Properties

Label 784.2.j.a.195.9
Level $784$
Weight $2$
Character 784.195
Analytic conductor $6.260$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(195,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.195"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 195.9
Character \(\chi\) \(=\) 784.195
Dual form 784.2.j.a.587.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.795020 + 1.16959i) q^{2} +(-0.648349 - 0.648349i) q^{3} +(-0.735886 - 1.85970i) q^{4} +(-2.23699 - 2.23699i) q^{5} +(1.27375 - 0.242853i) q^{6} +(2.76013 + 0.617811i) q^{8} -2.15929i q^{9} +(4.39482 - 0.837912i) q^{10} +(0.873801 + 0.873801i) q^{11} +(-0.728622 + 1.68284i) q^{12} +(0.430348 - 0.430348i) q^{13} +2.90070i q^{15} +(-2.91694 + 2.73705i) q^{16} -5.93673i q^{17} +(2.52548 + 1.71668i) q^{18} +(0.146719 + 0.146719i) q^{19} +(-2.51396 + 5.80630i) q^{20} +(-1.71668 + 0.327300i) q^{22} +3.54208 q^{23} +(-1.38897 - 2.19008i) q^{24} +5.00828i q^{25} +(0.161196 + 0.845467i) q^{26} +(-3.34502 + 3.34502i) q^{27} +(1.84275 + 1.84275i) q^{29} +(-3.39264 - 2.30612i) q^{30} -7.20354 q^{31} +(-0.882198 - 5.58764i) q^{32} -1.13306i q^{33} +(6.94355 + 4.71982i) q^{34} +(-4.01562 + 1.58899i) q^{36} +(-8.19631 + 8.19631i) q^{37} +(-0.288247 + 0.0549568i) q^{38} -0.558032 q^{39} +(-4.79235 - 7.55643i) q^{40} -9.61218 q^{41} +(-7.30761 - 7.30761i) q^{43} +(0.981987 - 2.26802i) q^{44} +(-4.83031 + 4.83031i) q^{45} +(-2.81603 + 4.14279i) q^{46} +5.75263 q^{47} +(3.66576 + 0.116635i) q^{48} +(-5.85763 - 3.98168i) q^{50} +(-3.84907 + 3.84907i) q^{51} +(-1.11700 - 0.483630i) q^{52} +(-3.64830 + 3.64830i) q^{53} +(-1.25295 - 6.57166i) q^{54} -3.90937i q^{55} -0.190251i q^{57} +(-3.62028 + 0.690239i) q^{58} +(1.00885 - 1.00885i) q^{59} +(5.39443 - 2.13459i) q^{60} +(-0.939971 + 0.939971i) q^{61} +(5.72696 - 8.42519i) q^{62} +(7.23662 + 3.41048i) q^{64} -1.92537 q^{65} +(1.32521 + 0.900803i) q^{66} +(-5.78442 + 5.78442i) q^{67} +(-11.0405 + 4.36876i) q^{68} +(-2.29651 - 2.29651i) q^{69} +13.7963 q^{71} +(1.33403 - 5.95991i) q^{72} -2.25309 q^{73} +(-3.07010 - 16.1026i) q^{74} +(3.24711 - 3.24711i) q^{75} +(0.164885 - 0.380823i) q^{76} +(0.443647 - 0.652669i) q^{78} +1.70380i q^{79} +(12.6479 + 0.402424i) q^{80} -2.14038 q^{81} +(7.64188 - 11.2423i) q^{82} +(7.78261 + 7.78261i) q^{83} +(-13.2804 + 13.2804i) q^{85} +(14.3566 - 2.73722i) q^{86} -2.38949i q^{87} +(1.87196 + 2.95165i) q^{88} +6.10947 q^{89} +(-1.80929 - 9.48968i) q^{90} +(-2.60657 - 6.58720i) q^{92} +(4.67041 + 4.67041i) q^{93} +(-4.57345 + 6.72822i) q^{94} -0.656421i q^{95} +(-3.05077 + 4.19471i) q^{96} -10.6315i q^{97} +(1.88679 - 1.88679i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{2} + 8 q^{4} + 4 q^{8} - 4 q^{11} - 16 q^{16} + 60 q^{18} - 28 q^{22} + 24 q^{23} - 24 q^{29} + 36 q^{30} + 24 q^{32} + 16 q^{36} - 12 q^{37} + 8 q^{39} - 52 q^{44} - 32 q^{46} + 68 q^{51} - 12 q^{53}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.795020 + 1.16959i −0.562164 + 0.827026i
\(3\) −0.648349 0.648349i −0.374325 0.374325i 0.494725 0.869050i \(-0.335269\pi\)
−0.869050 + 0.494725i \(0.835269\pi\)
\(4\) −0.735886 1.85970i −0.367943 0.929848i
\(5\) −2.23699 2.23699i −1.00041 1.00041i −1.00000 0.000413829i \(-0.999868\pi\)
−0.000413829 1.00000i \(-0.500132\pi\)
\(6\) 1.27375 0.242853i 0.520008 0.0991442i
\(7\) 0 0
\(8\) 2.76013 + 0.617811i 0.975853 + 0.218429i
\(9\) 2.15929i 0.719762i
\(10\) 4.39482 0.837912i 1.38976 0.264971i
\(11\) 0.873801 + 0.873801i 0.263461 + 0.263461i 0.826459 0.562998i \(-0.190352\pi\)
−0.562998 + 0.826459i \(0.690352\pi\)
\(12\) −0.728622 + 1.68284i −0.210335 + 0.485795i
\(13\) 0.430348 0.430348i 0.119357 0.119357i −0.644905 0.764262i \(-0.723103\pi\)
0.764262 + 0.644905i \(0.223103\pi\)
\(14\) 0 0
\(15\) 2.90070i 0.748959i
\(16\) −2.91694 + 2.73705i −0.729236 + 0.684262i
\(17\) 5.93673i 1.43987i −0.694042 0.719934i \(-0.744172\pi\)
0.694042 0.719934i \(-0.255828\pi\)
\(18\) 2.52548 + 1.71668i 0.595262 + 0.404625i
\(19\) 0.146719 + 0.146719i 0.0336598 + 0.0336598i 0.723736 0.690077i \(-0.242423\pi\)
−0.690077 + 0.723736i \(0.742423\pi\)
\(20\) −2.51396 + 5.80630i −0.562138 + 1.29833i
\(21\) 0 0
\(22\) −1.71668 + 0.327300i −0.365997 + 0.0697807i
\(23\) 3.54208 0.738575 0.369287 0.929315i \(-0.379602\pi\)
0.369287 + 0.929315i \(0.379602\pi\)
\(24\) −1.38897 2.19008i −0.283522 0.447049i
\(25\) 5.00828i 1.00166i
\(26\) 0.161196 + 0.845467i 0.0316131 + 0.165810i
\(27\) −3.34502 + 3.34502i −0.643749 + 0.643749i
\(28\) 0 0
\(29\) 1.84275 + 1.84275i 0.342190 + 0.342190i 0.857190 0.515000i \(-0.172208\pi\)
−0.515000 + 0.857190i \(0.672208\pi\)
\(30\) −3.39264 2.30612i −0.619408 0.421038i
\(31\) −7.20354 −1.29379 −0.646897 0.762578i \(-0.723934\pi\)
−0.646897 + 0.762578i \(0.723934\pi\)
\(32\) −0.882198 5.58764i −0.155952 0.987765i
\(33\) 1.13306i 0.197240i
\(34\) 6.94355 + 4.71982i 1.19081 + 0.809443i
\(35\) 0 0
\(36\) −4.01562 + 1.58899i −0.669270 + 0.264831i
\(37\) −8.19631 + 8.19631i −1.34747 + 1.34747i −0.459061 + 0.888405i \(0.651814\pi\)
−0.888405 + 0.459061i \(0.848186\pi\)
\(38\) −0.288247 + 0.0549568i −0.0467598 + 0.00891517i
\(39\) −0.558032 −0.0893566
\(40\) −4.79235 7.55643i −0.757737 1.19478i
\(41\) −9.61218 −1.50117 −0.750585 0.660774i \(-0.770228\pi\)
−0.750585 + 0.660774i \(0.770228\pi\)
\(42\) 0 0
\(43\) −7.30761 7.30761i −1.11440 1.11440i −0.992548 0.121852i \(-0.961117\pi\)
−0.121852 0.992548i \(-0.538883\pi\)
\(44\) 0.981987 2.26802i 0.148040 0.341917i
\(45\) −4.83031 + 4.83031i −0.720060 + 0.720060i
\(46\) −2.81603 + 4.14279i −0.415200 + 0.610820i
\(47\) 5.75263 0.839107 0.419553 0.907731i \(-0.362187\pi\)
0.419553 + 0.907731i \(0.362187\pi\)
\(48\) 3.66576 + 0.116635i 0.529107 + 0.0168348i
\(49\) 0 0
\(50\) −5.85763 3.98168i −0.828395 0.563095i
\(51\) −3.84907 + 3.84907i −0.538978 + 0.538978i
\(52\) −1.11700 0.483630i −0.154901 0.0670674i
\(53\) −3.64830 + 3.64830i −0.501133 + 0.501133i −0.911790 0.410657i \(-0.865299\pi\)
0.410657 + 0.911790i \(0.365299\pi\)
\(54\) −1.25295 6.57166i −0.170504 0.894290i
\(55\) 3.90937i 0.527140i
\(56\) 0 0
\(57\) 0.190251i 0.0251993i
\(58\) −3.62028 + 0.690239i −0.475366 + 0.0906328i
\(59\) 1.00885 1.00885i 0.131341 0.131341i −0.638380 0.769721i \(-0.720395\pi\)
0.769721 + 0.638380i \(0.220395\pi\)
\(60\) 5.39443 2.13459i 0.696418 0.275574i
\(61\) −0.939971 + 0.939971i −0.120351 + 0.120351i −0.764717 0.644366i \(-0.777121\pi\)
0.644366 + 0.764717i \(0.277121\pi\)
\(62\) 5.72696 8.42519i 0.727324 1.07000i
\(63\) 0 0
\(64\) 7.23662 + 3.41048i 0.904577 + 0.426309i
\(65\) −1.92537 −0.238813
\(66\) 1.32521 + 0.900803i 0.163122 + 0.110881i
\(67\) −5.78442 + 5.78442i −0.706680 + 0.706680i −0.965836 0.259156i \(-0.916556\pi\)
0.259156 + 0.965836i \(0.416556\pi\)
\(68\) −11.0405 + 4.36876i −1.33886 + 0.529790i
\(69\) −2.29651 2.29651i −0.276467 0.276467i
\(70\) 0 0
\(71\) 13.7963 1.63732 0.818661 0.574277i \(-0.194717\pi\)
