Properties

Label 783.2.k.f.136.9
Level $783$
Weight $2$
Character 783.136
Analytic conductor $6.252$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(82,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0,-10,0,0,4,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{7})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 136.9
Character \(\chi\) \(=\) 783.136
Dual form 783.2.k.f.190.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.07439 - 0.998975i) q^{2} +(2.05818 - 2.58087i) q^{4} +(3.28060 - 1.57985i) q^{5} +(-0.480272 - 0.602242i) q^{7} +(0.666575 - 2.92046i) q^{8} +(5.22702 - 6.55447i) q^{10} +(0.658197 + 2.88375i) q^{11} +(-0.244037 - 1.06920i) q^{13} +(-1.59790 - 0.769507i) q^{14} +(-0.0656152 - 0.287479i) q^{16} -7.04868 q^{17} +(-0.225442 + 0.282695i) q^{19} +(2.67465 - 11.7184i) q^{20} +(4.24615 + 5.32451i) q^{22} +(5.36389 + 2.58312i) q^{23} +(5.14895 - 6.45657i) q^{25} +(-1.57433 - 1.97415i) q^{26} -2.54279 q^{28} +(-5.11165 - 1.69441i) q^{29} +(-6.78416 + 3.26708i) q^{31} +(3.31211 + 4.15325i) q^{32} +(-14.6217 + 7.04146i) q^{34} +(-2.52703 - 1.21696i) q^{35} +(-1.06504 + 4.66624i) q^{37} +(-0.185250 + 0.811632i) q^{38} +(-2.42713 - 10.6339i) q^{40} -2.58105 q^{41} +(5.10751 + 2.45965i) q^{43} +(8.79728 + 4.23654i) q^{44} +13.7073 q^{46} +(-1.97831 - 8.66752i) q^{47} +(1.42561 - 6.24602i) q^{49} +(4.23098 - 18.5371i) q^{50} +(-3.26174 - 1.57077i) q^{52} +(4.77573 - 2.29987i) q^{53} +(6.71518 + 8.42057i) q^{55} +(-2.07896 + 1.00117i) q^{56} +(-12.2962 + 1.59154i) q^{58} -4.02730 q^{59} +(-1.78011 - 2.23219i) q^{61} +(-10.8093 + 13.5544i) q^{62} +(11.5510 + 5.56265i) q^{64} +(-2.48977 - 3.12207i) q^{65} +(-2.21401 + 9.70022i) q^{67} +(-14.5074 + 18.1917i) q^{68} -6.45777 q^{70} +(-1.50142 - 6.57817i) q^{71} +(6.54889 + 3.15378i) q^{73} +(2.45215 + 10.7436i) q^{74} +(0.265601 + 1.16367i) q^{76} +(1.42060 - 1.78138i) q^{77} +(1.05869 - 4.63843i) q^{79} +(-0.669432 - 0.839441i) q^{80} +(-5.35410 + 2.57840i) q^{82} +(10.4949 - 13.1602i) q^{83} +(-23.1239 + 11.1359i) q^{85} +13.0521 q^{86} +8.86061 q^{88} +(-6.34265 + 3.05446i) q^{89} +(-0.526712 + 0.660475i) q^{91} +(17.7065 - 8.52702i) q^{92} +(-12.7624 - 16.0036i) q^{94} +(-0.292967 + 1.28357i) q^{95} +(-9.61159 + 12.0525i) q^{97} +(-3.28233 - 14.3808i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 10 q^{4} + 4 q^{7} + 4 q^{10} - 24 q^{13} - 26 q^{16} + 4 q^{19} - 8 q^{22} - 16 q^{25} + 112 q^{28} - 4 q^{31} + 26 q^{34} - 18 q^{37} - 78 q^{40} - 8 q^{43} + 72 q^{46} + 14 q^{49} - 12 q^{52}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07439 0.998975i 1.46682 0.706382i 0.481395 0.876504i \(-0.340130\pi\)
0.985423 + 0.170122i \(0.0544162\pi\)
\(3\) 0 0
\(4\) 2.05818 2.58087i 1.02909 1.29044i
\(5\) 3.28060 1.57985i 1.46713 0.706532i 0.481655 0.876361i \(-0.340036\pi\)
0.985474 + 0.169829i \(0.0543215\pi\)
\(6\) 0 0
\(7\) −0.480272 0.602242i −0.181526 0.227626i 0.682740 0.730661i \(-0.260788\pi\)
−0.864266 + 0.503035i \(0.832217\pi\)
\(8\) 0.666575 2.92046i 0.235670 1.03254i
\(9\) 0 0
\(10\) 5.22702 6.55447i 1.65293 2.07271i
\(11\) 0.658197 + 2.88375i 0.198454 + 0.869483i 0.971858 + 0.235570i \(0.0756955\pi\)
−0.773404 + 0.633914i \(0.781447\pi\)
\(12\) 0 0
\(13\) −0.244037 1.06920i −0.0676838 0.296542i 0.929745 0.368204i \(-0.120027\pi\)
−0.997429 + 0.0716614i \(0.977170\pi\)
\(14\) −1.59790 0.769507i −0.427056 0.205659i
\(15\) 0 0
\(16\) −0.0656152 0.287479i −0.0164038 0.0718697i
\(17\) −7.04868 −1.70956 −0.854778 0.518993i \(-0.826307\pi\)
−0.854778 + 0.518993i \(0.826307\pi\)
\(18\) 0 0
\(19\) −0.225442 + 0.282695i −0.0517199 + 0.0648547i −0.807019 0.590526i \(-0.798920\pi\)
0.755299 + 0.655381i \(0.227492\pi\)
\(20\) 2.67465 11.7184i 0.598071 2.62032i
\(21\) 0 0
\(22\) 4.24615 + 5.32451i 0.905283 + 1.13519i
\(23\) 5.36389 + 2.58312i 1.11845 + 0.538617i 0.899413 0.437100i \(-0.143994\pi\)
0.219036 + 0.975717i \(0.429709\pi\)
\(24\) 0 0
\(25\) 5.14895 6.45657i 1.02979 1.29131i
\(26\) −1.57433 1.97415i −0.308752 0.387163i
\(27\) 0 0
\(28\) −2.54279 −0.480543
\(29\) −5.11165 1.69441i −0.949210 0.314644i
\(30\) 0 0
\(31\) −6.78416 + 3.26708i −1.21847 + 0.586785i −0.928886 0.370367i \(-0.879232\pi\)
−0.289586 + 0.957152i \(0.593518\pi\)
\(32\) 3.31211 + 4.15325i 0.585504 + 0.734198i
\(33\) 0 0
\(34\) −14.6217 + 7.04146i −2.50761 + 1.20760i
\(35\) −2.52703 1.21696i −0.427147 0.205703i
\(36\) 0 0
\(37\) −1.06504 + 4.66624i −0.175091 + 0.767125i 0.808760 + 0.588138i \(0.200139\pi\)
−0.983852 + 0.178986i \(0.942718\pi\)
\(38\) −0.185250 + 0.811632i −0.0300515 + 0.131664i
\(39\) 0 0
\(40\) −2.42713 10.6339i −0.383763 1.68137i
\(41\) −2.58105 −0.403092 −0.201546 0.979479i \(-0.564596\pi\)
−0.201546 + 0.979479i \(0.564596\pi\)
\(42\) 0 0
\(43\) 5.10751 + 2.45965i 0.778887 + 0.375092i 0.780700 0.624906i \(-0.214863\pi\)
−0.00181264 + 0.999998i \(0.500577\pi\)
\(44\) 8.79728 + 4.23654i 1.32624 + 0.638683i
\(45\) 0 0
\(46\) 13.7073 2.02103
\(47\) −1.97831 8.66752i −0.288565 1.26429i −0.886495 0.462739i \(-0.846867\pi\)
0.597929 0.801549i \(-0.295990\pi\)
\(48\) 0 0
\(49\) 1.42561 6.24602i 0.203659 0.892288i
\(50\) 4.23098 18.5371i 0.598351 2.62155i
\(51\) 0 0
\(52\) −3.26174 1.57077i −0.452321 0.217826i
\(53\) 4.77573 2.29987i 0.655997 0.315911i −0.0761119 0.997099i \(-0.524251\pi\)
0.732109 + 0.681188i \(0.238536\pi\)
\(54\) 0 0
\(55\) 6.71518 + 8.42057i 0.905475 + 1.13543i
\(56\) −2.07896 + 1.00117i −0.277813 + 0.133787i
\(57\) 0 0
\(58\) −12.2962 + 1.59154i −1.61458 + 0.208980i
\(59\) −4.02730 −0.524310 −0.262155 0.965026i \(-0.584433\pi\)
−0.262155 + 0.965026i \(0.584433\pi\)
\(60\) 0 0
\(61\) −1.78011 2.23219i −0.227920 0.285803i 0.654701 0.755888i \(-0.272795\pi\)
−0.882621 + 0.470085i \(0.844223\pi\)
\(62\) −10.8093 + 13.5544i −1.37278 + 1.72141i
\(63\) 0 0
\(64\) 11.5510 + 5.56265i 1.44387 + 0.695331i
\(65\) −2.48977 3.12207i −0.308817 0.387245i
\(66\) 0 0
\(67\) −2.21401 + 9.70022i −0.270485 + 1.18507i 0.638958 + 0.769241i \(0.279366\pi\)
−0.909443 + 0.415829i \(0.863491\pi\)
\(68\) −14.5074 + 18.1917i −1.75928 + 2.20607i
\(69\) 0 0
\(70\) −6.45777 −0.771851
