Properties

Label 783.2.k.f.136.5
Level $783$
Weight $2$
Character 783.136
Analytic conductor $6.252$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(82,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0,-10,0,0,4,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{7})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 136.5
Character \(\chi\) \(=\) 783.136
Dual form 783.2.k.f.190.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0355415 + 0.0171159i) q^{2} +(-1.24601 + 1.56245i) q^{4} +(2.93813 - 1.41493i) q^{5} +(1.13234 + 1.41991i) q^{7} +(0.0350984 - 0.153776i) q^{8} +(-0.0802077 + 0.100577i) q^{10} +(0.113002 + 0.495093i) q^{11} +(0.503606 + 2.20644i) q^{13} +(-0.0645483 - 0.0310848i) q^{14} +(-0.888007 - 3.89061i) q^{16} +3.49545 q^{17} +(0.112911 - 0.141586i) q^{19} +(-1.45019 + 6.35368i) q^{20} +(-0.0124902 - 0.0156622i) q^{22} +(0.599645 + 0.288774i) q^{23} +(3.51313 - 4.40532i) q^{25} +(-0.0556641 - 0.0698006i) q^{26} -3.62945 q^{28} +(0.790993 + 5.32676i) q^{29} +(-3.29319 + 1.58592i) q^{31} +(0.294840 + 0.369717i) q^{32} +(-0.124233 + 0.0598277i) q^{34} +(5.33605 + 2.56971i) q^{35} +(0.985051 - 4.31579i) q^{37} +(-0.00158966 + 0.00696476i) q^{38} +(-0.114459 - 0.501476i) q^{40} +5.34511 q^{41} +(-2.69372 - 1.29723i) q^{43} +(-0.914357 - 0.440331i) q^{44} -0.0262549 q^{46} +(2.81182 + 12.3194i) q^{47} +(0.823692 - 3.60883i) q^{49} +(-0.0494608 + 0.216702i) q^{50} +(-4.07495 - 1.96239i) q^{52} +(-1.46623 + 0.706101i) q^{53} +(1.03253 + 1.29476i) q^{55} +(0.258093 - 0.124291i) q^{56} +(-0.119285 - 0.175782i) q^{58} +8.32033 q^{59} +(6.31949 + 7.92439i) q^{61} +(0.0899006 - 0.112732i) q^{62} +(7.17412 + 3.45488i) q^{64} +(4.60162 + 5.77025i) q^{65} +(-0.903434 + 3.95820i) q^{67} +(-4.35536 + 5.46145i) q^{68} -0.233634 q^{70} +(-3.04623 - 13.3464i) q^{71} +(-3.15028 - 1.51709i) q^{73} +(0.0388584 + 0.170250i) q^{74} +(0.0805324 + 0.352836i) q^{76} +(-0.575033 + 0.721068i) q^{77} +(-2.73209 + 11.9701i) q^{79} +(-8.11401 - 10.1747i) q^{80} +(-0.189973 + 0.0914862i) q^{82} +(-1.64649 + 2.06464i) q^{83} +(10.2701 - 4.94581i) q^{85} +0.117942 q^{86} +0.0800997 q^{88} +(9.78397 - 4.71171i) q^{89} +(-2.56270 + 3.21353i) q^{91} +(-1.19836 + 0.577098i) q^{92} +(-0.310794 - 0.389723i) q^{94} +(0.131413 - 0.575760i) q^{95} +(-4.88308 + 6.12319i) q^{97} +(0.0324931 + 0.142361i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 10 q^{4} + 4 q^{7} + 4 q^{10} - 24 q^{13} - 26 q^{16} + 4 q^{19} - 8 q^{22} - 16 q^{25} + 112 q^{28} - 4 q^{31} + 26 q^{34} - 18 q^{37} - 78 q^{40} - 8 q^{43} + 72 q^{46} + 14 q^{49} - 12 q^{52}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0355415 + 0.0171159i −0.0251316 + 0.0121028i −0.446407 0.894830i \(-0.647297\pi\)
0.421276 + 0.906933i \(0.361582\pi\)
\(3\) 0 0
\(4\) −1.24601 + 1.56245i −0.623005 + 0.781223i
\(5\) 2.93813 1.41493i 1.31397 0.632775i 0.360078 0.932922i \(-0.382750\pi\)
0.953893 + 0.300147i \(0.0970357\pi\)
\(6\) 0 0
\(7\) 1.13234 + 1.41991i 0.427986 + 0.536677i 0.948333 0.317278i \(-0.102769\pi\)
−0.520347 + 0.853955i \(0.674197\pi\)
\(8\) 0.0350984 0.153776i 0.0124092 0.0543681i
\(9\) 0 0
\(10\) −0.0802077 + 0.100577i −0.0253639 + 0.0318053i
\(11\) 0.113002 + 0.495093i 0.0340713 + 0.149276i 0.989102 0.147230i \(-0.0470357\pi\)
−0.955031 + 0.296506i \(0.904179\pi\)
\(12\) 0 0
\(13\) 0.503606 + 2.20644i 0.139675 + 0.611957i 0.995506 + 0.0947008i \(0.0301894\pi\)
−0.855831 + 0.517256i \(0.826953\pi\)
\(14\) −0.0645483 0.0310848i −0.0172513 0.00830777i
\(15\) 0 0
\(16\) −0.888007 3.89061i −0.222002 0.972653i
\(17\) 3.49545 0.847771 0.423885 0.905716i \(-0.360666\pi\)
0.423885 + 0.905716i \(0.360666\pi\)
\(18\) 0 0
\(19\) 0.112911 0.141586i 0.0259036 0.0324821i −0.768711 0.639596i \(-0.779102\pi\)
0.794615 + 0.607114i \(0.207673\pi\)
\(20\) −1.45019 + 6.35368i −0.324272 + 1.42073i
\(21\) 0 0
\(22\) −0.0124902 0.0156622i −0.00266292 0.00333919i
\(23\) 0.599645 + 0.288774i 0.125035 + 0.0602135i 0.495355 0.868690i \(-0.335038\pi\)
−0.370321 + 0.928904i \(0.620752\pi\)
\(24\) 0 0
\(25\) 3.51313 4.40532i 0.702626 0.881065i
\(26\) −0.0556641 0.0698006i −0.0109166 0.0136890i
\(27\) 0 0
\(28\) −3.62945 −0.685902
\(29\) 0.790993 + 5.32676i 0.146884 + 0.989154i
\(30\) 0 0
\(31\) −3.29319 + 1.58592i −0.591475 + 0.284839i −0.705581 0.708629i \(-0.749314\pi\)
0.114106 + 0.993469i \(0.463600\pi\)
\(32\) 0.294840 + 0.369717i 0.0521208 + 0.0653574i
\(33\) 0 0
\(34\) −0.124233 + 0.0598277i −0.0213059 + 0.0102604i
\(35\) 5.33605 + 2.56971i 0.901957 + 0.434360i
\(36\) 0 0
\(37\) 0.985051 4.31579i 0.161941 0.709511i −0.827122 0.562022i \(-0.810024\pi\)
0.989064 0.147489i \(-0.0471192\pi\)
\(38\) −0.00158966 + 0.00696476i −0.000257877 + 0.00112983i
\(39\) 0 0
\(40\) −0.114459 0.501476i −0.0180975 0.0792904i
\(41\) 5.34511 0.834765 0.417383 0.908731i \(-0.362947\pi\)
0.417383 + 0.908731i \(0.362947\pi\)
\(42\) 0 0
\(43\) −2.69372 1.29723i −0.410789 0.197826i 0.217064 0.976157i \(-0.430352\pi\)
−0.627853 + 0.778332i \(0.716066\pi\)
\(44\) −0.914357 0.440331i −0.137844 0.0663824i
\(45\) 0 0
\(46\) −0.0262549 −0.00387107
\(47\) 2.81182 + 12.3194i 0.410147 + 1.79697i 0.583504 + 0.812110i \(0.301681\pi\)
−0.173357 + 0.984859i \(0.555462\pi\)
\(48\) 0 0
\(49\) 0.823692 3.60883i 0.117670 0.515547i
\(50\) −0.0494608 + 0.216702i −0.00699482 + 0.0306463i
\(51\) 0 0
\(52\) −4.07495 1.96239i −0.565093 0.272135i
\(53\) −1.46623 + 0.706101i −0.201403 + 0.0969905i −0.531866 0.846828i \(-0.678509\pi\)
0.330464 + 0.943819i \(0.392795\pi\)
\(54\) 0 0
\(55\) 1.03253 + 1.29476i 0.139227 + 0.174585i
\(56\) 0.258093 0.124291i 0.0344891 0.0166091i
\(57\) 0 0
\(58\) −0.119285 0.175782i −0.0156629 0.0230813i
\(59\) 8.32033 1.08321 0.541607 0.840632i \(-0.317816\pi\)
0.541607 + 0.840632i \(0.317816\pi\)
\(60\) 0 0
\(61\) 6.31949 + 7.92439i 0.809128 + 1.01461i 0.999459 + 0.0328947i \(0.0104726\pi\)
