Properties

Label 783.2.k.f.136.7
Level $783$
Weight $2$
Character 783.136
Analytic conductor $6.252$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(82,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0,-10,0,0,4,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{7})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 136.7
Character \(\chi\) \(=\) 783.136
Dual form 783.2.k.f.190.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.959163 - 0.461908i) q^{2} +(-0.540346 + 0.677573i) q^{4} +(0.748493 - 0.360455i) q^{5} +(-2.74812 - 3.44603i) q^{7} +(-0.679091 + 2.97529i) q^{8} +(0.551429 - 0.691470i) q^{10} +(-0.939896 - 4.11795i) q^{11} +(-0.238566 - 1.04523i) q^{13} +(-4.22764 - 2.03592i) q^{14} +(0.337258 + 1.47763i) q^{16} +1.13164 q^{17} +(2.60592 - 3.26772i) q^{19} +(-0.160211 + 0.701929i) q^{20} +(-2.80363 - 3.51564i) q^{22} +(-6.55514 - 3.15679i) q^{23} +(-2.68714 + 3.36956i) q^{25} +(-0.711623 - 0.892346i) q^{26} +3.81987 q^{28} +(-2.29459 - 4.87184i) q^{29} +(4.15464 - 2.00077i) q^{31} +(-2.79953 - 3.51049i) q^{32} +(1.08542 - 0.522712i) q^{34} +(-3.29908 - 1.58875i) q^{35} +(0.500358 - 2.19221i) q^{37} +(0.990113 - 4.33797i) q^{38} +(0.564164 + 2.47176i) q^{40} +5.82942 q^{41} +(4.83166 + 2.32680i) q^{43} +(3.29808 + 1.58827i) q^{44} -7.74560 q^{46} +(-1.62790 - 7.13229i) q^{47} +(-2.76532 + 12.1157i) q^{49} +(-1.02097 + 4.47317i) q^{50} +(0.837125 + 0.403138i) q^{52} +(-11.0118 + 5.30301i) q^{53} +(-2.18784 - 2.74347i) q^{55} +(12.1192 - 5.83628i) q^{56} +(-4.45123 - 3.61300i) q^{58} +10.6337 q^{59} +(-0.552358 - 0.692635i) q^{61} +(3.06080 - 3.83812i) q^{62} +(-7.03779 - 3.38922i) q^{64} +(-0.555322 - 0.696352i) q^{65} +(-1.66078 + 7.27633i) q^{67} +(-0.611475 + 0.766765i) q^{68} -3.89822 q^{70} +(-2.44240 - 10.7008i) q^{71} +(10.7277 + 5.16618i) q^{73} +(-0.532676 - 2.33381i) q^{74} +(0.806018 + 3.53140i) q^{76} +(-11.6076 + 14.5555i) q^{77} +(-0.463072 + 2.02885i) q^{79} +(0.785053 + 0.984426i) q^{80} +(5.59136 - 2.69266i) q^{82} +(-3.78257 + 4.74320i) q^{83} +(0.847021 - 0.407904i) q^{85} +5.70912 q^{86} +12.8904 q^{88} +(-14.0249 + 6.75406i) q^{89} +(-2.94627 + 3.69451i) q^{91} +(5.68100 - 2.73583i) q^{92} +(-4.85588 - 6.08909i) q^{94} +(0.772645 - 3.38518i) q^{95} +(9.72341 - 12.1928i) q^{97} +(2.94394 + 12.8982i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 10 q^{4} + 4 q^{7} + 4 q^{10} - 24 q^{13} - 26 q^{16} + 4 q^{19} - 8 q^{22} - 16 q^{25} + 112 q^{28} - 4 q^{31} + 26 q^{34} - 18 q^{37} - 78 q^{40} - 8 q^{43} + 72 q^{46} + 14 q^{49} - 12 q^{52}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.959163 0.461908i 0.678230 0.326619i −0.0628614 0.998022i \(-0.520023\pi\)
0.741092 + 0.671404i \(0.234308\pi\)
\(3\) 0 0
\(4\) −0.540346 + 0.677573i −0.270173 + 0.338786i
\(5\) 0.748493 0.360455i 0.334736 0.161200i −0.258964 0.965887i \(-0.583381\pi\)
0.593700 + 0.804687i \(0.297667\pi\)
\(6\) 0 0
\(7\) −2.74812 3.44603i −1.03869 1.30248i −0.951953 0.306245i \(-0.900927\pi\)
−0.0867373 0.996231i \(-0.527644\pi\)
\(8\) −0.679091 + 2.97529i −0.240095 + 1.05192i
\(9\) 0 0
\(10\) 0.551429 0.691470i 0.174377 0.218662i
\(11\) −0.939896 4.11795i −0.283389 1.24161i −0.893416 0.449229i \(-0.851699\pi\)
0.610027 0.792381i \(-0.291159\pi\)
\(12\) 0 0
\(13\) −0.238566 1.04523i −0.0661663 0.289894i 0.931010 0.364995i \(-0.118929\pi\)
−0.997176 + 0.0751010i \(0.976072\pi\)
\(14\) −4.22764 2.03592i −1.12988 0.544123i
\(15\) 0 0
\(16\) 0.337258 + 1.47763i 0.0843146 + 0.369406i
\(17\) 1.13164 0.274462 0.137231 0.990539i \(-0.456180\pi\)
0.137231 + 0.990539i \(0.456180\pi\)
\(18\) 0 0
\(19\) 2.60592 3.26772i 0.597838 0.749666i −0.387201 0.921995i \(-0.626558\pi\)
0.985039 + 0.172330i \(0.0551295\pi\)
\(20\) −0.160211 + 0.701929i −0.0358242 + 0.156956i
\(21\) 0 0
\(22\) −2.80363 3.51564i −0.597736 0.749537i
\(23\) −6.55514 3.15679i −1.36684 0.658236i −0.400691 0.916213i \(-0.631230\pi\)
−0.966151 + 0.257977i \(0.916944\pi\)
\(24\) 0 0
\(25\) −2.68714 + 3.36956i −0.537427 + 0.673912i
\(26\) −0.711623 0.892346i −0.139561 0.175004i
\(27\) 0 0
\(28\) 3.81987 0.721887
\(29\) −2.29459 4.87184i −0.426094 0.904679i
\(30\) 0 0
\(31\) 4.15464 2.00077i 0.746195 0.359349i −0.0218357 0.999762i \(-0.506951\pi\)
0.768031 + 0.640413i \(0.221237\pi\)
\(32\) −2.79953 3.51049i −0.494891 0.620573i
\(33\) 0 0
\(34\) 1.08542 0.522712i 0.186148 0.0896444i
\(35\) −3.29908 1.58875i −0.557647 0.268549i
\(36\) 0 0
\(37\) 0.500358 2.19221i 0.0822584 0.360398i −0.917001 0.398886i \(-0.869397\pi\)
0.999259 + 0.0384881i \(0.0122542\pi\)
\(38\) 0.990113 4.33797i 0.160617 0.703711i
\(39\) 0 0
\(40\) 0.564164 + 2.47176i 0.0892022 + 0.390820i
\(41\) 5.82942 0.910402 0.455201 0.890389i \(-0.349567\pi\)
0.455201 + 0.890389i \(0.349567\pi\)
\(42\) 0 0
\(43\) 4.83166 + 2.32680i 0.736821 + 0.354834i 0.764363 0.644786i \(-0.223054\pi\)
−0.0275418 + 0.999621i \(0.508768\pi\)
\(44\) 3.29808 + 1.58827i 0.497205 + 0.239441i
\(45\) 0 0
\(46\) −7.74560 −1.14203
\(47\) −1.62790 7.13229i −0.237453 1.04035i −0.943288 0.331975i \(-0.892285\pi\)
0.705835 0.708376i \(-0.250572\pi\)
\(48\) 0 0
\(49\) −2.76532 + 12.1157i −0.395046 + 1.73081i
\(50\) −1.02097 + 4.47317i −0.144387 + 0.632601i
\(51\) 0 0
\(52\) 0.837125 + 0.403138i 0.116088 + 0.0559052i
\(53\) −11.0118 + 5.30301i −1.51259 + 0.728424i −0.992100 0.125446i \(-0.959964\pi\)
−0.520487 + 0.853870i \(0.674250\pi\)
\(54\) 0 0
\(55\) −2.18784 2.74347i −0.295009 0.369929i
\(56\) 12.1192 5.83628i 1.61949 0.779905i
\(57\) 0 0
\(58\) −4.45123 3.61300i −0.584475 0.474410i
\(59\) 10.6337 1.38439 0.692194 0.721712i \(-0.256644\pi\)
0.692194 + 0.721712i \(0.256644\pi\)
\(60\) 0 0
\(61\) −0.552358 0.692635i −0.0707222 0.0886829i 0.745212 0.666828i \(-0.232348\pi\)
−0.815934 + 0.578145i \(0.803777\pi\)
\(62\) 3.06080 3.83812i 0.388722 0.487442i
\(63\) 0 0
\(64\) −7.03779 3.38922i −0.879724 0.423653i
\(65\) −0.555322 0.696352i −0.0688792 0.0863718i
\(66\) 0 0
\(67\) −1.66078 + 7.27633i −0.202896 + 0.888946i 0.766266 + 0.642523i \(0.222112\pi\)
−0.969162 + 0.246423i \(0.920745\pi\)
\(68\) −0.611475 + 0.766765i −0.0741522 + 0.0929840i
\(69\) 0 0
\(70\) −3.89822 −0.465926