\(71\) −1.50142 6.57817i −0.178186 0.780685i −0.982467 0.186436i \(-0.940306\pi\)
0.804281 0.594249i \(-0.202551\pi\)
\(72\) 0 0
\(73\) 6.54889 + 3.15378i 0.766489 + 0.369122i 0.775918 0.630834i \(-0.217287\pi\)
−0.00942870 + 0.999956i \(0.503001\pi\)
\(74\) 2.45215 + 10.7436i 0.285056 + 1.24891i
\(75\) 0 0
\(76\) 0.265601 + 1.16367i 0.0304665 + 0.133482i
\(77\) 1.42060 1.78138i 0.161893 0.203007i
\(78\) 0 0
\(79\) 1.05869 4.63843i 0.119112 0.521864i −0.879805 0.475335i \(-0.842327\pi\)
0.998917 0.0465288i \(-0.0148159\pi\)
\(80\) −0.669432 0.839441i −0.0748447 0.0938523i
\(81\) 0 0
\(82\) −5.35410 + 2.57840i −0.591262 + 0.284737i
\(83\) 10.4949 13.1602i 1.15197 1.44452i 0.276648 0.960971i \(-0.410776\pi\)
0.875318 0.483548i \(-0.160652\pi\)
\(84\) 0 0
\(85\) −23.1239 + 11.1359i −2.50814 + 1.20786i
\(86\) 13.0521 1.40744
\(87\) 0 0
\(88\) 8.86061 0.944544
\(89\) −6.34265 + 3.05446i −0.672319 + 0.323772i −0.738711 0.674022i \(-0.764565\pi\)
0.0663924 + 0.997794i \(0.478851\pi\)
\(90\) 0 0
\(91\) −0.526712 + 0.660475i −0.0552144 + 0.0692366i
\(92\) 17.7065 8.52702i 1.84603 0.889003i
\(93\) 0 0
\(94\) −12.7624 16.0036i −1.31634 1.65064i
\(95\) −0.292967 + 1.28357i −0.0300578 + 0.131692i
\(96\) 0 0
\(97\) −9.61159 + 12.0525i −0.975909 + 1.22375i −0.00126249 + 0.999999i \(0.500402\pi\)
−0.974646 + 0.223752i \(0.928170\pi\)
\(98\) −3.28233 14.3808i −0.331566 1.45268i
\(99\) 0 0
\(100\) −6.06615 26.5775i −0.606615 2.65775i
\(101\) 11.4471 + 5.51263i 1.13903 + 0.548527i 0.905720 0.423876i \(-0.139331\pi\)
0.233308 + 0.972403i \(0.425045\pi\)
\(102\) 0 0
\(103\) 4.19106 + 18.3622i 0.412958 + 1.80929i 0.569942 + 0.821685i \(0.306966\pi\)
−0.156984 + 0.987601i \(0.550177\pi\)
\(104\) −3.28522 −0.322142
\(105\) 0 0
\(106\) 7.60923 9.54167i 0.739073 0.926769i
\(107\) −0.727600 + 3.18782i −0.0703398 + 0.308179i −0.997844 0.0656347i \(-0.979093\pi\)
0.927504 + 0.373813i \(0.121950\pi\)
\(108\) 0 0
\(109\) −0.756564 0.948701i −0.0724657 0.0908691i 0.744277 0.667871i \(-0.232794\pi\)
−0.816743 + 0.577002i \(0.804223\pi\)
\(110\) 22.3419 + 10.7593i 2.13021 + 1.02586i
\(111\) 0 0
\(112\) −0.141619 + 0.177584i −0.0133817 + 0.0167801i
\(113\) −8.88360 11.1397i −0.835699 1.04793i −0.998125 0.0612123i \(-0.980503\pi\)
0.162426 0.986721i \(-0.448068\pi\)
\(114\) 0 0
\(115\) 21.6777 2.02146
\(116\) −14.8937 + 9.70512i −1.38285 + 0.901098i
\(117\) 0 0
\(118\) −8.35421 + 4.02318i −0.769068 + 0.370363i
\(119\) 3.38528 + 4.24501i 0.310328 + 0.389140i
\(120\) 0 0
\(121\) 2.02786 0.976568i 0.184351 0.0887789i
\(122\) −5.92256 2.85216i −0.536204 0.258222i
\(123\) 0 0
\(124\) −5.53109 + 24.2333i −0.496706 + 2.17621i
\(125\) 2.63998 11.5665i 0.236127 1.03454i
\(126\) 0 0
\(127\) −1.17190 5.13441i −0.103989 0.455605i −0.999935 0.0114416i \(-0.996358\pi\)
0.895946 0.444164i \(-0.146499\pi\)
\(128\) 18.8937 1.66999
\(129\) 0 0
\(130\) −8.28362 3.98918i −0.726522 0.349874i
\(131\) −6.71389 3.23324i −0.586596 0.282490i 0.116952 0.993138i \(-0.462688\pi\)
−0.703548 + 0.710648i \(0.748402\pi\)
\(132\) 0 0
\(133\) 0.278524 0.0241511
\(134\) 5.09755 + 22.3338i 0.440361 + 1.92935i
\(135\) 0 0
\(136\) −4.69848 + 20.5854i −0.402891 + 1.76518i
\(137\) −1.29117 + 5.65699i −0.110312 + 0.483309i 0.889348 + 0.457232i \(0.151159\pi\)
−0.999660 + 0.0260779i \(0.991698\pi\)
\(138\) 0 0
\(139\) 20.1544 + 9.70583i 1.70947 + 0.823238i 0.991940 + 0.126712i \(0.0404425\pi\)
0.717532 + 0.696526i \(0.245272\pi\)
\(140\) −8.34189 + 4.01724i −0.705018 + 0.339519i
\(141\) 0 0
\(142\) −9.68597 12.1458i −0.812828 1.01925i
\(143\) 2.92268 1.40749i 0.244406 0.117700i
\(144\) 0 0
\(145\) −19.4462 + 2.51698i −1.61492 + 0.209024i
\(146\) 16.7355 1.38504
\(147\) 0 0
\(148\) 9.85093 + 12.3527i 0.809741 + 1.01538i
\(149\) −11.9400 + 14.9722i −0.978159 + 1.22657i −0.00416692 + 0.999991i \(0.501326\pi\)
−0.973992 + 0.226581i \(0.927245\pi\)
\(150\) 0 0
\(151\) 6.51747 + 3.13865i 0.530384 + 0.255420i 0.679855 0.733347i \(-0.262043\pi\)
−0.149471 + 0.988766i \(0.547757\pi\)
\(152\) 0.675325 + 0.846831i 0.0547761 + 0.0686870i
\(153\) 0 0
\(154\) 1.16733 5.11443i 0.0940665 0.412132i
\(155\) −17.0946 + 21.4360i −1.37307 + 1.72178i
\(156\) 0 0
\(157\) −16.7517 −1.33693 −0.668465 0.743743i \(-0.733048\pi\)
−0.668465 + 0.743743i \(0.733048\pi\)
\(158\) −2.43753 10.6795i −0.193920 0.849617i
\(159\) 0 0
\(160\) 17.4272 + 8.39251i 1.37774 + 0.663486i
\(161\) −1.02047 4.47096i −0.0804241 0.352361i
\(162\) 0 0
\(163\) 0.284638 + 1.24708i 0.0222946 + 0.0976788i 0.984851 0.173402i \(-0.0554760\pi\)
−0.962557 + 0.271081i \(0.912619\pi\)
\(164\) −5.31225 + 6.66135i −0.414817 + 0.520164i
\(165\) 0 0
\(166\) 8.62386 37.7836i 0.669341 2.93257i
\(167\) −8.84199 11.0875i −0.684214 0.857977i 0.311521 0.950239i \(-0.399162\pi\)
−0.995735 + 0.0922621i \(0.970590\pi\)
\(168\) 0 0
\(169\) 10.6290 5.11864i 0.817613 0.393742i
\(170\) −36.8436 + 46.2004i −2.82577 + 3.54341i
\(171\) 0 0
\(172\) 16.8602 8.11943i 1.28558 0.619101i
\(173\) −23.7612 −1.80653 −0.903265 0.429083i \(-0.858837\pi\)
−0.903265 + 0.429083i \(0.858837\pi\)
\(174\) 0 0
\(175\) −6.36131 −0.480870
\(176\) 0.785830 0.378436i 0.0592341 0.0285257i
\(177\) 0 0
\(178\) −10.1058 + 12.6723i −0.757463 + 0.949828i
\(179\) 13.6153 6.55679i 1.01766 0.490078i 0.150763 0.988570i \(-0.451827\pi\)
0.866894 + 0.498492i \(0.166113\pi\)
\(180\) 0 0
\(181\) 0.0635702 + 0.0797146i 0.00472514 + 0.00592514i 0.784188 0.620523i \(-0.213080\pi\)
−0.779463 + 0.626448i \(0.784508\pi\)
\(182\) −0.432808 + 1.89626i −0.0320819 + 0.140560i
\(183\) 0 0
\(184\) 11.1193 13.9432i 0.819727 1.02790i
\(185\) 3.87801 + 16.9907i 0.285117 + 1.24918i
\(186\) 0 0
\(187\) −4.63942 20.3266i −0.339268 1.48643i
\(188\) −26.4415 12.7335i −1.92844 0.928689i
\(189\) 0 0
\(190\) 0.674529 + 2.95531i 0.0489355 + 0.214400i
\(191\) 7.85966 0.568705 0.284353 0.958720i \(-0.408221\pi\)
0.284353 + 0.958720i \(0.408221\pi\)
\(192\) 0 0
\(193\) 9.69997 12.1634i 0.698219 0.875539i −0.298670 0.954356i \(-0.596543\pi\)
0.996889 + 0.0788173i \(0.0251144\pi\)
\(194\) −7.89801 + 34.6035i −0.567044 + 2.48438i
\(195\) 0 0
\(196\) −13.1860 16.5347i −0.941857 1.18105i