0.818661 + 0.574277i \(0.194717\pi\)
\(72\) 1.33403 5.95991i 0.157217 0.702382i
\(73\) −2.25309 −0.263704 −0.131852 0.991269i \(-0.542092\pi\)
−0.131852 + 0.991269i \(0.542092\pi\)
\(74\) −3.07010 16.1026i −0.356892 1.87189i
\(75\) 3.24711 3.24711i 0.374944 0.374944i
\(76\) 0.164885 0.380823i 0.0189136 0.0436833i
\(77\) 0 0
\(78\) 0.443647 0.652669i 0.0502331 0.0739002i
\(79\) 1.70380i 0.191693i 0.995396 + 0.0958465i \(0.0305558\pi\)
−0.995396 + 0.0958465i \(0.969444\pi\)
\(80\) 12.6479 + 0.402424i 1.41408 + 0.0449924i
\(81\) −2.14038 −0.237820
\(82\) 7.64188 11.2423i 0.843904 1.24151i
\(83\) 7.78261 + 7.78261i 0.854253 + 0.854253i 0.990654 0.136401i \(-0.0435536\pi\)
−0.136401 + 0.990654i \(0.543554\pi\)
\(84\) 0 0
\(85\) −13.2804 + 13.2804i −1.44046 + 1.44046i
\(86\) 14.3566 2.73722i 1.54811 0.295162i
\(87\) 2.38949i 0.256180i
\(88\) 1.87196 + 2.95165i 0.199552 + 0.314647i
\(89\) 6.10947 0.647603 0.323801 0.946125i \(-0.395039\pi\)
0.323801 + 0.946125i \(0.395039\pi\)
\(90\) −1.80929 9.48968i −0.190716 1.00030i
\(91\) 0 0
\(92\) −2.60657 6.58720i −0.271753 0.686763i
\(93\) 4.67041 + 4.67041i 0.484299 + 0.484299i
\(94\) −4.57345 + 6.72822i −0.471716 + 0.693963i
\(95\) 0.656421i 0.0673474i
\(96\) −3.05077 + 4.19471i −0.311368 + 0.428121i
\(97\) 10.6315i 1.07946i −0.841837 0.539732i \(-0.818526\pi\)
0.841837 0.539732i \(-0.181474\pi\)
\(98\) 0 0
\(99\) 1.88679 1.88679i 0.189629 0.189629i
\(100\) 9.31388 3.68552i 0.931388 0.368552i
\(101\) 0.901752 + 0.901752i 0.0897277 + 0.0897277i 0.750546 0.660818i \(-0.229791\pi\)
−0.660818 + 0.750546i \(0.729791\pi\)
\(102\) −1.44175 7.56194i −0.142755 0.748743i
\(103\) 9.82187i 0.967778i 0.875129 + 0.483889i \(0.160776\pi\)
−0.875129 + 0.483889i \(0.839224\pi\)
\(104\) 1.45369 0.921943i 0.142546 0.0904039i
\(105\) 0 0
\(106\) −1.36655 7.16750i −0.132731 0.696169i
\(107\) −7.34736 7.34736i −0.710296 0.710296i 0.256301 0.966597i \(-0.417496\pi\)
−0.966597 + 0.256301i \(0.917496\pi\)
\(108\) 8.68227 + 3.75917i 0.835452 + 0.361726i
\(109\) 0.0287071 + 0.0287071i 0.00274964 + 0.00274964i 0.708480 0.705731i \(-0.249381\pi\)
−0.705731 + 0.708480i \(0.749381\pi\)
\(110\) 4.57237 + 3.10803i 0.435958 + 0.296339i
\(111\) 10.6281 1.00878
\(112\) 0 0
\(113\) −11.0778 −1.04211 −0.521055 0.853523i \(-0.674461\pi\)
−0.521055 + 0.853523i \(0.674461\pi\)
\(114\) 0.222516 + 0.151253i 0.0208405 + 0.0141662i
\(115\) −7.92361 7.92361i −0.738881 0.738881i
\(116\) 2.07090 4.78300i 0.192278 0.444091i
\(117\) −0.929245 0.929245i −0.0859088 0.0859088i
\(118\) 0.377885 + 1.98199i 0.0347871 + 0.182457i
\(119\) 0 0
\(120\) −1.79209 + 8.00632i −0.163594 + 0.730874i
\(121\) 9.47294i 0.861177i
\(122\) −0.352086 1.84668i −0.0318764 0.167190i
\(123\) 6.23205 + 6.23205i 0.561925 + 0.561925i
\(124\) 5.30098 + 13.3964i 0.476042 + 1.20303i
\(125\) 0.0185146 0.0185146i 0.00165600 0.00165600i
\(126\) 0 0
\(127\) 18.0882i 1.60506i −0.596609 0.802532i \(-0.703486\pi\)
0.596609 0.802532i \(-0.296514\pi\)
\(128\) −9.74212 + 5.75249i −0.861090 + 0.508453i
\(129\) 9.47577i 0.834295i
\(130\) 1.53071 2.25190i 0.134252 0.197505i
\(131\) −1.94710 1.94710i −0.170119 0.170119i 0.616913 0.787032i \(-0.288383\pi\)
−0.787032 + 0.616913i \(0.788383\pi\)
\(132\) −2.10714 + 0.833800i −0.183403 + 0.0725730i
\(133\) 0 0
\(134\) −2.16668 11.3641i −0.187172 0.981713i
\(135\) 14.9656 1.28803
\(136\) 3.66778 16.3861i 0.314509 1.40510i
\(137\) 1.95344i 0.166894i 0.996512 + 0.0834468i \(0.0265929\pi\)
−0.996512 + 0.0834468i \(0.973407\pi\)
\(138\) 4.51174 0.860204i 0.384065 0.0732254i
\(139\) −5.22260 + 5.22260i −0.442975 + 0.442975i −0.893011 0.450035i \(-0.851411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(140\) 0 0
\(141\) −3.72971 3.72971i −0.314098 0.314098i
\(142\) −10.9684 + 16.1361i −0.920444 + 1.35411i
\(143\) 0.752078 0.0628919
\(144\) 5.91007 + 6.29852i 0.492506 + 0.524877i
\(145\) 8.24443i 0.684662i
\(146\) 1.79125 2.63520i 0.148245 0.218090i
\(147\) 0 0
\(148\) 21.2742 + 9.21111i 1.74873 + 0.757148i
\(149\) 5.39707 5.39707i 0.442145 0.442145i −0.450587 0.892732i \(-0.648785\pi\)
0.892732 + 0.450587i \(0.148785\pi\)
\(150\) 1.21627 + 6.37931i 0.0993083 + 0.520869i
\(151\) 14.1062 1.14795 0.573973 0.818874i \(-0.305401\pi\)
0.573973 + 0.818874i \(0.305401\pi\)
\(152\) 0.314320 + 0.495610i 0.0254947 + 0.0401992i
\(153\) −12.8191 −1.03636
\(154\) 0 0
\(155\) 16.1143 + 16.1143i 1.29433 + 1.29433i
\(156\) 0.410648 + 1.03777i 0.0328781 + 0.0830881i
\(157\) −10.3352 + 10.3352i −0.824840 + 0.824840i −0.986798 0.161958i \(-0.948219\pi\)
0.161958 + 0.986798i \(0.448219\pi\)
\(158\) −1.99275 1.35456i −0.158535 0.107763i
\(159\) 4.73075 0.375173
\(160\) −10.5260 + 14.4730i −0.832157 + 1.14419i
\(161\) 0 0
\(162\) 1.70165 2.50337i 0.133694 0.196683i
\(163\) −0.295188 + 0.295188i −0.0231209 + 0.0231209i −0.718573 0.695452i \(-0.755204\pi\)
0.695452 + 0.718573i \(0.255204\pi\)
\(164\) 7.07347 + 17.8757i 0.552345 + 1.39586i
\(165\) −2.53464 + 2.53464i −0.197321 + 0.197321i
\(166\) −15.2898 + 2.91514i −1.18672 + 0.226259i
\(167\) 3.16944i 0.245259i 0.992453 + 0.122629i \(0.0391326\pi\)
−0.992453 + 0.122629i \(0.960867\pi\)
\(168\) 0 0
\(169\) 12.6296i 0.971508i
\(170\) −4.97446 26.0909i −0.381524 2.00108i
\(171\) 0.316809 0.316809i 0.0242270 0.0242270i
\(172\) −8.21238 + 18.9675i −0.626188 + 1.44626i
\(173\) −16.1699 + 16.1699i −1.22937 + 1.22937i −0.265170 + 0.964202i \(0.585428\pi\)
−0.964202 + 0.265170i \(0.914572\pi\)
\(174\) 2.79472 + 1.89969i 0.211867 + 0.144015i
\(175\) 0 0
\(176\) −4.94047 0.157192i −0.372402 0.0118488i
\(177\) −1.30817 −0.0983281
\(178\) −4.85715 + 7.14558i −0.364059 + 0.535584i
\(179\) 9.72629 9.72629i 0.726977 0.726977i −0.243039 0.970016i \(-0.578144\pi\)
0.970016 + 0.243039i \(0.0781444\pi\)
\(180\) 12.5375 + 5.42835i 0.934488 + 0.404606i
\(181\) −5.01349 5.01349i −0.372650 0.372650i 0.495792 0.868441i \(-0.334878\pi\)
−0.868441 + 0.495792i \(0.834878\pi\)
\(182\) 0 0
\(183\) 1.21886 0.0901007
\(184\) 9.77660 + 2.18834i 0.720740 + 0.161326i
\(185\) 36.6702 2.69605
\(186\) −9.17553 + 1.74940i −0.672783 + 0.128272i
\(187\) 5.18752 5.18752i 0.379349 0.379349i
\(188\) −4.23328 10.6981i −0.308743 0.780242i
\(189\) 0 0
\(190\) 0.767744 + 0.521868i 0.0556980 + 0.0378603i
\(191\) 5.37259i 0.388747i −0.980928 0.194373i \(-0.937733\pi\)
0.980928 0.194373i \(-0.0622673\pi\)
\(192\) −2.48068 6.90303i −0.179027 0.498184i
\(193\) −0.0718573 −0.00517240 −0.00258620 0.999997i \(-0.500823\pi\)
−0.00258620 + 0.999997i \(0.500823\pi\)
\(194\) 12.4345 + 8.45224i 0.892744 + 0.606836i
\(195\) 1.24831 + 1.24831i 0.0893936 + 0.0893936i
\(196\) 0 0
\(197\) 2.60367 2.60367i 0.185504 0.185504i −0.608245 0.793749i \(-0.708126\pi\)
0.793749 + 0.608245i \(0.208126\pi\)
\(198\) 0.706735 + 3.70680i 0.0502255 + 0.263431i
\(199\) 10.4137i 0.738211i 0.929387 + 0.369106i \(0.120336\pi\)
−0.929387 + 0.369106i \(0.879664\pi\)
\(200\) −3.09417 + 13.8235i −0.218791 + 0.977468i
