Properties

Label 784.3.r.e.79.1
Level $784$
Weight $3$
Character 784.79
Analytic conductor $21.362$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,3,Mod(79,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.79"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 784.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,6,0,0,0,-9,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.3624527258\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 784.79
Dual form 784.3.r.e.655.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.00000 - 5.19615i) q^{5} +(-4.50000 + 7.79423i) q^{9} +10.0000 q^{13} +(15.0000 + 25.9808i) q^{17} +(-5.50000 - 9.52628i) q^{25} +42.0000 q^{29} +(35.0000 - 60.6218i) q^{37} +18.0000 q^{41} +(27.0000 + 46.7654i) q^{45} +(-45.0000 - 77.9423i) q^{53} +(11.0000 - 19.0526i) q^{61} +(30.0000 - 51.9615i) q^{65} +(55.0000 + 95.2628i) q^{73} +(-40.5000 - 70.1481i) q^{81} +180.000 q^{85} +(39.0000 - 67.5500i) q^{89} +130.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{5} - 9 q^{9} + 20 q^{13} + 30 q^{17} - 11 q^{25} + 84 q^{29} + 70 q^{37} + 36 q^{41} + 54 q^{45} - 90 q^{53} + 22 q^{61} + 60 q^{65} + 110 q^{73} - 81 q^{81} + 360 q^{85} + 78 q^{89} + 260 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(4\) 0 0
\(5\) 3.00000 5.19615i 0.600000 1.03923i −0.392820 0.919615i \(-0.628501\pi\)
0.992820 0.119615i \(-0.0381661\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(10\) 0 0
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) 10.0000 0.769231 0.384615 0.923077i \(-0.374334\pi\)
0.384615 + 0.923077i \(0.374334\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 15.0000 + 25.9808i 0.882353 + 1.52828i 0.848718 + 0.528846i \(0.177375\pi\)
0.0336351 + 0.999434i \(0.489292\pi\)
\(18\) 0 0
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) −5.50000 9.52628i −0.220000 0.381051i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 42.0000 1.44828 0.724138 0.689655i \(-0.242238\pi\)
0.724138 + 0.689655i \(0.242238\pi\)
\(30\) 0 0
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 35.0000 60.6218i 0.945946 1.63843i 0.192100 0.981375i \(-0.438470\pi\)
0.753846 0.657051i \(-0.228196\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 18.0000 0.439024 0.219512 0.975610i \(-0.429553\pi\)
0.219512 + 0.975610i \(0.429553\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 27.0000 + 46.7654i 0.600000 + 1.03923i
\(46\) 0 0
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −45.0000 77.9423i −0.849057 1.47061i −0.882051 0.471154i \(-0.843838\pi\)
0.0329946 0.999456i \(-0.489496\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0 0
\(61\) 11.0000 19.0526i 0.180328 0.312337i −0.761664 0.647972i \(-0.775617\pi\)
0.941992 + 0.335635i \(0.108951\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 30.0000 51.9615i 0.461538 0.799408i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 55.0000 + 95.2628i 0.753425 + 1.30497i 0.946154 + 0.323718i \(0.104933\pi\)
−0.192729 + 0.981252i \(0.561734\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.500000 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 180.000 2.11765
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 39.0000 67.5500i 0.438202 0.758989i −0.559349 0.828932i \(-0.688949\pi\)
0.997551 + 0.0699439i \(0.0222820\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 130.000 1.34021 0.670103 0.742268i \(-0.266250\pi\)
0.670103 + 0.742268i \(0.266250\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 99.0000 + 171.473i 0.980198 + 1.69775i 0.661589 + 0.749866i \(0.269882\pi\)
0.318609 + 0.947886i \(0.396784\pi\)
\(102\) 0 0
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0 0
\(109\) 91.0000 + 157.617i 0.834862 + 1.44602i 0.894142 + 0.447783i \(0.147786\pi\)
−0.0592800 + 0.998241i \(0.518880\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −30.0000 −0.265487 −0.132743 0.991150i \(-0.542379\pi\)