\(197\) −11.1235 5.35678i −0.792515 0.381655i −0.00659102 0.999978i \(-0.502098\pi\)
−0.785924 + 0.618323i \(0.787812\pi\)
\(198\) 0 0
\(199\) 5.44085 6.82261i 0.385692 0.483642i −0.550648 0.834737i \(-0.685619\pi\)
0.936340 + 0.351096i \(0.114191\pi\)
\(200\) −15.4240 19.3411i −1.09064 1.36762i
\(201\) 0 0
\(202\) 29.2527 2.05822
\(203\) 1.43454 + 3.89223i 0.100685 + 0.273181i
\(204\) 0 0
\(205\) −8.46738 + 4.07767i −0.591387 + 0.284797i
\(206\) 27.0373 + 33.9038i 1.88378 + 2.36219i
\(207\) 0 0
\(208\) −0.291359 + 0.140311i −0.0202021 + 0.00972883i
\(209\) −0.963607 0.464049i −0.0666541 0.0320989i
\(210\) 0 0
\(211\) −2.17454 + 9.52727i −0.149701 + 0.655884i 0.843266 + 0.537496i \(0.180630\pi\)
−0.992967 + 0.118388i \(0.962227\pi\)
\(212\) 3.89362 17.0591i 0.267415 1.17162i
\(213\) 0 0
\(214\) 1.67523 + 7.33966i 0.114516 + 0.501728i
\(215\) 20.6416 1.40774
\(216\) 0 0
\(217\) 5.22582 + 2.51662i 0.354752 + 0.170839i
\(218\) −2.51714 1.21219i −0.170482 0.0820999i
\(219\) 0 0
\(220\) 35.5535 2.39701
\(221\) 1.72014 + 7.53644i 0.115709 + 0.506956i
\(222\) 0 0
\(223\) 2.40309 10.5286i 0.160923 0.705050i −0.828500 0.559989i \(-0.810805\pi\)
0.989423 0.145061i \(-0.0463377\pi\)
\(224\) 0.910550 3.98938i 0.0608387 0.266552i
\(225\) 0 0
\(226\) −29.5563 14.2336i −1.96606 0.946804i
\(227\) 4.42073 2.12891i 0.293414 0.141301i −0.281386 0.959595i \(-0.590794\pi\)
0.574800 + 0.818294i \(0.305080\pi\)
\(228\) 0 0
\(229\) 2.02914 + 2.54446i 0.134089 + 0.168143i 0.844343 0.535803i \(-0.179991\pi\)
−0.710253 + 0.703946i \(0.751420\pi\)
\(230\) 44.9681 21.6555i 2.96511 1.42792i
\(231\) 0 0
\(232\) −8.35575 + 13.7989i −0.548582 + 0.905942i
\(233\) −5.32357 −0.348759 −0.174379 0.984679i \(-0.555792\pi\)
−0.174379 + 0.984679i \(0.555792\pi\)
\(234\) 0 0
\(235\) −20.1834 25.3092i −1.31662 1.65099i
\(236\) −8.28890 + 10.3940i −0.539562 + 0.676589i
\(237\) 0 0
\(238\) 11.2631 + 5.42401i 0.730077 + 0.351586i
\(239\) −6.37356 7.99220i −0.412272 0.516972i 0.531730 0.846914i \(-0.321542\pi\)
−0.944001 + 0.329942i \(0.892971\pi\)
\(240\) 0 0
\(241\) 6.69956 29.3527i 0.431556 1.89077i −0.0224023 0.999749i \(-0.507131\pi\)
0.453959 0.891023i \(-0.350011\pi\)
\(242\) 3.23102 4.05157i 0.207698 0.260445i
\(243\) 0 0
\(244\) −9.42479 −0.603361
\(245\) −5.19093 22.7429i −0.331636 1.45299i
\(246\) 0 0
\(247\) 0.357273 + 0.172054i 0.0227328 + 0.0109475i
\(248\) 5.01921 + 21.9906i 0.318720 + 1.39641i
\(249\) 0 0
\(250\) −6.07831 26.6308i −0.384426 1.68428i
\(251\) 9.94334 12.4686i 0.627618 0.787008i −0.361776 0.932265i \(-0.617829\pi\)
0.989394 + 0.145257i \(0.0464009\pi\)
\(252\) 0 0
\(253\) −3.91856 + 17.1683i −0.246358 + 1.07936i
\(254\) −7.56012 9.48010i −0.474364 0.594834i
\(255\) 0 0
\(256\) 16.0912 7.74909i 1.00570 0.484318i
\(257\) −12.7006 + 15.9260i −0.792239 + 0.993436i 0.207645 + 0.978204i \(0.433420\pi\)
−0.999884 + 0.0152317i \(0.995151\pi\)
\(258\) 0 0
\(259\) 3.32171 1.59965i 0.206401 0.0993976i
\(260\) −13.1820 −0.817515
\(261\) 0 0
\(262\) −17.1572 −1.05997
\(263\) 3.51526 1.69286i 0.216760 0.104386i −0.322353 0.946620i \(-0.604474\pi\)
0.539113 + 0.842233i \(0.318760\pi\)
\(264\) 0 0
\(265\) 12.0338 15.0899i 0.739230 0.926965i
\(266\) 0.577769 0.278239i 0.0354253 0.0170599i
\(267\) 0 0
\(268\) 20.4782 + 25.6788i 1.25090 + 1.56859i
\(269\) 3.98885 17.4763i 0.243204 1.06555i −0.694876 0.719130i \(-0.744541\pi\)
0.938080 0.346418i \(-0.112602\pi\)
\(270\) 0 0
\(271\) 13.0639 16.3816i 0.793576 0.995113i −0.206286 0.978492i \(-0.566138\pi\)
0.999862 0.0166210i \(-0.00529089\pi\)
\(272\) 0.462501 + 2.02635i 0.0280432 + 0.122865i
\(273\) 0 0
\(274\) 2.97280 + 13.0247i 0.179593 + 0.786849i
\(275\) 22.0082 + 10.5986i 1.32714 + 0.639118i
\(276\) 0 0
\(277\) −0.629159 2.75653i −0.0378025 0.165624i 0.952503 0.304529i \(-0.0984989\pi\)
−0.990306 + 0.138905i \(0.955642\pi\)
\(278\) 51.5040 3.08900
\(279\) 0 0
\(280\) −5.23852 + 6.56890i −0.313062 + 0.392567i
\(281\) 4.71792 20.6706i 0.281448 1.23310i −0.614491 0.788924i \(-0.710639\pi\)
0.895938 0.444178i \(-0.146504\pi\)
\(282\) 0 0
\(283\) 18.2892 + 22.9339i 1.08718 + 1.36328i 0.926509 + 0.376273i \(0.122795\pi\)
0.160672 + 0.987008i \(0.448634\pi\)
\(284\) −20.0676 9.66405i −1.19079 0.573456i
\(285\) 0 0
\(286\) 4.65673 5.83936i 0.275358 0.345289i
\(287\) 1.23960 + 1.55441i 0.0731715 + 0.0917541i
\(288\) 0 0
\(289\) 32.6839 1.92258
\(290\) −37.8247 + 24.6475i −2.22114 + 1.44735i
\(291\) 0 0
\(292\) 21.6183 10.4108i 1.26511 0.609246i
\(293\) −10.4426 13.0947i −0.610066 0.764998i 0.376843 0.926277i \(-0.377010\pi\)
−0.986909 + 0.161279i \(0.948438\pi\)
\(294\) 0 0
\(295\) −13.2120 + 6.36255i −0.769231 + 0.370442i
\(296\) 12.9176 + 6.22080i 0.750821 + 0.361576i
\(297\) 0 0
\(298\) −9.81128 + 42.9860i −0.568352 + 2.49011i
\(299\) 1.45287 6.36544i 0.0840217 0.368123i
\(300\) 0 0
\(301\) −0.971690 4.25725i −0.0560073 0.245384i
\(302\) 16.6552 0.958401
\(303\) 0 0
\(304\) 0.0960613 + 0.0462607i 0.00550949 + 0.00265323i
\(305\) −9.36638 4.51061i −0.536317 0.258277i
\(306\) 0 0
\(307\) −27.4865 −1.56874 −0.784368 0.620295i \(-0.787013\pi\)
−0.784368 + 0.620295i \(0.787013\pi\)
\(308\) −1.67366 7.33278i −0.0953656 0.417824i
\(309\) 0 0
\(310\) −14.0470 + 61.5437i −0.797813 + 3.49545i
\(311\) −0.262236 + 1.14893i −0.0148701 + 0.0651500i −0.981819 0.189822i \(-0.939209\pi\)
0.966949 + 0.254972i \(0.0820662\pi\)
\(312\) 0 0
\(313\) 5.18769 + 2.49826i 0.293226 + 0.141210i 0.574713 0.818355i \(-0.305114\pi\)
−0.281488 + 0.959565i \(0.590828\pi\)
\(314\) −34.7496 + 16.7345i −1.96103 + 0.944384i
\(315\) 0 0
\(316\) −9.79221 12.2790i −0.550855 0.690750i
\(317\) −4.08783 + 1.96860i −0.229596 + 0.110567i −0.545145 0.838342i \(-0.683525\pi\)
0.315549 + 0.948909i \(0.397811\pi\)
\(318\) 0 0
\(319\) 1.52178 15.8560i 0.0852033 0.887765i
\(320\) 46.6822 2.60961
\(321\) 0 0
\(322\) −6.58323 8.25511i −0.366869 0.460039i
\(323\) 1.58907 1.99263i 0.0884181 0.110873i
\(324\) 0 0
\(325\) −8.15989 3.92960i −0.452629 0.217975i
\(326\) 1.83625 + 2.30259i 0.101701 + 0.127529i
\(327\) 0 0
\(328\) −1.72046 + 7.53783i −0.0949966 + 0.416207i
\(329\) −4.26982 + 5.35418i −0.235403 + 0.295186i
