Properties

Label 400.3.b.a.351.1
Level $400$
Weight $3$
Character 400.351
Self dual yes
Analytic conductor $10.899$
Analytic rank $0$
Dimension $1$
CM discriminant -4
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,3,Mod(351,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.351");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 400.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.8992105744\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 351.1
Character \(\chi\) \(=\) 400.351

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{9} +O(q^{10})\) \(q+9.00000 q^{9} -10.0000 q^{13} +30.0000 q^{17} +42.0000 q^{29} +70.0000 q^{37} +18.0000 q^{41} +49.0000 q^{49} -90.0000 q^{53} -22.0000 q^{61} +110.000 q^{73} +81.0000 q^{81} -78.0000 q^{89} -130.000 q^{97} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 9.00000 1.00000
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −10.0000 −0.769231 −0.384615 0.923077i \(-0.625666\pi\)
−0.384615 + 0.923077i \(0.625666\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 30.0000 1.76471 0.882353 0.470588i \(-0.155958\pi\)
0.882353 + 0.470588i \(0.155958\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 42.0000 1.44828 0.724138 0.689655i \(-0.242238\pi\)
0.724138 + 0.689655i \(0.242238\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 70.0000 1.89189 0.945946 0.324324i \(-0.105137\pi\)
0.945946 + 0.324324i \(0.105137\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 18.0000 0.439024 0.219512 0.975610i \(-0.429553\pi\)
0.219512 + 0.975610i \(0.429553\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 49.0000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −90.0000 −1.69811 −0.849057 0.528302i \(-0.822829\pi\)
−0.849057 + 0.528302i \(0.822829\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −22.0000 −0.360656 −0.180328 0.983607i \(-0.557716\pi\)
−0.180328 + 0.983607i \(0.557716\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 110.000 1.50685 0.753425 0.657534i \(-0.228401\pi\)
0.753425 + 0.657534i \(0.228401\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 81.0000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −78.0000 −0.876404 −0.438202 0.898876i \(-0.644385\pi\)
−0.438202 + 0.898876i \(0.644385\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −130.000 −1.34021 −0.670103 0.742268i \(-0.733750\pi\)
−0.670103 + 0.742268i \(0.733750\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −198.000 −1.96040 −0.980198 0.198020i \(-0.936549\pi\)
−0.980198 + 0.198020i \(0.936549\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −182.000 −1.66972 −0.834862 0.550459i \(-0.814453\pi\)
−0.834862 + 0.550459i \(0.814453\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 30.0000 0.265487 0.132743 0.991150i \(-0.457621\pi\)
0.132743 + 0.991150i \(0.457621\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −90.0000 −0.769231
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 121.000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −210.000 −1.53285 −0.766423 0.642336i \(-0.777965\pi\)
−0.766423 + 0.642336i \(0.777965\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −102.000 −0.684564 −0.342282 0.939597i \(-0.611200\pi\)
−0.342282 + 0.939597i \(0.611200\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 270.000 1.76471
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −170.000 −1.08280 −0.541401 0.840764i \(-0.682106\pi\)
−0.541401 + 0.840764i \(0.682106\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −69.0000 −0.408284
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −330.000 −1.90751 −0.953757 0.300578i \(-0.902820\pi\)
−0.953757 + 0.300578i \(0.902820\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −38.0000 −0.209945 −0.104972 0.994475i \(-0.533475\pi\)
−0.104972 + 0.994475i \(0.533475\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 190.000 0.984456 0.492228 0.870466i \(-0.336183\pi\)
0.492228 + 0.870466i \(0.336183\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 390.000 1.97970 0.989848 0.142132i \(-0.0453957\pi\)
0.989848 + 0.142132i \(0.0453957\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −300.000 −1.35747
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 442.000 1.93013 0.965066 0.262009i \(-0.0843849\pi\)
0.965066 + 0.262009i \(0.0843849\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −210.000 −0.901288 −0.450644 0.892704i \(-0.648806\pi\)