\(201\) 7.50065 0.529055
\(202\) −1.77159 + 0.337770i −0.124649 + 0.0237654i
\(203\) 0 0
\(204\) 9.99059 + 4.32563i 0.699481 + 0.302855i
\(205\) 21.5024 + 21.5024i 1.50179 + 1.50179i
\(206\) −11.4876 7.80859i −0.800377 0.544050i
\(207\) 7.64837i 0.531598i
\(208\) −0.0774175 + 2.43319i −0.00536794 + 0.168711i
\(209\) 0.256407i 0.0177361i
\(210\) 0 0
\(211\) 2.30105 2.30105i 0.158411 0.158411i −0.623451 0.781862i \(-0.714270\pi\)
0.781862 + 0.623451i \(0.214270\pi\)
\(212\) 9.46947 + 4.10000i 0.650366 + 0.281589i
\(213\) −8.94484 8.94484i −0.612890 0.612890i
\(214\) 14.4347 2.75211i 0.986736 0.188130i
\(215\) 32.6942i 2.22972i
\(216\) −11.2993 + 7.16609i −0.768818 + 0.487591i
\(217\) 0 0
\(218\) −0.0563983 + 0.0107528i −0.00381977 + 0.000728274i
\(219\) 1.46079 + 1.46079i 0.0987111 + 0.0987111i
\(220\) −7.27025 + 2.87685i −0.490160 + 0.193957i
\(221\) −2.55486 2.55486i −0.171859 0.171859i
\(222\) −8.44959 + 12.4306i −0.567099 + 0.834286i
\(223\) −21.9153 −1.46756 −0.733778 0.679390i \(-0.762245\pi\)
−0.733778 + 0.679390i \(0.762245\pi\)
\(224\) 0 0
\(225\) 10.8143 0.720954
\(226\) 8.80706 12.9565i 0.585837 0.861852i
\(227\) −8.19350 8.19350i −0.543822 0.543822i 0.380825 0.924647i \(-0.375640\pi\)
−0.924647 + 0.380825i \(0.875640\pi\)
\(228\) −0.353809 + 0.140003i −0.0234316 + 0.00927192i
\(229\) −15.3658 15.3658i −1.01540 1.01540i −0.999880 0.0155235i \(-0.995059\pi\)
−0.0155235 0.999880i \(-0.504941\pi\)
\(230\) 15.5668 2.96795i 1.02645 0.195701i
\(231\) 0 0
\(232\) 3.94775 + 6.22469i 0.259182 + 0.408671i
\(233\) 12.4965i 0.818670i −0.912384 0.409335i \(-0.865761\pi\)
0.912384 0.409335i \(-0.134239\pi\)
\(234\) 1.82561 0.348068i 0.119344 0.0227539i
\(235\) −12.8686 12.8686i −0.839454 0.839454i
\(236\) −2.61855 1.13375i −0.170453 0.0738011i
\(237\) 1.10466 1.10466i 0.0717554 0.0717554i
\(238\) 0 0
\(239\) 7.70978i 0.498704i −0.968413 0.249352i \(-0.919782\pi\)
0.968413 0.249352i \(-0.0802176\pi\)
\(240\) −7.93937 8.46119i −0.512484 0.546168i
\(241\) 10.9758i 0.707014i 0.935432 + 0.353507i \(0.115011\pi\)
−0.935432 + 0.353507i \(0.884989\pi\)
\(242\) 11.0795 + 7.53118i 0.712215 + 0.484123i
\(243\) 11.4228 + 11.4228i 0.732771 + 0.732771i
\(244\) 2.43977 + 1.05635i 0.156191 + 0.0676259i
\(245\) 0 0
\(246\) −12.2435 + 2.33434i −0.780620 + 0.148832i
\(247\) 0.126281 0.00803507
\(248\) −19.8827 4.45042i −1.26255 0.282602i
\(249\) 10.0917i 0.639535i
\(250\) 0.00693505 + 0.0363741i 0.000438611 + 0.00230050i
\(251\) 18.8899 18.8899i 1.19232 1.19232i 0.215903 0.976415i \(-0.430731\pi\)
0.976415 0.215903i \(-0.0692694\pi\)
\(252\) 0 0
\(253\) 3.09507 + 3.09507i 0.194586 + 0.194586i
\(254\) 21.1557 + 14.3804i 1.32743 + 0.902309i
\(255\) 17.2207 1.07840
\(256\) 1.01712 15.9676i 0.0635703 0.997977i
\(257\) 17.6400i 1.10035i −0.835048 0.550177i \(-0.814560\pi\)
0.835048 0.550177i \(-0.185440\pi\)
\(258\) −11.0828 7.53343i −0.689983 0.469011i
\(259\) 0 0
\(260\) 1.41685 + 3.58061i 0.0878696 + 0.222060i
\(261\) 3.97902 3.97902i 0.246295 0.246295i
\(262\) 3.82529 0.729326i 0.236327 0.0450579i
\(263\) −7.18147 −0.442829 −0.221414 0.975180i \(-0.571067\pi\)
−0.221414 + 0.975180i \(0.571067\pi\)
\(264\) 0.700015 3.12738i 0.0430829 0.192477i
\(265\) 16.3225 1.00268
\(266\) 0 0
\(267\) −3.96107 3.96107i −0.242414 0.242414i
\(268\) 15.0140 + 6.50060i 0.917123 + 0.397087i
\(269\) 13.0641 13.0641i 0.796534 0.796534i −0.186013 0.982547i \(-0.559557\pi\)
0.982547 + 0.186013i \(0.0595566\pi\)
\(270\) −11.8979 + 17.5036i −0.724085 + 1.06523i
\(271\) −0.985661 −0.0598746 −0.0299373 0.999552i \(-0.509531\pi\)
−0.0299373 + 0.999552i \(0.509531\pi\)
\(272\) 16.2491 + 17.3171i 0.985248 + 1.05000i
\(273\) 0 0
\(274\) −2.28473 1.55302i −0.138025 0.0938216i
\(275\) −4.37624 + 4.37624i −0.263897 + 0.263897i
\(276\) −2.58084 + 5.96077i −0.155348 + 0.358796i
\(277\) −0.0617858 + 0.0617858i −0.00371235 + 0.00371235i −0.708961 0.705248i \(-0.750836\pi\)
0.705248 + 0.708961i \(0.250836\pi\)
\(278\) −1.95623 10.2604i −0.117327 0.615377i
\(279\) 15.5545i 0.931224i
\(280\) 0 0
\(281\) 13.9541i 0.832431i −0.909266 0.416215i \(-0.863356\pi\)
0.909266 0.416215i \(-0.136644\pi\)
\(282\) 7.32743 1.39704i 0.436342 0.0831925i
\(283\) 9.34386 9.34386i 0.555435 0.555435i −0.372569 0.928004i \(-0.621523\pi\)
0.928004 + 0.372569i \(0.121523\pi\)
\(284\) −10.1525 25.6570i −0.602441 1.52246i
\(285\) −0.425590 + 0.425590i −0.0252098 + 0.0252098i
\(286\) −0.597917 + 0.879623i −0.0353556 + 0.0520132i
\(287\) 0 0
\(288\) −12.0653 + 1.90492i −0.710956 + 0.112248i
\(289\) −18.2448 −1.07322
\(290\) 9.64261 + 6.55448i 0.566233 + 0.384893i
\(291\) −6.89291 + 6.89291i −0.404070 + 0.404070i
\(292\) 1.65802 + 4.19007i 0.0970282 + 0.245205i
\(293\) −1.11946 1.11946i −0.0653995 0.0653995i 0.673651 0.739050i \(-0.264725\pi\)
−0.739050 + 0.673651i \(0.764725\pi\)
\(294\) 0 0
\(295\) −4.51357 −0.262790
\(296\) −27.6867 + 17.5591i −1.60925 + 1.02060i
\(297\) −5.84576 −0.339206
\(298\) 2.02159 + 10.6031i 0.117107 + 0.614224i
\(299\) 1.52433 1.52433i 0.0881542 0.0881542i
\(300\) −8.42815 3.64914i −0.486599 0.210683i
\(301\) 0 0
\(302\) −11.2147 + 16.4985i −0.645334 + 0.949381i
\(303\) 1.16930i 0.0671745i
\(304\) −0.829551 0.0263941i −0.0475780 0.00151381i
\(305\) 4.20542 0.240802
\(306\) 10.1914 14.9931i 0.582606 0.857099i
\(307\) 15.8597 + 15.8597i 0.905158 + 0.905158i 0.995877 0.0907183i \(-0.0289163\pi\)
−0.0907183 + 0.995877i \(0.528916\pi\)
\(308\) 0 0
\(309\) 6.36800 6.36800i 0.362263 0.362263i
\(310\) −31.6583 + 6.03593i −1.79807 + 0.342818i
\(311\) 28.5431i 1.61853i 0.587441 + 0.809267i \(0.300135\pi\)
−0.587441 + 0.809267i \(0.699865\pi\)
\(312\) −1.54024 0.344758i −0.0871989 0.0195181i
\(313\) −0.0623260 −0.00352288 −0.00176144 0.999998i \(-0.500561\pi\)
−0.00176144 + 0.999998i \(0.500561\pi\)
\(314\) −3.87127 20.3047i −0.218468 1.14586i
\(315\) 0 0
\(316\) 3.16856 1.25381i 0.178245 0.0705321i
\(317\) −16.0496 16.0496i −0.901435 0.901435i 0.0941256 0.995560i \(-0.469994\pi\)
−0.995560 + 0.0941256i \(0.969994\pi\)
\(318\) −3.76104 + 5.53304i −0.210909 + 0.310277i
\(319\) 3.22039i 0.180307i
\(320\) −8.55906 23.8175i −0.478466 1.33144i
\(321\) 9.52731i 0.531762i
\(322\) 0 0
\(323\) 0.871034 0.871034i 0.0484656 0.0484656i
\(324\) 1.57508 + 3.98046i 0.0875042 + 0.221137i
\(325\) 2.15530 + 2.15530i 0.119555 + 0.119555i
\(326\) −0.110569 0.579930i −0.00612384 0.0321193i
\(327\) 0.0372244i 0.00205852i
\(328\) −26.5308 5.93851i −1.46492 0.327899i
\(329\) 0 0
\(330\) −0.949402 4.97958i −0.0522629 0.274117i
\(331\) −11.3645 11.3645i −0.624651 0.624651i 0.322066 0.946717i \(-0.395623\pi\)
−0.946717 + 0.322066i \(0.895623\pi\)
\(332\) 8.74618 20.2004i 0.480009 1.10864i
\(333\) 17.6982 + 17.6982i 0.969855 + 0.969855i
\(334\) −3.70695 2.51977i −0.202835 0.137876i
\(335\) 25.8794 1.41394
\(336\) 0 0
\(337\) −15.2905 −0.832928 −0.416464 0.909152i \(-0.636731\pi\)
−0.416464 + 0.909152i \(0.636731\pi\)
