 0
\(349\) 278.817i 0.798901i −0.916755 0.399451i \(-0.869201\pi\)
0.916755 0.399451i \(-0.130799\pi\)
\(350\) 0 0
\(351\) 168.583 0.480293
\(352\) 0 0
\(353\) 89.1600 51.4766i 0.252578 0.145826i −0.368366 0.929681i \(-0.620083\pi\)
0.620944 + 0.783855i \(0.286749\pi\)
\(354\) 0 0
\(355\) −1.66348 0.960408i −0.00468585 0.00270538i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −206.647 + 357.923i −0.575618 + 0.996999i 0.420357 + 0.907359i \(0.361905\pi\)
−0.995974 + 0.0896401i \(0.971428\pi\)
\(360\) 0 0
\(361\) −177.226 306.965i −0.490932 0.850319i
\(362\) 0 0
\(363\) 130.801i 0.360333i
\(364\) 0 0
\(365\) −9.93102 −0.0272083
\(366\) 0 0
\(367\) −504.739 + 291.411i −1.37531 + 0.794036i −0.991591 0.129413i \(-0.958691\pi\)
−0.383720 + 0.923449i \(0.625357\pi\)
\(368\) 0 0
\(369\) −141.775 81.8539i −0.384214 0.221826i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −142.238 + 246.363i −0.381334 + 0.660490i −0.991253 0.131974i \(-0.957869\pi\)
0.609919 + 0.792464i \(0.291202\pi\)
\(374\) 0 0
\(375\) −219.304 379.845i −0.584810 1.01292i
\(376\) 0 0
\(377\) 271.240i 0.719469i
\(378\) 0 0
\(379\) −158.111 −0.417178 −0.208589 0.978003i \(-0.566887\pi\)
−0.208589 + 0.978003i \(0.566887\pi\)
\(380\) 0 0
\(381\) 77.8368 44.9391i 0.204296 0.117950i
\(382\) 0 0
\(383\) −64.4698 37.2217i −0.168329 0.0971845i 0.413469 0.910518i \(-0.364317\pi\)
−0.581797 + 0.813334i \(0.697650\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 33.4350 57.9112i 0.0863954 0.149641i
\(388\) 0 0
\(389\) −28.7868 49.8602i −0.0740020 0.128175i 0.826650 0.562717i \(-0.190244\pi\)
−0.900652 + 0.434541i \(0.856910\pi\)
\(390\) 0 0
\(391\) 389.388i 0.995876i
\(392\) 0 0
\(393\) 483.928 1.23137
\(394\) 0 0
\(395\) −251.939 + 145.457i −0.637820 + 0.368246i
\(396\) 0 0
\(397\) −447.692 258.475i −1.12769 0.651071i −0.184336 0.982863i \(-0.559013\pi\)
−0.943353 + 0.331792i \(0.892347\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 205.943 356.704i 0.513574 0.889536i −0.486302 0.873791i \(-0.661654\pi\)
0.999876 0.0157456i \(-0.00501219\pi\)
\(402\) 0 0
\(403\) −159.799 276.780i −0.396524 0.686799i
\(404\) 0 0
\(405\) 462.977i 1.14315i
\(406\) 0 0
\(407\) 30.0589 0.0738547
\(408\) 0 0
\(409\) −149.391 + 86.2510i −0.365260 + 0.210883i −0.671385 0.741108i \(-0.734300\pi\)
0.306126 + 0.951991i \(0.400967\pi\)
\(410\) 0 0
\(411\) 197.417 + 113.979i 0.480333 + 0.277320i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −198.196 + 343.285i −0.477581 + 0.827194i
\(416\) 0 0
\(417\) −24.9548 43.2230i −0.0598436 0.103652i
\(418\) 0 0
\(419\) 96.5939i 0.230534i −0.993335 0.115267i \(-0.963228\pi\)
0.993335 0.115267i \(-0.0367724\pi\)
\(420\) 0 0
\(421\) 233.377 0.554339 0.277170 0.960821i \(-0.410604\pi\)
0.277170 + 0.960821i \(0.410604\pi\)
\(422\) 0 0
\(423\) −82.3400 + 47.5390i −0.194657 + 0.112385i
\(424\) 0 0
\(425\) 42.2958 + 24.4195i 0.0995195 + 0.0574576i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 116.101 201.092i 0.270631 0.468746i
\(430\) 0 0
\(431\) −204.203 353.690i −0.473789 0.820627i 0.525761 0.850633i \(-0.323781\pi\)