−0.132743 + 0.991150i \(0.542379\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −45.0000 + 77.9423i −0.384615 + 0.666173i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −60.5000 + 104.789i −0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 84.0000 0.672000
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −105.000 181.865i −0.766423 1.32748i −0.939491 0.342574i \(-0.888701\pi\)
0.173067 0.984910i \(-0.444632\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 126.000 218.238i 0.868966 1.50509i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 51.0000 88.3346i 0.342282 0.592850i −0.642574 0.766223i \(-0.722134\pi\)
0.984856 + 0.173374i \(0.0554669\pi\)
\(150\) 0 0
\(151\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(152\) 0 0
\(153\) −270.000 −1.76471
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −85.0000 147.224i −0.541401 0.937735i −0.998824 0.0484851i \(-0.984561\pi\)
0.457423 0.889249i \(-0.348773\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −69.0000 −0.408284
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −165.000 + 285.788i −0.953757 + 1.65196i −0.216570 + 0.976267i \(0.569487\pi\)
−0.737187 + 0.675689i \(0.763846\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) −38.0000 −0.209945 −0.104972 0.994475i \(-0.533475\pi\)
−0.104972 + 0.994475i \(0.533475\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −210.000 363.731i −1.13514 1.96611i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) 95.0000 + 164.545i 0.492228 + 0.852564i 0.999960 0.00895123i \(-0.00284930\pi\)
−0.507732 + 0.861515i \(0.669516\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −390.000 −1.97970 −0.989848 0.142132i \(-0.954604\pi\)
−0.989848 + 0.142132i \(0.954604\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 54.0000 93.5307i 0.263415 0.456248i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 150.000 + 259.808i 0.678733 + 1.17560i
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 99.0000 0.440000
\(226\) 0 0
\(227\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) 0 0
\(229\) −221.000 + 382.783i −0.965066 + 1.67154i −0.255627 + 0.966776i \(0.582282\pi\)
−0.709439 + 0.704767i \(0.751052\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −105.000 + 181.865i −0.450644 + 0.780538i −0.998426 0.0560830i \(-0.982139\pi\)
0.547782 + 0.836621i \(0.315472\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −209.000 361.999i −0.867220 1.50207i −0.864826 0.502072i \(-0.832571\pi\)
−0.00239399 0.999997i \(-0.500762\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 255.000 441.673i 0.992218 1.71857i 0.388277 0.921543i \(-0.373070\pi\)
0.603941 0.797029i \(-0.293596\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −189.000 + 327.358i −0.724138 + 1.25424i
\(262\) 0 0
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) −540.000 −2.03774
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −69.0000 119.512i −0.256506 0.444281i 0.708798 0.705412i \(-0.249238\pi\)
−0.965303 + 0.261131i \(0.915905\pi\)
\(270\) 0 0
\(271\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 115.000 + 199.186i 0.415162 + 0.719082i 0.995445 0.0953324i \(-0.0303914\pi\)
−0.580283 + 0.814415i \(0.697058\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −462.000 −1.64413 −0.822064 0.569395i \(-0.807178\pi\)
−0.822064 + 0.569395i \(0.807178\pi\)
\(282\) 0 0
\(283\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −305.500 + 529.142i −1.05709 + 1.83094i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 570.000 1.94539 0.972696 0.232082i \(-0.0745537\pi\)
0.972696 + 0.232082i \(0.0745537\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −66.0000 114.315i −0.216393 0.374804i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) −25.0000 + 43.3013i −0.0798722 + 0.138343i −0.903195 0.429231i \(-0.858785\pi\)