\(338\) −14.7715 10.0408i −0.803462 0.546147i
\(339\) 7.18227 + 7.18227i 0.390087 + 0.390087i
\(340\) 34.4704 + 14.9247i 1.86942 + 0.809405i
\(341\) −6.29446 6.29446i −0.340864 0.340864i
\(342\) 0.118668 + 0.622407i 0.00641681 + 0.0336559i
\(343\) 0 0
\(344\) −15.6552 24.6847i −0.844073 1.33091i
\(345\) 10.2745i 0.553162i
\(346\) −6.05676 31.7675i −0.325613 1.70783i
\(347\) −19.4891 19.4891i −1.04623 1.04623i −0.998878 0.0473539i \(-0.984921\pi\)
−0.0473539 0.998878i \(-0.515079\pi\)
\(348\) −4.44372 + 1.75839i −0.238208 + 0.0942596i
\(349\) 17.0806 17.0806i 0.914304 0.914304i −0.0823032 0.996607i \(-0.526228\pi\)
0.996607 + 0.0823032i \(0.0262276\pi\)
\(350\) 0 0
\(351\) 2.87905i 0.153672i
\(352\) 4.11162 5.65335i 0.219150 0.301325i
\(353\) 23.4335i 1.24724i −0.781727 0.623621i \(-0.785661\pi\)
0.781727 0.623621i \(-0.214339\pi\)
\(354\) 1.04002 1.53002i 0.0552765 0.0813199i
\(355\) −30.8623 30.8623i −1.63800 1.63800i
\(356\) −4.49587 11.3618i −0.238281 0.602172i
\(357\) 0 0
\(358\) 3.64318 + 19.1084i 0.192548 + 1.00991i
\(359\) 8.71557 0.459990 0.229995 0.973192i \(-0.426129\pi\)
0.229995 + 0.973192i \(0.426129\pi\)
\(360\) −16.3165 + 10.3481i −0.859955 + 0.545391i
\(361\) 18.9569i 0.997734i
\(362\) 9.84956 1.87791i 0.517681 0.0987006i
\(363\) −6.14177 + 6.14177i −0.322360 + 0.322360i
\(364\) 0 0
\(365\) 5.04015 + 5.04015i 0.263814 + 0.263814i
\(366\) −0.969018 + 1.42557i −0.0506514 + 0.0745156i
\(367\) −2.82816 −0.147629 −0.0738143 0.997272i \(-0.523517\pi\)
−0.0738143 + 0.997272i \(0.523517\pi\)
\(368\) −10.3321 + 9.69485i −0.538595 + 0.505379i
\(369\) 20.7555i 1.08049i
\(370\) −29.1535 + 42.8891i −1.51562 + 2.22970i
\(371\) 0 0
\(372\) 5.24865 12.1224i 0.272130 0.628519i
\(373\) −10.0112 + 10.0112i −0.518359 + 0.518359i −0.917075 0.398716i \(-0.869456\pi\)
0.398716 + 0.917075i \(0.369456\pi\)
\(374\) 1.94309 + 10.1915i 0.100475 + 0.526988i
\(375\) −0.0240079 −0.00123976
\(376\) 15.8780 + 3.55404i 0.818845 + 0.183285i
\(377\) 1.58605 0.0816855
\(378\) 0 0
\(379\) −10.2443 10.2443i −0.526215 0.526215i 0.393227 0.919442i \(-0.371359\pi\)
−0.919442 + 0.393227i \(0.871359\pi\)
\(380\) −1.22074 + 0.483051i −0.0626228 + 0.0247800i
\(381\) −11.7274 + 11.7274i −0.600815 + 0.600815i
\(382\) 6.28373 + 4.27131i 0.321503 + 0.218539i
\(383\) −6.41444 −0.327763 −0.163881 0.986480i \(-0.552401\pi\)
−0.163881 + 0.986480i \(0.552401\pi\)
\(384\) 10.0459 + 2.58667i 0.512653 + 0.132001i
\(385\) 0 0
\(386\) 0.0571280 0.0840436i 0.00290774 0.00427771i
\(387\) −15.7792 + 15.7792i −0.802104 + 0.802104i
\(388\) −19.7713 + 7.82356i −1.00374 + 0.397181i
\(389\) 12.0260 12.0260i 0.609743 0.609743i −0.333136 0.942879i \(-0.608107\pi\)
0.942879 + 0.333136i \(0.108107\pi\)
\(390\) −2.45245 + 0.467582i −0.124185 + 0.0236769i
\(391\) 21.0284i 1.06345i
\(392\) 0 0
\(393\) 2.52480i 0.127359i
\(394\) 0.975258 + 5.11520i 0.0491328 + 0.257700i
\(395\) 3.81140 3.81140i 0.191772 0.191772i
\(396\) −4.89731 2.12039i −0.246099 0.106554i
\(397\) 7.82453 7.82453i 0.392702 0.392702i −0.482947 0.875649i \(-0.660434\pi\)
0.875649 + 0.482947i \(0.160434\pi\)
\(398\) −12.1798 8.27914i −0.610519 0.414996i
\(399\) 0 0
\(400\) −13.7079 14.6089i −0.685395 0.730443i
\(401\) 15.1860 0.758352 0.379176 0.925325i \(-0.376208\pi\)
0.379176 + 0.925325i \(0.376208\pi\)
\(402\) −5.96317 + 8.77270i −0.297416 + 0.437542i
\(403\) −3.10003 + 3.10003i −0.154423 + 0.154423i
\(404\) 1.01340 2.34057i 0.0504185 0.116448i
\(405\) 4.78802 + 4.78802i 0.237918 + 0.237918i
\(406\) 0 0
\(407\) −14.3239 −0.710009
\(408\) −13.0019 + 8.24594i −0.643692 + 0.408235i
\(409\) 5.31069 0.262596 0.131298 0.991343i \(-0.458085\pi\)
0.131298 + 0.991343i \(0.458085\pi\)
\(410\) −42.2438 + 8.05416i −2.08627 + 0.397767i
\(411\) 1.26651 1.26651i 0.0624724 0.0624724i
\(412\) 18.2657 7.22778i 0.899887 0.356087i
\(413\) 0 0
\(414\) 8.94546 + 6.08061i 0.439646 + 0.298846i
\(415\) 34.8193i 1.70921i
\(416\) −2.78428 2.02498i −0.136511 0.0992828i
\(417\) 6.77214 0.331633
\(418\) −0.299892 0.203849i −0.0146682 0.00997058i
\(419\) −7.73525 7.73525i −0.377891 0.377891i 0.492450 0.870341i \(-0.336102\pi\)
−0.870341 + 0.492450i \(0.836102\pi\)
\(420\) 0 0
\(421\) 4.79155 4.79155i 0.233526 0.233526i −0.580637 0.814163i \(-0.697196\pi\)
0.814163 + 0.580637i \(0.197196\pi\)
\(422\) 0.861907 + 4.52067i 0.0419570 + 0.220063i
\(423\) 12.4216i 0.603957i
\(424\) −12.3237 + 7.81582i −0.598494 + 0.379570i
\(425\) 29.7328 1.44225
\(426\) 17.5731 3.35047i 0.851421 0.162331i
\(427\) 0 0
\(428\) −8.25704 + 19.0707i −0.399119 + 0.921816i
\(429\) −0.487609 0.487609i −0.0235420 0.0235420i
\(430\) −38.2388 25.9925i −1.84404 1.25347i
\(431\) 2.54672i 0.122671i −0.998117 0.0613356i \(-0.980464\pi\)
0.998117 0.0613356i \(-0.0195360\pi\)
\(432\) 0.601752 18.9127i 0.0289518 0.909938i
\(433\) 19.0390i 0.914954i 0.889221 + 0.457477i \(0.151247\pi\)
−0.889221 + 0.457477i \(0.848753\pi\)
\(434\) 0 0
\(435\) −5.34527 + 5.34527i −0.256286 + 0.256286i
\(436\) 0.0322613 0.0745116i 0.00154504 0.00356846i
\(437\) 0.519692 + 0.519692i 0.0248603 + 0.0248603i
\(438\) −2.86988 + 0.547169i −0.137128 + 0.0261448i
\(439\) 17.5885i 0.839454i −0.907650 0.419727i \(-0.862126\pi\)
0.907650 0.419727i \(-0.137874\pi\)
\(440\) 2.41525 10.7904i 0.115143 0.514411i
\(441\) 0 0
\(442\) 5.01931 0.956977i 0.238744 0.0455187i
\(443\) 19.1147 + 19.1147i 0.908169 + 0.908169i 0.996124 0.0879557i \(-0.0280334\pi\)
−0.0879557 + 0.996124i \(0.528033\pi\)
\(444\) −7.82110 19.7651i −0.371173 0.938012i
\(445\) −13.6668 13.6668i −0.647871 0.647871i
\(446\) 17.4231 25.6319i 0.825007 1.21371i
\(447\) −6.99837 −0.331012
\(448\) 0 0
\(449\) −4.60299 −0.217228 −0.108614 0.994084i \(-0.534641\pi\)
−0.108614 + 0.994084i \(0.534641\pi\)
\(450\) −8.59759 + 12.6483i −0.405294 + 0.596247i
\(451\) −8.39913 8.39913i −0.395500 0.395500i
\(452\) 8.15198 + 20.6013i 0.383437 + 0.969004i
\(453\) −9.14574 9.14574i −0.429704 0.429704i
\(454\) 16.0970 3.06905i 0.755472 0.144037i
\(455\) 0 0
\(456\) 0.117539 0.525117i 0.00550427 0.0245909i
\(457\) 25.7807i 1.20597i −0.797753 0.602985i \(-0.793978\pi\)
0.797753 0.602985i \(-0.206022\pi\)
\(458\) 30.1879 5.75559i 1.41059 0.268941i
\(459\) 19.8585 + 19.8585i 0.926915 + 0.926915i
\(460\) −8.90464 + 20.5664i −0.415181 + 0.958913i
\(461\) −4.40686 + 4.40686i −0.205248 + 0.205248i −0.802244 0.596996i \(-0.796361\pi\)
0.596996 + 0.802244i \(0.296361\pi\)
\(462\) 0 0
\(463\) 31.0375i 1.44244i 0.692708 + 0.721218i \(0.256417\pi\)
−0.692708 + 0.721218i \(0.743583\pi\)
\(464\) −10.4189 0.331501i −0.483684 0.0153895i
\(465\) 20.8953i 0.968998i
\(466\) 14.6157 + 9.93494i 0.677061 + 0.460227i
\(467\) −25.7640 25.7640i −1.19221 1.19221i −0.976444 0.215769i \(-0.930774\pi\)
−0.215769 0.976444i \(-0.569226\pi\)
\(468\) −1.04430 + 2.41193i −0.0482726 + 0.111492i
\(469\) 0 0
\(470\) 25.2818 4.82020i 1.16616 0.222339i
\(471\) 13.4017 0.617516
\(472\) 3.40782 2.16127i 0.156858 0.0994806i