−0.999550 + 0.0300058i \(0.990447\pi\)
\(432\) 0 0
\(433\) 345.865i 0.798765i −0.916784 0.399382i \(-0.869225\pi\)
0.916784 0.399382i \(-0.130775\pi\)
\(434\) 0 0
\(435\) 577.872 1.32844
\(436\) 0 0
\(437\) −38.3659 + 22.1506i −0.0877939 + 0.0506878i
\(438\) 0 0
\(439\) −439.610 253.809i −1.00139 0.578152i −0.0927303 0.995691i \(-0.529559\pi\)
−0.908659 + 0.417539i \(0.862893\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 360.233 623.941i 0.813166 1.40844i −0.0974713 0.995238i \(-0.531075\pi\)
0.910637 0.413207i \(-0.135591\pi\)
\(444\) 0 0
\(445\) 16.7157 + 28.9525i 0.0375634 + 0.0650618i
\(446\) 0 0
\(447\) 292.190i 0.653669i
\(448\) 0 0
\(449\) 363.598 0.809795 0.404898 0.914362i \(-0.367307\pi\)
0.404898 + 0.914362i \(0.367307\pi\)
\(450\) 0 0
\(451\) 532.700 307.554i 1.18115 0.681939i
\(452\) 0 0
\(453\) 609.827 + 352.084i 1.34620 + 0.777226i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −229.986 + 398.348i −0.503252 + 0.871659i 0.496741 + 0.867899i \(0.334530\pi\)
−0.999993 + 0.00375958i \(0.998803\pi\)
\(458\) 0 0
\(459\) 250.203 + 433.364i 0.545105 + 0.944149i
\(460\) 0 0
\(461\) 506.119i 1.09787i 0.835864 + 0.548936i \(0.184967\pi\)
−0.835864 + 0.548936i \(0.815033\pi\)
\(462\) 0 0
\(463\) −12.6030 −0.0272204 −0.0136102 0.999907i \(-0.504332\pi\)
−0.0136102 + 0.999907i \(0.504332\pi\)
\(464\) 0 0
\(465\) −589.675 + 340.449i −1.26812 + 0.732149i
\(466\) 0 0
\(467\) −567.795 327.817i −1.21584 0.701963i −0.251811 0.967776i \(-0.581026\pi\)
−0.964025 + 0.265813i \(0.914360\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −200.154 + 346.677i −0.424956 + 0.736046i
\(472\) 0 0
\(473\) 125.627 + 217.593i 0.265597 + 0.460028i
\(474\) 0 0
\(475\) 5.55648i 0.0116978i
\(476\) 0 0
\(477\) −121.598 −0.254922
\(478\) 0 0
\(479\) −666.063 + 384.551i −1.39053 + 0.802821i −0.993374 0.114931i \(-0.963335\pi\)
−0.397154 + 0.917752i \(0.630002\pi\)
\(480\) 0 0
\(481\) 21.7434 + 12.5536i 0.0452046 + 0.0260989i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −216.296 + 374.636i −0.445972 + 0.772446i
\(486\) 0 0
\(487\) 207.184 + 358.853i 0.425429 + 0.736864i 0.996460 0.0840639i \(-0.0267900\pi\)
−0.571032 + 0.820928i \(0.693457\pi\)
\(488\) 0 0
\(489\) 993.980i 2.03268i
\(490\) 0 0
\(491\) 474.995 0.967403 0.483702 0.875233i \(-0.339292\pi\)
0.483702 + 0.875233i \(0.339292\pi\)
\(492\) 0 0
\(493\) −697.258 + 402.562i −1.41432 + 0.816556i
\(494\) 0 0
\(495\) −90.6155 52.3169i −0.183062 0.105691i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −22.1594 + 38.3812i −0.0444076 + 0.0769162i −0.887375 0.461049i \(-0.847473\pi\)
0.842967 + 0.537965i \(0.180807\pi\)
\(500\) 0 0
\(501\) 101.106 + 175.120i 0.201807 + 0.349541i
\(502\) 0 0
\(503\) 182.603i 0.363029i 0.983388 + 0.181514i \(0.0580999\pi\)
−0.983388 + 0.181514i \(0.941900\pi\)
\(504\) 0 0
\(505\) 163.044 0.322859
\(506\) 0 0
\(507\) −326.505 + 188.508i −0.643995 + 0.371811i
\(508\) 0 0
\(509\) −577.993 333.704i −1.13555 0.655608i −0.190222 0.981741i \(-0.560921\pi\)
−0.945324 + 0.326133i \(0.894254\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 28.4659 49.3045i 0.0554892 0.0961101i