0.823322 + 0.567574i \(0.192118\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 75.0000 129.904i 0.236593 0.409791i −0.723141 0.690700i \(-0.757303\pi\)
0.959734 + 0.280909i \(0.0906359\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −55.0000 95.2628i −0.169231 0.293116i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) 315.000 + 545.596i 0.945946 + 1.63843i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −350.000 −1.03858 −0.519288 0.854599i \(-0.673803\pi\)
−0.519288 + 0.854599i \(0.673803\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) −598.000 −1.71347 −0.856734 0.515759i \(-0.827510\pi\)
−0.856734 + 0.515759i \(0.827510\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −225.000 389.711i −0.637394 1.10400i −0.986003 0.166730i \(-0.946679\pi\)
0.348609 0.937268i \(-0.386654\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) 0 0
\(361\) −180.500 312.635i −0.500000 0.866025i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 660.000 1.80822
\(366\) 0 0
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 0 0
\(369\) −81.0000 + 140.296i −0.219512 + 0.380206i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 275.000 476.314i 0.737265 1.27698i −0.216457 0.976292i \(-0.569450\pi\)
0.953722 0.300689i \(-0.0972166\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 420.000 1.11406
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −189.000 327.358i −0.485861 0.841536i 0.514007 0.857786i \(-0.328161\pi\)
−0.999868 + 0.0162499i \(0.994827\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −325.000 + 562.917i −0.818640 + 1.41793i 0.0880448 + 0.996117i \(0.471938\pi\)
−0.906685 + 0.421809i \(0.861395\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 399.000 691.088i 0.995012 1.72341i 0.411120 0.911581i \(-0.365138\pi\)
0.583893 0.811831i \(-0.301529\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −486.000 −1.20000
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 391.000 + 677.232i 0.955990 + 1.65582i 0.732086 + 0.681213i \(0.238547\pi\)
0.223905 + 0.974611i \(0.428120\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 58.0000 0.137767 0.0688836 0.997625i \(-0.478056\pi\)
0.0688836 + 0.997625i \(0.478056\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 165.000 285.788i 0.388235 0.672443i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) 0 0
\(433\) 290.000 0.669746 0.334873 0.942263i \(-0.391307\pi\)
0.334873 + 0.942263i \(0.391307\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) −234.000 405.300i −0.525843 0.910786i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −702.000 −1.56347 −0.781737 0.623608i \(-0.785666\pi\)
−0.781737 + 0.623608i \(0.785666\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −425.000 + 736.122i −0.929978 + 1.61077i −0.146625 + 0.989192i \(0.546841\pi\)
−0.783353 + 0.621577i \(0.786492\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 522.000 1.13232 0.566161 0.824295i \(-0.308428\pi\)
0.566161 + 0.824295i \(0.308428\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 810.000 1.69811
\(478\) 0 0
\(479\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(480\) 0 0
\(481\) 350.000 606.218i 0.727651 1.26033i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 390.000 675.500i 0.804124 1.39278i
\(486\) 0 0
\(487\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 630.000 + 1091.19i 1.27789 + 2.21337i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 1188.00 2.35248
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 459.000 795.011i 0.901768 1.56191i 0.0765706 0.997064i \(-0.475603\pi\)
0.825198 0.564844i \(-0.191064\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 279.000 + 483.242i 0.535509 + 0.927528i 0.999139 + 0.0414992i \(0.0132134\pi\)
−0.463630 + 0.886029i \(0.653453\pi\)
\(522\) 0 0