\(473\) 12.7708i 0.587202i
\(474\) 0.413773 + 2.17023i 0.0190052 + 0.0996819i
\(475\) −0.734812 + 0.734812i −0.0337155 + 0.0337155i
\(476\) 0 0
\(477\) 7.87773 + 7.87773i 0.360697 + 0.360697i
\(478\) 9.01728 + 6.12943i 0.412441 + 0.280353i
\(479\) 9.53799 0.435802 0.217901 0.975971i \(-0.430079\pi\)
0.217901 + 0.975971i \(0.430079\pi\)
\(480\) 16.2081 2.55900i 0.739795 0.116802i
\(481\) 7.05454i 0.321659i
\(482\) −12.8372 8.72599i −0.584719 0.397458i
\(483\) 0 0
\(484\) −17.6168 + 6.97100i −0.800764 + 0.316864i
\(485\) −23.7826 + 23.7826i −1.07991 + 1.07991i
\(486\) −22.4413 + 4.27864i −1.01796 + 0.194083i
\(487\) 2.79085 0.126465 0.0632327 0.997999i \(-0.479859\pi\)
0.0632327 + 0.997999i \(0.479859\pi\)
\(488\) −3.17517 + 2.01372i −0.143733 + 0.0911567i
\(489\) 0.382770 0.0173094
\(490\) 0 0
\(491\) −14.9085 14.9085i −0.672809 0.672809i 0.285554 0.958363i \(-0.407823\pi\)
−0.958363 + 0.285554i \(0.907823\pi\)
\(492\) 7.00364 16.1758i 0.315749 0.729261i
\(493\) 10.9399 10.9399i 0.492708 0.492708i
\(494\) −0.100396 + 0.147697i −0.00451703 + 0.00664521i
\(495\) −8.44146 −0.379415
\(496\) 21.0123 19.7164i 0.943481 0.885294i
\(497\) 0 0
\(498\) 11.8032 + 8.02310i 0.528912 + 0.359524i
\(499\) −10.0031 + 10.0031i −0.447802 + 0.447802i −0.894623 0.446822i \(-0.852556\pi\)
0.446822 + 0.894623i \(0.352556\pi\)
\(500\) −0.0480563 0.0208070i −0.00214914 0.000930516i
\(501\) 2.05490 2.05490i 0.0918064 0.0918064i
\(502\) 7.07559 + 37.1112i 0.315799 + 1.65636i
\(503\) 0.855211i 0.0381320i 0.999818 + 0.0190660i \(0.00606926\pi\)
−0.999818 + 0.0190660i \(0.993931\pi\)
\(504\) 0 0
\(505\) 4.03443i 0.179530i
\(506\) −6.08062 + 1.15932i −0.270316 + 0.0515383i
\(507\) 8.18839 8.18839i 0.363659 0.363659i
\(508\) −33.6385 + 13.3108i −1.49247 + 0.590572i
\(509\) −12.8599 + 12.8599i −0.570006 + 0.570006i −0.932130 0.362124i \(-0.882052\pi\)
0.362124 + 0.932130i \(0.382052\pi\)
\(510\) −13.6908 + 20.1412i −0.606239 + 0.891867i
\(511\) 0 0
\(512\) 17.8670 + 13.8842i 0.789616 + 0.613601i
\(513\) −0.981559 −0.0433369
\(514\) 20.6316 + 14.0242i 0.910021 + 0.618580i
\(515\) 21.9715 21.9715i 0.968178 0.968178i
\(516\) 17.6221 6.97308i 0.775768 0.306973i
\(517\) 5.02665 + 5.02665i 0.221072 + 0.221072i
\(518\) 0 0
\(519\) 20.9674 0.920368
\(520\) −5.31428 1.18952i −0.233046 0.0521637i
\(521\) −0.947626 −0.0415163 −0.0207581 0.999785i \(-0.506608\pi\)
−0.0207581 + 0.999785i \(0.506608\pi\)
\(522\) 1.49042 + 7.81723i 0.0652341 + 0.342151i
\(523\) 18.9225 18.9225i 0.827425 0.827425i −0.159735 0.987160i \(-0.551064\pi\)
0.987160 + 0.159735i \(0.0510640\pi\)
\(524\) −2.18817 + 5.05385i −0.0955906 + 0.220779i
\(525\) 0 0
\(526\) 5.70942 8.39939i 0.248942 0.366231i
\(527\) 42.7655i 1.86289i
\(528\) 3.10123 + 3.30506i 0.134964 + 0.143834i
\(529\) −10.4537 −0.454507
\(530\) −12.9767 + 19.0906i −0.563671 + 0.829243i
\(531\) −2.17839 2.17839i −0.0945341 0.0945341i
\(532\) 0 0
\(533\) −4.13658 + 4.13658i −0.179175 + 0.179175i
\(534\) 7.78196 1.48370i 0.336758 0.0642060i
\(535\) 32.8720i 1.42118i
\(536\) −19.5394 + 12.3921i −0.843975 + 0.535256i
\(537\) −12.6121 −0.544251
\(538\) 4.89344 + 25.6659i 0.210971 + 1.10654i
\(539\) 0 0
\(540\) −11.0130 27.8314i −0.473922 1.19767i
\(541\) 14.6136 + 14.6136i 0.628289 + 0.628289i 0.947637 0.319348i \(-0.103464\pi\)
−0.319348 + 0.947637i \(0.603464\pi\)
\(542\) 0.783620 1.15282i 0.0336594 0.0495178i
\(543\) 6.50098i 0.278984i
\(544\) −33.1723 + 5.23738i −1.42225 + 0.224551i
\(545\) 0.128435i 0.00550156i
\(546\) 0 0
\(547\) 3.84440 3.84440i 0.164375 0.164375i −0.620127 0.784502i \(-0.712919\pi\)
0.784502 + 0.620127i \(0.212919\pi\)
\(548\) 3.63281 1.43751i 0.155186 0.0614073i
\(549\) 2.02967 + 2.02967i 0.0866241 + 0.0866241i
\(550\) −1.63921 8.59761i −0.0698962 0.366603i
\(551\) 0.540734i 0.0230360i
\(552\) −4.91984 7.75746i −0.209402 0.330179i
\(553\) 0 0
\(554\) −0.0231432 0.121385i −0.000983259 0.00515716i
\(555\) −23.7751 23.7751i −1.00920 1.00920i
\(556\) 13.5557 + 5.86922i 0.574889 + 0.248910i
\(557\) −8.79685 8.79685i −0.372735 0.372735i 0.495738 0.868472i \(-0.334898\pi\)
−0.868472 + 0.495738i \(0.834898\pi\)
\(558\) −18.1924 12.3661i −0.770146 0.523501i
\(559\) −6.28964 −0.266023
\(560\) 0 0
\(561\) −6.72665 −0.284000
\(562\) 16.3206 + 11.0938i 0.688442 + 0.467963i
\(563\) 2.57121 + 2.57121i 0.108363 + 0.108363i 0.759210 0.650846i \(-0.225586\pi\)
−0.650846 + 0.759210i \(0.725586\pi\)
\(564\) −4.19149 + 9.68077i −0.176494 + 0.407634i
\(565\) 24.7809 + 24.7809i 1.04254 + 1.04254i
\(566\) 3.49994 + 18.3571i 0.147113 + 0.771605i
\(567\) 0 0
\(568\) 38.0796 + 8.52352i 1.59779 + 0.357639i
\(569\) 16.2826i 0.682601i −0.939954 0.341300i \(-0.889133\pi\)
0.939954 0.341300i \(-0.110867\pi\)
\(570\) −0.159414 0.836119i −0.00667710 0.0350212i
\(571\) 5.51686 + 5.51686i 0.230874 + 0.230874i 0.813057 0.582184i \(-0.197802\pi\)
−0.582184 + 0.813057i \(0.697802\pi\)
\(572\) −0.553443 1.39864i −0.0231406 0.0584799i
\(573\) −3.48331 + 3.48331i −0.145517 + 0.145517i
\(574\) 0 0
\(575\) 17.7397i 0.739798i
\(576\) 7.36420 15.6259i 0.306841 0.651081i
\(577\) 36.6237i 1.52467i 0.647185 + 0.762333i \(0.275946\pi\)
−0.647185 + 0.762333i \(0.724054\pi\)
\(578\) 14.5050 21.3389i 0.603327 0.887583i
\(579\) 0.0465886 + 0.0465886i 0.00193616 + 0.00193616i
\(580\) −15.3321 + 6.06696i −0.636632 + 0.251917i
\(581\) 0 0
\(582\) −2.58188 13.5419i −0.107023 0.561329i
\(583\) −6.37578 −0.264058
\(584\) −6.21882 1.39199i −0.257337 0.0576008i
\(585\) 4.15743i 0.171889i
\(586\) 2.19930 0.419316i 0.0908523 0.0173218i
\(587\) −26.7399 + 26.7399i −1.10367 + 1.10367i −0.109709 + 0.993964i \(0.534992\pi\)
−0.993964 + 0.109709i \(0.965008\pi\)
\(588\) 0 0
\(589\) −1.05690 1.05690i −0.0435488 0.0435488i
\(590\) 3.58838 5.27903i 0.147731 0.217334i
\(591\) −3.37617 −0.138877
\(592\) 1.47448 46.3419i 0.0606006 1.90464i
\(593\) 5.66759i 0.232740i 0.993206 + 0.116370i \(0.0371258\pi\)
−0.993206 + 0.116370i \(0.962874\pi\)
\(594\) 4.64750 6.83715i 0.190689 0.280532i
\(595\) 0 0
\(596\) −14.0085 6.06529i −0.573812 0.248444i
\(597\) 6.75174 6.75174i 0.276331 0.276331i
\(598\) 0.570969 + 2.99471i 0.0233487 + 0.122463i
\(599\) −10.2103 −0.417183 −0.208591 0.978003i \(-0.566888\pi\)
−0.208591 + 0.978003i \(0.566888\pi\)
\(600\) 10.9685 6.95634i 0.447789 0.283992i
\(601\) 2.00211 0.0816677 0.0408339 0.999166i \(-0.486999\pi\)
0.0408339 + 0.999166i \(0.486999\pi\)
\(602\) 0 0
\(603\) 12.4902 + 12.4902i 0.508642 + 0.508642i
\(604\) −10.3806 26.2333i −0.422379 1.06742i
\(605\) −21.1909 + 21.1909i −0.861533 + 0.861533i
\(606\) 1.36760 + 0.929617i 0.0555551 + 0.0377631i
\(607\) 28.4425 1.15445 0.577223 0.816587i \(-0.304136\pi\)
0.577223 + 0.816587i \(0.304136\pi\)
\(608\) 0.690380 0.949251i 0.0279986 0.0384972i
\(609\) 0 0
\(610\) −3.34339 + 4.91862i −0.135370 + 0.199149i
\(611\) 2.47563 2.47563i 0.100153 0.100153i
\(612\) 9.43340 + 23.8397i 0.381323 + 0.963661i