\(514\) 0 0
\(515\) −317.304 549.586i −0.616124 1.06716i
\(516\) 0 0
\(517\) 357.242i 0.690991i
\(518\) 0 0
\(519\) 284.544 0.548255
\(520\) 0 0
\(521\) 401.675 231.907i 0.770969 0.445119i −0.0622514 0.998060i \(-0.519828\pi\)
0.833220 + 0.552942i \(0.186495\pi\)
\(522\) 0 0
\(523\) 216.499 + 124.996i 0.413956 + 0.238998i 0.692488 0.721429i \(-0.256515\pi\)
−0.278532 + 0.960427i \(0.589848\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 474.333 821.569i 0.900063 1.55895i
\(528\) 0 0
\(529\) 114.618 + 198.524i 0.216669 + 0.375281i
\(530\) 0 0
\(531\) 113.610i 0.213955i
\(532\) 0 0
\(533\) 513.779 0.963938
\(534\) 0 0
\(535\) −535.762 + 309.322i −1.00142 + 0.578173i
\(536\) 0 0
\(537\) 6.54076 + 3.77631i 0.0121802 + 0.00703223i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 196.044 339.558i 0.362373 0.627648i −0.625978 0.779841i \(-0.715300\pi\)
0.988351 + 0.152192i \(0.0486334\pi\)
\(542\) 0 0
\(543\) 12.7990 + 22.1685i 0.0235709 + 0.0408260i
\(544\) 0 0
\(545\) 480.507i 0.881665i
\(546\) 0 0
\(547\) −209.307 −0.382645 −0.191322 0.981527i \(-0.561278\pi\)
−0.191322 + 0.981527i \(0.561278\pi\)
\(548\) 0 0
\(549\) 165.390 95.4879i 0.301257 0.173931i
\(550\) 0 0
\(551\) 79.3280 + 45.8000i 0.143971 + 0.0831216i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 26.7452 46.3240i 0.0481895 0.0834666i
\(556\) 0 0
\(557\) −104.088 180.286i −0.186873 0.323674i 0.757333 0.653029i \(-0.226502\pi\)
−0.944206 + 0.329355i \(0.893169\pi\)
\(558\) 0 0
\(559\) 209.864i 0.375428i
\(560\) 0 0
\(561\) 689.245 1.22860
\(562\) 0 0
\(563\) −739.970 + 427.222i −1.31433 + 0.758831i −0.982811 0.184617i \(-0.940896\pi\)
−0.331523 + 0.943447i \(0.607562\pi\)
\(564\) 0 0
\(565\) 698.018 + 403.001i 1.23543 + 0.713276i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 477.948 827.831i 0.839979 1.45489i −0.0499316 0.998753i \(-0.515900\pi\)
0.889911 0.456134i \(-0.150766\pi\)
\(570\) 0 0
\(571\) 119.641 + 207.224i 0.209529 + 0.362915i 0.951566 0.307444i \(-0.0994736\pi\)
−0.742037 + 0.670359i \(0.766140\pi\)
\(572\) 0 0
\(573\) 122.024i 0.212956i
\(574\) 0 0
\(575\) 37.5980 0.0653878
\(576\) 0 0
\(577\) −185.304 + 106.985i −0.321150 + 0.185416i −0.651905 0.758301i \(-0.726030\pi\)
0.330755 + 0.943717i \(0.392697\pi\)
\(578\) 0 0
\(579\) 57.5637 + 33.2344i 0.0994191 + 0.0573997i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 228.444 395.676i 0.391842 0.678690i
\(584\) 0 0
\(585\) −43.6985 75.6880i −0.0746983 0.129381i
\(586\) 0 0
\(587\) 496.638i 0.846062i −0.906115 0.423031i \(-0.860966\pi\)
0.906115 0.423031i \(-0.139034\pi\)
\(588\) 0 0
\(589\) −107.931 −0.183245
\(590\) 0 0
\(591\) 751.343 433.788i 1.27131 0.733990i
\(592\) 0 0
\(593\) −720.974 416.254i −1.21581 0.701947i −0.251789 0.967782i \(-0.581019\pi\)
−0.964018 + 0.265836i \(0.914352\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −20.5341 + 35.5660i −0.0343954 + 0.0595746i
\(598\) 0 0
\(599\) −281.615 487.772i −0.470142 0.814310i 0.529275 0.848450i \(-0.322464\pi\)
−0.999417 + 0.0341402i \(0.989131\pi\)
\(600\) 0 0