\(71\) −2.44240 10.7008i −0.289859 1.26996i −0.884718 0.466126i \(-0.845649\pi\)
0.594859 0.803830i \(-0.297208\pi\)
\(72\) 0 0
\(73\) 10.7277 + 5.16618i 1.25558 + 0.604656i 0.939003 0.343910i \(-0.111752\pi\)
0.316579 + 0.948566i \(0.397466\pi\)
\(74\) −0.532676 2.33381i −0.0619224 0.271300i
\(75\) 0 0
\(76\) 0.806018 + 3.53140i 0.0924566 + 0.405079i
\(77\) −11.6076 + 14.5555i −1.32281 + 1.65876i
\(78\) 0 0
\(79\) −0.463072 + 2.02885i −0.0520996 + 0.228263i −0.994274 0.106859i \(-0.965921\pi\)
0.942175 + 0.335123i \(0.108778\pi\)
\(80\) 0.785053 + 0.984426i 0.0877716 + 0.110062i
\(81\) 0 0
\(82\) 5.59136 2.69266i 0.617462 0.297354i
\(83\) −3.78257 + 4.74320i −0.415191 + 0.520634i −0.944817 0.327598i \(-0.893761\pi\)
0.529626 + 0.848231i \(0.322332\pi\)
\(84\) 0 0
\(85\) 0.847021 0.407904i 0.0918724 0.0442434i
\(86\) 5.70912 0.615630
\(87\) 0 0
\(88\) 12.8904 1.37412
\(89\) −14.0249 + 6.75406i −1.48664 + 0.715929i −0.988508 0.151172i \(-0.951695\pi\)
−0.498134 + 0.867100i \(0.665981\pi\)
\(90\) 0 0
\(91\) −2.94627 + 3.69451i −0.308853 + 0.387290i
\(92\) 5.68100 2.73583i 0.592285 0.285230i
\(93\) 0 0
\(94\) −4.85588 6.08909i −0.500846 0.628041i
\(95\) 0.772645 3.38518i 0.0792717 0.347312i
\(96\) 0 0
\(97\) 9.72341 12.1928i 0.987263 1.23799i 0.0160260 0.999872i \(-0.494899\pi\)
0.971237 0.238117i \(-0.0765300\pi\)
\(98\) 2.94394 + 12.8982i 0.297382 + 1.30292i
\(99\) 0 0
\(100\) −0.831139 3.64146i −0.0831139 0.364146i
\(101\) −3.09134 1.48871i −0.307600 0.148132i 0.273715 0.961811i \(-0.411747\pi\)
−0.581315 + 0.813679i \(0.697462\pi\)
\(102\) 0 0
\(103\) 1.65433 + 7.24809i 0.163006 + 0.714175i 0.988681 + 0.150030i \(0.0479371\pi\)
−0.825676 + 0.564145i \(0.809206\pi\)
\(104\) 3.27186 0.320832
\(105\) 0 0
\(106\) −8.11261 + 10.1729i −0.787966 + 0.988078i
\(107\) −0.328057 + 1.43731i −0.0317145 + 0.138950i −0.988307 0.152480i \(-0.951274\pi\)
0.956592 + 0.291430i \(0.0941311\pi\)
\(108\) 0 0
\(109\) 9.93069 + 12.4527i 0.951188 + 1.19275i 0.981159 + 0.193201i \(0.0618868\pi\)
−0.0299718 + 0.999551i \(0.509542\pi\)
\(110\) −3.36573 1.62085i −0.320910 0.154542i
\(111\) 0 0
\(112\) 4.16512 5.22289i 0.393566 0.493517i
\(113\) 1.42886 + 1.79174i 0.134416 + 0.168553i 0.844484 0.535581i \(-0.179907\pi\)
−0.710068 + 0.704133i \(0.751336\pi\)
\(114\) 0 0
\(115\) −6.04436 −0.563639
\(116\) 4.54090 + 1.07773i 0.421612 + 0.100065i
\(117\) 0 0
\(118\) 10.1994 4.91179i 0.938934 0.452167i
\(119\) −3.10987 3.89965i −0.285081 0.357480i
\(120\) 0 0
\(121\) −6.16348 + 2.96818i −0.560317 + 0.269834i
\(122\) −0.849735 0.409211i −0.0769314 0.0370482i
\(123\) 0 0
\(124\) −0.889277 + 3.89618i −0.0798594 + 0.349887i
\(125\) −1.72104 + 7.54036i −0.153934 + 0.674430i
\(126\) 0 0
\(127\) −1.73199 7.58835i −0.153689 0.673357i −0.991794 0.127847i \(-0.959193\pi\)
0.838105 0.545510i \(-0.183664\pi\)
\(128\) 0.664286 0.0587151
\(129\) 0 0
\(130\) −0.854295 0.411407i −0.0749266 0.0360828i
\(131\) 0.724749 + 0.349021i 0.0633216 + 0.0304941i 0.465277 0.885165i \(-0.345955\pi\)
−0.401955 + 0.915659i \(0.631669\pi\)
\(132\) 0 0
\(133\) −18.4220 −1.59739
\(134\) 1.76805 + 7.74631i 0.152736 + 0.669179i
\(135\) 0 0
\(136\) −0.768483 + 3.36695i −0.0658969 + 0.288713i
\(137\) 0.782329 3.42761i 0.0668388 0.292840i −0.930451 0.366417i \(-0.880584\pi\)
0.997290 + 0.0735770i \(0.0234415\pi\)
\(138\) 0 0
\(139\) −11.3232 5.45296i −0.960421 0.462514i −0.113093 0.993584i \(-0.536076\pi\)
−0.847328 + 0.531070i \(0.821790\pi\)
\(140\) 2.85914 1.37689i 0.241642 0.116369i
\(141\) 0 0
\(142\) −7.28546 9.13568i −0.611382 0.766649i
\(143\) −4.07997 + 1.96481i −0.341184 + 0.164306i
\(144\) 0 0
\(145\) −3.47356 2.81944i −0.288464 0.234142i
\(146\) 12.6759 1.04907
\(147\) 0 0
\(148\) 1.21502 + 1.52358i 0.0998738 + 0.125238i
\(149\) −1.99853 + 2.50607i −0.163726 + 0.205306i −0.856926 0.515439i \(-0.827629\pi\)
0.693200 + 0.720745i \(0.256200\pi\)
\(150\) 0 0
\(151\) 16.8087 + 8.09462i 1.36787 + 0.658731i 0.966377 0.257131i \(-0.0827772\pi\)
0.401493 + 0.915862i \(0.368492\pi\)
\(152\) 7.95275 + 9.97243i 0.645053 + 0.808871i
\(153\) 0 0
\(154\) −4.41030 + 19.3228i −0.355392 + 1.55707i
\(155\) 2.38853 2.99512i 0.191851 0.240574i
\(156\) 0 0
\(157\) 1.52265 0.121521 0.0607604 0.998152i \(-0.480647\pi\)
0.0607604 + 0.998152i \(0.480647\pi\)
\(158\) 0.492982 + 2.15989i 0.0392195 + 0.171832i
\(159\) 0 0
\(160\) −3.36080 1.61848i −0.265695 0.127952i
\(161\) 7.13590 + 31.2644i 0.562388 + 2.46398i
\(162\) 0 0
\(163\) 1.63293 + 7.15431i 0.127901 + 0.560369i 0.997750 + 0.0670510i \(0.0213590\pi\)
−0.869849 + 0.493318i \(0.835784\pi\)
\(164\) −3.14990 + 3.94985i −0.245966 + 0.308432i
\(165\) 0 0
\(166\) −1.43718 + 6.29670i −0.111547 + 0.488719i
\(167\) 5.76095 + 7.22400i 0.445796 + 0.559010i 0.953060 0.302780i \(-0.0979148\pi\)
−0.507265 + 0.861790i \(0.669343\pi\)
\(168\) 0 0
\(169\) 10.6770 5.14178i 0.821309 0.395521i
\(170\) 0.624017 0.782492i 0.0478599 0.0600144i
\(171\) 0 0
\(172\) −4.18735 + 2.01652i −0.319282 + 0.153758i
\(173\) 19.2315 1.46215 0.731073 0.682299i \(-0.239020\pi\)
0.731073 + 0.682299i \(0.239020\pi\)
\(174\) 0 0
\(175\) 18.9962 1.43597
\(176\) 5.76781 2.77763i 0.434765 0.209372i
\(177\) 0 0
\(178\) −10.3324 + 12.9565i −0.774450 + 0.971129i
\(179\) 19.9160 9.59105i 1.48859 0.716869i 0.499798 0.866142i \(-0.333408\pi\)
0.988796 + 0.149273i \(0.0476934\pi\)
\(180\) 0 0
\(181\) −13.5132 16.9450i −1.00443 1.25951i −0.965537 0.260266i \(-0.916190\pi\)
−0.0388884 0.999244i \(-0.512382\pi\)
\(182\) −1.11943 + 4.90454i −0.0829777 + 0.363549i
\(183\) 0 0
\(184\) 13.8439 17.3597i 1.02059 1.27977i
\(185\) −0.415680 1.82121i −0.0305614 0.133898i
\(186\) 0 0
\(187\) −1.06362 4.66002i −0.0777796 0.340775i
\(188\) 5.71227 + 2.75089i 0.416610 + 0.200629i
\(189\) 0 0
\(190\) −0.822550 3.60383i −0.0596741 0.261449i
\(191\) 13.0680 0.945570 0.472785 0.881178i \(-0.343249\pi\)
0.472785 + 0.881178i \(0.343249\pi\)
\(192\) 0 0
\(193\) 5.88625 7.38113i 0.423702 0.531305i −0.523465 0.852047i \(-0.675361\pi\)
0.947167 + 0.320742i \(0.103932\pi\)
\(194\) 3.69439 16.1862i 0.265242 1.16210i
\(195\) 0 0
\(196\) −6.71502 8.42036i −0.479644 0.601454i