\(613\) −11.3192 + 11.3192i −0.457178 + 0.457178i −0.897728 0.440550i \(-0.854783\pi\)
0.440550 + 0.897728i \(0.354783\pi\)
\(614\) −31.1581 + 5.94056i −1.25744 + 0.239742i
\(615\) 27.8821i 1.12431i
\(616\) 0 0
\(617\) 41.5070i 1.67101i −0.549485 0.835504i \(-0.685176\pi\)
0.549485 0.835504i \(-0.314824\pi\)
\(618\) 2.38527 + 12.5106i 0.0959495 + 0.503252i
\(619\) 12.6764 12.6764i 0.509507 0.509507i −0.404868 0.914375i \(-0.632683\pi\)
0.914375 + 0.404868i \(0.132683\pi\)
\(620\) 18.1094 41.8259i 0.727290 1.67977i
\(621\) −11.8483 + 11.8483i −0.475457 + 0.475457i
\(622\) −33.3838 22.6924i −1.33857 0.909881i
\(623\) 0 0
\(624\) 1.62775 1.52736i 0.0651621 0.0611434i
\(625\) 24.9585 0.998342
\(626\) 0.0495504 0.0728960i 0.00198043 0.00291351i
\(627\) 0.166241 0.166241i 0.00663904 0.00663904i
\(628\) 26.8259 + 11.6148i 1.07047 + 0.463482i
\(629\) 48.6593 + 48.6593i 1.94017 + 1.94017i
\(630\) 0 0
\(631\) −21.0724 −0.838880 −0.419440 0.907783i \(-0.637774\pi\)
−0.419440 + 0.907783i \(0.637774\pi\)
\(632\) −1.05263 + 4.70272i −0.0418713 + 0.187064i
\(633\) −2.98377 −0.118594
\(634\) 31.5312 6.01171i 1.25226 0.238755i
\(635\) −40.4631 + 40.4631i −1.60573 + 1.60573i
\(636\) −3.48129 8.79776i −0.138042 0.348854i
\(637\) 0 0
\(638\) −3.76654 2.56027i −0.149119 0.101362i
\(639\) 29.7902i 1.17848i
\(640\) 34.6613 + 8.92478i 1.37011 + 0.352783i
\(641\) −27.1495 −1.07234 −0.536171 0.844109i \(-0.680130\pi\)
−0.536171 + 0.844109i \(0.680130\pi\)
\(642\) −11.1431 7.57440i −0.439781 0.298938i
\(643\) −21.2081 21.2081i −0.836367 0.836367i 0.152012 0.988379i \(-0.451425\pi\)
−0.988379 + 0.152012i \(0.951425\pi\)
\(644\) 0 0
\(645\) 21.1972 21.1972i 0.834640 0.834640i
\(646\) 0.326264 + 1.71124i 0.0128367 + 0.0673280i
\(647\) 40.2635i 1.58292i −0.611221 0.791460i \(-0.709321\pi\)
0.611221 0.791460i \(-0.290679\pi\)
\(648\) −5.90773 1.32235i −0.232077 0.0519468i
\(649\) 1.76306 0.0692063
\(650\) −4.23433 + 0.807314i −0.166084 + 0.0316654i
\(651\) 0 0
\(652\) 0.766185 + 0.331735i 0.0300061 + 0.0129918i
\(653\) −16.4619 16.4619i −0.644206 0.644206i 0.307381 0.951587i \(-0.400547\pi\)
−0.951587 + 0.307381i \(0.900547\pi\)
\(654\) 0.0435374 + 0.0295942i 0.00170245 + 0.00115722i
\(655\) 8.71129i 0.340378i
\(656\) 28.0382 26.3090i 1.09471 1.02719i
\(657\) 4.86507i 0.189805i
\(658\) 0 0
\(659\) −21.3113 + 21.3113i −0.830171 + 0.830171i −0.987540 0.157369i \(-0.949699\pi\)
0.157369 + 0.987540i \(0.449699\pi\)
\(660\) 6.57887 + 2.84846i 0.256082 + 0.110876i
\(661\) −7.73509 7.73509i −0.300860 0.300860i 0.540490 0.841350i \(-0.318239\pi\)
−0.841350 + 0.540490i \(0.818239\pi\)
\(662\) 22.3269 4.25682i 0.867758 0.165446i
\(663\) 3.31289i 0.128662i
\(664\) 16.6728 + 26.2892i 0.647031 + 1.02022i
\(665\) 0 0
\(666\) −34.7701 + 6.62923i −1.34731 + 0.256877i
\(667\) 6.52716 + 6.52716i 0.252733 + 0.252733i
\(668\) 5.89420 2.33235i 0.228053 0.0902412i
\(669\) 14.2088 + 14.2088i 0.549342 + 0.549342i
\(670\) −20.5747 + 30.2684i −0.794869 + 1.16937i
\(671\) −1.64270 −0.0634156
\(672\) 0 0
\(673\) 35.4992 1.36839 0.684197 0.729297i \(-0.260153\pi\)
0.684197 + 0.729297i \(0.260153\pi\)
\(674\) 12.1563 17.8837i 0.468243 0.688853i
\(675\) −16.7528 16.7528i −0.644815 0.644815i
\(676\) 23.4872 9.29394i 0.903355 0.357459i
\(677\) 21.3384 + 21.3384i 0.820100 + 0.820100i 0.986122 0.166022i \(-0.0530924\pi\)
−0.166022 + 0.986122i \(0.553092\pi\)
\(678\) −14.1104 + 2.69027i −0.541905 + 0.103319i
\(679\) 0 0
\(680\) −44.8605 + 28.4509i −1.72032 + 1.09104i
\(681\) 10.6245i 0.407132i
\(682\) 12.3662 2.35772i 0.473525 0.0902818i
\(683\) 23.6590 + 23.6590i 0.905288 + 0.905288i 0.995887 0.0905997i \(-0.0288784\pi\)
−0.0905997 + 0.995887i \(0.528878\pi\)
\(684\) −0.822305 0.356034i −0.0314416 0.0136133i
\(685\) 4.36983 4.36983i 0.166963 0.166963i
\(686\) 0 0
\(687\) 19.9249i 0.760180i
\(688\) 41.3172 + 1.31460i 1.57520 + 0.0501188i
\(689\) 3.14008i 0.119628i
\(690\) −12.0170 8.16846i −0.457479 0.310968i
\(691\) 31.9217 + 31.9217i 1.21436 + 1.21436i 0.969579 + 0.244780i \(0.0787157\pi\)
0.244780 + 0.969579i \(0.421284\pi\)
\(692\) 41.9702 + 18.1719i 1.59547 + 0.690790i
\(693\) 0 0
\(694\) 38.2886 7.30006i 1.45341 0.277107i
\(695\) 23.3658 0.886317
\(696\) 1.47625 6.59529i 0.0559572 0.249994i
\(697\) 57.0649i 2.16149i
\(698\) 6.39790 + 33.5568i 0.242164 + 1.27014i
\(699\) −8.10207 + 8.10207i −0.306448 + 0.306448i
\(700\) 0 0
\(701\) 7.35956 + 7.35956i 0.277967 + 0.277967i 0.832297 0.554330i \(-0.187026\pi\)
−0.554330 + 0.832297i \(0.687026\pi\)
\(702\) −3.36731 2.28890i −0.127091 0.0863890i
\(703\) −2.40512 −0.0907107
\(704\) 3.34329 + 9.30344i 0.126005 + 0.350637i
\(705\) 16.6867i 0.628456i
\(706\) 27.4077 + 18.6301i 1.03150 + 0.701154i
\(707\) 0 0
\(708\) 0.962664 + 2.43280i 0.0361791 + 0.0914302i
\(709\) 4.37885 4.37885i 0.164451 0.164451i −0.620084 0.784535i \(-0.712902\pi\)
0.784535 + 0.620084i \(0.212902\pi\)
\(710\) 60.6324 11.5601i 2.27549 0.433843i
\(711\) 3.67900 0.137973
\(712\) 16.8629 + 3.77450i 0.631965 + 0.141455i
\(713\) −25.5155 −0.955563
\(714\) 0 0
\(715\) −1.68239 1.68239i −0.0629179 0.0629179i
\(716\) −25.2454 10.9305i −0.943465 0.408492i
\(717\) −4.99863 + 4.99863i −0.186677 + 0.186677i
\(718\) −6.92905 + 10.1936i −0.258590 + 0.380424i
\(719\) −18.1107 −0.675416 −0.337708 0.941251i \(-0.609652\pi\)
−0.337708 + 0.941251i \(0.609652\pi\)
\(720\) 0.868948 27.3105i 0.0323838 1.01780i
\(721\) 0 0
\(722\) 22.1719 + 15.0712i 0.825152 + 0.560890i
\(723\) 7.11616 7.11616i 0.264653 0.264653i
\(724\) −5.63421 + 13.0129i −0.209394 + 0.483622i
\(725\) −9.22899 + 9.22899i −0.342756 + 0.342756i
\(726\) −2.30053 12.0662i −0.0853806 0.447819i
\(727\) 39.2154i 1.45442i −0.686415 0.727210i \(-0.740817\pi\)
0.686415 0.727210i \(-0.259183\pi\)
\(728\) 0 0
\(729\) 8.39075i 0.310768i
\(730\) −9.90194 + 1.88789i −0.366487 + 0.0698741i
\(731\) −43.3833 + 43.3833i −1.60459 + 1.60459i
\(732\) −0.896941 2.26671i −0.0331519 0.0837800i
\(733\) 8.67284 8.67284i 0.320339 0.320339i −0.528558 0.848897i \(-0.677267\pi\)
0.848897 + 0.528558i \(0.177267\pi\)
\(734\) 2.24844 3.30779i 0.0829915 0.122093i
\(735\) 0 0
\(736\) −3.12482 19.7919i −0.115182 0.729538i
\(737\) −10.1089 −0.372365
\(738\) −24.2754 16.5010i −0.893589 0.607410i
\(739\) −17.5954 + 17.5954i −0.647257 + 0.647257i −0.952329 0.305072i \(-0.901319\pi\)
0.305072 + 0.952329i \(0.401319\pi\)
\(740\) −26.9851 68.1954i −0.991991 2.50691i
\(741\) −0.0818741 0.0818741i −0.00300772 0.00300772i
\(742\) 0 0
\(743\) 18.0234 0.661215 0.330608 0.943768i \(-0.392746\pi\)
0.330608 + 0.943768i \(0.392746\pi\)
\(744\) 10.0055 + 15.7764i 0.366819 + 0.578389i
\(745\) −24.1464 −0.884657
\(746\) −3.74989 19.6681i −0.137293 0.720099i
\(747\) 16.8049 16.8049i 0.614859 0.614859i
\(748\) −13.4646 5.82980i −0.492316 0.213158i
\(749\) 0 0
\(750\) 0.0190868 0.0280794i 0.000696950 0.00102532i
\(751\) 29.9539i 1.09303i 0.837448 + 0.546516i \(0.184046\pi\)
−0.837448 + 0.546516i \(0.815954\pi\)