\(601\) 679.242i 1.13019i −0.825027 0.565093i \(-0.808840\pi\)
0.825027 0.565093i \(-0.191160\pi\)
\(602\) 0 0
\(603\) −131.397 −0.217905
\(604\) 0 0
\(605\) −160.198 + 92.4901i −0.264789 + 0.152876i
\(606\) 0 0
\(607\) 45.8393 + 26.4653i 0.0755178 + 0.0436002i 0.537283 0.843402i \(-0.319451\pi\)
−0.461766 + 0.887002i \(0.652784\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 149.196 258.415i 0.244183 0.422938i
\(612\) 0 0
\(613\) −150.274 260.282i −0.245145 0.424604i 0.717027 0.697045i \(-0.245502\pi\)
−0.962173 + 0.272441i \(0.912169\pi\)
\(614\) 0 0
\(615\) 1094.60i 1.77983i
\(616\) 0 0
\(617\) −1186.18 −1.92250 −0.961249 0.275683i \(-0.911096\pi\)
−0.961249 + 0.275683i \(0.911096\pi\)
\(618\) 0 0
\(619\) 355.520 205.260i 0.574346 0.331599i −0.184537 0.982826i \(-0.559079\pi\)
0.758883 + 0.651227i \(0.225745\pi\)
\(620\) 0 0
\(621\) 333.619 + 192.615i 0.537229 + 0.310170i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 282.997 490.166i 0.452796 0.784266i
\(626\) 0 0
\(627\) −39.2082 67.9105i −0.0625329 0.108310i
\(628\) 0 0
\(629\) 74.5257i 0.118483i
\(630\) 0 0
\(631\) 743.980 1.17905 0.589524 0.807751i \(-0.299315\pi\)
0.589524 + 0.807751i \(0.299315\pi\)
\(632\) 0 0
\(633\) −550.650 + 317.918i −0.869905 + 0.502240i
\(634\) 0 0
\(635\) 110.078 + 63.5534i 0.173351 + 0.100084i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.485281 0.840532i 0.000759439 0.00131539i
\(640\) 0 0
\(641\) −257.179 445.447i −0.401215 0.694924i 0.592658 0.805454i \(-0.298079\pi\)
−0.993873 + 0.110530i \(0.964745\pi\)
\(642\) 0 0
\(643\) 514.076i 0.799497i −0.916625 0.399748i \(-0.869097\pi\)
0.916625 0.399748i \(-0.130903\pi\)
\(644\) 0 0
\(645\) 447.113 0.693198
\(646\) 0 0
\(647\) 711.658 410.876i 1.09994 0.635048i 0.163732 0.986505i \(-0.447647\pi\)
0.936204 + 0.351457i \(0.114314\pi\)
\(648\) 0 0
\(649\) 369.683 + 213.437i 0.569620 + 0.328870i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 494.933 857.249i 0.757937 1.31279i −0.185963 0.982557i \(-0.559541\pi\)
0.943901 0.330229i \(-0.107126\pi\)
\(654\) 0 0
\(655\) 342.189 + 592.688i 0.522426 + 0.904868i
\(656\) 0 0
\(657\) 5.01801i 0.00763777i
\(658\) 0 0
\(659\) −564.281 −0.856269 −0.428135 0.903715i \(-0.640829\pi\)
−0.428135 + 0.903715i \(0.640829\pi\)
\(660\) 0 0
\(661\) 355.800 205.421i 0.538275 0.310773i −0.206105 0.978530i \(-0.566079\pi\)
0.744379 + 0.667757i \(0.232745\pi\)
\(662\) 0 0
\(663\) 498.573 + 287.851i 0.751995 + 0.434164i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −309.907 + 536.774i −0.464628 + 0.804759i
\(668\) 0 0
\(669\) −459.477 795.838i −0.686812 1.18959i
\(670\) 0 0
\(671\) 717.565i 1.06940i
\(672\) 0 0
\(673\) −930.663 −1.38286 −0.691429 0.722445i \(-0.743018\pi\)
−0.691429 + 0.722445i \(0.743018\pi\)
\(674\) 0 0
\(675\) −41.8442 + 24.1588i −0.0619915 + 0.0357908i
\(676\) 0 0
\(677\) −122.521 70.7374i −0.180976 0.104487i 0.406775 0.913528i \(-0.366653\pi\)
−0.587751 + 0.809042i \(0.699987\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −640.986 + 1110.22i −0.941243 + 1.63028i
\(682\) 0 0
\(683\) −83.7960 145.139i −0.122688 0.212502i 0.798139 0.602474i \(-0.205818\pi\)