−0.450644 + 0.892704i \(0.648806\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 418.000 1.73444 0.867220 0.497925i \(-0.165905\pi\)
0.867220 + 0.497925i \(0.165905\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 510.000 1.98444 0.992218 0.124514i \(-0.0397370\pi\)
0.992218 + 0.124514i \(0.0397370\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 378.000 1.44828
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 138.000 0.513011 0.256506 0.966543i \(-0.417429\pi\)
0.256506 + 0.966543i \(0.417429\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 230.000 0.830325 0.415162 0.909747i \(-0.363725\pi\)
0.415162 + 0.909747i \(0.363725\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −462.000 −1.64413 −0.822064 0.569395i \(-0.807178\pi\)
−0.822064 + 0.569395i \(0.807178\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 611.000 2.11419
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −570.000 −1.94539 −0.972696 0.232082i \(-0.925446\pi\)
−0.972696 + 0.232082i \(0.925446\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −50.0000 −0.159744 −0.0798722 0.996805i \(-0.525451\pi\)
−0.0798722 + 0.996805i \(0.525451\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 150.000 0.473186 0.236593 0.971609i \(-0.423969\pi\)
0.236593 + 0.971609i \(0.423969\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 630.000 1.89189
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 350.000 1.03858 0.519288 0.854599i \(-0.326197\pi\)
0.519288 + 0.854599i \(0.326197\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) −598.000 −1.71347 −0.856734 0.515759i \(-0.827510\pi\)
−0.856734 + 0.515759i \(0.827510\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −450.000 −1.27479 −0.637394 0.770538i \(-0.719988\pi\)
−0.637394 + 0.770538i \(0.719988\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 361.000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 162.000 0.439024
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 550.000 1.47453 0.737265 0.675603i \(-0.236117\pi\)
0.737265 + 0.675603i \(0.236117\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −420.000 −1.11406
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 378.000 0.971722 0.485861 0.874036i \(-0.338506\pi\)
0.485861 + 0.874036i \(0.338506\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −650.000 −1.63728 −0.818640 0.574307i \(-0.805271\pi\)
−0.818640 + 0.574307i \(0.805271\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −798.000 −1.99002 −0.995012 0.0997506i \(-0.968195\pi\)
−0.995012 + 0.0997506i \(0.968195\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −782.000 −1.91198 −0.955990 0.293399i \(-0.905214\pi\)
−0.955990 + 0.293399i \(0.905214\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 58.0000 0.137767 0.0688836 0.997625i \(-0.478056\pi\)
0.0688836 + 0.997625i \(0.478056\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −290.000 −0.669746 −0.334873 0.942263i \(-0.608693\pi\)
−0.334873 + 0.942263i \(0.608693\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 441.000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −702.000 −1.56347 −0.781737 0.623608i \(-0.785666\pi\)
−0.781737 + 0.623608i \(0.785666\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −850.000 −1.85996 −0.929978 0.367615i \(-0.880174\pi\)
−0.929978 + 0.367615i \(0.880174\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 522.000 1.13232 0.566161 0.824295i \(-0.308428\pi\)
0.566161 + 0.824295i \(0.308428\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −810.000 −1.69811
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) −700.000 −1.45530
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 1260.00 2.55578
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −918.000 −1.80354 −0.901768 0.432220i \(-0.857730\pi\)
−0.901768 + 0.432220i \(0.857730\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −558.000 −1.07102 −0.535509 0.844530i \(-0.679880\pi\)
−0.535509 + 0.844530i \(0.679880\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 529.000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −180.000 −0.337711
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 682.000 1.26063 0.630314 0.776340i \(-0.282926\pi\)
0.630314 + 0.776340i \(0.282926\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) −198.000 −0.360656
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −330.000 −0.592460 −0.296230 0.955117i \(-0.595729\pi\)