\(197\) −15.0975 7.27058i −1.07565 0.518007i −0.189729 0.981837i \(-0.560761\pi\)
−0.885925 + 0.463829i \(0.846475\pi\)
\(198\) 0 0
\(199\) 8.17741 10.2541i 0.579681 0.726897i −0.402377 0.915474i \(-0.631816\pi\)
0.982058 + 0.188577i \(0.0603875\pi\)
\(200\) −8.20061 10.2832i −0.579871 0.727135i
\(201\) 0 0
\(202\) −3.65274 −0.257006
\(203\) −10.4827 + 21.2956i −0.735743 + 1.49466i
\(204\) 0 0
\(205\) 4.36327 2.10124i 0.304744 0.146757i
\(206\) 4.93472 + 6.18795i 0.343818 + 0.431135i
\(207\) 0 0
\(208\) 1.46400 0.705023i 0.101510 0.0488846i
\(209\) −15.9056 7.65973i −1.10021 0.529835i
\(210\) 0 0
\(211\) 2.82919 12.3955i 0.194769 0.853340i −0.779221 0.626750i \(-0.784385\pi\)
0.973990 0.226591i \(-0.0727580\pi\)
\(212\) 2.35701 10.3268i 0.161880 0.709244i
\(213\) 0 0
\(214\) 0.349246 + 1.53015i 0.0238740 + 0.104599i
\(215\) 4.45517 0.303840
\(216\) 0 0
\(217\) −18.3121 8.81866i −1.24311 0.598649i
\(218\) 15.2771 + 7.35709i 1.03470 + 0.498285i
\(219\) 0 0
\(220\) 3.04109 0.205030
\(221\) −0.269970 1.18282i −0.0181601 0.0795648i
\(222\) 0 0
\(223\) 0.763635 3.34571i 0.0511368 0.224045i −0.942902 0.333070i \(-0.891916\pi\)
0.994039 + 0.109025i \(0.0347727\pi\)
\(224\) −4.40384 + 19.2945i −0.294244 + 1.28917i
\(225\) 0 0
\(226\) 2.19813 + 1.05857i 0.146218 + 0.0704147i
\(227\) −9.46378 + 4.55752i −0.628133 + 0.302493i −0.720736 0.693210i \(-0.756196\pi\)
0.0926022 + 0.995703i \(0.470482\pi\)
\(228\) 0 0
\(229\) 0.307829 + 0.386005i 0.0203419 + 0.0255080i 0.791898 0.610653i \(-0.209093\pi\)
−0.771556 + 0.636161i \(0.780521\pi\)
\(230\) −5.79752 + 2.79194i −0.382277 + 0.184095i
\(231\) 0 0
\(232\) 16.0534 3.51864i 1.05396 0.231010i
\(233\) −15.5122 −1.01624 −0.508119 0.861287i \(-0.669659\pi\)
−0.508119 + 0.861287i \(0.669659\pi\)
\(234\) 0 0
\(235\) −3.78934 4.75168i −0.247189 0.309966i
\(236\) −5.74587 + 7.20509i −0.374024 + 0.469012i
\(237\) 0 0
\(238\) −4.78415 2.30392i −0.310110 0.149341i
\(239\) −12.0563 15.1182i −0.779859 0.977913i −0.999997 0.00244380i \(-0.999222\pi\)
0.220138 0.975469i \(-0.429349\pi\)
\(240\) 0 0
\(241\) 5.99191 26.2523i 0.385973 1.69106i −0.292365 0.956307i \(-0.594442\pi\)
0.678338 0.734750i \(-0.262701\pi\)
\(242\) −4.54076 + 5.69393i −0.291891 + 0.366020i
\(243\) 0 0
\(244\) 0.767775 0.0491518
\(245\) 2.29733 + 10.0653i 0.146771 + 0.643046i
\(246\) 0 0
\(247\) −4.03719 1.94421i −0.256880 0.123707i
\(248\) 3.13149 + 13.7200i 0.198850 + 0.871218i
\(249\) 0 0
\(250\) 1.83220 + 8.02739i 0.115879 + 0.507697i
\(251\) 13.9375 17.4770i 0.879725 1.10314i −0.114241 0.993453i \(-0.536444\pi\)
0.993966 0.109687i \(-0.0349849\pi\)
\(252\) 0 0
\(253\) −6.83836 + 29.9608i −0.429924 + 1.88362i
\(254\) −5.16638 6.47844i −0.324168 0.406493i
\(255\) 0 0
\(256\) 14.7127 7.08528i 0.919546 0.442830i
\(257\) −0.0446906 + 0.0560403i −0.00278773 + 0.00349570i −0.783223 0.621740i \(-0.786426\pi\)
0.780436 + 0.625236i \(0.214997\pi\)
\(258\) 0 0
\(259\) −8.92947 + 4.30021i −0.554850 + 0.267202i
\(260\) 0.771895 0.0478709
\(261\) 0 0
\(262\) 0.856367 0.0529065
\(263\) −3.80271 + 1.83129i −0.234485 + 0.112922i −0.547437 0.836847i \(-0.684396\pi\)
0.312952 + 0.949769i \(0.398682\pi\)
\(264\) 0 0
\(265\) −6.33076 + 7.93852i −0.388895 + 0.487659i
\(266\) −17.6697 + 8.50928i −1.08340 + 0.521737i
\(267\) 0 0
\(268\) −4.03285 5.05703i −0.246346 0.308908i
\(269\) 5.50670 24.1264i 0.335750 1.47102i −0.472057 0.881568i \(-0.656488\pi\)
0.807807 0.589447i \(-0.200654\pi\)
\(270\) 0 0
\(271\) −16.6206 + 20.8416i −1.00963 + 1.26604i −0.0459625 + 0.998943i \(0.514635\pi\)
−0.963670 + 0.267096i \(0.913936\pi\)
\(272\) 0.381654 + 1.67213i 0.0231412 + 0.101388i
\(273\) 0 0
\(274\) −0.832859 3.64899i −0.0503149 0.220444i
\(275\) 16.4013 + 7.89846i 0.989037 + 0.476295i
\(276\) 0 0
\(277\) 4.13271 + 18.1066i 0.248311 + 1.08792i 0.933224 + 0.359296i \(0.116983\pi\)
−0.684913 + 0.728625i \(0.740160\pi\)
\(278\) −13.3796 −0.802452
\(279\) 0 0
\(280\) 6.96738 8.73682i 0.416381 0.522125i
\(281\) −1.11169 + 4.87061i −0.0663176 + 0.290557i −0.997202 0.0747582i \(-0.976181\pi\)
0.930884 + 0.365315i \(0.119039\pi\)
\(282\) 0 0
\(283\) 13.4277 + 16.8378i 0.798194 + 1.00090i 0.999770 + 0.0214309i \(0.00682218\pi\)
−0.201576 + 0.979473i \(0.564606\pi\)
\(284\) 8.57033 + 4.12725i 0.508556 + 0.244908i
\(285\) 0 0
\(286\) −3.00579 + 3.76914i −0.177736 + 0.222874i
\(287\) −16.0199 20.0883i −0.945625 1.18578i
\(288\) 0 0
\(289\) −15.7194 −0.924671
\(290\) −4.63404 1.09984i −0.272120 0.0645847i
\(291\) 0 0
\(292\) −9.29713 + 4.47726i −0.544073 + 0.262012i
\(293\) 4.96021 + 6.21990i 0.289778 + 0.363371i 0.905317 0.424736i \(-0.139633\pi\)
−0.615539 + 0.788107i \(0.711062\pi\)
\(294\) 0 0
\(295\) 7.95924 3.83297i 0.463405 0.223164i
\(296\) 6.18268 + 2.97742i 0.359361 + 0.173059i
\(297\) 0 0
\(298\) −0.759336 + 3.32687i −0.0439872 + 0.192720i
\(299\) −1.73573 + 7.60471i −0.100380 + 0.439792i
\(300\) 0 0
\(301\) −5.25972 23.0444i −0.303165 1.32825i
\(302\) 19.8612 1.14288
\(303\) 0 0
\(304\) 5.70733 + 2.74851i 0.327338 + 0.157638i
\(305\) −0.663100 0.319332i −0.0379690 0.0182849i
\(306\) 0 0
\(307\) 1.02414 0.0584508 0.0292254 0.999573i \(-0.490696\pi\)
0.0292254 + 0.999573i \(0.490696\pi\)
\(308\) −3.59028 15.7300i −0.204575 0.896302i
\(309\) 0 0
\(310\) 0.907516 3.97609i 0.0515435 0.225827i
\(311\) 1.93523 8.47879i 0.109737 0.480788i −0.889957 0.456044i \(-0.849266\pi\)
0.999694 0.0247439i \(-0.00787703\pi\)
\(312\) 0 0
\(313\) −17.3701 8.36498i −0.981814 0.472817i −0.127085 0.991892i \(-0.540562\pi\)
−0.854729 + 0.519075i \(0.826277\pi\)
\(314\) 1.46047 0.703326i 0.0824191 0.0396910i
\(315\) 0 0
\(316\) −1.12447 1.41005i −0.0632566 0.0793213i
\(317\) 25.3561 12.2108i 1.42414 0.685830i 0.446242 0.894912i \(-0.352762\pi\)
0.977898 + 0.209083i \(0.0670478\pi\)
\(318\) 0 0
\(319\) −17.9054 + 14.0280i −1.00251 + 0.785419i
\(320\) −6.48940 −0.362768
\(321\) 0 0
\(322\) 21.2858 + 26.6915i 1.18621 + 1.48746i
\(323\) 2.94895 3.69787i 0.164084 0.205755i
\(324\) 0 0
\(325\) 4.16301 + 2.00480i 0.230922 + 0.111206i
\(326\) 4.87088 + 6.10789i 0.269773 + 0.338285i
\(327\) 0 0
\(328\) −3.95870 + 17.3442i −0.218583 + 0.957673i