−0.920827 + 0.389972i \(0.872485\pi\)
\(684\) 0 0
\(685\) 322.380i 0.470628i
\(686\) 0 0
\(687\) −252.260 −0.367191
\(688\) 0 0
\(689\) 330.494 190.811i 0.479672 0.276939i
\(690\) 0 0
\(691\) 377.163 + 217.755i 0.545822 + 0.315130i 0.747435 0.664335i \(-0.231285\pi\)
−0.201613 + 0.979465i \(0.564618\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 35.2914 61.1265i 0.0507790 0.0879518i
\(696\) 0 0
\(697\) 762.528 + 1320.74i 1.09401 + 1.89489i
\(698\) 0 0
\(699\) 328.997i 0.470668i
\(700\) 0 0
\(701\) 742.010 1.05850 0.529251 0.848465i \(-0.322473\pi\)
0.529251 + 0.848465i \(0.322473\pi\)
\(702\) 0 0
\(703\) 7.34294 4.23945i 0.0104451 0.00603051i
\(704\) 0 0
\(705\) −550.549 317.860i −0.780921 0.450865i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −58.7351 + 101.732i −0.0828421 + 0.143487i −0.904470 0.426538i \(-0.859733\pi\)
0.821628 + 0.570025i \(0.193066\pi\)
\(710\) 0 0
\(711\) −73.4975 127.301i −0.103372 0.179046i
\(712\) 0 0
\(713\) 730.317i 1.02429i
\(714\) 0 0
\(715\) 328.382 0.459275
\(716\) 0 0
\(717\) 1284.41 741.554i 1.79136 1.03424i
\(718\) 0 0
\(719\) 35.0808 + 20.2539i 0.0487911 + 0.0281695i 0.524197 0.851597i \(-0.324366\pi\)
−0.475406 + 0.879766i \(0.657699\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −449.280 + 778.175i −0.621411 + 1.07631i
\(724\) 0 0
\(725\) −38.8701 67.3249i −0.0536139 0.0928620i
\(726\) 0 0
\(727\) 362.922i 0.499205i −0.968348 0.249603i \(-0.919700\pi\)
0.968348 0.249603i \(-0.0803000\pi\)
\(728\) 0 0
\(729\) −442.608 −0.607144
\(730\) 0 0
\(731\) −539.484 + 311.471i −0.738008 + 0.426089i
\(732\) 0 0
\(733\) −493.431 284.882i −0.673166 0.388653i 0.124109 0.992269i \(-0.460393\pi\)
−0.797275 + 0.603616i \(0.793726\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 246.853 427.562i 0.334943 0.580138i
\(738\) 0 0
\(739\) −22.4695 38.9183i −0.0304053 0.0526635i 0.850422 0.526101i \(-0.176346\pi\)
−0.880828 + 0.473437i \(0.843013\pi\)
\(740\) 0 0
\(741\) 65.4984i 0.0883919i
\(742\) 0 0
\(743\) −1256.37 −1.69094 −0.845472 0.534019i \(-0.820681\pi\)
−0.845472 + 0.534019i \(0.820681\pi\)
\(744\) 0 0
\(745\) 357.858 206.609i 0.480346 0.277328i
\(746\) 0 0
\(747\) −173.458 100.146i −0.232206 0.134064i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 524.217 907.971i 0.698026 1.20902i −0.271124 0.962544i \(-0.587395\pi\)
0.969150 0.246472i \(-0.0792713\pi\)
\(752\) 0 0
\(753\) −661.045 1144.96i −0.877882 1.52054i
\(754\) 0 0
\(755\) 995.843i 1.31900i
\(756\) 0 0
\(757\) 1089.95 1.43983 0.719914 0.694063i \(-0.244181\pi\)
0.719914 + 0.694063i \(0.244181\pi\)
\(758\) 0 0
\(759\) 459.518 265.303i 0.605425 0.349542i
\(760\) 0 0
\(761\) 192.462 + 111.118i 0.252907 + 0.146016i 0.621095 0.783736i \(-0.286688\pi\)
−0.368188 + 0.929751i \(0.620022\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 129.711 224.665i 0.169556 0.293680i
\(766\) 0 0
\(767\) 178.276 + 308.784i 0.232433 + 0.402586i
\(768\) 0 0
\(769\) 776.217i 1.00938i 0.863299 + 0.504692i \(0.168394\pi\)
−0.863299 + 0.504692i \(0.831606\pi\)
\(770\) 0 0
\(771\) 112.856 0.146376
\(772\) 0 0