−0.296230 + 0.955117i \(0.595729\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −462.000 −0.811951 −0.405975 0.913884i \(-0.633068\pi\)
−0.405975 + 0.913884i \(0.633068\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1150.00 1.99307 0.996534 0.0831889i \(-0.0265105\pi\)
0.996534 + 0.0831889i \(0.0265105\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −930.000 −1.56830 −0.784148 0.620573i \(-0.786900\pi\)
−0.784148 + 0.620573i \(0.786900\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −1102.00 −1.83361 −0.916805 0.399334i \(-0.869241\pi\)
−0.916805 + 0.399334i \(0.869241\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 70.0000 0.114192 0.0570962 0.998369i \(-0.481816\pi\)
0.0570962 + 0.998369i \(0.481816\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −210.000 −0.340357 −0.170178 0.985413i \(-0.554434\pi\)
−0.170178 + 0.985413i \(0.554434\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2100.00 3.33863
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −490.000 −0.769231
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1218.00 1.90016 0.950078 0.312012i \(-0.101003\pi\)
0.950078 + 0.312012i \(0.101003\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 630.000 0.964778 0.482389 0.875957i \(-0.339769\pi\)
0.482389 + 0.875957i \(0.339769\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 990.000 1.50685
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 1178.00 1.78215 0.891074 0.453858i \(-0.149953\pi\)
0.891074 + 0.453858i \(0.149953\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −770.000 −1.14413 −0.572065 0.820208i \(-0.693858\pi\)
−0.572065 + 0.820208i \(0.693858\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1350.00 1.99409 0.997046 0.0768095i \(-0.0244733\pi\)
0.997046 + 0.0768095i \(0.0244733\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 900.000 1.30624
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 540.000 0.774749
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1302.00 −1.85735 −0.928673 0.370899i \(-0.879050\pi\)
−0.928673 + 0.370899i \(0.879050\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −518.000 −0.730606 −0.365303 0.930889i \(-0.619035\pi\)
−0.365303 + 0.930889i \(0.619035\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −1450.00 −1.97817 −0.989086 0.147340i \(-0.952929\pi\)
−0.989086 + 0.147340i \(0.952929\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1190.00 1.57199 0.785997 0.618230i \(-0.212150\pi\)
0.785997 + 0.618230i \(0.212150\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −78.0000 −0.102497 −0.0512484 0.998686i \(-0.516320\pi\)
−0.0512484 + 0.998686i \(0.516320\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 962.000 1.25098 0.625488 0.780234i \(-0.284900\pi\)
0.625488 + 0.780234i \(0.284900\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 390.000 0.504528 0.252264 0.967658i \(-0.418825\pi\)
0.252264 + 0.967658i \(0.418825\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 220.000 0.277427
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1110.00 1.39272 0.696361 0.717691i \(-0.254801\pi\)
0.696361 + 0.717691i \(0.254801\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −702.000 −0.876404
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1518.00 −1.87639 −0.938195 0.346106i \(-0.887504\pi\)
−0.938195 + 0.346106i \(0.887504\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 858.000 1.04507 0.522533 0.852619i \(-0.324987\pi\)
0.522533 + 0.852619i \(0.324987\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 1258.00 1.51749 0.758745 0.651387i \(-0.225813\pi\)
0.758745 + 0.651387i \(0.225813\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1470.00 1.76471
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 923.000 1.09750
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −410.000 −0.480657 −0.240328 0.970692i \(-0.577255\pi\)
−0.240328 + 0.970692i \(0.577255\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1650.00 −1.92532 −0.962660 0.270712i \(-0.912741\pi\)
−0.962660 + 0.270712i \(0.912741\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −1170.00 −1.34021
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1610.00 −1.83580 −0.917902 0.396807i \(-0.870118\pi\)
−0.917902 + 0.396807i \(0.870118\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 738.000 0.837684 0.418842 0.908059i \(-0.362436\pi\)
0.418842 + 0.908059i \(0.362436\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −2700.00 −2.99667