\(330\) 0 0
\(331\) −9.69839 −0.533072 −0.266536 0.963825i \(-0.585879\pi\)
−0.266536 + 0.963825i \(0.585879\pi\)
\(332\) −12.3644 54.1720i −0.678585 2.97308i
\(333\) 0 0
\(334\) −29.4179 14.1669i −1.60968 0.775180i
\(335\) 8.06164 + 35.3203i 0.440454 + 1.92976i
\(336\) 0 0
\(337\) −6.87809 30.1349i −0.374673 1.64155i −0.713466 0.700690i \(-0.752876\pi\)
0.338793 0.940861i \(-0.389981\pi\)
\(338\) 16.9353 21.2361i 0.921157 1.15509i
\(339\) 0 0
\(340\) −18.8528 + 82.5994i −1.02244 + 4.47958i
\(341\) −13.8868 17.4135i −0.752010 0.942991i
\(342\) 0 0
\(343\) −9.30439 + 4.48076i −0.502390 + 0.241938i
\(344\) 10.5878 13.2767i 0.570857 0.715832i
\(345\) 0 0
\(346\) −49.2901 + 23.7368i −2.64985 + 1.27610i
\(347\) 30.0220 1.61167 0.805833 0.592142i \(-0.201718\pi\)
0.805833 + 0.592142i \(0.201718\pi\)
\(348\) 0 0
\(349\) −26.0590 −1.39491 −0.697454 0.716630i \(-0.745684\pi\)
−0.697454 + 0.716630i \(0.745684\pi\)
\(350\) −13.1959 + 6.35480i −0.705349 + 0.339678i
\(351\) 0 0
\(352\) −9.79692 + 12.2850i −0.522178 + 0.654790i
\(353\) 13.6243 6.56112i 0.725149 0.349213i −0.0346253 0.999400i \(-0.511024\pi\)
0.759774 + 0.650187i \(0.225309\pi\)
\(354\) 0 0
\(355\) −15.3181 19.2083i −0.813001 1.01947i
\(356\) −5.17112 + 22.6562i −0.274069 + 1.20077i
\(357\) 0 0
\(358\) 21.6935 27.2027i 1.14653 1.43771i
\(359\) 1.01482 + 4.44622i 0.0535602 + 0.234662i 0.994622 0.103572i \(-0.0330273\pi\)
−0.941062 + 0.338235i \(0.890170\pi\)
\(360\) 0 0
\(361\) 4.19881 + 18.3962i 0.220990 + 0.968219i
\(362\) 0.211503 + 0.101854i 0.0111163 + 0.00535334i
\(363\) 0 0
\(364\) 0.620537 + 2.71875i 0.0325250 + 0.142501i
\(365\) 26.4668 1.38533
\(366\) 0 0
\(367\) 5.50227 6.89963i 0.287216 0.360158i −0.617202 0.786805i \(-0.711734\pi\)
0.904418 + 0.426647i \(0.140305\pi\)
\(368\) 0.390638 1.71150i 0.0203634 0.0892180i
\(369\) 0 0
\(370\) 25.0178 + 31.3713i 1.30061 + 1.63092i
\(371\) −3.67873 1.77158i −0.190990 0.0919759i
\(372\) 0 0
\(373\) −13.5551 + 16.9976i −0.701857 + 0.880101i −0.997161 0.0753021i \(-0.976008\pi\)
0.295303 + 0.955404i \(0.404579\pi\)
\(374\) −29.9298 37.5308i −1.54763 1.94067i
\(375\) 0 0
\(376\) −26.6318 −1.37343
\(377\) −0.564225 + 5.87887i −0.0290591 + 0.302777i
\(378\) 0 0
\(379\) −16.9047 + 8.14088i −0.868337 + 0.418169i −0.814351 0.580373i \(-0.802907\pi\)
−0.0539861 + 0.998542i \(0.517193\pi\)
\(380\) 2.70976 + 3.39793i 0.139008 + 0.174310i
\(381\) 0 0
\(382\) 16.3040 7.85161i 0.834187 0.401723i
\(383\) −32.7559 15.7744i −1.67375 0.806035i −0.997598 0.0692728i \(-0.977932\pi\)
−0.676152 0.736762i \(-0.736354\pi\)
\(384\) 0 0
\(385\) 1.84611 8.08833i 0.0940864 0.412220i
\(386\) 7.97064 34.9217i 0.405695 1.77747i
\(387\) 0 0
\(388\) 11.3237 + 49.6125i 0.574876 + 2.51870i
\(389\) 7.01594 0.355722 0.177861 0.984056i \(-0.443082\pi\)
0.177861 + 0.984056i \(0.443082\pi\)
\(390\) 0 0
\(391\) −37.8084 18.2076i −1.91205 0.920796i
\(392\) −17.2909 8.32688i −0.873324 0.420571i
\(393\) 0 0
\(394\) −28.4258 −1.43207
\(395\) −3.85489 16.8894i −0.193961 0.849798i
\(396\) 0 0
\(397\) 7.78785 34.1208i 0.390861 1.71247i −0.270771 0.962644i \(-0.587279\pi\)
0.661632 0.749829i \(-0.269864\pi\)
\(398\) 4.47084 19.5880i 0.224103 0.981860i
\(399\) 0 0
\(400\) −2.19398 1.05656i −0.109699 0.0528282i
\(401\) 3.88389 1.87038i 0.193952 0.0934025i −0.334387 0.942436i \(-0.608529\pi\)
0.528339 + 0.849033i \(0.322815\pi\)
\(402\) 0 0
\(403\) 5.14875 + 6.45632i 0.256477 + 0.321612i
\(404\) 37.7875 18.1975i 1.88000 0.905360i
\(405\) 0 0
\(406\) 6.86404 + 6.64094i 0.340656 + 0.329584i
\(407\) −14.1573 −0.701750
\(408\) 0 0
\(409\) 13.3553 + 16.7470i 0.660376 + 0.828085i 0.993384 0.114839i \(-0.0366352\pi\)
−0.333008 + 0.942924i \(0.608064\pi\)
\(410\) −13.4912 + 16.9174i −0.666282 + 0.835491i
\(411\) 0 0
\(412\) 56.0166 + 26.9761i 2.75974 + 1.32902i
\(413\) 1.93420 + 2.42541i 0.0951758 + 0.119347i
\(414\) 0 0
\(415\) 13.6384 59.7538i 0.669483 2.93320i
\(416\) 3.63237 4.55485i 0.178092 0.223320i
\(417\) 0 0
\(418\) −2.46247 −0.120444
\(419\) 5.76940 + 25.2774i 0.281854 + 1.23488i 0.895414 + 0.445234i \(0.146879\pi\)
−0.613561 + 0.789648i \(0.710263\pi\)
\(420\) 0 0
\(421\) 24.0003 + 11.5579i 1.16970 + 0.563299i 0.914895 0.403692i \(-0.132273\pi\)
0.254808 + 0.966992i \(0.417988\pi\)
\(422\) 5.00666 + 21.9356i 0.243720 + 1.06781i
\(423\) 0 0
\(424\) −3.53329 15.4803i −0.171592 0.751792i
\(425\) −36.2933 + 45.5103i −1.76048 + 2.20758i
\(426\) 0 0
\(427\) −0.489381 + 2.14412i −0.0236828 + 0.103761i
\(428\) 6.72984 + 8.43895i 0.325299 + 0.407912i
\(429\) 0 0
\(430\) 42.8187 20.6204i 2.06490 0.994404i
\(431\) −5.50492 + 6.90295i −0.265163 + 0.332503i −0.896532 0.442979i \(-0.853922\pi\)
0.631370 + 0.775482i \(0.282493\pi\)
\(432\) 0 0
\(433\) −24.9676 + 12.0238i −1.19987 + 0.577825i −0.923637 0.383267i \(-0.874799\pi\)
−0.276228 + 0.961092i \(0.589084\pi\)
\(434\) 13.3544 0.641034
\(435\) 0 0
\(436\) −4.00562 −0.191834
\(437\) −1.93948 + 0.934004i −0.0927779 + 0.0446795i
\(438\) 0 0
\(439\) −18.7714 + 23.5386i −0.895910 + 1.12344i 0.0958585 + 0.995395i \(0.469440\pi\)
−0.991769 + 0.128041i \(0.959131\pi\)
\(440\) 29.0681 13.9985i 1.38577 0.667350i
\(441\) 0 0
\(442\) 11.0970 + 13.9152i 0.527829 + 0.661876i
\(443\) 4.73026 20.7246i 0.224742 0.984658i −0.729114 0.684392i \(-0.760068\pi\)
0.953856 0.300265i \(-0.0970752\pi\)
\(444\) 0 0
\(445\) −15.9821 + 20.0409i −0.757623 + 0.950030i
\(446\) −5.53289 24.2412i −0.261990 1.14785i
\(447\) 0 0
\(448\) −2.19754 9.62805i −0.103824 0.454883i
\(449\) 27.4918 + 13.2394i 1.29742 + 0.624805i 0.949808 0.312834i \(-0.101278\pi\)
0.347612 + 0.937638i \(0.386993\pi\)
\(450\) 0 0
\(451\) −1.69884 7.44309i −0.0799951 0.350481i
\(452\) −47.0341 −2.21230
\(453\) 0 0
\(454\) 7.04361 8.83240i 0.330573 0.414525i
\(455\) −0.684475 + 2.99888i −0.0320887 + 0.140590i
\(456\) 0 0
\(457\) −2.28489 2.86516i −0.106882 0.134026i 0.725513 0.688208i \(-0.241603\pi\)
−0.832395 + 0.554182i \(0.813031\pi\)
\(458\) 6.75109 + 3.25116i 0.315458 + 0.151917i
\(459\) 0 0
\(460\) 44.6166 55.9474i 2.08026 2.60856i
\(461\) −20.7699 26.0446i −0.967348 1.21302i −0.977038 0.213064i \(-0.931656\pi\)