\(773\) −829.302 + 478.798i −1.07284 + 0.619402i −0.928955 0.370193i \(-0.879291\pi\)
−0.143881 + 0.989595i \(0.545958\pi\)
\(774\) 0 0
\(775\) 79.3280 + 45.8000i 0.102359 + 0.0590968i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 86.7538 150.262i 0.111366 0.192891i
\(780\) 0 0
\(781\) 1.82338 + 3.15818i 0.00233467 + 0.00404377i
\(782\) 0 0
\(783\) 796.529i 1.01728i
\(784\) 0 0
\(785\) −566.122 −0.721174
\(786\) 0 0
\(787\) −519.318 + 299.828i −0.659871 + 0.380976i −0.792228 0.610226i \(-0.791079\pi\)
0.132357 + 0.991202i \(0.457745\pi\)
\(788\) 0 0
\(789\) 1176.27 + 679.118i 1.49083 + 0.860733i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −299.678 + 519.058i −0.377905 + 0.654550i
\(794\) 0 0
\(795\) −406.520 704.113i −0.511346 0.885677i
\(796\) 0 0
\(797\) 431.874i 0.541875i 0.962597 + 0.270938i \(0.0873337\pi\)
−0.962597 + 0.270938i \(0.912666\pi\)
\(798\) 0 0
\(799\) 885.720 1.10854
\(800\) 0 0
\(801\) −14.6293 + 8.44623i −0.0182638 + 0.0105446i
\(802\) 0 0
\(803\) 16.3285 + 9.42724i 0.0203343 + 0.0117400i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 22.7300 39.3695i 0.0281661 0.0487851i
\(808\) 0 0
\(809\) 496.153 + 859.362i 0.613292 + 1.06225i 0.990682 + 0.136198i \(0.0434882\pi\)
−0.377390 + 0.926054i \(0.623178\pi\)
\(810\) 0 0
\(811\) 1364.92i 1.68301i 0.540252 + 0.841503i \(0.318329\pi\)
−0.540252 + 0.841503i \(0.681671\pi\)
\(812\) 0 0
\(813\) −1687.29 −2.07538
\(814\) 0 0
\(815\) 1217.37 702.850i 1.49371 0.862393i
\(816\) 0 0
\(817\) 61.3778 + 35.4365i 0.0751259 + 0.0433739i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −287.745 + 498.389i −0.350481 + 0.607051i −0.986334 0.164759i \(-0.947315\pi\)
0.635853 + 0.771811i \(0.280649\pi\)
\(822\) 0 0
\(823\) 301.169 + 521.639i 0.365940 + 0.633827i 0.988927 0.148406i \(-0.0474142\pi\)
−0.622987 + 0.782233i \(0.714081\pi\)
\(824\) 0 0
\(825\) 66.5512i 0.0806681i
\(826\) 0 0
\(827\) −52.3717 −0.0633273 −0.0316637 0.999499i \(-0.510081\pi\)
−0.0316637 + 0.999499i \(0.510081\pi\)
\(828\) 0 0
\(829\) −762.093 + 439.995i −0.919292 + 0.530754i −0.883409 0.468602i \(-0.844758\pi\)
−0.0358830 + 0.999356i \(0.511424\pi\)
\(830\) 0 0
\(831\) −1406.78 812.204i −1.69287 0.977381i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −142.985 + 247.657i −0.171239 + 0.296595i
\(836\) 0 0
\(837\) 469.269 + 812.798i 0.560656 + 0.971085i
\(838\) 0 0
\(839\) 1400.14i 1.66882i 0.551147 + 0.834408i \(0.314190\pi\)
−0.551147 + 0.834408i \(0.685810\pi\)
\(840\) 0 0
\(841\) 440.568 0.523862
\(842\) 0 0
\(843\) −489.516 + 282.622i −0.580683 + 0.335257i
\(844\) 0 0
\(845\) −461.748 266.591i −0.546448 0.315492i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −472.780 + 818.879i −0.556867 + 0.964522i
\(850\) 0 0
\(851\) 28.6863 + 49.6861i 0.0337089 + 0.0583856i
\(852\) 0 0
\(853\) 1243.31i 1.45757i 0.684741 + 0.728786i \(0.259915\pi\)
−0.684741 + 0.728786i \(0.740085\pi\)
\(854\) 0 0
\(855\) −29.5147 −0.0345201
\(856\) 0 0
\(857\) −609.720 + 352.022i −0.711458 + 0.410761i −0.811601 0.584213i \(-0.801403\pi\)
0.100143 + 0.994973i \(0.468070\pi\)
\(858\) 0 0