−0.190331 + 0.981720i \(0.560956\pi\)
\(62\) 0.0899006 0.112732i 0.0114174 0.0143170i
\(63\) 0 0
\(64\) 7.17412 + 3.45488i 0.896765 + 0.431859i
\(65\) 4.60162 + 5.77025i 0.570760 + 0.715711i
\(66\) 0 0
\(67\) −0.903434 + 3.95820i −0.110372 + 0.483571i 0.889284 + 0.457355i \(0.151203\pi\)
−0.999656 + 0.0262165i \(0.991654\pi\)
\(68\) −4.35536 + 5.46145i −0.528165 + 0.662298i
\(69\) 0 0
\(70\) −0.233634 −0.0279246
\(71\) −3.04623 13.3464i −0.361521 1.58393i −0.749337 0.662189i \(-0.769628\pi\)
0.387816 0.921737i \(-0.373230\pi\)
\(72\) 0 0
\(73\) −3.15028 1.51709i −0.368712 0.177562i 0.240347 0.970687i \(-0.422739\pi\)
−0.609059 + 0.793125i \(0.708453\pi\)
\(74\) 0.0388584 + 0.170250i 0.00451719 + 0.0197911i
\(75\) 0 0
\(76\) 0.0805324 + 0.352836i 0.00923770 + 0.0404730i
\(77\) −0.575033 + 0.721068i −0.0655310 + 0.0821733i
\(78\) 0 0
\(79\) −2.73209 + 11.9701i −0.307384 + 1.34674i 0.551332 + 0.834286i \(0.314120\pi\)
−0.858716 + 0.512451i \(0.828738\pi\)
\(80\) −8.11401 10.1747i −0.907174 1.13756i
\(81\) 0 0
\(82\) −0.189973 + 0.0914862i −0.0209790 + 0.0101030i
\(83\) −1.64649 + 2.06464i −0.180726 + 0.226623i −0.863940 0.503595i \(-0.832010\pi\)
0.683214 + 0.730219i \(0.260582\pi\)
\(84\) 0 0
\(85\) 10.2701 4.94581i 1.11395 0.536448i
\(86\) 0.117942 0.0127180
\(87\) 0 0
\(88\) 0.0800997 0.00853865
\(89\) 9.78397 4.71171i 1.03710 0.499440i 0.163732 0.986505i \(-0.447647\pi\)
0.873366 + 0.487065i \(0.161932\pi\)
\(90\) 0 0
\(91\) −2.56270 + 3.21353i −0.268644 + 0.336869i
\(92\) −1.19836 + 0.577098i −0.124937 + 0.0601667i
\(93\) 0 0
\(94\) −0.310794 0.389723i −0.0320559 0.0401969i
\(95\) 0.131413 0.575760i 0.0134827 0.0590717i
\(96\) 0 0
\(97\) −4.88308 + 6.12319i −0.495802 + 0.621716i −0.965277 0.261230i \(-0.915872\pi\)
0.469475 + 0.882946i \(0.344443\pi\)
\(98\) 0.0324931 + 0.142361i 0.00328230 + 0.0143807i
\(99\) 0 0
\(100\) 2.50569 + 10.9782i 0.250569 + 1.09782i
\(101\) −5.83094 2.80803i −0.580200 0.279410i 0.120677 0.992692i \(-0.461493\pi\)
−0.700877 + 0.713282i \(0.747208\pi\)
\(102\) 0 0
\(103\) −1.08979 4.77468i −0.107380 0.470463i −0.999814 0.0192850i \(-0.993861\pi\)
0.892434 0.451178i \(-0.148996\pi\)
\(104\) 0.356974 0.0350042
\(105\) 0 0
\(106\) 0.0400266 0.0501918i 0.00388773 0.00487506i
\(107\) 1.66104 7.27749i 0.160579 0.703542i −0.828964 0.559302i \(-0.811069\pi\)
0.989543 0.144240i \(-0.0460736\pi\)
\(108\) 0 0
\(109\) −9.16120 11.4878i −0.877484 1.10033i −0.994241 0.107170i \(-0.965821\pi\)
0.116757 0.993161i \(-0.462750\pi\)
\(110\) −0.0588587 0.0283449i −0.00561196 0.00270258i
\(111\) 0 0
\(112\) 4.51881 5.66640i 0.426987 0.535425i
\(113\) −10.6404 13.3426i −1.00096 1.25517i −0.966742 0.255755i \(-0.917676\pi\)
−0.0342220 0.999414i \(-0.510895\pi\)
\(114\) 0 0
\(115\) 2.17043 0.202393
\(116\) −9.30835 5.40130i −0.864259 0.501498i
\(117\) 0 0
\(118\) −0.295717 + 0.142410i −0.0272229 + 0.0131099i
\(119\) 3.95805 + 4.96324i 0.362834 + 0.454979i
\(120\) 0 0
\(121\) 9.67831 4.66083i 0.879846 0.423712i
\(122\) −0.360237 0.173481i −0.0326143 0.0157062i
\(123\) 0 0
\(124\) 1.62544 7.12151i 0.145969 0.639530i
\(125\) 0.460518 2.01766i 0.0411900 0.180465i
\(126\) 0 0
\(127\) −0.646515 2.83257i −0.0573689 0.251350i 0.938109 0.346339i \(-0.112575\pi\)
−0.995478 + 0.0949895i \(0.969718\pi\)
\(128\) −1.25988 −0.111359
\(129\) 0 0
\(130\) −0.262311 0.126322i −0.0230062 0.0110792i
\(131\) −10.2587 4.94035i −0.896310 0.431640i −0.0717553 0.997422i \(-0.522860\pi\)
−0.824555 + 0.565782i \(0.808574\pi\)
\(132\) 0 0
\(133\) 0.328895 0.0285188
\(134\) −0.0356387 0.156143i −0.00307872 0.0134887i
\(135\) 0 0
\(136\) 0.122685 0.537517i 0.0105201 0.0460917i
\(137\) 3.08595 13.5204i 0.263651 1.15513i −0.653607 0.756834i \(-0.726745\pi\)
0.917257 0.398295i \(-0.130398\pi\)
\(138\) 0 0
\(139\) −16.8379 8.10869i −1.42817 0.687770i −0.449513 0.893274i \(-0.648402\pi\)
−0.978656 + 0.205504i \(0.934117\pi\)
\(140\) −10.6638 + 5.13541i −0.901255 + 0.434022i
\(141\) 0 0
\(142\) 0.336703 + 0.422212i 0.0282555 + 0.0354312i
\(143\) −1.03549 + 0.498663i −0.0865916 + 0.0417003i
\(144\) 0 0
\(145\) 9.86102 + 14.5315i 0.818913 + 1.20678i
\(146\) 0.137932 0.0114153
\(147\) 0 0
\(148\) 5.51581 + 6.91660i 0.453396 + 0.568541i
\(149\) −5.47075 + 6.86010i −0.448181 + 0.562001i −0.953679 0.300826i \(-0.902737\pi\)
0.505498 + 0.862828i \(0.331309\pi\)
\(150\) 0 0
\(151\) −19.6929 9.48362i −1.60259 0.771766i −0.602927 0.797796i \(-0.705999\pi\)
−0.999661 + 0.0260301i \(0.991713\pi\)
\(152\) −0.0178096 0.0223325i −0.00144455 0.00181141i
\(153\) 0 0
\(154\) 0.00809580 0.0354700i 0.000652378 0.00285826i
\(155\) −7.43186 + 9.31926i −0.596942 + 0.748541i
\(156\) 0 0
\(157\) −11.9300 −0.952117 −0.476058 0.879414i \(-0.657935\pi\)
−0.476058 + 0.879414i \(0.657935\pi\)
\(158\) −0.107776 0.472196i −0.00857417 0.0375659i
\(159\) 0 0
\(160\) 1.38940 + 0.669100i 0.109842 + 0.0528970i
\(161\) 0.268970 + 1.17844i 0.0211978 + 0.0928738i
\(162\) 0 0
\(163\) −1.88347 8.25202i −0.147525 0.646348i −0.993568 0.113234i \(-0.963879\pi\)
0.846044 0.533114i \(-0.178978\pi\)
\(164\) −6.66005 + 8.35144i −0.520063 + 0.652138i
\(165\) 0 0
\(166\) 0.0231807 0.101561i 0.00179917 0.00788270i
\(167\) −4.58584 5.75046i −0.354863 0.444984i 0.572074 0.820202i \(-0.306139\pi\)
−0.926936 + 0.375218i \(0.877568\pi\)
\(168\) 0 0
\(169\) 7.09783 3.41813i 0.545987 0.262933i
\(170\) −0.280362 + 0.351563i −0.0215028 + 0.0269636i
\(171\) 0 0
\(172\) 5.38326 2.59244i 0.410470 0.197672i
\(173\) 23.7159 1.80309 0.901543 0.432689i \(-0.142435\pi\)
0.901543 + 0.432689i \(0.142435\pi\)
\(174\) 0 0
\(175\) 10.2333 0.773562
\(176\) 1.82587 0.879291i 0.137630 0.0662791i
\(177\) 0 0
\(178\) −0.267092 + 0.334922i −0.0200194 + 0.0251035i
\(179\) 21.5888 10.3966i 1.61362 0.777079i 0.613699 0.789540i \(-0.289681\pi\)