\(329\) −20.1044 + 25.2101i −1.10839 + 1.38988i
\(330\) 0 0
\(331\) −27.7225 −1.52377 −0.761883 0.647714i \(-0.775725\pi\)
−0.761883 + 0.647714i \(0.775725\pi\)
\(332\) −1.16996 5.12594i −0.0642100 0.281322i
\(333\) 0 0
\(334\) 8.86252 + 4.26796i 0.484935 + 0.233533i
\(335\) 1.37971 + 6.04492i 0.0753818 + 0.330269i
\(336\) 0 0
\(337\) 1.41275 + 6.18965i 0.0769572 + 0.337172i 0.998720 0.0505830i \(-0.0161080\pi\)
−0.921763 + 0.387755i \(0.873251\pi\)
\(338\) 7.86596 9.86360i 0.427852 0.536509i
\(339\) 0 0
\(340\) −0.181300 + 0.794328i −0.00983238 + 0.0430785i
\(341\) −12.1440 15.2281i −0.657634 0.824648i
\(342\) 0 0
\(343\) 21.5524 10.3791i 1.16372 0.560418i
\(344\) −10.2041 + 12.7955i −0.550166 + 0.689886i
\(345\) 0 0
\(346\) 18.4462 8.88321i 0.991672 0.477564i
\(347\) −17.7801 −0.954488 −0.477244 0.878771i \(-0.658364\pi\)
−0.477244 + 0.878771i \(0.658364\pi\)
\(348\) 0 0
\(349\) 16.5173 0.884152 0.442076 0.896978i \(-0.354242\pi\)
0.442076 + 0.896978i \(0.354242\pi\)
\(350\) 18.2204 8.77449i 0.973922 0.469016i
\(351\) 0 0
\(352\) −11.8248 + 14.8278i −0.630263 + 0.790325i
\(353\) −4.74503 + 2.28509i −0.252552 + 0.121623i −0.555877 0.831264i \(-0.687618\pi\)
0.303325 + 0.952887i \(0.401903\pi\)
\(354\) 0 0
\(355\) −5.68529 7.12912i −0.301744 0.378375i
\(356\) 3.00196 13.1524i 0.159104 0.697078i
\(357\) 0 0
\(358\) 14.6725 18.3988i 0.775467 0.972405i
\(359\) −4.03139 17.6627i −0.212768 0.932199i −0.962676 0.270657i \(-0.912759\pi\)
0.749908 0.661543i \(-0.230098\pi\)
\(360\) 0 0
\(361\) 0.340730 + 1.49283i 0.0179331 + 0.0785702i
\(362\) −20.7883 10.0111i −1.09261 0.526174i
\(363\) 0 0
\(364\) −0.911291 3.99263i −0.0477646 0.209271i
\(365\) 9.89178 0.517759
\(366\) 0 0
\(367\) −8.77254 + 11.0004i −0.457923 + 0.574217i −0.956168 0.292819i \(-0.905407\pi\)
0.498245 + 0.867036i \(0.333978\pi\)
\(368\) 2.45378 10.7507i 0.127912 0.560419i
\(369\) 0 0
\(370\) −1.23994 1.55483i −0.0644613 0.0808319i
\(371\) 48.5360 + 23.3737i 2.51986 + 1.21350i
\(372\) 0 0
\(373\) 15.3591 19.2598i 0.795266 0.997232i −0.204565 0.978853i \(-0.565578\pi\)
0.999831 0.0183792i \(-0.00585060\pi\)
\(374\) −3.17269 3.97843i −0.164056 0.205720i
\(375\) 0 0
\(376\) 22.3261 1.15138
\(377\) −4.54477 + 3.56062i −0.234068 + 0.183381i
\(378\) 0 0
\(379\) 16.0947 7.75078i 0.826727 0.398131i 0.0278406 0.999612i \(-0.491137\pi\)
0.798887 + 0.601481i \(0.205423\pi\)
\(380\) 1.87621 + 2.35269i 0.0962474 + 0.120690i
\(381\) 0 0
\(382\) 12.5344 6.03623i 0.641314 0.308841i
\(383\) −2.88501 1.38935i −0.147417 0.0709924i 0.358721 0.933445i \(-0.383213\pi\)
−0.506138 + 0.862453i \(0.668927\pi\)
\(384\) 0 0
\(385\) −3.44162 + 15.0787i −0.175401 + 0.768484i
\(386\) 2.23647 9.79861i 0.113833 0.498736i
\(387\) 0 0
\(388\) 3.00748 + 13.1766i 0.152682 + 0.668942i
\(389\) −38.3076 −1.94227 −0.971137 0.238521i \(-0.923337\pi\)
−0.971137 + 0.238521i \(0.923337\pi\)
\(390\) 0 0
\(391\) −7.41804 3.57234i −0.375146 0.180661i
\(392\) −34.1697 16.4553i −1.72583 0.831117i
\(393\) 0 0
\(394\) −17.8393 −0.898731
\(395\) 0.384703 + 1.68550i 0.0193565 + 0.0848065i
\(396\) 0 0
\(397\) −6.84366 + 29.9840i −0.343473 + 1.50486i 0.448213 + 0.893927i \(0.352061\pi\)
−0.791686 + 0.610928i \(0.790796\pi\)
\(398\) 3.10699 13.6126i 0.155739 0.682338i
\(399\) 0 0
\(400\) −5.88521 2.83417i −0.294261 0.141708i
\(401\) 27.6448 13.3130i 1.38051 0.664821i 0.411405 0.911453i \(-0.365038\pi\)
0.969109 + 0.246632i \(0.0793238\pi\)
\(402\) 0 0
\(403\) −3.08241 3.86522i −0.153546 0.192540i
\(404\) 2.67910 1.29019i 0.133290 0.0641892i
\(405\) 0 0
\(406\) −0.218018 + 25.2680i −0.0108201 + 1.25403i
\(407\) −9.49772 −0.470784
\(408\) 0 0
\(409\) 14.6601 + 18.3832i 0.724898 + 0.908993i 0.998604 0.0528203i \(-0.0168211\pi\)
−0.273706 + 0.961813i \(0.588250\pi\)
\(410\) 3.21451 4.03087i 0.158753 0.199070i
\(411\) 0 0
\(412\) −5.80502 2.79555i −0.285993 0.137727i
\(413\) −29.2226 36.6440i −1.43795 1.80313i
\(414\) 0 0
\(415\) −1.12152 + 4.91370i −0.0550532 + 0.241204i
\(416\) −3.00139 + 3.76362i −0.147155 + 0.184527i
\(417\) 0 0
\(418\) −18.7941 −0.919252
\(419\) −6.60936 28.9575i −0.322889 1.41467i −0.832387 0.554195i \(-0.813026\pi\)
0.509498 0.860472i \(-0.329831\pi\)
\(420\) 0 0
\(421\) −7.55193 3.63682i −0.368058 0.177248i 0.240707 0.970598i \(-0.422621\pi\)
−0.608766 + 0.793350i \(0.708335\pi\)
\(422\) −3.01193 13.1961i −0.146618 0.642377i
\(423\) 0 0
\(424\) −8.29997 36.3645i −0.403082 1.76602i
\(425\) −3.04086 + 3.81312i −0.147503 + 0.184963i
\(426\) 0 0
\(427\) −0.868896 + 3.80688i −0.0420488 + 0.184228i
\(428\) −0.796619 0.998928i −0.0385060 0.0482850i
\(429\) 0 0
\(430\) 4.27323 2.05788i 0.206074 0.0992398i
\(431\) −14.8848 + 18.6650i −0.716977 + 0.899061i −0.998163 0.0605928i \(-0.980701\pi\)
0.281186 + 0.959653i \(0.409272\pi\)
\(432\) 0 0
\(433\) 18.8653 9.08504i 0.906608 0.436599i 0.0783369 0.996927i \(-0.475039\pi\)
0.828271 + 0.560328i \(0.189325\pi\)
\(434\) −21.6377 −1.03864
\(435\) 0 0
\(436\) −13.8036 −0.661073
\(437\) −27.3977 + 13.1940i −1.31061 + 0.631155i
\(438\) 0 0
\(439\) 0.214654 0.269168i 0.0102449 0.0128467i −0.776683 0.629892i \(-0.783099\pi\)
0.786928 + 0.617045i \(0.211671\pi\)
\(440\) 9.64836 4.64640i 0.459967 0.221509i
\(441\) 0 0
\(442\) −0.805298 1.00981i −0.0383041 0.0480318i
\(443\) 0.448040 1.96299i 0.0212870 0.0932646i −0.963169 0.268899i \(-0.913340\pi\)
0.984456 + 0.175634i \(0.0561975\pi\)
\(444\) 0 0
\(445\) −8.06303 + 10.1107i −0.382224 + 0.479294i
\(446\) −0.812959 3.56181i −0.0384947 0.168656i
\(447\) 0 0
\(448\) 7.66131 + 33.5664i 0.361963 + 1.58586i
\(449\) 17.8977 + 8.61907i 0.844644 + 0.406759i 0.805587 0.592478i \(-0.201850\pi\)
0.0390570 + 0.999237i \(0.487565\pi\)
\(450\) 0 0
\(451\) −5.47904 24.0053i −0.257998 1.13036i
\(452\) −1.98612 −0.0934190
\(453\) 0 0
\(454\) −6.97215 + 8.74280i −0.327219 + 0.410320i
\(455\) −0.873559 + 3.82731i −0.0409531 + 0.179427i
\(456\) 0 0
\(457\) −20.9585 26.2812i −0.980398 1.22938i −0.973331 0.229405i \(-0.926322\pi\)
−0.00706724 0.999975i \(-0.502250\pi\)
\(458\) 0.473557 + 0.228053i 0.0221279 + 0.0106562i
\(459\) 0 0
\(460\) 3.26605 4.09549i 0.152280 0.190953i