\(523\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −264.500 458.127i −0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 180.000 0.337711
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −341.000 + 590.629i −0.630314 + 1.09174i 0.357173 + 0.934038i \(0.383741\pi\)
−0.987487 + 0.157698i \(0.949593\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1092.00 2.00367
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 99.0000 + 171.473i 0.180328 + 0.312337i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −165.000 285.788i −0.296230 0.513085i 0.679040 0.734101i \(-0.262396\pi\)
−0.975270 + 0.221016i \(0.929063\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) −90.0000 + 155.885i −0.159292 + 0.275902i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 231.000 400.104i 0.405975 0.703170i −0.588459 0.808527i \(-0.700265\pi\)
0.994434 + 0.105357i \(0.0335985\pi\)
\(570\) 0 0
\(571\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 575.000 + 995.929i 0.996534 + 1.72605i 0.570311 + 0.821429i \(0.306823\pi\)
0.426223 + 0.904618i \(0.359844\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 270.000 + 467.654i 0.461538 + 0.799408i
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −465.000 + 805.404i −0.784148 + 1.35818i 0.145358 + 0.989379i \(0.453567\pi\)
−0.929506 + 0.368806i \(0.879767\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0 0
\(601\) −1102.00 −1.83361 −0.916805 0.399334i \(-0.869241\pi\)
−0.916805 + 0.399334i \(0.869241\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 363.000 + 628.734i 0.600000 + 1.03923i
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 35.0000 + 60.6218i 0.0570962 + 0.0988936i 0.893161 0.449738i \(-0.148482\pi\)
−0.836065 + 0.548631i \(0.815149\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 210.000 0.340357 0.170178 0.985413i \(-0.445566\pi\)
0.170178 + 0.985413i \(0.445566\pi\)
\(618\) 0 0
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 389.500 674.634i 0.623200 1.07941i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2100.00 3.33863
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −609.000 1054.82i −0.950078 1.64558i −0.745250 0.666785i \(-0.767670\pi\)
−0.204828 0.978798i \(-0.565664\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 315.000 545.596i 0.482389 0.835522i −0.517407 0.855740i \(-0.673103\pi\)
0.999796 + 0.0202175i \(0.00643585\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −990.000 −1.50685
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −589.000 1020.18i −0.891074 1.54339i −0.838589 0.544764i \(-0.816619\pi\)
−0.0524847 0.998622i \(-0.516714\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 770.000 1.14413 0.572065 0.820208i \(-0.306142\pi\)
0.572065 + 0.820208i \(0.306142\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 675.000 1169.13i 0.997046 1.72693i 0.432004 0.901872i \(-0.357807\pi\)
0.565042 0.825062i \(-0.308860\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) 0 0
\(685\) −1260.00 −1.83942
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −450.000 779.423i −0.653120 1.13124i
\(690\) 0 0
\(691\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 270.000 + 467.654i 0.387374 + 0.670952i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1302.00 −1.85735 −0.928673 0.370899i \(-0.879050\pi\)
−0.928673 + 0.370899i \(0.879050\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 259.000 448.601i 0.365303 0.632724i −0.623522 0.781806i \(-0.714299\pi\)
0.988825 + 0.149082i \(0.0476320\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −231.000 400.104i −0.318621 0.551867i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −725.000 + 1255.74i −0.989086 + 1.71315i −0.366943 + 0.930243i \(0.619596\pi\)
−0.622143 + 0.782904i \(0.713738\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −306.000 530.008i −0.410738 0.711420i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1190.00 −1.57199 −0.785997 0.618230i \(-0.787850\pi\)