0.999922 + 0.0124613i \(0.00396666\pi\)
\(180\) 0 0
\(181\) −11.6232 14.5751i −0.863947 1.08336i −0.995752 0.0920797i \(-0.970649\pi\)
0.131805 0.991276i \(-0.457923\pi\)
\(182\) 0.0360800 0.158077i 0.00267442 0.0117174i
\(183\) 0 0
\(184\) 0.0654532 0.0820757i 0.00482527 0.00605070i
\(185\) −3.21233 14.0741i −0.236175 1.03475i
\(186\) 0 0
\(187\) 0.394991 + 1.73057i 0.0288846 + 0.126552i
\(188\) −22.7520 10.9568i −1.65936 0.799104i
\(189\) 0 0
\(190\) 0.00518401 + 0.0227126i 0.000376088 + 0.00164775i
\(191\) −21.0544 −1.52344 −0.761722 0.647904i \(-0.775646\pi\)
−0.761722 + 0.647904i \(0.775646\pi\)
\(192\) 0 0
\(193\) −8.15888 + 10.2309i −0.587289 + 0.736437i −0.983337 0.181793i \(-0.941810\pi\)
0.396048 + 0.918230i \(0.370381\pi\)
\(194\) 0.0687482 0.301206i 0.00493583 0.0216253i
\(195\) 0 0
\(196\) 4.61228 + 5.78361i 0.329448 + 0.413115i
\(197\) 11.9773 + 5.76798i 0.853350 + 0.410951i 0.808820 0.588057i \(-0.200107\pi\)
0.0445298 + 0.999008i \(0.485821\pi\)
\(198\) 0 0
\(199\) −0.802831 + 1.00672i −0.0569112 + 0.0713643i −0.809472 0.587158i \(-0.800247\pi\)
0.752561 + 0.658522i \(0.228818\pi\)
\(200\) −0.554129 0.694856i −0.0391828 0.0491337i
\(201\) 0 0
\(202\) 0.255302 0.0179630
\(203\) −6.66786 + 7.15486i −0.467992 + 0.502173i
\(204\) 0 0
\(205\) 15.7046 7.56294i 1.09686 0.528219i
\(206\) 0.120456 + 0.151047i 0.00839254 + 0.0105239i
\(207\) 0 0
\(208\) 8.13720 3.91867i 0.564214 0.271711i
\(209\) 0.0828575 + 0.0399021i 0.00573137 + 0.00276008i
\(210\) 0 0
\(211\) −2.27753 + 9.97850i −0.156792 + 0.686949i 0.834024 + 0.551728i \(0.186031\pi\)
−0.990816 + 0.135220i \(0.956826\pi\)
\(212\) 0.723697 3.17072i 0.0497037 0.217766i
\(213\) 0 0
\(214\) 0.0655248 + 0.287083i 0.00447919 + 0.0196246i
\(215\) −9.75000 −0.664944
\(216\) 0 0
\(217\) −5.98090 2.88025i −0.406010 0.195524i
\(218\) 0.522226 + 0.251491i 0.0353696 + 0.0170331i
\(219\) 0 0
\(220\) −3.30953 −0.223129
\(221\) 1.76033 + 7.71250i 0.118413 + 0.518799i
\(222\) 0 0
\(223\) −1.72636 + 7.56368i −0.115606 + 0.506501i 0.883658 + 0.468133i \(0.155073\pi\)
−0.999264 + 0.0383684i \(0.987784\pi\)
\(224\) −0.191107 + 0.837294i −0.0127689 + 0.0559441i
\(225\) 0 0
\(226\) 0.606546 + 0.292097i 0.0403468 + 0.0194300i
\(227\) −6.19669 + 2.98417i −0.411289 + 0.198066i −0.628075 0.778153i \(-0.716157\pi\)
0.216786 + 0.976219i \(0.430443\pi\)
\(228\) 0 0
\(229\) 11.1290 + 13.9554i 0.735427 + 0.922196i 0.999100 0.0424159i \(-0.0135054\pi\)
−0.263673 + 0.964612i \(0.584934\pi\)
\(230\) −0.0771403 + 0.0371488i −0.00508648 + 0.00244952i
\(231\) 0 0
\(232\) 0.846891 + 0.0653249i 0.0556011 + 0.00428879i
\(233\) −11.1233 −0.728710 −0.364355 0.931260i \(-0.618710\pi\)
−0.364355 + 0.931260i \(0.618710\pi\)
\(234\) 0 0
\(235\) 25.6926 + 32.2175i 1.67600 + 2.10164i
\(236\) −10.3672 + 13.0001i −0.674848 + 0.846232i
\(237\) 0 0
\(238\) −0.225625 0.108655i −0.0146251 0.00704308i
\(239\) 2.73847 + 3.43393i 0.177137 + 0.222123i 0.862471 0.506106i \(-0.168915\pi\)
−0.685334 + 0.728228i \(0.740344\pi\)
\(240\) 0 0
\(241\) −0.965005 + 4.22796i −0.0621614 + 0.272347i −0.996452 0.0841661i \(-0.973177\pi\)
0.934290 + 0.356513i \(0.116035\pi\)
\(242\) −0.264207 + 0.331306i −0.0169839 + 0.0212971i
\(243\) 0 0
\(244\) −20.2556 −1.29673
\(245\) −2.68612 11.7687i −0.171610 0.751873i
\(246\) 0 0
\(247\) 0.369265 + 0.177829i 0.0234958 + 0.0113150i
\(248\) 0.128291 + 0.562078i 0.00814647 + 0.0356920i
\(249\) 0 0
\(250\) 0.0181666 + 0.0795929i 0.00114895 + 0.00503390i
\(251\) −11.6250 + 14.5773i −0.733763 + 0.920110i −0.999029 0.0440654i \(-0.985969\pi\)
0.265265 + 0.964175i \(0.414540\pi\)
\(252\) 0 0
\(253\) −0.0752089 + 0.329512i −0.00472834 + 0.0207162i
\(254\) 0.0714600 + 0.0896080i 0.00448380 + 0.00562251i
\(255\) 0 0
\(256\) −14.3035 + 6.88819i −0.893967 + 0.430512i
\(257\) 19.6769 24.6741i 1.22741 1.53913i 0.475753 0.879579i \(-0.342175\pi\)
0.751661 0.659550i \(-0.229253\pi\)
\(258\) 0 0
\(259\) 7.24347 3.48827i 0.450087 0.216751i
\(260\) −14.7494 −0.914716
\(261\) 0 0
\(262\) 0.449169 0.0277498
\(263\) 1.85557 0.893596i 0.114419 0.0551015i −0.375798 0.926701i \(-0.622632\pi\)
0.490218 + 0.871600i \(0.336917\pi\)
\(264\) 0 0
\(265\) −3.30890 + 4.14923i −0.203264 + 0.254885i
\(266\) −0.0116894 + 0.00562932i −0.000716724 + 0.000345156i
\(267\) 0 0
\(268\) −5.05879 6.34352i −0.309015 0.387492i
\(269\) 4.97240 21.7855i 0.303173 1.32829i −0.562135 0.827045i \(-0.690020\pi\)
0.865308 0.501241i \(-0.167123\pi\)
\(270\) 0 0
\(271\) 5.54826 6.95730i 0.337033 0.422626i −0.584217 0.811598i \(-0.698598\pi\)
0.921250 + 0.388972i \(0.127170\pi\)
\(272\) −3.10398 13.5994i −0.188206 0.824586i
\(273\) 0 0
\(274\) 0.121735 + 0.533355i 0.00735427 + 0.0322212i
\(275\) 2.57803 + 1.24152i 0.155461 + 0.0748662i
\(276\) 0 0
\(277\) −5.09383 22.3175i −0.306059 1.34093i −0.860815 0.508918i \(-0.830046\pi\)
0.554756 0.832013i \(-0.312811\pi\)
\(278\) 0.737230 0.0442161
\(279\) 0 0
\(280\) 0.582447 0.730365i 0.0348079 0.0436477i
\(281\) 1.56814 6.87048i 0.0935476 0.409859i −0.906373 0.422479i \(-0.861160\pi\)
0.999920 + 0.0126201i \(0.00401722\pi\)
\(282\) 0 0
\(283\) 4.58546 + 5.74998i 0.272577 + 0.341801i 0.899213 0.437511i \(-0.144140\pi\)
−0.626636 + 0.779312i \(0.715569\pi\)
\(284\) 24.6487 + 11.8702i 1.46263 + 0.704365i
\(285\) 0 0
\(286\) 0.0282676 0.0354465i 0.00167150 0.00209599i
\(287\) 6.05250 + 7.58959i 0.357268 + 0.448000i
\(288\) 0 0
\(289\) −4.78185 −0.281285
\(290\) −0.599195 0.347691i −0.0351859 0.0204171i
\(291\) 0 0
\(292\) 6.29565 3.03183i 0.368425 0.177424i
\(293\) −10.2778 12.8880i −0.600438 0.752925i 0.385008 0.922913i \(-0.374199\pi\)
−0.985446 + 0.169988i \(0.945627\pi\)
\(294\) 0 0
\(295\) 24.4462 11.7727i 1.42331 0.685431i
\(296\) −0.629092 0.302955i −0.0365652 0.0176089i
\(297\) 0 0
\(298\) 0.0770219 0.337455i 0.00446176 0.0195482i
