Newspace parameters
Level: | \( N \) | \(=\) | \( 783 = 3^{3} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 783.k (of order \(7\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.25228647827\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{7})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
82.1 | −1.62244 | − | 2.03447i | 0 | −1.06173 | + | 4.65174i | −1.57981 | − | 1.98102i | 0 | −0.0818290 | − | 0.358516i | 6.49744 | − | 3.12900i | 0 | −1.46718 | + | 6.42814i | ||||||
82.2 | −1.32704 | − | 1.66405i | 0 | −0.563000 | + | 2.46666i | 1.44699 | + | 1.81447i | 0 | −0.311446 | − | 1.36453i | 1.01653 | − | 0.489534i | 0 | 1.09916 | − | 4.81573i | ||||||
82.3 | −0.869054 | − | 1.08976i | 0 | 0.0127219 | − | 0.0557384i | −1.34944 | − | 1.69215i | 0 | 1.02284 | + | 4.48135i | −2.58344 | + | 1.24412i | 0 | −0.671295 | + | 2.94113i | ||||||
82.4 | −0.620079 | − | 0.777554i | 0 | 0.224949 | − | 0.985566i | −0.913886 | − | 1.14598i | 0 | −0.762091 | − | 3.33894i | −2.69790 | + | 1.29924i | 0 | −0.324378 | + | 1.42119i | ||||||
82.5 | −0.545907 | − | 0.684546i | 0 | 0.274453 | − | 1.20246i | 2.54463 | + | 3.19087i | 0 | 0.410005 | + | 1.79635i | −2.55068 | + | 1.22834i | 0 | 0.795163 | − | 3.48384i | ||||||
82.6 | 0.545907 | + | 0.684546i | 0 | 0.274453 | − | 1.20246i | −2.54463 | − | 3.19087i | 0 | 0.410005 | + | 1.79635i | 2.55068 | − | 1.22834i | 0 | 0.795163 | − | 3.48384i | ||||||
82.7 | 0.620079 | + | 0.777554i | 0 | 0.224949 | − | 0.985566i | 0.913886 | + | 1.14598i | 0 | −0.762091 | − | 3.33894i | 2.69790 | − | 1.29924i | 0 | −0.324378 | + | 1.42119i | ||||||
82.8 | 0.869054 | + | 1.08976i | 0 | 0.0127219 | − | 0.0557384i | 1.34944 | + | 1.69215i | 0 | 1.02284 | + | 4.48135i | 2.58344 | − | 1.24412i | 0 | −0.671295 | + | 2.94113i | ||||||
82.9 | 1.32704 | + | 1.66405i | 0 | −0.563000 | + | 2.46666i | −1.44699 | − | 1.81447i | 0 | −0.311446 | − | 1.36453i | −1.01653 | + | 0.489534i | 0 | 1.09916 | − | 4.81573i | ||||||
82.10 | 1.62244 | + | 2.03447i | 0 | −1.06173 | + | 4.65174i | 1.57981 | + | 1.98102i | 0 | −0.0818290 | − | 0.358516i | −6.49744 | + | 3.12900i | 0 | −1.46718 | + | 6.42814i | ||||||
136.1 | −2.21804 | + | 1.06815i | 0 | 2.53177 | − | 3.17474i | 0.935499 | − | 0.450513i | 0 | 2.91878 | + | 3.66004i | −1.12884 | + | 4.94577i | 0 | −1.59376 | + | 1.99851i | ||||||
136.2 | −2.07439 | + | 0.998975i | 0 | 2.05818 | − | 2.58087i | −3.28060 | + | 1.57985i | 0 | −0.480272 | − | 0.602242i | −0.666575 | + | 2.92046i | 0 | 5.22702 | − | 6.55447i | ||||||
136.3 | −1.42552 | + | 0.686496i | 0 | 0.313861 | − | 0.393569i | 1.33026 | − | 0.640620i | 0 | 0.300750 | + | 0.377129i | 0.526918 | − | 2.30858i | 0 | −1.45653 | + | 1.82644i | ||||||
136.4 | −0.959163 | + | 0.461908i | 0 | −0.540346 | + | 0.677573i | −0.748493 | + | 0.360455i | 0 | −2.74812 | − | 3.44603i | 0.679091 | − | 2.97529i | 0 | 0.551429 | − | 0.691470i | ||||||
136.5 | −0.0355415 | + | 0.0171159i | 0 | −1.24601 | + | 1.56245i | 2.93813 | − | 1.41493i | 0 | 1.13234 | + | 1.41991i | 0.0350984 | − | 0.153776i | 0 | −0.0802077 | + | 0.100577i | ||||||
136.6 | 0.0355415 | − | 0.0171159i | 0 | −1.24601 | + | 1.56245i | −2.93813 | + | 1.41493i | 0 | 1.13234 | + | 1.41991i | −0.0350984 | + | 0.153776i | 0 | −0.0802077 | + | 0.100577i | ||||||
136.7 | 0.959163 | − | 0.461908i | 0 | −0.540346 | + | 0.677573i | 0.748493 | − | 0.360455i | 0 | −2.74812 | − | 3.44603i | −0.679091 | + | 2.97529i | 0 | 0.551429 | − | 0.691470i | ||||||
136.8 | 1.42552 | − | 0.686496i | 0 | 0.313861 | − | 0.393569i | −1.33026 | + | 0.640620i | 0 | 0.300750 | + | 0.377129i | −0.526918 | + | 2.30858i | 0 | −1.45653 | + | 1.82644i | ||||||
136.9 | 2.07439 | − | 0.998975i | 0 | 2.05818 | − | 2.58087i | 3.28060 | − | 1.57985i | 0 | −0.480272 | − | 0.602242i | 0.666575 | − | 2.92046i | 0 | 5.22702 | − | 6.55447i | ||||||
136.10 | 2.21804 | − | 1.06815i | 0 | 2.53177 | − | 3.17474i | −0.935499 | + | 0.450513i | 0 | 2.91878 | + | 3.66004i | 1.12884 | − | 4.94577i | 0 | −1.59376 | + | 1.99851i | ||||||
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
29.d | even | 7 | 1 | inner |
87.j | odd | 14 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 783.2.k.f | ✓ | 60 |
3.b | odd | 2 | 1 | inner | 783.2.k.f | ✓ | 60 |
29.d | even | 7 | 1 | inner | 783.2.k.f | ✓ | 60 |
87.j | odd | 14 | 1 | inner | 783.2.k.f | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
783.2.k.f | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
783.2.k.f | ✓ | 60 | 3.b | odd | 2 | 1 | inner |
783.2.k.f | ✓ | 60 | 29.d | even | 7 | 1 | inner |
783.2.k.f | ✓ | 60 | 87.j | odd | 14 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{60} + 15 T_{2}^{58} + 154 T_{2}^{56} + 1289 T_{2}^{54} + 9533 T_{2}^{52} + 69070 T_{2}^{50} + \cdots + 41209 \)
acting on \(S_{2}^{\mathrm{new}}(783, [\chi])\).