\(461\) −8.43993 10.5833i −0.393087 0.492915i 0.545426 0.838159i \(-0.316368\pi\)
−0.938513 + 0.345243i \(0.887796\pi\)
\(462\) 0 0
\(463\) 26.2798 1.22133 0.610664 0.791890i \(-0.290903\pi\)
0.610664 + 0.791890i \(0.290903\pi\)
\(464\) 6.42490 5.03361i 0.298268 0.233680i
\(465\) 0 0
\(466\) −14.8787 + 7.16521i −0.689243 + 0.331922i
\(467\) 10.7020 + 13.4198i 0.495228 + 0.620996i 0.965145 0.261714i \(-0.0842878\pi\)
−0.469917 + 0.882710i \(0.655716\pi\)
\(468\) 0 0
\(469\) 29.6385 14.2731i 1.36858 0.659072i
\(470\) −5.82943 2.80731i −0.268892 0.129491i
\(471\) 0 0
\(472\) −7.22123 + 31.6383i −0.332384 + 1.45627i
\(473\) 5.04042 22.0835i 0.231759 1.01540i
\(474\) 0 0
\(475\) 4.00832 + 17.5616i 0.183914 + 0.805781i
\(476\) 4.32270 0.198131
\(477\) 0 0
\(478\) −18.5472 8.93185i −0.848329 0.408534i
\(479\) −0.578231 0.278461i −0.0264200 0.0127232i 0.420627 0.907234i \(-0.361810\pi\)
−0.447047 + 0.894510i \(0.647524\pi\)
\(480\) 0 0
\(481\) −2.41073 −0.109920
\(482\) −6.37893 27.9479i −0.290552 1.27299i
\(483\) 0 0
\(484\) 1.31926 5.78005i 0.0599663 0.262730i
\(485\) 2.88295 12.6311i 0.130908 0.573546i
\(486\) 0 0
\(487\) −19.1297 9.21236i −0.866847 0.417452i −0.0530441 0.998592i \(-0.516892\pi\)
−0.813803 + 0.581140i \(0.802607\pi\)
\(488\) 2.43589 1.17306i 0.110268 0.0531021i
\(489\) 0 0
\(490\) 6.85275 + 8.59307i 0.309575 + 0.388195i
\(491\) 10.1881 4.90635i 0.459785 0.221421i −0.189629 0.981856i \(-0.560729\pi\)
0.649414 + 0.760435i \(0.275014\pi\)
\(492\) 0 0
\(493\) −2.59664 5.51315i −0.116947 0.248300i
\(494\) −4.77036 −0.214629
\(495\) 0 0
\(496\) 4.35757 + 5.46423i 0.195661 + 0.245351i
\(497\) −30.1634 + 37.8237i −1.35301 + 1.69662i
\(498\) 0 0
\(499\) 7.45316 + 3.58925i 0.333649 + 0.160677i 0.593206 0.805051i \(-0.297862\pi\)
−0.259557 + 0.965728i \(0.583576\pi\)
\(500\) −4.17918 5.24053i −0.186899 0.234364i
\(501\) 0 0
\(502\) 5.29551 23.2011i 0.236350 1.03552i
\(503\) 10.9077 13.6778i 0.486348 0.609861i −0.476741 0.879044i \(-0.658182\pi\)
0.963089 + 0.269183i \(0.0867535\pi\)
\(504\) 0 0
\(505\) −2.85046 −0.126844
\(506\) 7.28006 + 31.8960i 0.323638 + 1.41795i
\(507\) 0 0
\(508\) 6.07753 + 2.92678i 0.269647 + 0.129855i
\(509\) 3.59717 + 15.7602i 0.159442 + 0.698560i 0.989934 + 0.141530i \(0.0452022\pi\)
−0.830492 + 0.557030i \(0.811941\pi\)
\(510\) 0 0
\(511\) −11.6781 51.1652i −0.516610 2.26342i
\(512\) 10.0108 12.5532i 0.442419 0.554776i
\(513\) 0 0
\(514\) −0.0169801 + 0.0743947i −0.000748961 + 0.00328141i
\(515\) 3.85086 + 4.82883i 0.169689 + 0.212784i
\(516\) 0 0
\(517\) −27.8404 + 13.4072i −1.22442 + 0.589649i
\(518\) −6.57851 + 8.24919i −0.289043 + 0.362449i
\(519\) 0 0
\(520\) 2.44896 1.17936i 0.107394 0.0517183i
\(521\) −11.2836 −0.494344 −0.247172 0.968972i \(-0.579501\pi\)
−0.247172 + 0.968972i \(0.579501\pi\)
\(522\) 0 0
\(523\) −30.1685 −1.31918 −0.659588 0.751627i \(-0.729269\pi\)
−0.659588 + 0.751627i \(0.729269\pi\)
\(524\) −0.628102 + 0.302478i −0.0274388 + 0.0132138i
\(525\) 0 0
\(526\) −2.80153 + 3.51301i −0.122153 + 0.153174i
\(527\) 4.70154 2.26414i 0.204802 0.0986275i
\(528\) 0 0
\(529\) 18.6643 + 23.4043i 0.811492 + 1.01758i
\(530\) −2.40536 + 10.5386i −0.104482 + 0.457766i
\(531\) 0 0
\(532\) 9.95426 12.4822i 0.431572 0.541174i
\(533\) −1.39070 6.09306i −0.0602379 0.263920i
\(534\) 0 0
\(535\) 0.272538 + 1.19407i 0.0117828 + 0.0516240i
\(536\) −20.5214 9.88258i −0.886389 0.426862i
\(537\) 0 0
\(538\) −5.86238 25.6848i −0.252745 1.10735i
\(539\) 52.4909 2.26094
\(540\) 0 0
\(541\) 8.77276 11.0007i 0.377170 0.472957i −0.556625 0.830764i \(-0.687904\pi\)
0.933796 + 0.357807i \(0.116475\pi\)
\(542\) −6.31498 + 27.6677i −0.271252 + 1.18843i
\(543\) 0 0
\(544\) −3.16804 3.97260i −0.135829 0.170324i
\(545\) 11.9217 + 5.74118i 0.510669 + 0.245925i
\(546\) 0 0
\(547\) 5.25928 6.59493i 0.224870 0.281979i −0.656579 0.754258i \(-0.727997\pi\)
0.881449 + 0.472279i \(0.156568\pi\)
\(548\) 1.89972 + 2.38218i 0.0811521 + 0.101762i
\(549\) 0 0
\(550\) 19.3799 0.826362
\(551\) −21.8993 5.19756i −0.932942 0.221424i
\(552\) 0 0
\(553\) 8.26405 3.97976i 0.351423 0.169236i
\(554\) 12.3275 + 15.4582i 0.523747 + 0.656758i
\(555\) 0 0
\(556\) 9.81322 4.72580i 0.416173 0.200418i
\(557\) −6.94571 3.34488i −0.294299 0.141727i 0.280908 0.959735i \(-0.409364\pi\)
−0.575207 + 0.818008i \(0.695079\pi\)
\(558\) 0 0
\(559\) 1.27937 5.60527i 0.0541115 0.237078i
\(560\) 1.23494 5.41063i 0.0521858 0.228641i
\(561\) 0 0
\(562\) 1.18349 + 5.18521i 0.0499225 + 0.218725i
\(563\) 35.6657 1.50313 0.751564 0.659660i \(-0.229300\pi\)
0.751564 + 0.659660i \(0.229300\pi\)
\(564\) 0 0
\(565\) 1.71534 + 0.826063i 0.0721648 + 0.0347527i
\(566\) 20.6569 + 9.94783i 0.868273 + 0.418138i
\(567\) 0 0
\(568\) 33.4967 1.40549
\(569\) −4.60723 20.1856i −0.193145 0.846224i −0.974901 0.222640i \(-0.928533\pi\)
0.781756 0.623585i \(-0.214324\pi\)
\(570\) 0 0
\(571\) 3.27652 14.3554i 0.137118 0.600753i −0.858942 0.512072i \(-0.828878\pi\)
0.996060 0.0886803i \(-0.0282649\pi\)
\(572\) 0.873294 3.82615i 0.0365143 0.159979i
\(573\) 0 0
\(574\) −24.6447 11.8682i −1.02865 0.495371i
\(575\) 28.2516 13.6052i 1.17817 0.567377i
\(576\) 0 0
\(577\) 0.583537 + 0.731733i 0.0242930 + 0.0304624i 0.793830 0.608140i \(-0.208084\pi\)
−0.769537 + 0.638603i \(0.779513\pi\)
\(578\) −15.0775 + 7.26092i −0.627140 + 0.302015i
\(579\) 0 0
\(580\) 3.78730 0.830115i 0.157259 0.0344686i
\(581\) 26.7401 1.10937
\(582\) 0 0
\(583\) 32.1875 + 40.3618i 1.33307 + 1.67162i
\(584\) −22.6560 + 28.4097i −0.937511 + 1.17560i
\(585\) 0 0
\(586\) 7.63067 + 3.67474i 0.315220 + 0.151802i
\(587\) 12.2405 + 15.3491i 0.505219 + 0.633524i 0.967398 0.253263i \(-0.0815037\pi\)
−0.462179 + 0.886787i \(0.652932\pi\)
\(588\) 0 0
\(589\) 4.28870 18.7900i 0.176713 0.774229i
\(590\) 5.86372 7.35287i 0.241406 0.302713i
\(591\) 0 0
\(592\) 3.40802 0.140069
\(593\) −2.01719 8.83790i −0.0828362 0.362929i 0.916473 0.400097i \(-0.131024\pi\)
−0.999309 + 0.0371678i \(0.988166\pi\)
\(594\) 0 0
\(595\) −3.73336 1.79789i −0.153053 0.0737064i
\(596\) −0.618151 2.70830i −0.0253204 0.110936i
\(597\) 0 0
\(598\) 1.84784 + 8.09590i 0.0755637 + 0.331066i
\(599\) 3.16289 3.96614i 0.129232 0.162052i −0.713005 0.701158i \(-0.752667\pi\)