\(299\) −0.335178 + 1.46851i −0.0193838 + 0.0849262i
\(300\) 0 0
\(301\) −1.20827 5.29377i −0.0696434 0.305128i
\(302\) 0.862237 0.0496162
\(303\) 0 0
\(304\) −0.651123 0.313564i −0.0373445 0.0179841i
\(305\) 29.7799 + 14.3413i 1.70519 + 0.821178i
\(306\) 0 0
\(307\) −17.7386 −1.01239 −0.506197 0.862418i \(-0.668949\pi\)
−0.506197 + 0.862418i \(0.668949\pi\)
\(308\) −0.410134 1.79691i −0.0233696 0.102389i
\(309\) 0 0
\(310\) 0.104632 0.458423i 0.00594271 0.0260367i
\(311\) 3.03536 13.2988i 0.172120 0.754105i −0.813004 0.582258i \(-0.802169\pi\)
0.985124 0.171847i \(-0.0549735\pi\)
\(312\) 0 0
\(313\) −12.4014 5.97221i −0.700970 0.337570i 0.0492232 0.998788i \(-0.484325\pi\)
−0.750194 + 0.661218i \(0.770040\pi\)
\(314\) 0.424010 0.204192i 0.0239282 0.0115232i
\(315\) 0 0
\(316\) −15.2984 19.1835i −0.860600 1.07916i
\(317\) 5.14252 2.47651i 0.288833 0.139095i −0.283857 0.958867i \(-0.591614\pi\)
0.572690 + 0.819772i \(0.305900\pi\)
\(318\) 0 0
\(319\) −2.54785 + 0.993547i −0.142652 + 0.0556279i
\(320\) 25.9669 1.45159
\(321\) 0 0
\(322\) −0.0297296 0.0372797i −0.00165676 0.00207752i
\(323\) 0.394675 0.494907i 0.0219603 0.0275374i
\(324\) 0 0
\(325\) 11.4893 + 5.53297i 0.637313 + 0.306914i
\(326\) 0.208182 + 0.261052i 0.0115301 + 0.0144583i
\(327\) 0 0
\(328\) 0.187605 0.821950i 0.0103587 0.0453846i
\(329\) −14.3085 + 17.9424i −0.788856 + 0.989194i
\(330\) 0 0
\(331\) −1.89612 −0.104220 −0.0521100 0.998641i \(-0.516595\pi\)
−0.0521100 + 0.998641i \(0.516595\pi\)
\(332\) −1.17434 5.14512i −0.0644502 0.282375i
\(333\) 0 0
\(334\) 0.261412 + 0.125889i 0.0143038 + 0.00688835i
\(335\) 2.94617 + 12.9080i 0.160966 + 0.705239i
\(336\) 0 0
\(337\) 3.16304 + 13.8582i 0.172302 + 0.754902i 0.985047 + 0.172284i \(0.0551146\pi\)
−0.812746 + 0.582618i \(0.802028\pi\)
\(338\) −0.193763 + 0.242971i −0.0105393 + 0.0132159i
\(339\) 0 0
\(340\) −5.06905 + 22.2090i −0.274908 + 1.20445i
\(341\) −1.15731 1.45122i −0.0626720 0.0785882i
\(342\) 0 0
\(343\) 17.5109 8.43282i 0.945501 0.455329i
\(344\) −0.294029 + 0.368700i −0.0158530 + 0.0198790i
\(345\) 0 0
\(346\) −0.842899 + 0.405919i −0.0453145 + 0.0218223i
\(347\) 27.0820 1.45384 0.726918 0.686724i \(-0.240952\pi\)
0.726918 + 0.686724i \(0.240952\pi\)
\(348\) 0 0
\(349\) −6.40948 −0.343092 −0.171546 0.985176i \(-0.554876\pi\)
−0.171546 + 0.985176i \(0.554876\pi\)
\(350\) −0.363705 + 0.175151i −0.0194409 + 0.00936223i
\(351\) 0 0
\(352\) −0.149727 + 0.187752i −0.00798047 + 0.0100072i
\(353\) 6.84796 3.29780i 0.364480 0.175524i −0.242675 0.970108i \(-0.578025\pi\)
0.607155 + 0.794583i \(0.292311\pi\)
\(354\) 0 0
\(355\) −27.8344 34.9032i −1.47730 1.85247i
\(356\) −4.82912 + 21.1578i −0.255943 + 1.12136i
\(357\) 0 0
\(358\) −0.589350 + 0.739022i −0.0311481 + 0.0390585i
\(359\) 7.01722 + 30.7445i 0.370355 + 1.62263i 0.725781 + 0.687926i \(0.241479\pi\)
−0.355426 + 0.934704i \(0.615664\pi\)
\(360\) 0 0
\(361\) 4.22060 + 18.4917i 0.222137 + 0.973245i
\(362\) 0.662571 + 0.319078i 0.0348240 + 0.0167703i
\(363\) 0 0
\(364\) −1.82781 8.00818i −0.0958035 0.419743i
\(365\) −11.4025 −0.596834
\(366\) 0 0
\(367\) −7.45437 + 9.34748i −0.389115 + 0.487934i −0.937350 0.348390i \(-0.886729\pi\)
0.548235 + 0.836324i \(0.315300\pi\)
\(368\) 0.591018 2.58942i 0.0308089 0.134983i
\(369\) 0 0
\(370\) 0.355062 + 0.445233i 0.0184588 + 0.0231466i
\(371\) −2.66289 1.28238i −0.138250 0.0665778i
\(372\) 0 0
\(373\) 18.2660 22.9049i 0.945778 1.18597i −0.0366500 0.999328i \(-0.511669\pi\)
0.982428 0.186640i \(-0.0597599\pi\)
\(374\) −0.0436588 0.0547464i −0.00225754 0.00283087i
\(375\) 0 0
\(376\) 1.99312 0.102787
\(377\) −11.3548 + 4.42787i −0.584804 + 0.228047i
\(378\) 0 0
\(379\) 20.4464 9.84645i 1.05026 0.505778i 0.172564 0.984998i \(-0.444795\pi\)
0.877695 + 0.479220i \(0.159080\pi\)
\(380\) 0.735852 + 0.922729i 0.0377484 + 0.0473350i
\(381\) 0 0
\(382\) 0.748305 0.360365i 0.0382866 0.0184379i
\(383\) −3.32145 1.59953i −0.169718 0.0817320i 0.347096 0.937830i \(-0.387168\pi\)
−0.516814 + 0.856098i \(0.672882\pi\)
\(384\) 0 0
\(385\) −0.669260 + 2.93222i −0.0341087 + 0.149440i
\(386\) 0.114868 0.503268i 0.00584661 0.0256157i
\(387\) 0 0
\(388\) −3.48279 15.2591i −0.176812 0.774664i
\(389\) 13.9852 0.709080 0.354540 0.935041i \(-0.384637\pi\)
0.354540 + 0.935041i \(0.384637\pi\)
\(390\) 0 0
\(391\) 2.09603 + 1.00939i 0.106001 + 0.0510472i
\(392\) −0.526042 0.253329i −0.0265691 0.0127950i
\(393\) 0 0
\(394\) −0.524416 −0.0264197
\(395\) 8.90955 + 39.0353i 0.448288 + 1.96408i
\(396\) 0 0
\(397\) −0.387060 + 1.69582i −0.0194260 + 0.0851108i −0.983712 0.179753i \(-0.942470\pi\)
0.964286 + 0.264864i \(0.0853272\pi\)
\(398\) 0.0113029 0.0495214i 0.000566565 0.00248228i
\(399\) 0 0
\(400\) −20.2591 9.75626i −1.01295 0.487813i
\(401\) −2.36625 + 1.13953i −0.118165 + 0.0569052i −0.492032 0.870577i \(-0.663746\pi\)
0.373867 + 0.927482i \(0.378032\pi\)
\(402\) 0 0
\(403\) −5.15771 6.46756i −0.256924 0.322172i
\(404\) 11.6528 5.61169i 0.579748 0.279192i
\(405\) 0 0
\(406\) 0.114524 0.368421i 0.00568373 0.0182844i
\(407\) 2.24803 0.111431
\(408\) 0 0
\(409\) 16.5003 + 20.6908i 0.815889 + 1.02309i 0.999198 + 0.0400373i \(0.0127477\pi\)
−0.183309 + 0.983055i \(0.558681\pi\)
\(410\) −0.428719 + 0.537596i −0.0211729 + 0.0265500i
\(411\) 0 0
\(412\) 8.81807 + 4.24656i 0.434435 + 0.209213i
\(413\) 9.42148 + 11.8142i 0.463601 + 0.581337i
\(414\) 0 0
\(415\) −1.91630 + 8.39584i −0.0940673 + 0.412136i
\(416\) −0.667277 + 0.836738i −0.0327159 + 0.0410245i
\(417\) 0 0
\(418\) −0.00362784 −0.000177443
\(419\) 6.07020 + 26.5953i 0.296549 + 1.29926i 0.875228 + 0.483710i \(0.160711\pi\)
−0.578680 + 0.815555i \(0.696432\pi\)
\(420\) 0 0
\(421\) −8.90770 4.28972i −0.434135 0.209068i 0.204036 0.978963i \(-0.434594\pi\)
−0.638170 + 0.769895i \(0.720308\pi\)
\(422\) −0.0898441 0.393633i −0.00437354 0.0191617i
\(423\) 0 0