0.00968987 0.999953i \(-0.496916\pi\)
\(462\) 0 0
\(463\) −18.0503 −0.838868 −0.419434 0.907786i \(-0.637771\pi\)
−0.419434 + 0.907786i \(0.637771\pi\)
\(464\) −0.151705 + 1.58067i −0.00704273 + 0.0733808i
\(465\) 0 0
\(466\) −11.0432 + 5.31812i −0.511566 + 0.246357i
\(467\) −13.1851 16.5336i −0.610133 0.765083i 0.376786 0.926300i \(-0.377029\pi\)
−0.986919 + 0.161218i \(0.948458\pi\)
\(468\) 0 0
\(469\) 6.90521 3.32537i 0.318853 0.153551i
\(470\) −67.1517 32.3385i −3.09748 1.49167i
\(471\) 0 0
\(472\) −2.68450 + 11.7616i −0.123564 + 0.541370i
\(473\) −3.73126 + 16.3477i −0.171563 + 0.751668i
\(474\) 0 0
\(475\) 0.664454 + 2.91116i 0.0304872 + 0.133573i
\(476\) 17.9233 0.821515
\(477\) 0 0
\(478\) −21.2053 10.2119i −0.969907 0.467083i
\(479\) 10.7410 + 5.17260i 0.490769 + 0.236342i 0.662866 0.748738i \(-0.269340\pi\)
−0.172097 + 0.985080i \(0.555054\pi\)
\(480\) 0 0
\(481\) 5.24904 0.239336
\(482\) −15.4251 67.5817i −0.702593 3.07826i
\(483\) 0 0
\(484\) 1.65331 7.24361i 0.0751503 0.329255i
\(485\) −12.4905 + 54.7245i −0.567165 + 2.48491i
\(486\) 0 0
\(487\) 2.18739 + 1.05339i 0.0991199 + 0.0477336i 0.482787 0.875738i \(-0.339625\pi\)
−0.383667 + 0.923472i \(0.625339\pi\)
\(488\) −7.70560 + 3.71082i −0.348816 + 0.167981i
\(489\) 0 0
\(490\) −33.4876 41.9922i −1.51282 1.89701i
\(491\) −20.3987 + 9.82349i −0.920580 + 0.443328i −0.833278 0.552854i \(-0.813539\pi\)
−0.0873016 + 0.996182i \(0.527824\pi\)
\(492\) 0 0
\(493\) 36.0304 + 11.9434i 1.62273 + 0.537902i
\(494\) 0.913003 0.0410779
\(495\) 0 0
\(496\) 1.38436 + 1.73593i 0.0621596 + 0.0779457i
\(497\) −3.24056 + 4.06353i −0.145359 + 0.182274i
\(498\) 0 0
\(499\) 11.8896 + 5.72571i 0.532250 + 0.256318i 0.680649 0.732610i \(-0.261698\pi\)
−0.148399 + 0.988928i \(0.547412\pi\)
\(500\) −24.4182 30.6194i −1.09201 1.36934i
\(501\) 0 0
\(502\) 8.17062 35.7978i 0.364673 1.59774i
\(503\) −3.59106 + 4.50305i −0.160118 + 0.200781i −0.855418 0.517938i \(-0.826700\pi\)
0.695301 + 0.718719i \(0.255271\pi\)
\(504\) 0 0
\(505\) 46.2625 2.05865
\(506\) 9.02210 + 39.5284i 0.401081 + 1.75725i
\(507\) 0 0
\(508\) −15.6632 7.54301i −0.694943 0.334667i
\(509\) 4.34035 + 19.0163i 0.192383 + 0.842884i 0.975322 + 0.220786i \(0.0708622\pi\)
−0.782940 + 0.622098i \(0.786281\pi\)
\(510\) 0 0
\(511\) −1.24591 5.45869i −0.0551158 0.241478i
\(512\) 2.07811 2.60587i 0.0918405 0.115164i
\(513\) 0 0
\(514\) −10.4363 + 45.7243i −0.460324 + 2.01681i
\(515\) 42.7589 + 53.6179i 1.88418 + 2.36269i
\(516\) 0 0
\(517\) 23.6929 11.4099i 1.04201 0.501806i
\(518\) 5.29253 6.63662i 0.232540 0.291596i
\(519\) 0 0
\(520\) −10.7775 + 5.19016i −0.472624 + 0.227604i
\(521\) −12.8724 −0.563950 −0.281975 0.959422i \(-0.590989\pi\)
−0.281975 + 0.959422i \(0.590989\pi\)
\(522\) 0 0
\(523\) 37.1488 1.62440 0.812202 0.583377i \(-0.198269\pi\)
0.812202 + 0.583377i \(0.198269\pi\)
\(524\) −22.1630 + 10.6731i −0.968193 + 0.466257i
\(525\) 0 0
\(526\) 5.60090 7.02331i 0.244211 0.306231i
\(527\) 47.8194 23.0286i 2.08305 1.00314i
\(528\) 0 0
\(529\) 7.75861 + 9.72899i 0.337331 + 0.422999i
\(530\) 9.88839 43.3239i 0.429524 1.88187i
\(531\) 0 0
\(532\) 0.573252 0.718835i 0.0248536 0.0311655i
\(533\) 0.629872 + 2.75965i 0.0272828 + 0.119534i
\(534\) 0 0
\(535\) 2.64933 + 11.6075i 0.114541 + 0.501835i
\(536\) 26.8533 + 12.9319i 1.15988 + 0.558571i
\(537\) 0 0
\(538\) −9.18394 40.2375i −0.395948 1.73476i
\(539\) 18.9503 0.816247
\(540\) 0 0
\(541\) −0.771832 + 0.967846i −0.0331836 + 0.0416110i −0.798146 0.602464i \(-0.794186\pi\)
0.764963 + 0.644074i \(0.222757\pi\)
\(542\) 10.7349 47.0325i 0.461101 2.02022i
\(543\) 0 0
\(544\) −23.3460 29.2750i −1.00095 1.25515i
\(545\) −3.98079 1.91705i −0.170518 0.0821173i
\(546\) 0 0
\(547\) −15.2640 + 19.1405i −0.652643 + 0.818388i −0.992520 0.122082i \(-0.961043\pi\)
0.339877 + 0.940470i \(0.389614\pi\)
\(548\) 11.9425 + 14.9754i 0.510159 + 0.639719i
\(549\) 0 0
\(550\) 56.2413 2.39814
\(551\) 1.63138 1.06305i 0.0694992 0.0452874i
\(552\) 0 0
\(553\) −3.30191 + 1.59012i −0.140412 + 0.0676187i
\(554\) −4.05882 5.08960i −0.172443 0.216237i
\(555\) 0 0
\(556\) 66.5308 32.0395i 2.82153 1.35878i
\(557\) −6.76892 3.25974i −0.286808 0.138120i 0.284948 0.958543i \(-0.408024\pi\)
−0.571757 + 0.820423i \(0.693738\pi\)
\(558\) 0 0
\(559\) 1.38343 6.06118i 0.0585126 0.256361i
\(560\) −0.184037 + 0.806320i −0.00777699 + 0.0340732i
\(561\) 0 0
\(562\) −10.8626 47.5920i −0.458209 2.00755i
\(563\) 0.0530158 0.00223435 0.00111717 0.999999i \(-0.499644\pi\)
0.00111717 + 0.999999i \(0.499644\pi\)
\(564\) 0 0
\(565\) −46.7426 22.5100i −1.96648 0.947005i
\(566\) 60.8494 + 29.3035i 2.55769 + 1.23172i
\(567\) 0 0
\(568\) −20.2121 −0.848079
\(569\) −6.00338 26.3025i −0.251675 1.10266i −0.929902 0.367807i \(-0.880109\pi\)
0.678227 0.734852i \(-0.262748\pi\)
\(570\) 0 0
\(571\) 0.0985468 0.431762i 0.00412405 0.0180687i −0.972824 0.231546i \(-0.925622\pi\)
0.976948 + 0.213477i \(0.0684789\pi\)
\(572\) 2.38284 10.4399i 0.0996316 0.436514i
\(573\) 0 0
\(574\) 4.12425 + 1.98613i 0.172143 + 0.0828996i
\(575\) 44.2965 21.3321i 1.84729 0.889608i
\(576\) 0 0
\(577\) 15.8054 + 19.8194i 0.657989 + 0.825092i 0.993123 0.117078i \(-0.0373529\pi\)
−0.335134 + 0.942171i \(0.608781\pi\)
\(578\) 67.7993 32.6504i 2.82008 1.35808i
\(579\) 0 0
\(580\) −33.5277 + 55.3685i −1.39216 + 2.29905i
\(581\) −12.9660 −0.537922
\(582\) 0 0
\(583\) 9.77562 + 12.2582i 0.404865 + 0.507685i
\(584\) 13.5758 17.0235i 0.561771 0.704438i
\(585\) 0 0
\(586\) −34.7434 16.7315i −1.43524 0.691173i
\(587\) 10.5083 + 13.1770i 0.433725 + 0.543874i 0.949877 0.312623i \(-0.101207\pi\)
−0.516152 + 0.856497i \(0.672636\pi\)
\(588\) 0 0
\(589\) 0.605846 2.65439i 0.0249635 0.109372i
\(590\) −21.0508 + 26.3969i −0.866647 + 1.08674i
\(591\) 0 0
\(592\) 1.41133 0.0580052
\(593\) −9.11752 39.9464i −0.374411 1.64040i −0.714229 0.699912i \(-0.753222\pi\)
0.339817 0.940491i \(-0.389635\pi\)
\(594\) 0 0
\(595\) 17.8123 + 8.57793i 0.730231 + 0.351661i
\(596\) 14.0669 + 61.6310i 0.576201 + 2.52450i
\(597\) 0 0
\(598\) −3.34509 14.6558i −0.136791 0.599321i
\(599\) −9.55967 + 11.9874i −0.390597 + 0.489794i −0.937785 0.347216i \(-0.887127\pi\)