\(752\) −16.7801 + 15.7452i −0.611907 + 0.574169i
\(753\) −24.4945 −0.892627
\(754\) −1.26094 + 1.85503i −0.0459207 + 0.0675560i
\(755\) −31.5555 31.5555i −1.14842 1.14842i
\(756\) 0 0
\(757\) −11.9616 + 11.9616i −0.434752 + 0.434752i −0.890241 0.455489i \(-0.849464\pi\)
0.455489 + 0.890241i \(0.349464\pi\)
\(758\) 20.1261 3.83722i 0.731012 0.139374i
\(759\) 4.01338i 0.145676i
\(760\) 0.405544 1.81181i 0.0147106 0.0657211i
\(761\) 29.4876 1.06892 0.534462 0.845193i \(-0.320514\pi\)
0.534462 + 0.845193i \(0.320514\pi\)
\(762\) −4.39276 23.0399i −0.159133 0.834646i
\(763\) 0 0
\(764\) −9.99138 + 3.95361i −0.361475 + 0.143037i
\(765\) 28.6763 + 28.6763i 1.03679 + 1.03679i
\(766\) 5.09961 7.50227i 0.184256 0.271068i
\(767\) 0.868311i 0.0313529i
\(768\) −11.0121 + 9.69315i −0.397363 + 0.349771i
\(769\) 19.9592i 0.719746i −0.933001 0.359873i \(-0.882820\pi\)
0.933001 0.359873i \(-0.117180\pi\)
\(770\) 0 0
\(771\) −11.4369 + 11.4369i −0.411890 + 0.411890i
\(772\) 0.0528787 + 0.133633i 0.00190315 + 0.00480955i
\(773\) −6.70148 6.70148i −0.241035 0.241035i 0.576243 0.817278i \(-0.304518\pi\)
−0.817278 + 0.576243i \(0.804518\pi\)
\(774\) −5.91044 31.0001i −0.212446 1.11427i
\(775\) 36.0773i 1.29594i
\(776\) 6.56825 29.3443i 0.235786 1.05340i
\(777\) 0 0
\(778\) 4.50459 + 23.6264i 0.161497 + 0.847048i
\(779\) −1.41029 1.41029i −0.0505290 0.0505290i
\(780\) 1.40287 3.24010i 0.0502307 0.116014i
\(781\) 12.0552 + 12.0552i 0.431371 + 0.431371i
\(782\) 24.5946 + 16.7180i 0.879501 + 0.597834i
\(783\) −12.3280 −0.440569
\(784\) 0 0
\(785\) 46.2396 1.65036
\(786\) −2.95298 2.00727i −0.105329 0.0715968i
\(787\) 36.6649 + 36.6649i 1.30696 + 1.30696i 0.923596 + 0.383368i \(0.125236\pi\)
0.383368 + 0.923596i \(0.374764\pi\)
\(788\) −6.75804 2.92603i −0.240745 0.104236i
\(789\) 4.65610 + 4.65610i 0.165762 + 0.165762i
\(790\) 1.42764 + 7.48792i 0.0507931 + 0.266408i
\(791\) 0 0
\(792\) 6.37345 4.04210i 0.226471 0.143630i
\(793\) 0.809030i 0.0287295i
\(794\) 2.93084 + 15.3722i 0.104012 + 0.545538i
\(795\) −10.5827 10.5827i −0.375328 0.375328i
\(796\) 19.3664 7.66333i 0.686424 0.271620i
\(797\) −17.7503 + 17.7503i −0.628747 + 0.628747i −0.947753 0.319006i \(-0.896651\pi\)
0.319006 + 0.947753i \(0.396651\pi\)
\(798\) 0 0
\(799\) 34.1518i 1.20820i
\(800\) 27.9844 4.41829i 0.989400 0.156210i
\(801\) 13.1921i 0.466120i
\(802\) −12.0732 + 17.7614i −0.426318 + 0.627176i
\(803\) −1.96875 1.96875i −0.0694758 0.0694758i
\(804\) −5.51962 13.9489i −0.194662 0.491941i
\(805\) 0 0
\(806\) −1.16118 6.09035i −0.0409008 0.214524i
\(807\) −16.9402 −0.596325
\(808\) 1.93184 + 3.04606i 0.0679618 + 0.107160i
\(809\) 11.6172i 0.408441i −0.978925 0.204220i \(-0.934534\pi\)
0.978925 0.204220i \(-0.0654659\pi\)
\(810\) −9.40659 + 1.79345i −0.330514 + 0.0630154i
\(811\) 21.2042 21.2042i 0.744579 0.744579i −0.228877 0.973455i \(-0.573505\pi\)
0.973455 + 0.228877i \(0.0735053\pi\)
\(812\) 0 0
\(813\) 0.639052 + 0.639052i 0.0224125 + 0.0224125i
\(814\) 11.3878 16.7531i 0.399142 0.587196i
\(815\) 1.32067 0.0462609
\(816\) 0.692429 21.7626i 0.0242399 0.761845i
\(817\) 2.14434i 0.0750209i
\(818\) −4.22210 + 6.21133i −0.147622 + 0.217174i
\(819\) 0 0
\(820\) 24.1646 55.8112i 0.843865 1.94901i
\(821\) 19.2357 19.2357i 0.671330 0.671330i −0.286692 0.958023i \(-0.592556\pi\)
0.958023 + 0.286692i \(0.0925558\pi\)
\(822\) 0.474398 + 2.48820i 0.0165465 + 0.0867860i
\(823\) 0.953410 0.0332338 0.0166169 0.999862i \(-0.494710\pi\)
0.0166169 + 0.999862i \(0.494710\pi\)
\(824\) −6.06806 + 27.1096i −0.211391 + 0.944409i
\(825\) 5.67466 0.197566
\(826\) 0 0
\(827\) 0.699424 + 0.699424i 0.0243213 + 0.0243213i 0.719163 0.694842i \(-0.244526\pi\)
−0.694842 + 0.719163i \(0.744526\pi\)
\(828\) −14.2236 + 5.62833i −0.494306 + 0.195598i
\(829\) 29.0071 29.0071i 1.00746 1.00746i 0.00748452 0.999972i \(-0.497618\pi\)
0.999972 0.00748452i \(-0.00238242\pi\)
\(830\) 40.7243 + 27.6820i 1.41356 + 0.960858i
\(831\) 0.0801175 0.00277925
\(832\) 4.58196 1.64657i 0.158851 0.0570847i
\(833\) 0 0
\(834\) −5.38399 + 7.92063i −0.186432 + 0.274269i
\(835\) 7.09002 7.09002i 0.245360 0.245360i
\(836\) 0.476840 0.188687i 0.0164919 0.00652586i
\(837\) 24.0960 24.0960i 0.832878 0.832878i
\(838\) 15.1967 2.89740i 0.524963 0.100089i
\(839\) 5.46062i 0.188522i 0.995548 + 0.0942608i \(0.0300488\pi\)
−0.995548 + 0.0942608i \(0.969951\pi\)
\(840\) 0 0
\(841\) 22.2086i 0.765813i
\(842\) 1.79477 + 9.41353i 0.0618520 + 0.324412i
\(843\) −9.04712 + 9.04712i −0.311599 + 0.311599i
\(844\) −5.97257 2.58595i −0.205584 0.0890120i
\(845\) 28.2523 28.2523i 0.971910 0.971910i
\(846\) 14.5282 + 9.87540i 0.499488 + 0.339523i
\(847\) 0 0
\(848\) 0.656311 20.6275i 0.0225378 0.708351i
\(849\) −12.1162 −0.415826
\(850\) −23.6382 + 34.7752i −0.810783 + 1.19278i
\(851\) −29.0320 + 29.0320i −0.995204 + 0.995204i
\(852\) −10.0523 + 23.2171i −0.344386 + 0.795403i
\(853\) −35.1393 35.1393i −1.20315 1.20315i −0.973204 0.229943i \(-0.926146\pi\)
−0.229943 0.973204i \(-0.573854\pi\)
\(854\) 0 0
\(855\) −1.41740 −0.0484741
\(856\) −15.7404 24.8189i −0.537995 0.848294i
\(857\) −44.9561 −1.53567 −0.767836 0.640647i \(-0.778666\pi\)
−0.767836 + 0.640647i \(0.778666\pi\)
\(858\) 0.957962 0.182644i 0.0327043 0.00623536i
\(859\) 16.2542 16.2542i 0.554585 0.554585i −0.373176 0.927761i \(-0.621731\pi\)
0.927761 + 0.373176i \(0.121731\pi\)
\(860\) 60.8012 24.0592i 2.07330 0.820411i
\(861\) 0 0
\(862\) 2.97862 + 2.02469i 0.101452 + 0.0689614i
\(863\) 32.6721i 1.11217i 0.831125 + 0.556085i \(0.187697\pi\)
−0.831125 + 0.556085i \(0.812303\pi\)
\(864\) 21.6417 + 15.7398i 0.736267 + 0.535479i
\(865\) 72.3437 2.45976
\(866\) −22.2678 15.1364i −0.756691 0.514354i
\(867\) 11.8290 + 11.8290i 0.401734 + 0.401734i
\(868\) 0 0
\(869\) −1.48879 + 1.48879i −0.0505036 + 0.0505036i
\(870\) −2.00218 10.5014i −0.0678803 0.356030i
\(871\) 4.97863i 0.168695i
\(872\) 0.0614997 + 0.0969708i 0.00208264 + 0.00328385i
\(873\) −22.9564 −0.776957
\(874\) −1.02099 + 0.194662i −0.0345356 + 0.00658452i
\(875\) 0 0
\(876\) 1.64165 3.79160i 0.0554663 0.128106i
\(877\) −12.7382 12.7382i −0.430139 0.430139i 0.458537 0.888675i \(-0.348374\pi\)
−0.888675 + 0.458537i \(0.848374\pi\)
\(878\) 20.5714 + 13.9832i 0.694250 + 0.471911i
\(879\) 1.45160i 0.0489612i
\(880\) 10.7002 + 11.4034i 0.360702 + 0.384409i
\(881\) 21.0017i 0.707564i −0.935328 0.353782i \(-0.884895\pi\)
0.935328 0.353782i \(-0.115105\pi\)
\(882\) 0 0
\(883\) −29.0326 + 29.0326i −0.977024 + 0.977024i −0.999742 0.0227184i \(-0.992768\pi\)
0.0227184 + 0.999742i \(0.492768\pi\)
\(884\) −2.87118 + 6.63136i −0.0965683 + 0.223037i
\(885\) 2.92637 + 2.92637i 0.0983688 + 0.0983688i
\(886\) −37.5530 + 7.15982i −1.26162 + 0.240539i
\(887\) 38.2378i 1.28390i 0.766747 + 0.641949i \(0.221874\pi\)
−0.766747 + 0.641949i \(0.778126\pi\)
\(888\) 29.3350 + 6.56619i 0.984420 + 0.220347i
\(889\) 0 0
\(890\) 26.8500 5.11920i 0.900015 0.171596i