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) −1782.00 −1.96040
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 258.000 0.277718 0.138859 0.990312i \(-0.455657\pi\)
0.138859 + 0.990312i \(0.455657\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 430.000 0.458911 0.229456 0.973319i \(-0.426305\pi\)
0.229456 + 0.973319i \(0.426305\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1482.00 1.57492 0.787460 0.616366i \(-0.211396\pi\)
0.787460 + 0.616366i \(0.211396\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) −1100.00 −1.15911
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1230.00 1.29066 0.645331 0.763903i \(-0.276720\pi\)
0.645331 + 0.763903i \(0.276720\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1890.00 −1.93449 −0.967247 0.253838i \(-0.918307\pi\)
−0.967247 + 0.253838i \(0.918307\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1638.00 −1.66972
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1850.00 −1.85557 −0.927783 0.373119i \(-0.878288\pi\)
−0.927783 + 0.373119i \(0.878288\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.3.b.a.351.1 1
3.2 odd 2 3600.3.e.c.3151.1 1
4.3 odd 2 CM 400.3.b.a.351.1 1
5.2 odd 4 400.3.h.a.399.2 2
5.3 odd 4 400.3.h.a.399.1 2
5.4 even 2 16.3.c.a.15.1 1
8.3 odd 2 1600.3.b.b.1151.1 1
8.5 even 2 1600.3.b.b.1151.1 1
12.11 even 2 3600.3.e.c.3151.1 1
15.2 even 4 3600.3.j.a.1999.2 2
15.8 even 4 3600.3.j.a.1999.1 2
15.14 odd 2 144.3.g.a.127.1 1
20.3 even 4 400.3.h.a.399.1 2
20.7 even 4 400.3.h.a.399.2 2
20.19 odd 2 16.3.c.a.15.1 1
35.4 even 6 784.3.r.e.79.1 2
35.9 even 6 784.3.r.e.655.1 2
35.19 odd 6 784.3.r.d.655.1 2
35.24 odd 6 784.3.r.d.79.1 2
35.34 odd 2 784.3.d.b.687.1 1
40.3 even 4 1600.3.h.b.1599.2 2
40.13 odd 4 1600.3.h.b.1599.2 2
40.19 odd 2 64.3.c.a.63.1 1
40.27 even 4 1600.3.h.b.1599.1 2
40.29 even 2 64.3.c.a.63.1 1
40.37 odd 4 1600.3.h.b.1599.1 2
45.4 even 6 1296.3.o.o.703.1 2
45.14 odd 6 1296.3.o.b.703.1 2
45.29 odd 6 1296.3.o.b.271.1 2
45.34 even 6 1296.3.o.o.271.1 2
60.23 odd 4 3600.3.j.a.1999.1 2
60.47 odd 4 3600.3.j.a.1999.2 2
60.59 even 2 144.3.g.a.127.1 1
80.19 odd 4 256.3.d.b.127.2 2
80.29 even 4 256.3.d.b.127.2 2
80.59 odd 4 256.3.d.b.127.1 2
80.69 even 4 256.3.d.b.127.1 2
120.29 odd 2 576.3.g.b.127.1 1
120.59 even 2 576.3.g.b.127.1 1
140.19 even 6 784.3.r.d.655.1 2
140.39 odd 6 784.3.r.e.79.1 2
140.59 even 6 784.3.r.d.79.1 2
140.79 odd 6 784.3.r.e.655.1 2
140.139 even 2 784.3.d.b.687.1 1
180.59 even 6 1296.3.o.b.703.1 2
180.79 odd 6 1296.3.o.o.271.1 2
180.119 even 6 1296.3.o.b.271.1 2
180.139 odd 6 1296.3.o.o.703.1 2
240.29 odd 4 2304.3.b.f.127.1 2
240.59 even 4 2304.3.b.f.127.2 2
240.149 odd 4 2304.3.b.f.127.2 2
240.179 even 4 2304.3.b.f.127.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.3.c.a.15.1 1 5.4 even 2
16.3.c.a.15.1 1 20.19 odd 2
64.3.c.a.63.1 1 40.19 odd 2
64.3.c.a.63.1 1 40.29 even 2
144.3.g.a.127.1 1 15.14 odd 2
144.3.g.a.127.1 1 60.59 even 2
256.3.d.b.127.1 2 80.59 odd 4
256.3.d.b.127.1 2 80.69 even 4
256.3.d.b.127.2 2 80.19 odd 4
256.3.d.b.127.2 2 80.29 even 4
400.3.b.a.351.1 1 1.1 even 1 trivial
400.3.b.a.351.1 1 4.3 odd 2 CM
400.3.h.a.399.1 2 5.3 odd 4
400.3.h.a.399.1 2 20.3 even 4
400.3.h.a.399.2 2 5.2 odd 4
400.3.h.a.399.2 2 20.7 even 4
576.3.g.b.127.1 1 120.29 odd 2
576.3.g.b.127.1 1 120.59 even 2
784.3.d.b.687.1 1 35.34 odd 2
784.3.d.b.687.1 1 140.139 even 2
784.3.r.d.79.1 2 35.24 odd 6
784.3.r.d.79.1 2 140.59 even 6
784.3.r.d.655.1 2 35.19 odd 6
784.3.r.d.655.1 2 140.19 even 6
784.3.r.e.79.1 2 35.4 even 6
784.3.r.e.79.1 2 140.39 odd 6
784.3.r.e.655.1 2 35.9 even 6
784.3.r.e.655.1 2 140.79 odd 6
1296.3.o.b.271.1 2 45.29 odd 6
1296.3.o.b.271.1 2 180.119 even 6
1296.3.o.b.703.1 2 45.14 odd 6
1296.3.o.b.703.1 2 180.59 even 6
1296.3.o.o.271.1 2 45.34 even 6
1296.3.o.o.271.1 2 180.79 odd 6
1296.3.o.o.703.1 2 45.4 even 6
1296.3.o.o.703.1 2 180.139 odd 6
1600.3.b.b.1151.1 1 8.3 odd 2
1600.3.b.b.1151.1 1 8.5 even 2
1600.3.h.b.1599.1 2 40.27 even 4
1600.3.h.b.1599.1 2 40.37 odd 4
1600.3.h.b.1599.2 2 40.3 even 4
1600.3.h.b.1599.2 2 40.13 odd 4
2304.3.b.f.127.1 2 240.29 odd 4
2304.3.b.f.127.1 2 240.179 even 4
2304.3.b.f.127.2 2 240.59 even 4
2304.3.b.f.127.2 2 240.149 odd 4
3600.3.e.c.3151.1 1 3.2 odd 2
3600.3.e.c.3151.1 1 12.11 even 2
3600.3.j.a.1999.1 2 15.8 even 4
3600.3.j.a.1999.1 2 60.23 odd 4
3600.3.j.a.1999.2 2 15.2 even 4
3600.3.j.a.1999.2 2 60.47 odd 4