0.547188 + 0.837010i \(0.315698\pi\)
\(600\) 0 0
\(601\) 5.21924 22.8670i 0.212897 0.932764i −0.749689 0.661790i \(-0.769797\pi\)
0.962587 0.270974i \(-0.0873458\pi\)
\(602\) −6.26856 7.86052i −0.255487 0.320371i
\(603\) 0 0
\(604\) 21.5146 10.3609i 0.875415 0.421578i
\(605\) 5.10978 6.40746i 0.207742 0.260500i
\(606\) 0 0
\(607\) −13.1732 + 6.34390i −0.534685 + 0.257491i −0.681685 0.731646i \(-0.738753\pi\)
0.147000 + 0.989137i \(0.453038\pi\)
\(608\) −1.92079 −0.0778984
\(609\) 0 0
\(610\) −23.9355 −0.969122
\(611\) −8.78452 + 4.23040i −0.355383 + 0.171144i
\(612\) 0 0
\(613\) −20.5363 + 25.7517i −0.829453 + 1.04010i 0.169061 + 0.985606i \(0.445926\pi\)
−0.998514 + 0.0544951i \(0.982645\pi\)
\(614\) −57.0178 + 27.4583i −2.30105 + 1.10813i
\(615\) 0 0
\(616\) −4.25550 5.33623i −0.171459 0.215003i
\(617\) 3.27811 14.3623i 0.131972 0.578206i −0.865091 0.501615i \(-0.832739\pi\)
0.997063 0.0765909i \(-0.0244036\pi\)
\(618\) 0 0
\(619\) −9.17298 + 11.5026i −0.368693 + 0.462327i −0.931223 0.364450i \(-0.881257\pi\)
0.562529 + 0.826777i \(0.309828\pi\)
\(620\) 20.1397 + 88.2380i 0.808832 + 3.54372i
\(621\) 0 0
\(622\) 0.603774 + 2.64531i 0.0242091 + 0.106067i
\(623\) 4.88572 + 2.35284i 0.195742 + 0.0942644i
\(624\) 0 0
\(625\) −0.424495 1.85983i −0.0169798 0.0743934i
\(626\) 13.2570 0.529857
\(627\) 0 0
\(628\) −34.4779 + 43.2340i −1.37582 + 1.72522i
\(629\) 7.50712 32.8908i 0.299328 1.31144i
\(630\) 0 0
\(631\) 23.0230 + 28.8699i 0.916532 + 1.14929i 0.988399 + 0.151880i \(0.0485328\pi\)
−0.0718673 + 0.997414i \(0.522896\pi\)
\(632\) −12.8406 6.18372i −0.510773 0.245975i
\(633\) 0 0
\(634\) −6.51320 + 8.16729i −0.258672 + 0.324365i
\(635\) −11.9561 14.9925i −0.474465 0.594960i
\(636\) 0 0
\(637\) −7.02613 −0.278385
\(638\) −12.6830 34.4118i −0.502123 1.36237i
\(639\) 0 0
\(640\) 61.9828 29.8493i 2.45009 1.17990i
\(641\) 26.5895 + 33.3422i 1.05022 + 1.31694i 0.946632 + 0.322317i \(0.104462\pi\)
0.103591 + 0.994620i \(0.466967\pi\)
\(642\) 0 0
\(643\) −3.14831 + 1.51615i −0.124157 + 0.0597910i −0.494931 0.868932i \(-0.664807\pi\)
0.370774 + 0.928723i \(0.379092\pi\)
\(644\) −13.6393 6.56833i −0.537463 0.258828i
\(645\) 0 0
\(646\) 1.30577 5.72093i 0.0513747 0.225087i
\(647\) −3.98049 + 17.4397i −0.156489 + 0.685625i 0.834424 + 0.551123i \(0.185800\pi\)
−0.990913 + 0.134502i \(0.957057\pi\)
\(648\) 0 0
\(649\) −2.65076 11.6137i −0.104051 0.455879i
\(650\) −20.8524 −0.817898
\(651\) 0 0
\(652\) 3.80439 + 1.83210i 0.148991 + 0.0717505i
\(653\) 21.9220 + 10.5571i 0.857873 + 0.413130i 0.810494 0.585747i \(-0.199199\pi\)
0.0473790 + 0.998877i \(0.484913\pi\)
\(654\) 0 0
\(655\) −27.1336 −1.06020
\(656\) 0.169356 + 0.741996i 0.00661223 + 0.0289701i
\(657\) 0 0
\(658\) −3.50859 + 15.3721i −0.136779 + 0.599268i
\(659\) 4.48212 19.6374i 0.174598 0.764966i −0.809468 0.587164i \(-0.800244\pi\)
0.984066 0.177802i \(-0.0568985\pi\)
\(660\) 0 0
\(661\) 20.2302 + 9.74233i 0.786862 + 0.378933i 0.783761 0.621063i \(-0.213299\pi\)
0.00310069 + 0.999995i \(0.499013\pi\)
\(662\) −20.1183 + 9.68845i −0.781919 + 0.376552i
\(663\) 0 0
\(664\) −31.4381 39.4222i −1.22004 1.52988i
\(665\) 0.913726 0.440027i 0.0354328 0.0170635i
\(666\) 0 0
\(667\) −23.0415 22.2926i −0.892170 0.863174i
\(668\) −46.8138 −1.81128
\(669\) 0 0
\(670\) 52.0072 + 65.2149i 2.00921 + 2.51947i
\(671\) 5.26542 6.60263i 0.203269 0.254892i
\(672\) 0 0
\(673\) 0.866965 + 0.417509i 0.0334191 + 0.0160938i 0.450519 0.892767i \(-0.351239\pi\)
−0.417100 + 0.908861i \(0.636953\pi\)
\(674\) −44.3718 55.6405i −1.70914 2.14319i
\(675\) 0 0
\(676\) 8.66573 37.9671i 0.333297 1.46027i
\(677\) 7.63427 9.57307i 0.293409 0.367923i −0.613176 0.789946i \(-0.710108\pi\)
0.906585 + 0.422023i \(0.138680\pi\)
\(678\) 0 0
\(679\) 11.8747 0.455710
\(680\) 17.1080 + 74.9553i 0.656064 + 2.87440i
\(681\) 0 0
\(682\) −46.2022 22.2498i −1.76917 0.851989i
\(683\) 10.5464 + 46.2069i 0.403548 + 1.76806i 0.612842 + 0.790206i \(0.290026\pi\)
−0.209294 + 0.977853i \(0.567117\pi\)
\(684\) 0 0
\(685\) 4.70140 + 20.5982i 0.179631 + 0.787016i
\(686\) −14.8248 + 18.5897i −0.566013 + 0.709758i
\(687\) 0 0
\(688\) 0.371966 1.62969i 0.0141811 0.0621314i
\(689\) −3.62447 4.54495i −0.138081 0.173149i
\(690\) 0 0
\(691\) 4.27851 2.06042i 0.162762 0.0783822i −0.350729 0.936477i \(-0.614066\pi\)
0.513491 + 0.858095i \(0.328352\pi\)
\(692\) −48.9047 + 61.3246i −1.85908 + 2.33121i
\(693\) 0 0
\(694\) 62.2775 29.9913i 2.36402 1.13845i
\(695\) 81.4522 3.08966
\(696\) 0 0
\(697\) 18.1930 0.689108
\(698\) −54.0567 + 26.0323i −2.04608 + 0.985338i
\(699\) 0 0
\(700\) −13.0927 + 16.4177i −0.494858 + 0.620532i
\(701\) 3.35536 1.61586i 0.126730 0.0610301i −0.369444 0.929253i \(-0.620452\pi\)
0.496175 + 0.868223i \(0.334738\pi\)
\(702\) 0 0
\(703\) −1.07902 1.35305i −0.0406960 0.0510311i
\(704\) −8.43848 + 36.9714i −0.318037 + 1.39341i
\(705\) 0 0
\(706\) 21.7078 27.2207i 0.816983 1.02446i
\(707\) −2.17778 9.54148i −0.0819039 0.358844i
\(708\) 0 0
\(709\) −1.06035 4.64570i −0.0398223 0.174473i 0.951106 0.308865i \(-0.0999491\pi\)
−0.990928 + 0.134392i \(0.957092\pi\)
\(710\) −50.9644 24.5432i −1.91266 0.921088i
\(711\) 0 0
\(712\) 4.69256 + 20.5594i 0.175861 + 0.770498i
\(713\) −44.8288 −1.67885
\(714\) 0 0
\(715\) 7.36451 9.23480i 0.275417 0.345362i
\(716\) 11.1005 48.6344i 0.414845 1.81755i
\(717\) 0 0
\(718\) 6.54680 + 8.20943i 0.244324 + 0.306373i
\(719\) −10.1082 4.86785i −0.376972 0.181540i 0.235797 0.971802i \(-0.424230\pi\)
−0.612769 + 0.790262i \(0.709944\pi\)
\(720\) 0 0
\(721\) 9.04566 11.3429i 0.336878 0.422432i
\(722\) 27.0873 + 33.9664i 1.00808 + 1.26410i
\(723\) 0 0
\(724\) 0.336572 0.0125086
\(725\) −37.2597 + 24.2793i −1.38379 + 0.901712i
\(726\) 0 0
\(727\) 38.2910 18.4400i 1.42013 0.683901i 0.443000 0.896522i \(-0.353914\pi\)
0.977135 + 0.212621i \(0.0681999\pi\)
\(728\) 1.57780 + 1.97849i 0.0584770 + 0.0733279i
\(729\) 0 0
\(730\) 54.9025 26.4397i 2.03203 0.978576i
\(731\) −36.0012 17.3373i −1.33155 0.641242i
\(732\) 0 0
\(733\) 1.89309 8.29416i 0.0699228 0.306352i −0.927858 0.372933i \(-0.878352\pi\)
0.997781 + 0.0665813i \(0.0212092\pi\)