\(424\) 0.0571191 + 0.250255i 0.00277395 + 0.0121535i
\(425\) 12.2800 15.3986i 0.595665 0.746941i
\(426\) 0 0
\(427\) −4.09612 + 17.9463i −0.198225 + 0.868482i
\(428\) 9.30102 + 11.6631i 0.449582 + 0.563758i
\(429\) 0 0
\(430\) 0.346529 0.166880i 0.0167111 0.00804766i
\(431\) −22.6155 + 28.3590i −1.08935 + 1.36600i −0.164190 + 0.986429i \(0.552501\pi\)
−0.925161 + 0.379574i \(0.876070\pi\)
\(432\) 0 0
\(433\) −32.6318 + 15.7146i −1.56818 + 0.755197i −0.997807 0.0661865i \(-0.978917\pi\)
−0.570376 + 0.821384i \(0.693202\pi\)
\(434\) 0.261868 0.0125701
\(435\) 0 0
\(436\) 29.3640 1.40628
\(437\) 0.108593 0.0522957i 0.00519471 0.00250164i
\(438\) 0 0
\(439\) −14.9426 + 18.7374i −0.713172 + 0.894289i −0.997930 0.0643102i \(-0.979515\pi\)
0.284758 + 0.958599i \(0.408087\pi\)
\(440\) 0.235343 0.113335i 0.0112195 0.00540305i
\(441\) 0 0
\(442\) −0.194571 0.243984i −0.00925480 0.0116051i
\(443\) 1.27786 5.59868i 0.0607131 0.266001i −0.935457 0.353441i \(-0.885011\pi\)
0.996170 + 0.0874399i \(0.0278686\pi\)
\(444\) 0 0
\(445\) 22.0798 27.6872i 1.04668 1.31250i
\(446\) −0.0681016 0.298373i −0.00322470 0.0141284i
\(447\) 0 0
\(448\) 3.21795 + 14.0988i 0.152034 + 0.666103i
\(449\) −1.34769 0.649013i −0.0636014 0.0306288i 0.401813 0.915722i \(-0.368380\pi\)
−0.465414 + 0.885093i \(0.654095\pi\)
\(450\) 0 0
\(451\) 0.604006 + 2.64632i 0.0284415 + 0.124610i
\(452\) 34.1052 1.60417
\(453\) 0 0
\(454\) 0.169163 0.212124i 0.00793921 0.00995545i
\(455\) −2.98264 + 13.0678i −0.139828 + 0.612628i
\(456\) 0 0
\(457\) 16.8493 + 21.1283i 0.788176 + 0.988342i 0.999939 + 0.0110206i \(0.00350805\pi\)
−0.211763 + 0.977321i \(0.567921\pi\)
\(458\) −0.634401 0.305511i −0.0296436 0.0142756i
\(459\) 0 0
\(460\) −2.70437 + 3.39118i −0.126092 + 0.158114i
\(461\) −9.68529 12.1450i −0.451089 0.565648i 0.503339 0.864089i \(-0.332105\pi\)
−0.954428 + 0.298441i \(0.903533\pi\)
\(462\) 0 0
\(463\) 6.85055 0.318372 0.159186 0.987249i \(-0.449113\pi\)
0.159186 + 0.987249i \(0.449113\pi\)
\(464\) 20.0219 7.80764i 0.929495 0.362461i
\(465\) 0 0
\(466\) 0.395338 0.190385i 0.0183137 0.00881940i
\(467\) 23.1038 + 28.9713i 1.06912 + 1.34063i 0.936973 + 0.349402i \(0.113615\pi\)
0.132145 + 0.991230i \(0.457813\pi\)
\(468\) 0 0
\(469\) −6.64331 + 3.19925i −0.306759 + 0.147728i
\(470\) −1.46458 0.705306i −0.0675561 0.0325333i
\(471\) 0 0
\(472\) 0.292030 1.27947i 0.0134418 0.0588923i
\(473\) 0.337853 1.48023i 0.0155345 0.0680611i
\(474\) 0 0
\(475\) −0.227062 0.994822i −0.0104183 0.0456455i
\(476\) −12.6866 −0.581487
\(477\) 0 0
\(478\) −0.156104 0.0751758i −0.00714004 0.00343846i
\(479\) −24.7741 11.9306i −1.13196 0.545122i −0.228391 0.973570i \(-0.573346\pi\)
−0.903567 + 0.428447i \(0.859061\pi\)
\(480\) 0 0
\(481\) 10.0186 0.456810
\(482\) −0.0380676 0.166785i −0.00173393 0.00759685i
\(483\) 0 0
\(484\) −4.77697 + 20.9293i −0.217135 + 0.951331i
\(485\) −5.68325 + 24.8999i −0.258063 + 1.13065i
\(486\) 0 0
\(487\) 5.72112 + 2.75514i 0.259249 + 0.124848i 0.558994 0.829172i \(-0.311187\pi\)
−0.299745 + 0.954019i \(0.596902\pi\)
\(488\) 1.44039 0.693654i 0.0652033 0.0314003i
\(489\) 0 0
\(490\) 0.296900 + 0.372301i 0.0134126 + 0.0168188i
\(491\) −30.1094 + 14.4999i −1.35882 + 0.654373i −0.964373 0.264546i \(-0.914778\pi\)
−0.394446 + 0.918919i \(0.629064\pi\)
\(492\) 0 0
\(493\) 2.76487 + 18.6194i 0.124524 + 0.838575i
\(494\) −0.0161679 −0.000727429
\(495\) 0 0
\(496\) 9.09457 + 11.4042i 0.408358 + 0.512065i
\(497\) 15.5014 19.4381i 0.695331 0.871918i
\(498\) 0 0
\(499\) −2.61809 1.26081i −0.117202 0.0564414i 0.374364 0.927282i \(-0.377861\pi\)
−0.491566 + 0.870840i \(0.663575\pi\)
\(500\) 2.57868 + 3.23356i 0.115322 + 0.144609i
\(501\) 0 0
\(502\) 0.163667 0.717070i 0.00730480 0.0320044i
\(503\) 15.8508 19.8763i 0.706752 0.886239i −0.290755 0.956797i \(-0.593907\pi\)
0.997508 + 0.0705581i \(0.0224780\pi\)
\(504\) 0 0
\(505\) −21.1052 −0.939169
\(506\) −0.00296685 0.0129986i −0.000131892 0.000577858i
\(507\) 0 0
\(508\) 5.23130 + 2.51926i 0.232101 + 0.111774i
\(509\) −0.298764 1.30897i −0.0132425 0.0580192i 0.967875 0.251432i \(-0.0809015\pi\)
−0.981117 + 0.193413i \(0.938044\pi\)
\(510\) 0 0
\(511\) −1.41305 6.19100i −0.0625099 0.273874i
\(512\) 1.96152 2.45967i 0.0866877 0.108703i
\(513\) 0 0
\(514\) −0.277029 + 1.21374i −0.0122192 + 0.0535359i
\(515\) −9.95777 12.4867i −0.438792 0.550228i
\(516\) 0 0
\(517\) −5.78150 + 2.78423i −0.254270 + 0.122450i
\(518\) −0.197739 + 0.247957i −0.00868815 + 0.0108946i
\(519\) 0 0
\(520\) 1.04884 0.505093i 0.0459945 0.0221498i
\(521\) −4.68838 −0.205402 −0.102701 0.994712i \(-0.532748\pi\)
−0.102701 + 0.994712i \(0.532748\pi\)
\(522\) 0 0
\(523\) 28.1658 1.23160 0.615802 0.787901i \(-0.288832\pi\)
0.615802 + 0.787901i \(0.288832\pi\)
\(524\) 20.5015 9.87301i 0.895613 0.431304i
\(525\) 0 0
\(526\) −0.0506551 + 0.0635195i −0.00220867 + 0.00276958i
\(527\) −11.5112 + 5.54349i −0.501435 + 0.241478i
\(528\) 0 0
\(529\) −14.0641 17.6358i −0.611482 0.766774i
\(530\) 0.0465856 0.204105i 0.00202355 0.00886574i
\(531\) 0 0
\(532\) −0.409806 + 0.513881i −0.0177673 + 0.0222795i
\(533\) 2.69183 + 11.7937i 0.116596 + 0.510840i
\(534\) 0 0
\(535\) −5.41678 23.7325i −0.234188 1.02604i
\(536\) 0.576969 + 0.277853i 0.0249212 + 0.0120014i
\(537\) 0 0
\(538\) 0.196152 + 0.859397i 0.00845670 + 0.0370512i
\(539\) 1.87978 0.0809680
\(540\) 0 0
\(541\) 3.66224 4.59230i 0.157452 0.197438i −0.696848 0.717219i \(-0.745415\pi\)
0.854300 + 0.519780i \(0.173986\pi\)
\(542\) −0.0781132 + 0.342236i −0.00335525 + 0.0147003i
\(543\) 0 0
\(544\) 1.03060 + 1.29233i 0.0441864 + 0.0554081i
\(545\) −43.1712 20.7901i −1.84925 0.890552i
\(546\) 0 0
\(547\) 21.1523 26.5242i 0.904409 1.13409i −0.0860510 0.996291i \(-0.527425\pi\)
0.990460 0.137802i \(-0.0440038\pi\)
\(548\) 17.2798 + 21.6682i 0.738158 + 0.925621i
\(549\) 0 0
\(550\) −0.112877 −0.00481308