−0.785997 + 0.618230i \(0.787850\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 39.0000 67.5500i 0.0512484 0.0887648i −0.839263 0.543725i \(-0.817013\pi\)
0.890512 + 0.454961i \(0.150347\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −810.000 + 1402.96i −1.05882 + 1.83394i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 962.000 1.25098 0.625488 0.780234i \(-0.284900\pi\)
0.625488 + 0.780234i \(0.284900\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 195.000 + 337.750i 0.252264 + 0.436934i 0.964149 0.265362i \(-0.0854916\pi\)
−0.711885 + 0.702296i \(0.752158\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1020.00 −1.29936
\(786\) 0 0
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 110.000 190.526i 0.138714 0.240259i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1110.00 −1.39272 −0.696361 0.717691i \(-0.745199\pi\)
−0.696361 + 0.717691i \(0.745199\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 351.000 + 607.950i 0.438202 + 0.758989i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 759.000 + 1314.63i 0.938195 + 1.62500i 0.768835 + 0.639448i \(0.220837\pi\)
0.169361 + 0.985554i \(0.445830\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −429.000 + 743.050i −0.522533 + 0.905055i 0.477123 + 0.878837i \(0.341680\pi\)
−0.999656 + 0.0262179i \(0.991654\pi\)
\(822\) 0 0
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −629.000 1089.46i −0.758745 1.31419i −0.943491 0.331399i \(-0.892479\pi\)
0.184745 0.982786i \(-0.440854\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 923.000 1.09750
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −207.000 + 358.535i −0.244970 + 0.424301i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 410.000 0.480657 0.240328 0.970692i \(-0.422745\pi\)
0.240328 + 0.970692i \(0.422745\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −825.000 1428.94i −0.962660 1.66738i −0.715774 0.698333i \(-0.753926\pi\)
−0.246887 0.969044i \(-0.579408\pi\)
\(858\) 0 0
\(859\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) 990.000 + 1714.73i 1.14451 + 1.98235i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −585.000 + 1013.25i −0.670103 + 1.16065i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −805.000 + 1394.30i −0.917902 + 1.58985i −0.115306 + 0.993330i \(0.536785\pi\)
−0.802596 + 0.596523i \(0.796549\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 738.000 0.837684 0.418842 0.908059i \(-0.362436\pi\)
0.418842 + 0.908059i \(0.362436\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 1350.00 2338.27i 1.49834 2.59519i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −114.000 + 197.454i −0.125967 + 0.218181i
\(906\) 0 0
\(907\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(908\) 0 0
\(909\) −1782.00 −1.96040
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −770.000 −0.832432
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −129.000 + 223.435i −0.138859 + 0.240511i −0.927065 0.374901i \(-0.877677\pi\)
0.788206 + 0.615411i \(0.211010\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −430.000 −0.458911 −0.229456 0.973319i \(-0.573695\pi\)
−0.229456 + 0.973319i \(0.573695\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −741.000 1283.45i −0.787460 1.36392i −0.927518 0.373778i \(-0.878062\pi\)
0.140058 0.990143i \(-0.455271\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) 0 0
\(949\) 550.000 + 952.628i 0.579557 + 1.00382i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1230.00 −1.29066 −0.645331 0.763903i \(-0.723280\pi\)
−0.645331 + 0.763903i \(0.723280\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −480.500 + 832.250i −0.500000 + 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1140.00 1.18135
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −945.000 1636.79i −0.967247 1.67532i −0.703454 0.710741i \(-0.748360\pi\)