0.842238 + 0.539107i \(0.181238\pi\)
\(600\) 0 0
\(601\) −9.25367 + 40.5430i −0.377465 + 1.65378i 0.327732 + 0.944771i \(0.393716\pi\)
−0.705197 + 0.709011i \(0.749142\pi\)
\(602\) −15.6893 19.6738i −0.639449 0.801843i
\(603\) 0 0
\(604\) −14.5672 + 7.01519i −0.592730 + 0.285444i
\(605\) −3.54343 + 4.44332i −0.144061 + 0.180647i
\(606\) 0 0
\(607\) −21.3641 + 10.2884i −0.867140 + 0.417593i −0.813911 0.580990i \(-0.802666\pi\)
−0.0532293 + 0.998582i \(0.516951\pi\)
\(608\) −18.7666 −0.761087
\(609\) 0 0
\(610\) −0.783523 −0.0317239
\(611\) −7.06650 + 3.40305i −0.285880 + 0.137672i
\(612\) 0 0
\(613\) 19.1663 24.0337i 0.774118 0.970714i −0.225876 0.974156i \(-0.572524\pi\)
0.999994 + 0.00344237i \(0.00109574\pi\)
\(614\) 0.982318 0.473059i 0.0396431 0.0190911i
\(615\) 0 0
\(616\) −35.4243 44.4206i −1.42728 1.78976i
\(617\) −4.95323 + 21.7015i −0.199409 + 0.873670i 0.771880 + 0.635768i \(0.219317\pi\)
−0.971289 + 0.237901i \(0.923540\pi\)
\(618\) 0 0
\(619\) −7.69045 + 9.64352i −0.309105 + 0.387606i −0.911983 0.410228i \(-0.865449\pi\)
0.602878 + 0.797833i \(0.294021\pi\)
\(620\) 0.738779 + 3.23680i 0.0296701 + 0.129993i
\(621\) 0 0
\(622\) −2.06023 9.02644i −0.0826075 0.361927i
\(623\) 61.8168 + 29.7694i 2.47664 + 1.19269i
\(624\) 0 0
\(625\) −3.36536 14.7446i −0.134614 0.589784i
\(626\) −20.5246 −0.820327
\(627\) 0 0
\(628\) −0.822759 + 1.03171i −0.0328317 + 0.0411696i
\(629\) 0.566223 2.48079i 0.0225768 0.0989155i
\(630\) 0 0
\(631\) 14.7894 + 18.5453i 0.588756 + 0.738277i 0.983579 0.180480i \(-0.0577652\pi\)
−0.394822 + 0.918758i \(0.629194\pi\)
\(632\) −5.72195 2.75555i −0.227607 0.109610i
\(633\) 0 0
\(634\) 18.6803 23.4244i 0.741890 0.930301i
\(635\) −4.03164 5.05552i −0.159991 0.200622i
\(636\) 0 0
\(637\) 13.3233 0.527890
\(638\) −10.6945 + 21.7258i −0.423399 + 0.860133i
\(639\) 0 0
\(640\) 0.497213 0.239445i 0.0196541 0.00946490i
\(641\) 24.8752 + 31.1925i 0.982511 + 1.23203i 0.972697 + 0.232078i \(0.0745523\pi\)
0.00981337 + 0.999952i \(0.496876\pi\)
\(642\) 0 0
\(643\) 5.57462 2.68460i 0.219842 0.105870i −0.320722 0.947173i \(-0.603925\pi\)
0.540563 + 0.841303i \(0.318211\pi\)
\(644\) −25.0398 12.0585i −0.986705 0.475172i
\(645\) 0 0
\(646\) 1.12045 4.90900i 0.0440834 0.193142i
\(647\) 3.33991 14.6331i 0.131305 0.575286i −0.865876 0.500258i \(-0.833238\pi\)
0.997181 0.0750276i \(-0.0239045\pi\)
\(648\) 0 0
\(649\) −9.99456 43.7890i −0.392321 1.71887i
\(650\) 4.91904 0.192941
\(651\) 0 0
\(652\) −5.72991 2.75938i −0.224401 0.108066i
\(653\) 38.8178 + 18.6937i 1.51906 + 0.731540i 0.992912 0.118854i \(-0.0379220\pi\)
0.526147 + 0.850394i \(0.323636\pi\)
\(654\) 0 0
\(655\) 0.668275 0.0261117
\(656\) 1.96602 + 8.61370i 0.0767602 + 0.336308i
\(657\) 0 0
\(658\) −7.63863 + 33.4670i −0.297785 + 1.30468i
\(659\) 0.130239 0.570613i 0.00507338 0.0222279i −0.972328 0.233620i \(-0.924943\pi\)
0.977401 + 0.211393i \(0.0677998\pi\)
\(660\) 0 0
\(661\) −18.5562 8.93619i −0.721752 0.347577i 0.0366823 0.999327i \(-0.488321\pi\)
−0.758434 + 0.651750i \(0.774035\pi\)
\(662\) −26.5904 + 12.8053i −1.03346 + 0.497690i
\(663\) 0 0
\(664\) −11.5437 14.4753i −0.447982 0.561751i
\(665\) −13.7887 + 6.64031i −0.534704 + 0.257500i
\(666\) 0 0
\(667\) −0.338047 + 39.1792i −0.0130892 + 1.51702i
\(668\) −8.00769 −0.309827
\(669\) 0 0
\(670\) 4.11557 + 5.16076i 0.158998 + 0.199377i
\(671\) −2.33308 + 2.92559i −0.0900676 + 0.112941i
\(672\) 0 0
\(673\) 20.2005 + 9.72806i 0.778673 + 0.374989i 0.780618 0.625009i \(-0.214905\pi\)
−0.00194440 + 0.999998i \(0.500619\pi\)
\(674\) 4.21410 + 5.28432i 0.162321 + 0.203544i
\(675\) 0 0
\(676\) −2.28535 + 10.0128i −0.0878982 + 0.385107i
\(677\) −23.0162 + 28.8614i −0.884584 + 1.10923i 0.108763 + 0.994068i \(0.465311\pi\)
−0.993346 + 0.115165i \(0.963260\pi\)
\(678\) 0 0
\(679\) −68.7377 −2.63791
\(680\) 0.638428 + 2.79714i 0.0244826 + 0.107265i
\(681\) 0 0
\(682\) −18.6821 8.99680i −0.715373 0.344505i
\(683\) −9.06524 39.7174i −0.346872 1.51974i −0.784238 0.620460i \(-0.786946\pi\)
0.437366 0.899284i \(-0.355911\pi\)
\(684\) 0 0
\(685\) −0.649931 2.84753i −0.0248326 0.108799i
\(686\) 15.8781 19.9104i 0.606227 0.760184i
\(687\) 0 0
\(688\) −1.80863 + 7.92412i −0.0689533 + 0.302104i
\(689\) 8.16989 + 10.2447i 0.311248 + 0.390292i
\(690\) 0 0
\(691\) 26.6698 12.8435i 1.01457 0.488590i 0.148710 0.988881i \(-0.452488\pi\)
0.865858 + 0.500291i \(0.166773\pi\)
\(692\) −10.3917 + 13.0308i −0.395033 + 0.495355i
\(693\) 0 0
\(694\) −17.0540 + 8.21280i −0.647363 + 0.311754i
\(695\) −10.4409 −0.396045
\(696\) 0 0
\(697\) 6.59678 0.249871
\(698\) 15.8428 7.62949i 0.599659 0.288781i
\(699\) 0 0
\(700\) −10.2645 + 12.8713i −0.387962 + 0.486489i
\(701\) 1.37195 0.660697i 0.0518179 0.0249542i −0.407795 0.913073i \(-0.633702\pi\)
0.459613 + 0.888119i \(0.347988\pi\)
\(702\) 0 0
\(703\) −5.85964 7.34775i −0.221000 0.277126i
\(704\) −7.34186 + 32.1668i −0.276707 + 1.21233i
\(705\) 0 0
\(706\) −3.49576 + 4.38354i −0.131564 + 0.164977i
\(707\) 3.36522 + 14.7440i 0.126562 + 0.554505i
\(708\) 0 0
\(709\) 5.70947 + 25.0148i 0.214424 + 0.939451i 0.961520 + 0.274735i \(0.0885903\pi\)
−0.747096 + 0.664716i \(0.768553\pi\)
\(710\) −8.74612 4.21191i −0.328236 0.158070i
\(711\) 0 0
\(712\) −10.5711 46.3149i −0.396168 1.73572i
\(713\) −33.5503 −1.25647
\(714\) 0 0
\(715\) −2.34560 + 2.94129i −0.0877205 + 0.109998i
\(716\) −4.26291 + 18.6770i −0.159313 + 0.697994i
\(717\) 0 0
\(718\) −12.0253 15.0792i −0.448780 0.562752i
\(719\) −29.6289 14.2685i −1.10497 0.532127i −0.209754 0.977754i \(-0.567266\pi\)
−0.895219 + 0.445627i \(0.852981\pi\)
\(720\) 0 0
\(721\) 20.4308 25.6195i 0.760884 0.954118i
\(722\) 1.01637 + 1.27448i 0.0378253 + 0.0474314i
\(723\) 0 0
\(724\) 18.7832 0.698073
\(725\) 22.5818 + 5.35956i 0.838669 + 0.199049i
\(726\) 0 0
\(727\) −8.56057 + 4.12256i −0.317494 + 0.152897i −0.585843 0.810425i \(-0.699236\pi\)
0.268349 + 0.963322i \(0.413522\pi\)
\(728\) −8.99145 11.2749i −0.333245 0.417876i
\(729\) 0 0
\(730\) 9.48782 4.56909i 0.351160 0.169110i
\(731\) 5.46768 + 2.63310i 0.202229 + 0.0973886i
\(732\) 0 0