\(551\) 0.843508 + 0.489457i 0.0359346 + 0.0208516i
\(552\) 0 0
\(553\) −20.0901 + 9.67490i −0.854319 + 0.411418i
\(554\) 0.563027 + 0.706013i 0.0239207 + 0.0299956i
\(555\) 0 0
\(556\) 33.6495 16.2048i 1.42706 0.687235i
\(557\) 29.4888 + 14.2011i 1.24948 + 0.601719i 0.937373 0.348327i \(-0.113250\pi\)
0.312109 + 0.950046i \(0.398964\pi\)
\(558\) 0 0
\(559\) 1.50569 6.59684i 0.0636837 0.279017i
\(560\) 5.25928 23.0424i 0.222245 0.973720i
\(561\) 0 0
\(562\) 0.0618602 + 0.271027i 0.00260942 + 0.0114326i
\(563\) 18.8319 0.793669 0.396834 0.917890i \(-0.370109\pi\)
0.396834 + 0.917890i \(0.370109\pi\)
\(564\) 0 0
\(565\) −50.1417 24.1470i −2.10948 1.01587i
\(566\) −0.261390 0.125879i −0.0109870 0.00529108i
\(567\) 0 0
\(568\) −2.15928 −0.0906013
\(569\) −5.43036 23.7920i −0.227653 0.997411i −0.951548 0.307501i \(-0.900507\pi\)
0.723895 0.689910i \(-0.242350\pi\)
\(570\) 0 0
\(571\) −2.71722 + 11.9049i −0.113712 + 0.498205i 0.885711 + 0.464237i \(0.153671\pi\)
−0.999423 + 0.0339675i \(0.989186\pi\)
\(572\) 0.511089 2.23923i 0.0213697 0.0936269i
\(573\) 0 0
\(574\) −0.345017 0.166152i −0.0144007 0.00693504i
\(575\) 3.37877 1.62713i 0.140905 0.0678561i
\(576\) 0 0
\(577\) −20.4328 25.6219i −0.850627 1.06665i −0.996998 0.0774226i \(-0.975331\pi\)
0.146372 0.989230i \(-0.453240\pi\)
\(578\) 0.169954 0.0818455i 0.00706915 0.00340432i
\(579\) 0 0
\(580\) −34.9916 2.69907i −1.45295 0.112073i
\(581\) −4.79601 −0.198972
\(582\) 0 0
\(583\) −0.515273 0.646131i −0.0213404 0.0267600i
\(584\) −0.343863 + 0.431190i −0.0142291 + 0.0178428i
\(585\) 0 0
\(586\) 0.585879 + 0.282145i 0.0242025 + 0.0116553i
\(587\) −19.4380 24.3744i −0.802291 1.00604i −0.999669 0.0257137i \(-0.991814\pi\)
0.197378 0.980327i \(-0.436757\pi\)
\(588\) 0 0
\(589\) −0.147294 + 0.645339i −0.00606916 + 0.0265907i
\(590\) −0.667355 + 0.836836i −0.0274746 + 0.0344520i
\(591\) 0 0
\(592\) −17.6658 −0.726059
\(593\) −6.99611 30.6519i −0.287296 1.25872i −0.888220 0.459418i \(-0.848058\pi\)
0.600924 0.799306i \(-0.294799\pi\)
\(594\) 0 0
\(595\) 18.6519 + 8.98227i 0.764653 + 0.368237i
\(596\) −3.90194 17.0955i −0.159830 0.700259i
\(597\) 0 0
\(598\) −0.0132221 0.0579299i −0.000540693 0.00236893i
\(599\) 2.23694 2.80504i 0.0913990 0.114611i −0.734029 0.679118i \(-0.762362\pi\)
0.825428 + 0.564507i \(0.190934\pi\)
\(600\) 0 0
\(601\) −7.67834 + 33.6410i −0.313206 + 1.37225i 0.536015 + 0.844208i \(0.319929\pi\)
−0.849221 + 0.528037i \(0.822928\pi\)
\(602\) 0.133551 + 0.167468i 0.00544314 + 0.00682548i
\(603\) 0 0
\(604\) 39.3552 18.9525i 1.60134 0.771165i
\(605\) 21.8414 27.3882i 0.887978 1.11349i
\(606\) 0 0
\(607\) 15.5482 7.48761i 0.631082 0.303913i −0.0908634 0.995863i \(-0.528963\pi\)
0.721945 + 0.691950i \(0.243248\pi\)
\(608\) 0.0856376 0.00347306
\(609\) 0 0
\(610\) −1.30389 −0.0527928
\(611\) −25.7660 + 12.4083i −1.04238 + 0.501984i
\(612\) 0 0
\(613\) −14.6921 + 18.4233i −0.593407 + 0.744108i −0.984334 0.176313i \(-0.943583\pi\)
0.390927 + 0.920422i \(0.372154\pi\)
\(614\) 0.630456 0.303612i 0.0254431 0.0122528i
\(615\) 0 0
\(616\) 0.0907004 + 0.113735i 0.00365442 + 0.00458250i
\(617\) −3.54391 + 15.5269i −0.142672 + 0.625088i 0.852136 + 0.523320i \(0.175307\pi\)
−0.994808 + 0.101768i \(0.967550\pi\)
\(618\) 0 0
\(619\) 25.4609 31.9270i 1.02336 1.28325i 0.0649412 0.997889i \(-0.479314\pi\)
0.958419 0.285364i \(-0.0921146\pi\)
\(620\) −5.30068 23.2238i −0.212880 0.932689i
\(621\) 0 0
\(622\) 0.119739 + 0.524612i 0.00480110 + 0.0210350i
\(623\) 17.7690 + 8.55712i 0.711902 + 0.342834i
\(624\) 0 0
\(625\) 4.76732 + 20.8870i 0.190693 + 0.835480i
\(626\) 0.542985 0.0217020
\(627\) 0 0
\(628\) 14.8649 18.6400i 0.593173 0.743816i
\(629\) 3.44319 15.0856i 0.137289 0.601503i
\(630\) 0 0
\(631\) −12.1350 15.2169i −0.483088 0.605774i 0.479233 0.877688i \(-0.340915\pi\)
−0.962322 + 0.271914i \(0.912343\pi\)
\(632\) 1.74482 + 0.840261i 0.0694052 + 0.0334238i
\(633\) 0 0
\(634\) −0.140385 + 0.176038i −0.00557541 + 0.00699135i
\(635\) −5.90742 7.40768i −0.234429 0.293965i
\(636\) 0 0
\(637\) 8.37749 0.331928
\(638\) 0.0735491 0.0789209i 0.00291184 0.00312451i
\(639\) 0 0
\(640\) −3.70170 + 1.78265i −0.146323 + 0.0704653i
\(641\) −25.0201 31.3742i −0.988233 1.23920i −0.970932 0.239355i \(-0.923064\pi\)
−0.0173008 0.999850i \(-0.505507\pi\)
\(642\) 0 0
\(643\) −17.5493 + 8.45132i −0.692078 + 0.333287i −0.746645 0.665223i \(-0.768337\pi\)
0.0545666 + 0.998510i \(0.482622\pi\)
\(644\) −2.17638 1.04809i −0.0857615 0.0413006i
\(645\) 0 0
\(646\) −0.00555658 + 0.0243450i −0.000218621 + 0.000957840i
\(647\) −6.78166 + 29.7124i −0.266615 + 1.16812i 0.647308 + 0.762228i \(0.275895\pi\)
−0.913923 + 0.405887i \(0.866963\pi\)
\(648\) 0 0
\(649\) 0.940211 + 4.11933i 0.0369065 + 0.161698i
\(650\) −0.503049 −0.0197312
\(651\) 0 0
\(652\) 15.2402 + 7.33928i 0.596851 + 0.287428i
\(653\) −38.5788 18.5786i −1.50971 0.727036i −0.517977 0.855394i \(-0.673315\pi\)
−0.991728 + 0.128359i \(0.959029\pi\)
\(654\) 0 0
\(655\) −37.1317 −1.45086
\(656\) −4.74649 20.7957i −0.185319 0.811937i
\(657\) 0 0
\(658\) 0.201448 0.882601i 0.00785326 0.0344074i
\(659\) −4.50470 + 19.7364i −0.175478 + 0.768820i 0.808204 + 0.588903i \(0.200440\pi\)
−0.983682 + 0.179917i \(0.942417\pi\)
\(660\) 0 0
\(661\) −40.2615 19.3889i −1.56599 0.754142i −0.568351 0.822786i \(-0.692418\pi\)
−0.997641 + 0.0686443i \(0.978133\pi\)
\(662\) 0.0673909 0.0324537i 0.00261922 0.00126135i
\(663\) 0 0
\(664\) 0.259703 + 0.325657i 0.0100784 + 0.0126380i
\(665\) 0.966335 0.465363i 0.0374729 0.0180460i
\(666\) 0 0
\(667\) −1.06391 + 3.42258i −0.0411949 + 0.132523i
\(668\) 14.6988 0.568713
\(669\) 0 0
\(670\) −0.325643 0.408343i −0.0125807 0.0157757i
\(671\) −3.20920 + 4.02420i −0.123890 + 0.155353i
\(672\) 0 0
\(673\) 28.2795 + 13.6187i 1.09010 + 0.524963i 0.890531 0.454922i \(-0.150333\pi\)