\(734\) 4.52132 19.8092i 0.166885 0.731170i
\(735\) 0 0
\(736\) 7.03747 + 30.8332i 0.259405 + 1.13653i
\(737\) −29.4303 −1.08408
\(738\) 0 0
\(739\) −10.7096 5.15748i −0.393960 0.189721i 0.226407 0.974033i \(-0.427302\pi\)
−0.620367 + 0.784312i \(0.713016\pi\)
\(740\) 51.8323 + 24.9611i 1.90540 + 0.917590i
\(741\) 0 0
\(742\) −9.40089 −0.345118
\(743\) 5.36567 + 23.5086i 0.196848 + 0.862445i 0.972799 + 0.231652i \(0.0744132\pi\)
−0.775951 + 0.630793i \(0.782730\pi\)
\(744\) 0 0
\(745\) −15.5163 + 67.9813i −0.568472 + 2.49064i
\(746\) −11.1385 + 48.8009i −0.407809 + 1.78673i
\(747\) 0 0
\(748\) −62.0092 29.8621i −2.26728 1.09186i
\(749\) 2.26929 1.09283i 0.0829179 0.0399312i
\(750\) 0 0
\(751\) −15.1433 18.9892i −0.552589 0.692924i 0.424580 0.905391i \(-0.360422\pi\)
−0.977168 + 0.212466i \(0.931850\pi\)
\(752\) −2.36192 + 1.13744i −0.0861304 + 0.0414782i
\(753\) 0 0
\(754\) 4.70242 + 12.7587i 0.171252 + 0.464645i
\(755\) 26.3398 0.958604
\(756\) 0 0
\(757\) 7.41301 + 9.29563i 0.269431 + 0.337855i 0.898079 0.439834i \(-0.144963\pi\)
−0.628648 + 0.777690i \(0.716391\pi\)
\(758\) −26.9345 + 33.7748i −0.978305 + 1.22676i
\(759\) 0 0
\(760\) 3.55334 + 1.71120i 0.128893 + 0.0620717i
\(761\) 16.9478 + 21.2518i 0.614356 + 0.770378i 0.987538 0.157380i \(-0.0503049\pi\)
−0.373182 + 0.927758i \(0.621733\pi\)
\(762\) 0 0
\(763\) −0.207991 + 0.911269i −0.00752979 + 0.0329901i
\(764\) 16.1766 20.2848i 0.585248 0.733878i
\(765\) 0 0
\(766\) −83.7069 −3.02445
\(767\) 0.982813 + 4.30599i 0.0354873 + 0.155480i
\(768\) 0 0
\(769\) −11.2515 5.41845i −0.405740 0.195394i 0.219871 0.975529i \(-0.429436\pi\)
−0.625612 + 0.780135i \(0.715151\pi\)
\(770\) −4.25049 18.6226i −0.153177 0.671112i
\(771\) 0 0
\(772\) −11.4279 50.0688i −0.411298 1.80201i
\(773\) 20.5967 25.8274i 0.740811 0.928948i −0.258502 0.966011i \(-0.583229\pi\)
0.999313 + 0.0370632i \(0.0118003\pi\)
\(774\) 0 0
\(775\) −13.8371 + 60.6245i −0.497045 + 2.17770i
\(776\) 28.7921 + 36.1041i 1.03358 + 1.29606i
\(777\) 0 0
\(778\) 14.5538 7.00875i 0.521780 0.251276i
\(779\) 0.581876 0.729649i 0.0208479 0.0261424i
\(780\) 0 0
\(781\) 17.9816 8.65946i 0.643431 0.309860i
\(782\) −96.6184 −3.45507
\(783\) 0 0
\(784\) −1.88914 −0.0674693
\(785\) −54.9556 + 26.4652i −1.96145 + 0.944584i
\(786\) 0 0
\(787\) −6.39485 + 8.01888i −0.227952 + 0.285842i −0.882633 0.470063i \(-0.844231\pi\)
0.654681 + 0.755905i \(0.272803\pi\)
\(788\) −36.7193 + 17.6831i −1.30807 + 0.629933i
\(789\) 0 0
\(790\) −24.8686 31.1843i −0.884787 1.10949i
\(791\) −2.44224 + 10.7002i −0.0868361 + 0.380454i
\(792\) 0 0
\(793\) −1.95224 + 2.44803i −0.0693261 + 0.0869322i
\(794\) −17.9308 78.5598i −0.636339 2.78798i
\(795\) 0 0
\(796\) −6.41005 28.0843i −0.227198 0.995420i
\(797\) 18.0958 + 8.71448i 0.640986 + 0.308683i 0.725997 0.687697i \(-0.241378\pi\)
−0.0850115 + 0.996380i \(0.527093\pi\)
\(798\) 0 0
\(799\) 13.9444 + 61.0946i 0.493319 + 2.16137i
\(800\) 43.8697 1.55103
\(801\) 0 0
\(802\) 6.18825 7.75983i 0.218515 0.274009i
\(803\) −4.78425 + 20.9612i −0.168832 + 0.739703i
\(804\) 0 0
\(805\) −10.4112 13.0552i −0.366947 0.460137i
\(806\) 17.1302 + 8.24949i 0.603387 + 0.290576i
\(807\) 0 0
\(808\) 23.7297 29.7562i 0.834809 1.04682i
\(809\) −2.35678 2.95530i −0.0828598 0.103903i 0.738674 0.674063i \(-0.235453\pi\)
−0.821533 + 0.570160i \(0.806881\pi\)
\(810\) 0 0
\(811\) −23.1047 −0.811314 −0.405657 0.914025i \(-0.632957\pi\)
−0.405657 + 0.914025i \(0.632957\pi\)
\(812\) 12.9979 + 4.30853i 0.456136 + 0.151200i
\(813\) 0 0
\(814\) −29.3678 + 14.1428i −1.02934 + 0.495704i
\(815\) 2.90399 + 3.64148i 0.101722 + 0.127556i
\(816\) 0 0
\(817\) −1.84678 + 0.889360i −0.0646105 + 0.0311148i
\(818\) 44.4339 + 21.3982i 1.55359 + 0.748172i
\(819\) 0 0
\(820\) −6.90340 + 30.2458i −0.241077 + 1.05623i
\(821\) −4.34274 + 19.0268i −0.151563 + 0.664039i 0.840869 + 0.541239i \(0.182045\pi\)
−0.992431 + 0.122800i \(0.960813\pi\)
\(822\) 0 0
\(823\) 1.64107 + 7.18999i 0.0572040 + 0.250627i 0.995443 0.0953614i \(-0.0304007\pi\)
−0.938239 + 0.345989i \(0.887544\pi\)
\(824\) 56.4198 1.96548
\(825\) 0 0
\(826\) 6.43522 + 3.09904i 0.223910 + 0.107829i
\(827\) −0.392890 0.189206i −0.0136621 0.00657934i 0.427040 0.904233i \(-0.359556\pi\)
−0.440702 + 0.897653i \(0.645271\pi\)
\(828\) 0 0
\(829\) 31.6819 1.10036 0.550180 0.835046i \(-0.314559\pi\)
0.550180 + 0.835046i \(0.314559\pi\)
\(830\) −31.4011 137.577i −1.08995 4.77538i
\(831\) 0 0
\(832\) 3.12870 13.7077i 0.108468 0.475231i
\(833\) −10.0487 + 44.0262i −0.348166 + 1.52542i
\(834\) 0 0
\(835\) −46.5237 22.4046i −1.61002 0.775344i
\(836\) −3.18092 + 1.53185i −0.110015 + 0.0529802i
\(837\) 0 0
\(838\) 37.2195 + 46.6718i 1.28573 + 1.61225i
\(839\) −8.73420 + 4.20617i −0.301538 + 0.145213i −0.578535 0.815658i \(-0.696375\pi\)
0.276997 + 0.960871i \(0.410661\pi\)
\(840\) 0 0
\(841\) 23.2580 + 17.3225i 0.801998 + 0.597326i
\(842\) 61.3321 2.11365
\(843\) 0 0
\(844\) 20.1131 + 25.2210i 0.692321 + 0.868143i
\(845\) 26.7827 33.5844i 0.921352 1.15534i
\(846\) 0 0
\(847\) −1.56206 0.752247i −0.0536729 0.0258475i
\(848\) −0.974524 1.22201i −0.0334653 0.0419642i
\(849\) 0 0
\(850\) −29.8228 + 130.662i −1.02292 + 4.48168i
\(851\) −17.7662 + 22.2781i −0.609017 + 0.763683i
\(852\) 0 0
\(853\) −17.1659 −0.587750 −0.293875 0.955844i \(-0.594945\pi\)
−0.293875 + 0.955844i \(0.594945\pi\)
\(854\) 1.12675 + 4.93663i 0.0385567 + 0.168928i
\(855\) 0 0
\(856\) 8.82490 + 4.24985i 0.301629 + 0.145257i
\(857\) −5.63717 24.6981i −0.192562 0.843670i −0.975223 0.221222i \(-0.928995\pi\)
0.782661 0.622448i \(-0.213862\pi\)
\(858\) 0 0
\(859\) 3.25796 + 14.2740i 0.111160 + 0.487024i 0.999607 + 0.0280441i \(0.00892790\pi\)
−0.888447 + 0.458980i \(0.848215\pi\)
\(860\) 42.4840 53.2732i 1.44869 1.81660i
\(861\) 0 0
\(862\) −4.52349 + 19.8187i −0.154071 + 0.675028i
\(863\) 9.95290 + 12.4805i 0.338801 + 0.424843i 0.921822 0.387615i \(-0.126701\pi\)
−0.583021 + 0.812457i \(0.698129\pi\)
\(864\) 0 0
\(865\) −77.9510 + 37.5392i −2.65041 + 1.27637i
\(866\) −39.7812 + 49.8840i −1.35182 + 1.69513i
\(867\) 0 0
\(868\) 17.2507 8.30751i 0.585528 0.281975i