\(733\) −4.34961 + 19.0569i −0.160656 + 0.703881i 0.828859 + 0.559457i \(0.188990\pi\)
−0.989516 + 0.144425i \(0.953867\pi\)
\(734\) −3.33311 + 14.6033i −0.123027 + 0.539018i
\(735\) 0 0
\(736\) 7.26940 + 31.8493i 0.267953 + 1.17398i
\(737\) 31.5246 1.16122
\(738\) 0 0
\(739\) −13.9431 6.71465i −0.512906 0.247003i 0.159483 0.987201i \(-0.449017\pi\)
−0.672389 + 0.740198i \(0.734732\pi\)
\(740\) 1.45861 + 0.702432i 0.0536197 + 0.0258219i
\(741\) 0 0
\(742\) 57.3504 2.10540
\(743\) 1.93584 + 8.48146i 0.0710190 + 0.311155i 0.997944 0.0640920i \(-0.0204151\pi\)
−0.926925 + 0.375247i \(0.877558\pi\)
\(744\) 0 0
\(745\) −0.592556 + 2.59616i −0.0217096 + 0.0951159i
\(746\) 5.83567 25.5677i 0.213659 0.936102i
\(747\) 0 0
\(748\) 3.73223 + 1.79735i 0.136464 + 0.0657175i
\(749\) 5.85456 2.81941i 0.213921 0.103019i
\(750\) 0 0
\(751\) 29.5091 + 37.0033i 1.07680 + 1.35027i 0.932678 + 0.360710i \(0.117466\pi\)
0.144126 + 0.989559i \(0.453963\pi\)
\(752\) 9.98983 4.81085i 0.364292 0.175434i
\(753\) 0 0
\(754\) −2.71449 + 5.51448i −0.0988560 + 0.200826i
\(755\) 15.4989 0.564063
\(756\) 0 0
\(757\) 32.8236 + 41.1595i 1.19299 + 1.49597i 0.824053 + 0.566513i \(0.191708\pi\)
0.368940 + 0.929453i \(0.379721\pi\)
\(758\) 11.8572 14.8685i 0.430675 0.540049i
\(759\) 0 0
\(760\) 9.54719 + 4.59768i 0.346313 + 0.166776i
\(761\) 14.1317 + 17.7206i 0.512275 + 0.642373i 0.968949 0.247261i \(-0.0795306\pi\)
−0.456673 + 0.889634i \(0.650959\pi\)
\(762\) 0 0
\(763\) 15.6216 68.4429i 0.565541 2.47780i
\(764\) −7.06126 + 8.85454i −0.255467 + 0.320346i
\(765\) 0 0
\(766\) −3.40895 −0.123170
\(767\) −2.53684 11.1146i −0.0915999 0.401325i
\(768\) 0 0
\(769\) 32.0417 + 15.4305i 1.15545 + 0.556437i 0.910667 0.413140i \(-0.135568\pi\)
0.244786 + 0.969577i \(0.421282\pi\)
\(770\) 3.66392 + 16.0527i 0.132038 + 0.578498i
\(771\) 0 0
\(772\) 1.82064 + 7.97672i 0.0655261 + 0.287089i
\(773\) 7.25335 9.09542i 0.260885 0.327139i −0.634087 0.773262i \(-0.718624\pi\)
0.894972 + 0.446122i \(0.147195\pi\)
\(774\) 0 0
\(775\) −4.42236 + 19.3756i −0.158856 + 0.695994i
\(776\) 29.6739 + 37.2100i 1.06523 + 1.33576i
\(777\) 0 0
\(778\) −36.7433 + 17.6946i −1.31731 + 0.634383i
\(779\) 15.1910 19.0489i 0.544273 0.682497i
\(780\) 0 0
\(781\) −41.7700 + 20.1154i −1.49465 + 0.719784i
\(782\) −8.76520 −0.313443
\(783\) 0 0
\(784\) −18.8351 −0.672681
\(785\) 1.13969 0.548848i 0.0406774 0.0195892i
\(786\) 0 0
\(787\) 5.09963 6.39473i 0.181782 0.227948i −0.682588 0.730803i \(-0.739146\pi\)
0.864370 + 0.502855i \(0.167717\pi\)
\(788\) 13.0842 6.30103i 0.466106 0.224465i
\(789\) 0 0
\(790\) 1.14754 + 1.43897i 0.0408276 + 0.0511961i
\(791\) 2.24770 9.84782i 0.0799190 0.350148i
\(792\) 0 0
\(793\) −0.592187 + 0.742579i −0.0210292 + 0.0263697i
\(794\) 7.28569 + 31.9207i 0.258559 + 1.13282i
\(795\) 0 0
\(796\) 2.52930 + 11.0816i 0.0896485 + 0.392776i
\(797\) 25.3234 + 12.1951i 0.896999 + 0.431972i 0.824804 0.565418i \(-0.191285\pi\)
0.0721952 + 0.997391i \(0.477000\pi\)
\(798\) 0 0
\(799\) −1.84219 8.07116i −0.0651719 0.285537i
\(800\) 19.3515 0.684180
\(801\) 0 0
\(802\) 20.3664 25.5387i 0.719164 0.901803i
\(803\) 11.1912 49.0318i 0.394929 1.73030i
\(804\) 0 0
\(805\) 16.6106 + 20.8290i 0.585447 + 0.734127i
\(806\) −4.74191 2.28358i −0.167027 0.0804358i
\(807\) 0 0
\(808\) 6.52864 8.18666i 0.229677 0.288006i
\(809\) 29.9751 + 37.5876i 1.05387 + 1.32151i 0.944862 + 0.327470i \(0.106196\pi\)
0.109008 + 0.994041i \(0.465232\pi\)
\(810\) 0 0
\(811\) 5.71044 0.200521 0.100260 0.994961i \(-0.468032\pi\)
0.100260 + 0.994961i \(0.468032\pi\)
\(812\) −8.76502 18.6098i −0.307592 0.653076i
\(813\) 0 0
\(814\) −9.10985 + 4.38707i −0.319300 + 0.153767i
\(815\) 3.80104 + 4.76636i 0.133145 + 0.166958i
\(816\) 0 0
\(817\) 20.1942 9.72503i 0.706507 0.340236i
\(818\) 22.5528 + 10.8609i 0.788542 + 0.379742i
\(819\) 0 0
\(820\) −0.933934 + 4.09183i −0.0326144 + 0.142893i
\(821\) −8.59478 + 37.6562i −0.299960 + 1.31421i 0.570227 + 0.821487i \(0.306855\pi\)
−0.870187 + 0.492722i \(0.836002\pi\)
\(822\) 0 0
\(823\) −5.29693 23.2074i −0.184639 0.808957i −0.979383 0.202012i \(-0.935252\pi\)
0.794744 0.606945i \(-0.207605\pi\)
\(824\) −22.6886 −0.790395
\(825\) 0 0
\(826\) −44.9554 21.6494i −1.56420 0.753278i
\(827\) −26.9217 12.9648i −0.936160 0.450831i −0.0973469 0.995251i \(-0.531036\pi\)
−0.838813 + 0.544420i \(0.816750\pi\)
\(828\) 0 0
\(829\) −26.7824 −0.930189 −0.465095 0.885261i \(-0.653980\pi\)
−0.465095 + 0.885261i \(0.653980\pi\)
\(830\) 1.19396 + 5.23107i 0.0414429 + 0.181573i
\(831\) 0 0
\(832\) −1.86353 + 8.16464i −0.0646061 + 0.283058i
\(833\) −3.12934 + 13.7105i −0.108425 + 0.475042i
\(834\) 0 0
\(835\) 6.91596 + 3.33055i 0.239337 + 0.115258i
\(836\) 13.7846 6.63829i 0.476749 0.229590i
\(837\) 0 0
\(838\) −19.7152 24.7220i −0.681049 0.854009i
\(839\) 41.2289 19.8548i 1.42338 0.685464i 0.445627 0.895219i \(-0.352981\pi\)
0.977754 + 0.209755i \(0.0672665\pi\)
\(840\) 0 0
\(841\) −18.4697 + 22.3577i −0.636888 + 0.770957i
\(842\) −8.92340 −0.307521
\(843\) 0 0
\(844\) 6.87010 + 8.61483i 0.236479 + 0.296535i
\(845\) 6.13828 7.69717i 0.211163 0.264791i
\(846\) 0 0
\(847\) 27.1664 + 13.0826i 0.933448 + 0.449525i
\(848\) −11.5497 14.4828i −0.396618 0.497343i
\(849\) 0 0
\(850\) −1.15537 + 5.06200i −0.0396288 + 0.173625i
\(851\) −10.2003 + 12.7907i −0.349661 + 0.438461i
\(852\) 0 0
\(853\) −12.8830 −0.441105 −0.220552 0.975375i \(-0.570786\pi\)
−0.220552 + 0.975375i \(0.570786\pi\)
\(854\) 0.925018 + 4.05277i 0.0316535 + 0.138683i
\(855\) 0 0
\(856\) −4.05364 1.95213i −0.138551 0.0667224i
\(857\) 5.07366 + 22.2292i 0.173313 + 0.759334i 0.984619 + 0.174713i \(0.0558996\pi\)
−0.811307 + 0.584621i \(0.801243\pi\)
\(858\) 0 0
\(859\) −8.50635 37.2688i −0.290233 1.27159i −0.884201 0.467106i \(-0.845297\pi\)
0.593968 0.804488i \(-0.297560\pi\)
\(860\) −2.40733 + 3.01870i −0.0820894 + 0.102937i
\(861\) 0 0
\(862\) −5.65546 + 24.7782i −0.192626 + 0.843948i
\(863\) 29.1909 + 36.6043i 0.993671 + 1.24602i 0.969188 + 0.246324i \(0.0792228\pi\)
0.0244837 + 0.999700i \(0.492206\pi\)
\(864\) 0 0
\(865\) 14.3947 6.93211i 0.489433 0.235699i
\(866\) 13.8984 17.4281i 0.472288 0.592230i
\(867\) 0 0
\(868\) 15.8702 7.64267i 0.538669 0.259409i