0.199565 + 0.979885i \(0.436047\pi\)
\(674\) −0.349614 0.438402i −0.0134666 0.0168866i
\(675\) 0 0
\(676\) −3.50331 + 15.3490i −0.134743 + 0.590346i
\(677\) 6.69919 8.40052i 0.257471 0.322858i −0.636249 0.771484i \(-0.719515\pi\)
0.893720 + 0.448625i \(0.148086\pi\)
\(678\) 0 0
\(679\) −14.2237 −0.545857
\(680\) −0.400084 1.75288i −0.0153425 0.0672200i
\(681\) 0 0
\(682\) 0.0659716 + 0.0317702i 0.00252618 + 0.00121655i
\(683\) −1.03313 4.52645i −0.0395317 0.173200i 0.951308 0.308241i \(-0.0997404\pi\)
−0.990840 + 0.135041i \(0.956883\pi\)
\(684\) 0 0
\(685\) −10.0635 44.0912i −0.384508 1.68464i
\(686\) −0.478029 + 0.599430i −0.0182512 + 0.0228863i
\(687\) 0 0
\(688\) −2.65497 + 11.6322i −0.101220 + 0.443473i
\(689\) −2.29638 2.87957i −0.0874850 0.109703i
\(690\) 0 0
\(691\) 33.8748 16.3133i 1.28866 0.620586i 0.341059 0.940042i \(-0.389214\pi\)
0.947601 + 0.319456i \(0.103500\pi\)
\(692\) −29.5502 + 37.0548i −1.12333 + 1.40861i
\(693\) 0 0
\(694\) −0.962533 + 0.463532i −0.0365373 + 0.0175954i
\(695\) −60.9450 −2.31178
\(696\) 0 0
\(697\) 18.6835 0.707689
\(698\) 0.227802 0.109704i 0.00862245 0.00415235i
\(699\) 0 0
\(700\) −12.7507 + 15.9889i −0.481932 + 0.604324i
\(701\) −22.7922 + 10.9761i −0.860850 + 0.414563i −0.811593 0.584223i \(-0.801399\pi\)
−0.0492565 + 0.998786i \(0.515685\pi\)
\(702\) 0 0
\(703\) −0.499833 0.626771i −0.0188516 0.0236391i
\(704\) −0.899796 + 3.94226i −0.0339123 + 0.148580i
\(705\) 0 0
\(706\) −0.186942 + 0.234418i −0.00703565 + 0.00882242i
\(707\) −2.61546 11.4591i −0.0983646 0.430963i
\(708\) 0 0
\(709\) −0.889239 3.89601i −0.0333961 0.146318i 0.955481 0.295052i \(-0.0953371\pi\)
−0.988877 + 0.148735i \(0.952480\pi\)
\(710\) 1.58668 + 0.764103i 0.0595469 + 0.0286763i
\(711\) 0 0
\(712\) −0.381147 1.66992i −0.0142841 0.0625827i
\(713\) −2.43272 −0.0911060
\(714\) 0 0
\(715\) −2.33682 + 2.93027i −0.0873919 + 0.109586i
\(716\) −10.6557 + 46.6856i −0.398221 + 1.74472i
\(717\) 0 0
\(718\) −0.775621 0.972598i −0.0289459 0.0362970i
\(719\) −28.9446 13.9390i −1.07945 0.519837i −0.192310 0.981334i \(-0.561598\pi\)
−0.887141 + 0.461498i \(0.847312\pi\)
\(720\) 0 0
\(721\) 5.54562 6.95399i 0.206530 0.258980i
\(722\) −0.466507 0.584982i −0.0173616 0.0217708i
\(723\) 0 0
\(724\) 37.2554 1.38459
\(725\) 26.2450 + 15.2290i 0.974713 + 0.565591i
\(726\) 0 0
\(727\) 13.4572 6.48065i 0.499100 0.240354i −0.167358 0.985896i \(-0.553524\pi\)
0.666458 + 0.745542i \(0.267809\pi\)
\(728\) 0.404218 + 0.506873i 0.0149813 + 0.0187860i
\(729\) 0 0
\(730\) 0.405262 0.195164i 0.0149994 0.00722334i
\(731\) −9.41577 4.53440i −0.348255 0.167711i
\(732\) 0 0
\(733\) −7.60884 + 33.3365i −0.281039 + 1.23131i 0.615425 + 0.788195i \(0.288984\pi\)
−0.896464 + 0.443116i \(0.853873\pi\)
\(734\) 0.104949 0.459811i 0.00387374 0.0169719i
\(735\) 0 0
\(736\) 0.0700344 + 0.306841i 0.00258150 + 0.0113103i
\(737\) −2.06177 −0.0759461
\(738\) 0 0
\(739\) −23.5997 11.3650i −0.868127 0.418068i −0.0538534 0.998549i \(-0.517150\pi\)
−0.814274 + 0.580481i \(0.802865\pi\)
\(740\) 25.9926 + 12.5174i 0.955509 + 0.460149i
\(741\) 0 0
\(742\) 0.116592 0.00428023
\(743\) −5.98118 26.2052i −0.219428 0.961377i −0.957902 0.287095i \(-0.907310\pi\)
0.738474 0.674282i \(-0.235547\pi\)
\(744\) 0 0
\(745\) −6.36721 + 27.8966i −0.233277 + 1.02205i
\(746\) −0.257165 + 1.12671i −0.00941546 + 0.0412518i
\(747\) 0 0
\(748\) −3.19609 1.53915i −0.116860 0.0562770i
\(749\) 12.2143 5.88209i 0.446300 0.214927i
\(750\) 0 0
\(751\) 20.7956 + 26.0769i 0.758843 + 0.951559i 0.999820 0.0189721i \(-0.00603938\pi\)
−0.240977 + 0.970531i \(0.577468\pi\)
\(752\) 45.4331 21.8794i 1.65677 0.797860i
\(753\) 0 0
\(754\) 0.327781 0.351721i 0.0119371 0.0128089i
\(755\) −71.2790 −2.59411
\(756\) 0 0
\(757\) 26.2087 + 32.8647i 0.952572 + 1.19449i 0.980826 + 0.194887i \(0.0624339\pi\)
−0.0282540 + 0.999601i \(0.508995\pi\)
\(758\) −0.558164 + 0.699915i −0.0202734 + 0.0254221i
\(759\) 0 0
\(760\) −0.0839258 0.0404165i −0.00304431 0.00146606i
\(761\) −15.8814 19.9147i −0.575701 0.721906i 0.405672 0.914019i \(-0.367038\pi\)
−0.981373 + 0.192113i \(0.938466\pi\)
\(762\) 0 0
\(763\) 5.93804 26.0163i 0.214971 0.941852i
\(764\) 26.2340 32.8964i 0.949112 1.19015i
\(765\) 0 0
\(766\) 0.145427 0.00525448
\(767\) 4.19017 + 18.3583i 0.151298 + 0.662881i
\(768\) 0 0
\(769\) 8.17793 + 3.93828i 0.294904 + 0.142018i 0.575486 0.817812i \(-0.304813\pi\)
−0.280582 + 0.959830i \(0.590527\pi\)
\(770\) −0.0264010 0.115670i −0.000951427 0.00416847i
\(771\) 0 0
\(772\) −5.81921 25.4956i −0.209438 0.917608i
\(773\) 8.43552 10.5778i 0.303404 0.380457i −0.606634 0.794981i \(-0.707481\pi\)
0.910038 + 0.414524i \(0.136052\pi\)
\(774\) 0 0
\(775\) −4.58293 + 20.0791i −0.164624 + 0.721263i
\(776\) 0.770213 + 0.965817i 0.0276490 + 0.0346708i
\(777\) 0 0
\(778\) −0.497056 + 0.239370i −0.0178203 + 0.00858182i
\(779\) 0.603523 0.756794i 0.0216234 0.0271149i
\(780\) 0 0
\(781\) 6.26347 3.01633i 0.224125 0.107933i
\(782\) −0.0917726 −0.00328178
\(783\) 0 0
\(784\) −14.7720 −0.527571
\(785\) −35.0518 + 16.8801i −1.25105 + 0.602476i
\(786\) 0 0
\(787\) −20.7270 + 25.9909i −0.738839 + 0.926474i −0.999238 0.0390267i \(-0.987574\pi\)
0.260400 + 0.965501i \(0.416146\pi\)
\(788\) −23.9360 + 11.5270i −0.852686 + 0.410632i
\(789\) 0 0
\(790\) −0.984782 1.23488i −0.0350370 0.0439350i
\(791\) 6.89681 30.2169i 0.245222 1.07439i
\(792\) 0 0
\(793\) −14.3022 + 17.9344i −0.507886 + 0.636868i
\(794\) −0.0152688 0.0668969i −0.000541869 0.00237408i
\(795\) 0 0
\(796\) −0.572608 2.50876i −0.0202956 0.0889206i
\(797\) 47.2370 + 22.7482i 1.67322 + 0.805781i 0.997652 + 0.0684851i \(0.0218165\pi\)
0.675570 + 0.737296i \(0.263898\pi\)
\(798\) 0 0
\(799\) 9.82858 + 43.0618i 0.347710 + 1.52342i
\(800\) 2.66453 0.0942055
\(801\) 0 0
\(802\) 0.0645961 0.0810009i 0.00228097 0.00286024i