−0.263793 0.964579i \(-0.584974\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1638.00 −1.66972
\(982\) 0 0
\(983\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(984\) 0 0
\(985\) −1170.00 + 2026.50i −1.18782 + 2.05736i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −925.000 1602.15i −0.927783 1.60697i −0.787023 0.616924i \(-0.788378\pi\)
−0.140761 0.990044i \(-0.544955\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.3.r.e.79.1 2
4.3 odd 2 CM 784.3.r.e.79.1 2
7.2 even 3 16.3.c.a.15.1 1
7.3 odd 6 784.3.r.d.655.1 2
7.4 even 3 inner 784.3.r.e.655.1 2
7.5 odd 6 784.3.d.b.687.1 1
7.6 odd 2 784.3.r.d.79.1 2
21.2 odd 6 144.3.g.a.127.1 1
28.3 even 6 784.3.r.d.655.1 2
28.11 odd 6 inner 784.3.r.e.655.1 2
28.19 even 6 784.3.d.b.687.1 1
28.23 odd 6 16.3.c.a.15.1 1
28.27 even 2 784.3.r.d.79.1 2
35.2 odd 12 400.3.h.a.399.1 2
35.9 even 6 400.3.b.a.351.1 1
35.23 odd 12 400.3.h.a.399.2 2
56.37 even 6 64.3.c.a.63.1 1
56.51 odd 6 64.3.c.a.63.1 1
63.2 odd 6 1296.3.o.b.271.1 2
63.16 even 3 1296.3.o.o.271.1 2
63.23 odd 6 1296.3.o.b.703.1 2
63.58 even 3 1296.3.o.o.703.1 2
84.23 even 6 144.3.g.a.127.1 1
105.2 even 12 3600.3.j.a.1999.1 2
105.23 even 12 3600.3.j.a.1999.2 2
105.44 odd 6 3600.3.e.c.3151.1 1
112.37 even 12 256.3.d.b.127.1 2
112.51 odd 12 256.3.d.b.127.2 2
112.93 even 12 256.3.d.b.127.2 2
112.107 odd 12 256.3.d.b.127.1 2
140.23 even 12 400.3.h.a.399.2 2
140.79 odd 6 400.3.b.a.351.1 1
140.107 even 12 400.3.h.a.399.1 2
168.107 even 6 576.3.g.b.127.1 1
168.149 odd 6 576.3.g.b.127.1 1
252.23 even 6 1296.3.o.b.703.1 2
252.79 odd 6 1296.3.o.o.271.1 2
252.191 even 6 1296.3.o.b.271.1 2
252.247 odd 6 1296.3.o.o.703.1 2
280.37 odd 12 1600.3.h.b.1599.2 2
280.93 odd 12 1600.3.h.b.1599.1 2
280.107 even 12 1600.3.h.b.1599.2 2
280.149 even 6 1600.3.b.b.1151.1 1
280.163 even 12 1600.3.h.b.1599.1 2
280.219 odd 6 1600.3.b.b.1151.1 1
336.107 even 12 2304.3.b.f.127.2 2
336.149 odd 12 2304.3.b.f.127.2 2
336.275 even 12 2304.3.b.f.127.1 2
336.317 odd 12 2304.3.b.f.127.1 2
420.23 odd 12 3600.3.j.a.1999.2 2
420.107 odd 12 3600.3.j.a.1999.1 2
420.359 even 6 3600.3.e.c.3151.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.3.c.a.15.1 1 7.2 even 3
16.3.c.a.15.1 1 28.23 odd 6
64.3.c.a.63.1 1 56.37 even 6
64.3.c.a.63.1 1 56.51 odd 6
144.3.g.a.127.1 1 21.2 odd 6
144.3.g.a.127.1 1 84.23 even 6
256.3.d.b.127.1 2 112.37 even 12
256.3.d.b.127.1 2 112.107 odd 12
256.3.d.b.127.2 2 112.51 odd 12
256.3.d.b.127.2 2 112.93 even 12
400.3.b.a.351.1 1 35.9 even 6
400.3.b.a.351.1 1 140.79 odd 6
400.3.h.a.399.1 2 35.2 odd 12
400.3.h.a.399.1 2 140.107 even 12
400.3.h.a.399.2 2 35.23 odd 12
400.3.h.a.399.2 2 140.23 even 12
576.3.g.b.127.1 1 168.107 even 6
576.3.g.b.127.1 1 168.149 odd 6
784.3.d.b.687.1 1 7.5 odd 6
784.3.d.b.687.1 1 28.19 even 6
784.3.r.d.79.1 2 7.6 odd 2
784.3.r.d.79.1 2 28.27 even 2
784.3.r.d.655.1 2 7.3 odd 6
784.3.r.d.655.1 2 28.3 even 6
784.3.r.e.79.1 2 1.1 even 1 trivial
784.3.r.e.79.1 2 4.3 odd 2 CM
784.3.r.e.655.1 2 7.4 even 3 inner
784.3.r.e.655.1 2 28.11 odd 6 inner
1296.3.o.b.271.1 2 63.2 odd 6
1296.3.o.b.271.1 2 252.191 even 6
1296.3.o.b.703.1 2 63.23 odd 6
1296.3.o.b.703.1 2 252.23 even 6
1296.3.o.o.271.1 2 63.16 even 3
1296.3.o.o.271.1 2 252.79 odd 6
1296.3.o.o.703.1 2 63.58 even 3
1296.3.o.o.703.1 2 252.247 odd 6
1600.3.b.b.1151.1 1 280.149 even 6
1600.3.b.b.1151.1 1 280.219 odd 6
1600.3.h.b.1599.1 2 280.93 odd 12
1600.3.h.b.1599.1 2 280.163 even 12
1600.3.h.b.1599.2 2 280.37 odd 12
1600.3.h.b.1599.2 2 280.107 even 12
2304.3.b.f.127.1 2 336.275 even 12
2304.3.b.f.127.1 2 336.317 odd 12
2304.3.b.f.127.2 2 336.107 even 12
2304.3.b.f.127.2 2 336.149 odd 12
3600.3.e.c.3151.1 1 105.44 odd 6
3600.3.e.c.3151.1 1 420.359 even 6
3600.3.j.a.1999.1 2 105.2 even 12
3600.3.j.a.1999.1 2 420.107 odd 12
3600.3.j.a.1999.2 2 105.23 even 12
3600.3.j.a.1999.2 2 420.23 odd 12