\(859\) 21.4346 + 12.3753i 0.0249529 + 0.0144066i 0.512425 0.858732i \(-0.328747\pi\)
−0.487472 + 0.873139i \(0.662081\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −794.149 + 1375.51i −0.920219 + 1.59387i −0.121145 + 0.992635i \(0.538656\pi\)
−0.799075 + 0.601232i \(0.794677\pi\)
\(864\) 0 0
\(865\) 201.203 + 348.494i 0.232605 + 0.402883i
\(866\) 0 0
\(867\) 732.478i 0.844842i
\(868\) 0 0
\(869\) 552.313 0.635573
\(870\) 0 0
\(871\) 357.127 206.188i 0.410020 0.236725i
\(872\) 0 0
\(873\) −189.299 109.292i −0.216837 0.125191i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −607.841 + 1052.81i −0.693091 + 1.20047i 0.277729 + 0.960659i \(0.410418\pi\)
−0.970820 + 0.239809i \(0.922915\pi\)
\(878\) 0 0
\(879\) 216.296 + 374.636i 0.246071 + 0.426208i
\(880\) 0 0
\(881\) 858.799i 0.974800i 0.873179 + 0.487400i \(0.162055\pi\)
−0.873179 + 0.487400i \(0.837945\pi\)
\(882\) 0 0
\(883\) −974.382 −1.10349 −0.551745 0.834013i \(-0.686038\pi\)
−0.551745 + 0.834013i \(0.686038\pi\)
\(884\) 0 0
\(885\) 657.858 379.815i 0.743343 0.429169i
\(886\) 0 0
\(887\) −1150.68 664.346i −1.29727 0.748980i −0.317340 0.948312i \(-0.602790\pi\)
−0.979932 + 0.199332i \(0.936123\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −439.491 + 761.221i −0.493256 + 0.854344i
\(892\) 0 0
\(893\) −50.3848 87.2690i −0.0564219 0.0977256i
\(894\) 0 0
\(895\) 10.6810i 0.0119341i
\(896\) 0 0
\(897\) 443.196 0.494087
\(898\) 0 0
\(899\) −1307.74 + 755.026i −1.45467 + 0.839851i
\(900\) 0 0
\(901\) 981.010 + 566.386i 1.08880 + 0.628620i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −18.1005 + 31.3510i −0.0200006 + 0.0346420i
\(906\) 0 0
\(907\) −135.319 234.379i −0.149194 0.258411i 0.781736 0.623610i \(-0.214334\pi\)
−0.930930 + 0.365198i \(0.881001\pi\)
\(908\) 0 0
\(909\) 82.3838i 0.0906312i
\(910\) 0 0
\(911\) 399.025 0.438008 0.219004 0.975724i \(-0.429719\pi\)
0.219004 + 0.975724i \(0.429719\pi\)
\(912\) 0 0
\(913\) 651.742 376.284i 0.713847 0.412140i
\(914\) 0 0
\(915\) 1105.84 + 638.460i 1.20857 + 0.697770i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.03658 1.79541i 0.00112794 0.00195366i −0.865461 0.500977i \(-0.832974\pi\)
0.866589 + 0.499023i \(0.166308\pi\)
\(920\) 0 0
\(921\) 867.115 + 1501.89i 0.941493 + 1.63071i
\(922\) 0 0
\(923\) 3.04601i 0.00330011i
\(924\) 0 0
\(925\) −7.19596 −0.00777942
\(926\) 0 0
\(927\) 277.698 160.329i 0.299567 0.172955i
\(928\) 0 0
\(929\) −942.558 544.186i −1.01459 0.585776i −0.102060 0.994778i \(-0.532544\pi\)
−0.912533 + 0.409002i \(0.865877\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −370.122 + 641.070i −0.396701 + 0.687106i
\(934\) 0 0
\(935\) 487.370 + 844.149i 0.521251 + 0.902833i
\(936\) 0 0
\(937\) 930.797i 0.993380i −0.867928 0.496690i \(-0.834549\pi\)
0.867928 0.496690i \(-0.165451\pi\)
\(938\) 0 0
\(939\) −1721.73 −1.83358
\(940\) 0 0
\(941\) 546.168 315.330i 0.580412 0.335101i −0.180885 0.983504i \(-0.557896\pi\)
0.761297 + 0.648403i \(0.224563\pi\)
\(942\) 0 0
\(943\) 1016.75 + 587.021i 1.07821 + 0.622504i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 199.378 345.333i 0.210537 0.364660i −0.741346 0.671123i \(-0.765812\pi\)