\(869\) 14.0729 0.477390
\(870\) 0 0
\(871\) 10.9118 0.369731
\(872\) −3.27495 + 1.57713i −0.110904 + 0.0534084i
\(873\) 0 0
\(874\) −3.09020 + 3.87498i −0.104527 + 0.131073i
\(875\) −8.23376 + 3.96517i −0.278352 + 0.134047i
\(876\) 0 0
\(877\) −18.7255 23.4810i −0.632314 0.792896i 0.357705 0.933835i \(-0.383559\pi\)
−0.990018 + 0.140939i \(0.954988\pi\)
\(878\) −15.4248 + 67.5805i −0.520562 + 2.28073i
\(879\) 0 0
\(880\) 1.98012 2.48299i 0.0667498 0.0837016i
\(881\) 6.62865 + 29.0420i 0.223325 + 0.978450i 0.954956 + 0.296749i \(0.0959023\pi\)
−0.731631 + 0.681701i \(0.761241\pi\)
\(882\) 0 0
\(883\) 4.82282 + 21.1302i 0.162301 + 0.711087i 0.988935 + 0.148347i \(0.0473954\pi\)
−0.826634 + 0.562739i \(0.809747\pi\)
\(884\) 22.9909 + 11.0719i 0.773269 + 0.372387i
\(885\) 0 0
\(886\) −10.8910 47.7165i −0.365889 1.60307i
\(887\) 24.4750 0.821791 0.410896 0.911682i \(-0.365216\pi\)
0.410896 + 0.911682i \(0.365216\pi\)
\(888\) 0 0
\(889\) −2.52933 + 3.17168i −0.0848310 + 0.106375i
\(890\) −13.1328 + 57.5384i −0.440211 + 1.92869i
\(891\) 0 0
\(892\) −22.2271 27.8719i −0.744218 0.933220i
\(893\) 2.89626 + 1.39476i 0.0969196 + 0.0466740i
\(894\) 0 0
\(895\) 34.3076 43.0204i 1.14678 1.43801i
\(896\) −9.07413 11.3786i −0.303146 0.380133i
\(897\) 0 0
\(898\) 70.2547 2.34443
\(899\) 40.2140 5.20503i 1.34121 0.173597i
\(900\) 0 0
\(901\) −33.6626 + 16.2111i −1.12146 + 0.540068i
\(902\) −10.9595 13.7428i −0.364912 0.457585i
\(903\) 0 0
\(904\) −38.4545 + 18.5187i −1.27898 + 0.615924i
\(905\) 0.334486 + 0.161080i 0.0111187 + 0.00535448i
\(906\) 0 0
\(907\) −2.22712 + 9.75765i −0.0739503 + 0.323998i −0.998350 0.0574287i \(-0.981710\pi\)
0.924399 + 0.381426i \(0.124567\pi\)
\(908\) 3.60420 15.7910i 0.119610 0.524044i
\(909\) 0 0
\(910\) 1.57594 + 6.90464i 0.0522418 + 0.228886i
\(911\) 11.6915 0.387357 0.193678 0.981065i \(-0.437958\pi\)
0.193678 + 0.981065i \(0.437958\pi\)
\(912\) 0 0
\(913\) 44.8584 + 21.6027i 1.48460 + 0.714945i
\(914\) −7.60197 3.66092i −0.251451 0.121092i
\(915\) 0 0
\(916\) 10.7433 0.354968
\(917\) 1.27730 + 5.59622i 0.0421802 + 0.184804i
\(918\) 0 0
\(919\) 1.87286 8.20555i 0.0617800 0.270676i −0.934598 0.355704i \(-0.884241\pi\)
0.996379 + 0.0850284i \(0.0270981\pi\)
\(920\) 14.4498 63.3089i 0.476397 2.08723i
\(921\) 0 0
\(922\) −69.1027 33.2781i −2.27578 1.09596i
\(923\) −6.66696 + 3.21064i −0.219446 + 0.105679i
\(924\) 0 0
\(925\) 24.6441 + 30.9027i 0.810293 + 1.01607i
\(926\) −37.4434 + 18.0318i −1.23047 + 0.592561i
\(927\) 0 0
\(928\) −9.89303 26.8420i −0.324755 0.881133i
\(929\) −42.9195 −1.40814 −0.704072 0.710129i \(-0.748637\pi\)
−0.704072 + 0.710129i \(0.748637\pi\)
\(930\) 0 0
\(931\) 1.44433 + 1.81113i 0.0473359 + 0.0593573i
\(932\) −10.9569 + 13.7395i −0.358904 + 0.450051i
\(933\) 0 0
\(934\) −43.8677 21.1256i −1.43539 0.691250i
\(935\) −47.3332 59.3540i −1.54796 1.94108i
\(936\) 0 0
\(937\) −0.00329238 + 0.0144249i −0.000107557 + 0.000471240i −0.974982 0.222285i \(-0.928648\pi\)
0.974874 + 0.222757i \(0.0715055\pi\)
\(938\) 11.0021 13.7963i 0.359233 0.450464i
\(939\) 0 0
\(940\) −106.861 −3.48542
\(941\) −2.85918 12.5269i −0.0932065 0.408365i 0.906704 0.421768i \(-0.138590\pi\)
−0.999910 + 0.0134038i \(0.995733\pi\)
\(942\) 0 0
\(943\) −13.8445 6.66714i −0.450837 0.217112i
\(944\) 0.264252 + 1.15776i 0.00860068 + 0.0376820i
\(945\) 0 0
\(946\) 8.59086 + 37.6390i 0.279313 + 1.22375i
\(947\) −0.894121 + 1.12119i −0.0290550 + 0.0364338i −0.796147 0.605104i \(-0.793132\pi\)
0.767092 + 0.641537i \(0.221703\pi\)
\(948\) 0 0
\(949\) 1.77384 7.77170i 0.0575813 0.252280i
\(950\) 4.28652 + 5.37513i 0.139073 + 0.174392i
\(951\) 0 0
\(952\) 14.6539 7.05696i 0.474936 0.228717i
\(953\) −20.7527 + 26.0231i −0.672246 + 0.842970i −0.994614 0.103644i \(-0.966950\pi\)
0.322368 + 0.946614i \(0.395521\pi\)
\(954\) 0 0
\(955\) 25.7844 12.4171i 0.834364 0.401808i
\(956\) −33.7448 −1.09138
\(957\) 0 0
\(958\) 27.4484 0.886817
\(959\) 4.02699 1.93930i 0.130038 0.0626232i
\(960\) 0 0
\(961\) 16.0229 20.0920i 0.516867 0.648130i
\(962\) 10.8886 5.24366i 0.351062 0.169062i
\(963\) 0 0
\(964\) −61.9666 77.7037i −1.99581 2.50267i
\(965\) 12.6054 55.2277i 0.405781 1.77784i
\(966\) 0 0
\(967\) −16.1134 + 20.2056i −0.518172 + 0.649767i −0.970220 0.242226i \(-0.922122\pi\)
0.452048 + 0.891994i \(0.350694\pi\)
\(968\) −1.50030 6.57325i −0.0482215 0.211272i
\(969\) 0 0
\(970\) 28.7582 + 125.998i 0.923369 + 4.04555i
\(971\) 45.9293 + 22.1184i 1.47394 + 0.709812i 0.986563 0.163380i \(-0.0522395\pi\)
0.487377 + 0.873192i \(0.337954\pi\)
\(972\) 0 0
\(973\) −3.83432 16.7992i −0.122923 0.538559i
\(974\) 5.58981 0.179109
\(975\) 0 0
\(976\) −0.524906 + 0.658211i −0.0168018 + 0.0210688i
\(977\) −8.47901 + 37.1490i −0.271268 + 1.18850i 0.637251 + 0.770656i \(0.280071\pi\)
−0.908519 + 0.417844i \(0.862786\pi\)
\(978\) 0 0
\(979\) −12.9830 16.2802i −0.414939 0.520317i
\(980\) −69.3804 33.4119i −2.21628 1.06730i
\(981\) 0 0
\(982\) −32.5015 + 40.7556i −1.03716 + 1.30056i
\(983\) −18.4474 23.1323i −0.588379 0.737804i 0.395137 0.918622i \(-0.370697\pi\)
−0.983517 + 0.180818i \(0.942126\pi\)
\(984\) 0 0
\(985\) −44.9546 −1.43237
\(986\) 86.6723 11.2183i 2.76021 0.357262i
\(987\) 0 0
\(988\) 1.17938 0.567960i 0.0375211 0.0180692i
\(989\) 21.0426 + 26.3866i 0.669115 + 0.839044i
\(990\) 0 0
\(991\) −12.4415 + 5.99153i −0.395219 + 0.190327i −0.620928 0.783867i \(-0.713244\pi\)
0.225710 + 0.974195i \(0.427530\pi\)
\(992\) −36.0389 17.3554i −1.14424 0.551035i
\(993\) 0 0
\(994\) −2.66282 + 11.6666i −0.0844596 + 0.370042i
\(995\) 7.07052 30.9780i 0.224151 0.982068i
\(996\) 0 0
\(997\) −4.23365 18.5488i −0.134081 0.587448i −0.996670 0.0815420i \(-0.974016\pi\)
0.862589 0.505906i \(-0.168842\pi\)
\(998\) 30.3835 0.961772
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.k.f.136.9 yes 60
3.2 odd 2 inner 783.2.k.f.136.2 60
29.16 even 7 inner 783.2.k.f.190.9 yes 60
87.74 odd 14 inner 783.2.k.f.190.2 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.k.f.136.2 60 3.2 odd 2 inner
783.2.k.f.136.9 yes 60 1.1 even 1 trivial
783.2.k.f.190.2 yes 60 87.74 odd 14 inner
783.2.k.f.190.9 yes 60 29.16 even 7 inner