\(891\) −1.87027 1.87027i −0.0626563 0.0626563i
\(892\) 16.1271 + 40.7558i 0.539977 + 1.36460i
\(893\) 0.844022 + 0.844022i 0.0282441 + 0.0282441i
\(894\) 5.56385 8.18523i 0.186083 0.273755i
\(895\) −43.5153 −1.45456
\(896\) 0 0
\(897\) −1.97659 −0.0659966
\(898\) 3.65947 5.38361i 0.122118 0.179653i
\(899\) −13.2743 13.2743i −0.442723 0.442723i
\(900\) −7.95809 20.1113i −0.265270 0.670378i
\(901\) 21.6590 + 21.6590i 0.721566 + 0.721566i
\(902\) 16.5010 3.14607i 0.549424 0.104753i
\(903\) 0 0
\(904\) −30.5761 6.84398i −1.01695 0.227627i
\(905\) 22.4303i 0.745608i
\(906\) 17.9678 3.42573i 0.596941 0.113812i
\(907\) −37.7115 37.7115i −1.25219 1.25219i −0.954736 0.297455i \(-0.903862\pi\)
−0.297455 0.954736i \(-0.596138\pi\)
\(908\) −9.20795 + 21.2669i −0.305576 + 0.705767i
\(909\) 1.94714 1.94714i 0.0645826 0.0645826i
\(910\) 0 0
\(911\) 20.1673i 0.668171i −0.942543 0.334086i \(-0.891573\pi\)
0.942543 0.334086i \(-0.108427\pi\)
\(912\) 0.520726 + 0.554951i 0.0172430 + 0.0183763i
\(913\) 13.6009i 0.450124i
\(914\) 30.1528 + 20.4962i 0.997367 + 0.677953i
\(915\) −2.72658 2.72658i −0.0901380 0.0901380i
\(916\) −17.2683 + 39.8833i −0.570560 + 1.31778i
\(917\) 0 0
\(918\) −39.0142 + 7.43841i −1.28766 + 0.245504i
\(919\) −13.3938 −0.441821 −0.220911 0.975294i \(-0.570903\pi\)
−0.220911 + 0.975294i \(0.570903\pi\)
\(920\) −16.9749 26.7655i −0.559646 0.882432i
\(921\) 20.5652i 0.677646i
\(922\) −1.65068 8.65776i −0.0543622 0.285128i
\(923\) 5.93723 5.93723i 0.195426 0.195426i
\(924\) 0 0
\(925\) −41.0494 41.0494i −1.34970 1.34970i
\(926\) −36.3012 24.6755i −1.19293 0.810886i
\(927\) 21.2082 0.696570
\(928\) 8.67094 11.9223i 0.284638 0.391368i
\(929\) 40.1376i 1.31687i −0.752637 0.658436i \(-0.771218\pi\)
0.752637 0.658436i \(-0.228782\pi\)
\(930\) 24.4390 + 16.6122i 0.801386 + 0.544736i
\(931\) 0 0
\(932\) −23.2396 + 9.19597i −0.761239 + 0.301224i
\(933\) 18.5059 18.5059i 0.605857 0.605857i
\(934\) 50.6161 9.65042i 1.65621 0.315771i
\(935\) −23.2089 −0.759013
\(936\) −1.99074 3.13893i −0.0650693 0.102599i
\(937\) 3.61135 0.117978 0.0589888 0.998259i \(-0.481212\pi\)
0.0589888 + 0.998259i \(0.481212\pi\)
\(938\) 0 0
\(939\) 0.0404090 + 0.0404090i 0.00131870 + 0.00131870i
\(940\) −14.4619 + 33.4015i −0.471694 + 1.08944i
\(941\) 10.0219 10.0219i 0.326706 0.326706i −0.524627 0.851332i \(-0.675795\pi\)
0.851332 + 0.524627i \(0.175795\pi\)
\(942\) −10.6546 + 15.6745i −0.347145 + 0.510701i
\(943\) −34.0471 −1.10873
\(944\) −0.181487 + 5.70401i −0.00590688 + 0.185650i
\(945\) 0 0
\(946\) 14.9366 + 10.1530i 0.485631 + 0.330104i
\(947\) 31.3429 31.3429i 1.01851 1.01851i 0.0186811 0.999825i \(-0.494053\pi\)
0.999825 0.0186811i \(-0.00594672\pi\)
\(948\) −2.86724 1.24143i −0.0931235 0.0403197i
\(949\) −0.969614 + 0.969614i −0.0314750 + 0.0314750i
\(950\) −0.275239 1.44362i −0.00892993 0.0468372i
\(951\) 20.8115i 0.674858i
\(952\) 0 0
\(953\) 54.7099i 1.77223i 0.463467 + 0.886114i \(0.346605\pi\)
−0.463467 + 0.886114i \(0.653395\pi\)
\(954\) −15.4767 + 2.95077i −0.501076 + 0.0955347i
\(955\) −12.0184 + 12.0184i −0.388908 + 0.388908i
\(956\) −14.3378 + 5.67351i −0.463719 + 0.183495i
\(957\) 2.08794 2.08794i 0.0674934 0.0674934i
\(958\) −7.58290 + 11.1556i −0.244992 + 0.360420i
\(959\) 0 0
\(960\) −9.89278 + 20.9913i −0.319288 + 0.677491i
\(961\) 20.8909 0.673901
\(962\) −8.25093 5.60850i −0.266021 0.180825i
\(963\) −15.8651 + 15.8651i −0.511244 + 0.511244i
\(964\) 20.4117 8.07694i 0.657416 0.260141i
\(965\) 0.160744 + 0.160744i 0.00517454 + 0.00517454i
\(966\) 0 0
\(967\) −57.5321 −1.85011 −0.925054 0.379836i \(-0.875980\pi\)
−0.925054 + 0.379836i \(0.875980\pi\)
\(968\) 5.85249 26.1465i 0.188106 0.840382i
\(969\) −1.12947 −0.0362838
\(970\) −8.90825 46.7235i −0.286027 1.50020i
\(971\) −11.5737 + 11.5737i −0.371418 + 0.371418i −0.867994 0.496575i \(-0.834591\pi\)
0.496575 + 0.867994i \(0.334591\pi\)
\(972\) 12.8370 29.6487i 0.411748 0.950984i
\(973\) 0 0
\(974\) −2.21878 + 3.26415i −0.0710944 + 0.104590i
\(975\) 2.79478i 0.0895045i
\(976\) 0.169096 5.31459i 0.00541264 0.170116i
\(977\) 34.7260 1.11098 0.555491 0.831522i \(-0.312530\pi\)
0.555491 + 0.831522i \(0.312530\pi\)
\(978\) −0.304310 + 0.447684i −0.00973075 + 0.0143154i
\(979\) 5.33846 + 5.33846i 0.170618 + 0.170618i
\(980\) 0 0
\(981\) 0.0619868 0.0619868i 0.00197909 0.00197909i
\(982\) 29.2893 5.58427i 0.934659 0.178201i
\(983\) 21.1127i 0.673390i 0.941614 + 0.336695i \(0.109309\pi\)
−0.941614 + 0.336695i \(0.890691\pi\)
\(984\) 13.3510 + 21.0515i 0.425615 + 0.671097i
\(985\) −11.6488 −0.371161
\(986\) 4.09777 + 21.4926i 0.130499 + 0.684465i
\(987\) 0 0
\(988\) −0.0929284 0.234844i −0.00295645 0.00747139i
\(989\) −25.8842 25.8842i −0.823068 0.823068i
\(990\) 6.71113 9.87306i 0.213294 0.313786i
\(991\) 36.3796i 1.15563i 0.816166 + 0.577817i \(0.196095\pi\)
−0.816166 + 0.577817i \(0.803905\pi\)
\(992\) 6.35495 + 40.2508i 0.201770 + 1.27796i
\(993\) 14.7364i 0.467644i
\(994\) 0 0
\(995\) 23.2955 23.2955i 0.738516 0.738516i
\(996\) −18.7675 + 7.42634i −0.594671 + 0.235313i
\(997\) −35.1855 35.1855i −1.11434 1.11434i −0.992557 0.121778i \(-0.961140\pi\)
−0.121778 0.992557i \(-0.538860\pi\)
\(998\) −3.74688 19.6523i −0.118605 0.622081i
\(999\) 54.8337i 1.73486i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.j.a.195.9 56
7.2 even 3 784.2.w.f.227.14 56
7.3 odd 6 784.2.w.f.19.4 56
7.4 even 3 112.2.v.a.19.4 yes 56
7.5 odd 6 112.2.v.a.3.14 56
7.6 odd 2 inner 784.2.j.a.195.10 56
16.11 odd 4 inner 784.2.j.a.587.10 56
28.11 odd 6 448.2.z.a.47.9 56
28.19 even 6 448.2.z.a.367.9 56
56.5 odd 6 896.2.z.b.479.9 56
56.11 odd 6 896.2.z.a.607.6 56
56.19 even 6 896.2.z.a.479.6 56
56.53 even 6 896.2.z.b.607.9 56
112.5 odd 12 448.2.z.a.143.9 56
112.11 odd 12 112.2.v.a.75.14 yes 56
112.19 even 12 896.2.z.b.31.9 56
112.27 even 4 inner 784.2.j.a.587.9 56
112.53 even 12 448.2.z.a.271.9 56
112.59 even 12 784.2.w.f.411.14 56
112.61 odd 12 896.2.z.a.31.6 56
112.67 odd 12 896.2.z.b.159.9 56
112.75 even 12 112.2.v.a.59.4 yes 56
112.107 odd 12 784.2.w.f.619.4 56
112.109 even 12 896.2.z.a.159.6 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.14 56 7.5 odd 6
112.2.v.a.19.4 yes 56 7.4 even 3
112.2.v.a.59.4 yes 56 112.75 even 12
112.2.v.a.75.14 yes 56 112.11 odd 12
448.2.z.a.47.9 56 28.11 odd 6
448.2.z.a.143.9 56 112.5 odd 12
448.2.z.a.271.9 56 112.53 even 12
448.2.z.a.367.9 56 28.19 even 6
784.2.j.a.195.9 56 1.1 even 1 trivial
784.2.j.a.195.10 56 7.6 odd 2 inner
784.2.j.a.587.9 56 112.27 even 4 inner
784.2.j.a.587.10 56 16.11 odd 4 inner
784.2.w.f.19.4 56 7.3 odd 6
784.2.w.f.227.14 56 7.2 even 3
784.2.w.f.411.14 56 112.59 even 12
784.2.w.f.619.4 56 112.107 odd 12
896.2.z.a.31.6 56 112.61 odd 12
896.2.z.a.159.6 56 112.109 even 12
896.2.z.a.479.6 56 56.19 even 6
896.2.z.a.607.6 56 56.11 odd 6
896.2.z.b.31.9 56 112.19 even 12
896.2.z.b.159.9 56 112.67 odd 12
896.2.z.b.479.9 56 56.5 odd 6
896.2.z.b.607.9 56 56.53 even 6