0.951883 + 0.306463i \(0.0991455\pi\)
\(948\) 0 0
\(949\) 7.87424 + 13.6386i 0.00829741 + 0.0143715i
\(950\) 0 0
\(951\) 976.765i 1.02709i
\(952\) 0 0
\(953\) −288.362 −0.302583 −0.151292 0.988489i \(-0.548343\pi\)
−0.151292 + 0.988489i \(0.548343\pi\)
\(954\) 0 0
\(955\) 149.448 86.2837i 0.156490 0.0903494i
\(956\) 0 0
\(957\) −950.130 548.558i −0.992821 0.573205i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 409.137 708.645i 0.425741 0.737404i
\(962\) 0 0
\(963\) −156.296 270.713i −0.162302 0.281115i
\(964\) 0 0
\(965\) 94.0011i 0.0974104i
\(966\) 0 0
\(967\) 643.166 0.665114 0.332557 0.943083i \(-0.392089\pi\)
0.332557 + 0.943083i \(0.392089\pi\)
\(968\) 0 0
\(969\) 168.372 97.2098i 0.173759 0.100320i
\(970\) 0 0
\(971\) −621.221 358.662i −0.639775 0.369374i 0.144753 0.989468i \(-0.453761\pi\)
−0.784528 + 0.620094i \(0.787095\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −27.7939 + 48.1405i −0.0285066 + 0.0493749i
\(976\) 0 0
\(977\) −701.224 1214.56i −0.717732 1.24315i −0.961896 0.273414i \(-0.911847\pi\)
0.244165 0.969734i \(-0.421486\pi\)
\(978\) 0 0
\(979\) 63.4711i 0.0648325i
\(980\) 0 0
\(981\) −242.794 −0.247496
\(982\) 0 0
\(983\) −81.3360 + 46.9593i −0.0827426 + 0.0477715i −0.540800 0.841151i \(-0.681879\pi\)
0.458058 + 0.888922i \(0.348545\pi\)
\(984\) 0 0
\(985\) 1062.56 + 613.469i 1.07874 + 0.622811i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −239.782 + 415.314i −0.242449 + 0.419933i
\(990\) 0 0
\(991\) −48.8314 84.5784i −0.0492749 0.0853466i 0.840336 0.542066i \(-0.182358\pi\)
−0.889611 + 0.456719i \(0.849024\pi\)
\(992\) 0 0
\(993\) 422.202i 0.425178i
\(994\) 0 0
\(995\) −58.0791 −0.0583709
\(996\) 0 0
\(997\) 234.779 135.550i 0.235485 0.135957i −0.377615 0.925963i \(-0.623256\pi\)
0.613100 + 0.790005i \(0.289922\pi\)
\(998\) 0 0
\(999\) −63.8522 36.8651i −0.0639161 0.0369020i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.3.s.h.705.1 8
4.3 odd 2 49.3.d.b.19.4 8
7.2 even 3 784.3.c.c.97.1 4
7.3 odd 6 inner 784.3.s.h.129.1 8
7.4 even 3 inner 784.3.s.h.129.4 8
7.5 odd 6 784.3.c.c.97.4 4
7.6 odd 2 inner 784.3.s.h.705.4 8
12.11 even 2 441.3.m.l.19.2 8
28.3 even 6 49.3.d.b.31.4 8
28.11 odd 6 49.3.d.b.31.3 8
28.19 even 6 49.3.b.a.48.1 4
28.23 odd 6 49.3.b.a.48.2 yes 4
28.27 even 2 49.3.d.b.19.3 8
84.11 even 6 441.3.m.l.325.1 8
84.23 even 6 441.3.d.e.244.3 4
84.47 odd 6 441.3.d.e.244.4 4
84.59 odd 6 441.3.m.l.325.2 8
84.83 odd 2 441.3.m.l.19.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
49.3.b.a.48.1 4 28.19 even 6
49.3.b.a.48.2 yes 4 28.23 odd 6
49.3.d.b.19.3 8 28.27 even 2
49.3.d.b.19.4 8 4.3 odd 2
49.3.d.b.31.3 8 28.11 odd 6
49.3.d.b.31.4 8 28.3 even 6
441.3.d.e.244.3 4 84.23 even 6
441.3.d.e.244.4 4 84.47 odd 6
441.3.m.l.19.1 8 84.83 odd 2
441.3.m.l.19.2 8 12.11 even 2
441.3.m.l.325.1 8 84.11 even 6
441.3.m.l.325.2 8 84.59 odd 6
784.3.c.c.97.1 4 7.2 even 3
784.3.c.c.97.4 4 7.5 odd 6
784.3.s.h.129.1 8 7.3 odd 6 inner
784.3.s.h.129.4 8 7.4 even 3 inner
784.3.s.h.705.1 8 1.1 even 1 trivial
784.3.s.h.705.4 8 7.6 odd 2 inner