\(869\) 8.78995 0.298179
\(870\) 0 0
\(871\) 8.00162 0.271125
\(872\) −43.7942 + 21.0902i −1.48306 + 0.714203i
\(873\) 0 0
\(874\) −20.1844 + 25.3104i −0.682747 + 0.856137i
\(875\) 30.7139 14.7910i 1.03832 0.500028i
\(876\) 0 0
\(877\) −20.3595 25.5300i −0.687490 0.862086i 0.308530 0.951215i \(-0.400163\pi\)
−0.996020 + 0.0891290i \(0.971592\pi\)
\(878\) 0.0815574 0.357326i 0.00275243 0.0120592i
\(879\) 0 0
\(880\) 3.31595 4.15807i 0.111781 0.140169i
\(881\) 12.9540 + 56.7554i 0.436433 + 1.91214i 0.409051 + 0.912511i \(0.365860\pi\)
0.0273816 + 0.999625i \(0.491283\pi\)
\(882\) 0 0
\(883\) 9.60627 + 42.0878i 0.323277 + 1.41637i 0.831683 + 0.555251i \(0.187378\pi\)
−0.508406 + 0.861117i \(0.669765\pi\)
\(884\) 0.947321 + 0.456206i 0.0318618 + 0.0153439i
\(885\) 0 0
\(886\) −0.476979 2.08978i −0.0160244 0.0702076i
\(887\) −14.5588 −0.488836 −0.244418 0.969670i \(-0.578597\pi\)
−0.244418 + 0.969670i \(0.578597\pi\)
\(888\) 0 0
\(889\) −21.3899 + 26.8221i −0.717396 + 0.899586i
\(890\) −3.06353 + 13.4222i −0.102690 + 0.449914i
\(891\) 0 0
\(892\) 1.85433 + 2.32526i 0.0620876 + 0.0778554i
\(893\) −27.5485 13.2666i −0.921874 0.443951i
\(894\) 0 0
\(895\) 11.4499 14.3577i 0.382726 0.479924i
\(896\) −1.82553 2.28915i −0.0609868 0.0764750i
\(897\) 0 0
\(898\) 21.1480 0.705718
\(899\) −19.2806 15.6498i −0.643044 0.521951i
\(900\) 0 0
\(901\) −12.4614 + 6.00107i −0.415148 + 0.199925i
\(902\) −16.3435 20.4941i −0.544180 0.682380i
\(903\) 0 0
\(904\) −6.30127 + 3.03453i −0.209577 + 0.100927i
\(905\) −16.2224 7.81230i −0.539251 0.259690i
\(906\) 0 0
\(907\) −1.62680 + 7.12746i −0.0540169 + 0.236663i −0.994728 0.102544i \(-0.967302\pi\)
0.940712 + 0.339207i \(0.110159\pi\)
\(908\) 2.02567 8.87504i 0.0672242 0.294528i
\(909\) 0 0
\(910\) 0.929982 + 4.07452i 0.0308286 + 0.135069i
\(911\) 42.6967 1.41461 0.707303 0.706911i \(-0.249912\pi\)
0.707303 + 0.706911i \(0.249912\pi\)
\(912\) 0 0
\(913\) 23.0875 + 11.1184i 0.764085 + 0.367964i
\(914\) −32.2421 15.5270i −1.06647 0.513587i
\(915\) 0 0
\(916\) −0.427881 −0.0141376
\(917\) −0.788958 3.45665i −0.0260537 0.114149i
\(918\) 0 0
\(919\) 7.45917 32.6807i 0.246055 1.07804i −0.689341 0.724437i \(-0.742100\pi\)
0.935396 0.353601i \(-0.115043\pi\)
\(920\) 4.10467 17.9837i 0.135327 0.592906i
\(921\) 0 0
\(922\) −12.9838 6.25267i −0.427599 0.205921i
\(923\) −10.6021 + 5.10571i −0.348973 + 0.168057i
\(924\) 0 0
\(925\) 6.04227 + 7.57676i 0.198668 + 0.249122i
\(926\) 25.2066 12.1389i 0.828341 0.398908i
\(927\) 0 0
\(928\) −10.6788 + 21.6940i −0.350550 + 0.712140i
\(929\) −36.1689 −1.18666 −0.593331 0.804959i \(-0.702187\pi\)
−0.593331 + 0.804959i \(0.702187\pi\)
\(930\) 0 0
\(931\) 32.3844 + 40.6087i 1.06136 + 1.33090i
\(932\) 8.38195 10.5106i 0.274560 0.344287i
\(933\) 0 0
\(934\) 16.4637 + 7.92848i 0.538708 + 0.259428i
\(935\) −2.47584 3.10461i −0.0809687 0.101532i
\(936\) 0 0
\(937\) 2.77023 12.1372i 0.0904995 0.396504i −0.909308 0.416124i \(-0.863388\pi\)
0.999808 + 0.0196194i \(0.00624544\pi\)
\(938\) 21.8352 27.3805i 0.712945 0.894005i
\(939\) 0 0
\(940\) 5.26716 0.171796
\(941\) −6.98890 30.6204i −0.227832 0.998196i −0.951404 0.307947i \(-0.900358\pi\)
0.723572 0.690249i \(-0.242499\pi\)
\(942\) 0 0
\(943\) −38.2126 18.4022i −1.24438 0.599259i
\(944\) 3.58630 + 15.7126i 0.116724 + 0.511402i
\(945\) 0 0
\(946\) −5.36598 23.5099i −0.174463 0.764372i
\(947\) −25.4786 + 31.9492i −0.827944 + 1.03821i 0.170656 + 0.985331i \(0.445411\pi\)
−0.998601 + 0.0528789i \(0.983160\pi\)
\(948\) 0 0
\(949\) 2.84057 12.4453i 0.0922088 0.403993i
\(950\) 11.9565 + 14.9929i 0.387919 + 0.486435i
\(951\) 0 0
\(952\) 13.7145 6.60454i 0.444488 0.214054i
\(953\) −36.9751 + 46.3654i −1.19774 + 1.50192i −0.381342 + 0.924434i \(0.624538\pi\)
−0.816400 + 0.577487i \(0.804033\pi\)
\(954\) 0 0
\(955\) 9.78133 4.71044i 0.316516 0.152426i
\(956\) 16.7582 0.542000
\(957\) 0 0
\(958\) −0.683241 −0.0220745
\(959\) −13.9616 + 6.72353i −0.450842 + 0.217114i
\(960\) 0 0
\(961\) −6.07024 + 7.61184i −0.195814 + 0.245543i
\(962\) −2.31228 + 1.11354i −0.0745509 + 0.0359018i
\(963\) 0 0
\(964\) 14.5501 + 18.2453i 0.468627 + 0.587640i
\(965\) 1.74525 7.64645i 0.0561816 0.246148i
\(966\) 0 0
\(967\) 16.0446 20.1192i 0.515958 0.646991i −0.453787 0.891110i \(-0.649927\pi\)
0.969745 + 0.244119i \(0.0784987\pi\)
\(968\) −4.64562 20.3538i −0.149316 0.654196i
\(969\) 0 0
\(970\) −3.06917 13.4469i −0.0985450 0.431754i
\(971\) 2.26135 + 1.08901i 0.0725703 + 0.0349480i 0.469817 0.882764i \(-0.344320\pi\)
−0.397247 + 0.917712i \(0.630034\pi\)
\(972\) 0 0
\(973\) 12.3264 + 54.0054i 0.395166 + 1.73133i
\(974\) −22.6037 −0.724270
\(975\) 0 0
\(976\) 0.837168 1.04978i 0.0267971 0.0336025i
\(977\) 0.287421 1.25928i 0.00919542 0.0402878i −0.970122 0.242617i \(-0.921994\pi\)
0.979317 + 0.202330i \(0.0648512\pi\)
\(978\) 0 0
\(979\) 40.9949 + 51.4060i 1.31020 + 1.64294i
\(980\) −8.06130 3.88212i −0.257509 0.124010i
\(981\) 0 0
\(982\) 7.50580 9.41198i 0.239520 0.300348i
\(983\) −16.0344 20.1065i −0.511418 0.641298i 0.457344 0.889290i \(-0.348801\pi\)
−0.968762 + 0.247992i \(0.920229\pi\)
\(984\) 0 0
\(985\) −13.9211 −0.443563
\(986\) −5.03717 4.08860i −0.160416 0.130208i
\(987\) 0 0
\(988\) 3.49882 1.68494i 0.111312 0.0536052i
\(989\) −24.3270 30.5051i −0.773553 0.970005i
\(990\) 0 0
\(991\) −9.91307 + 4.77388i −0.314899 + 0.151647i −0.584657 0.811281i \(-0.698771\pi\)
0.269758 + 0.962928i \(0.413056\pi\)
\(992\) −18.6547 8.98363i −0.592287 0.285231i
\(993\) 0 0
\(994\) −11.4605 + 50.2118i −0.363506 + 1.59262i
\(995\) 2.42457 10.6227i 0.0768641 0.336763i
\(996\) 0 0
\(997\) −7.17568 31.4387i −0.227256 0.995674i −0.951866 0.306514i \(-0.900837\pi\)
0.724610 0.689159i \(-0.242020\pi\)
\(998\) 8.80669 0.278771
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.k.f.136.7 yes 60
3.2 odd 2 inner 783.2.k.f.136.4 60
29.16 even 7 inner 783.2.k.f.190.7 yes 60
87.74 odd 14 inner 783.2.k.f.190.4 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.k.f.136.4 60 3.2 odd 2 inner
783.2.k.f.136.7 yes 60 1.1 even 1 trivial
783.2.k.f.190.4 yes 60 87.74 odd 14 inner
783.2.k.f.190.7 yes 60 29.16 even 7 inner