\(803\) 0.395115 1.73111i 0.0139433 0.0610896i
\(804\) 0 0
\(805\) 2.45767 + 3.08182i 0.0866216 + 0.108620i
\(806\) 0.294011 + 0.141588i 0.0103561 + 0.00498723i
\(807\) 0 0
\(808\) −0.636465 + 0.798102i −0.0223908 + 0.0280771i
\(809\) 3.86163 + 4.84233i 0.135768 + 0.170247i 0.845067 0.534660i \(-0.179560\pi\)
−0.709300 + 0.704907i \(0.750989\pi\)
\(810\) 0 0
\(811\) 21.7975 0.765412 0.382706 0.923870i \(-0.374992\pi\)
0.382706 + 0.923870i \(0.374992\pi\)
\(812\) −2.87087 19.3332i −0.100748 0.678463i
\(813\) 0 0
\(814\) −0.0798983 + 0.0384770i −0.00280043 + 0.00134862i
\(815\) −17.2099 21.5805i −0.602836 0.755933i
\(816\) 0 0
\(817\) −0.487822 + 0.234923i −0.0170667 + 0.00821890i
\(818\) −0.940587 0.452963i −0.0328869 0.0158375i
\(819\) 0 0
\(820\) −7.75140 + 33.9611i −0.270691 + 1.18597i
\(821\) −5.69755 + 24.9626i −0.198846 + 0.871200i 0.772780 + 0.634675i \(0.218866\pi\)
−0.971625 + 0.236526i \(0.923991\pi\)
\(822\) 0 0
\(823\) −6.47616 28.3739i −0.225745 0.989052i −0.953068 0.302757i \(-0.902093\pi\)
0.727323 0.686295i \(-0.240764\pi\)
\(824\) −0.772483 −0.0269107
\(825\) 0 0
\(826\) −0.537063 0.258636i −0.0186868 0.00899909i
\(827\) 9.99659 + 4.81410i 0.347615 + 0.167403i 0.599541 0.800344i \(-0.295350\pi\)
−0.251926 + 0.967747i \(0.581064\pi\)
\(828\) 0 0
\(829\) 9.49885 0.329909 0.164954 0.986301i \(-0.447252\pi\)
0.164954 + 0.986301i \(0.447252\pi\)
\(830\) −0.0755942 0.331200i −0.00262391 0.0114961i
\(831\) 0 0
\(832\) −4.01005 + 17.5692i −0.139024 + 0.609102i
\(833\) 2.87917 12.6145i 0.0997574 0.437066i
\(834\) 0 0
\(835\) −21.6103 10.4070i −0.747854 0.360148i
\(836\) −0.165586 + 0.0797420i −0.00572691 + 0.00275794i
\(837\) 0 0
\(838\) −0.670946 0.841339i −0.0231774 0.0290636i
\(839\) −34.1753 + 16.4579i −1.17986 + 0.568191i −0.917871 0.396879i \(-0.870093\pi\)
−0.261990 + 0.965070i \(0.584379\pi\)
\(840\) 0 0
\(841\) −27.7487 + 8.42685i −0.956850 + 0.290581i
\(842\) 0.390015 0.0134408
\(843\) 0 0
\(844\) −12.7531 15.9918i −0.438978 0.550461i
\(845\) 16.0179 20.0858i 0.551033 0.690973i
\(846\) 0 0
\(847\) 17.5772 + 8.46471i 0.603958 + 0.290851i
\(848\) 4.04919 + 5.07753i 0.139050 + 0.174363i
\(849\) 0 0
\(850\) −0.172888 + 0.757471i −0.00593000 + 0.0259810i
\(851\) 1.83697 2.30348i 0.0629704 0.0789624i
\(852\) 0 0
\(853\) 37.8188 1.29489 0.647446 0.762112i \(-0.275837\pi\)
0.647446 + 0.762112i \(0.275837\pi\)
\(854\) −0.161584 0.707946i −0.00552930 0.0242254i
\(855\) 0 0
\(856\) −1.06081 0.510857i −0.0362576 0.0174607i
\(857\) −1.36878 5.99703i −0.0467568 0.204855i 0.946154 0.323717i \(-0.104933\pi\)
−0.992911 + 0.118862i \(0.962075\pi\)
\(858\) 0 0
\(859\) 5.26726 + 23.0774i 0.179717 + 0.787390i 0.981760 + 0.190124i \(0.0608892\pi\)
−0.802043 + 0.597266i \(0.796254\pi\)
\(860\) 12.1486 15.2338i 0.414263 0.519470i
\(861\) 0 0
\(862\) 0.318401 1.39500i 0.0108448 0.0475140i
\(863\) 30.7366 + 38.5425i 1.04629 + 1.31200i 0.948494 + 0.316795i \(0.102607\pi\)
0.0977924 + 0.995207i \(0.468822\pi\)
\(864\) 0 0
\(865\) 69.6804 33.5563i 2.36920 1.14095i
\(866\) 0.890812 1.11704i 0.0302710 0.0379587i
\(867\) 0 0
\(868\) 11.9525 5.75601i 0.405694 0.195372i
\(869\) −6.23502 −0.211509
\(870\) 0 0
\(871\) −9.18852 −0.311341
\(872\) −2.08809 + 1.00557i −0.0707117 + 0.0340530i
\(873\) 0 0
\(874\) −0.00296447 + 0.00371733i −0.000100275 + 0.000125741i
\(875\) 3.38637 1.63079i 0.114480 0.0551308i
\(876\) 0 0
\(877\) −29.1137 36.5074i −0.983100 1.23277i −0.972519 0.232825i \(-0.925203\pi\)
−0.0105817 0.999944i \(-0.503368\pi\)
\(878\) 0.210375 0.921712i 0.00709981 0.0311063i
\(879\) 0 0
\(880\) 4.12050 5.16694i 0.138902 0.174178i
\(881\) 5.58105 + 24.4522i 0.188030 + 0.823815i 0.977653 + 0.210223i \(0.0674190\pi\)
−0.789623 + 0.613592i \(0.789724\pi\)
\(882\) 0 0
\(883\) −8.98295 39.3569i −0.302300 1.32446i −0.866645 0.498925i \(-0.833728\pi\)
0.564345 0.825539i \(-0.309129\pi\)
\(884\) −14.2438 6.85943i −0.479069 0.230708i
\(885\) 0 0
\(886\) 0.0504092 + 0.220857i 0.00169353 + 0.00741984i
\(887\) 11.9802 0.402254 0.201127 0.979565i \(-0.435540\pi\)
0.201127 + 0.979565i \(0.435540\pi\)
\(888\) 0 0
\(889\) 3.28993 4.12544i 0.110341 0.138363i
\(890\) −0.310859 + 1.36196i −0.0104200 + 0.0456530i
\(891\) 0 0
\(892\) −9.66678 12.1218i −0.323668 0.405867i
\(893\) 2.06174 + 0.992884i 0.0689937 + 0.0332256i
\(894\) 0 0
\(895\) 48.7202 61.0931i 1.62854 2.04212i
\(896\) −1.42662 1.78893i −0.0476601 0.0597639i
\(897\) 0 0
\(898\) 0.0590073 0.00196910
\(899\) −11.0527 16.2876i −0.368628 0.543221i
\(900\) 0 0
\(901\) −5.12515 + 2.46814i −0.170743 + 0.0822257i
\(902\) −0.0667614 0.0837161i −0.00222291 0.00278744i
\(903\) 0 0
\(904\) −2.42524 + 1.16793i −0.0806623 + 0.0388449i
\(905\) −54.7732 26.3774i −1.82072 0.876813i
\(906\) 0 0
\(907\) −8.90704 + 39.0243i −0.295753 + 1.29578i 0.580631 + 0.814167i \(0.302806\pi\)
−0.876384 + 0.481613i \(0.840051\pi\)
\(908\) 3.05853 13.4003i 0.101501 0.444704i
\(909\) 0 0
\(910\) −0.117659 0.515500i −0.00390037 0.0170887i
\(911\) −31.8339 −1.05470 −0.527351 0.849647i \(-0.676815\pi\)
−0.527351 + 0.849647i \(0.676815\pi\)
\(912\) 0 0
\(913\) −1.20824 0.581859i −0.0399870 0.0192567i
\(914\) −0.960479 0.462542i −0.0317698 0.0152995i
\(915\) 0 0
\(916\) −35.6714 −1.17862
\(917\) −4.60155 20.1607i −0.151957 0.665765i
\(918\) 0 0
\(919\) −7.91959 + 34.6980i −0.261243 + 1.14458i 0.658662 + 0.752439i \(0.271123\pi\)
−0.919905 + 0.392142i \(0.871734\pi\)
\(920\) 0.0761786 0.333760i 0.00251154 0.0110038i
\(921\) 0 0
\(922\) 0.552102 + 0.265878i 0.0181825 + 0.00875623i
\(923\) 27.9140 13.4427i 0.918799 0.442470i
\(924\) 0 0
\(925\) −15.5518 19.5014i −0.511341 0.641202i
\(926\) −0.243479 + 0.117253i −0.00800120 + 0.00385318i
\(927\) 0 0
\(928\) −1.73618 + 1.86298i −0.0569928 + 0.0611554i
\(929\) 7.16965 0.235229 0.117614 0.993059i \(-0.462475\pi\)
0.117614 + 0.993059i \(0.462475\pi\)
\(930\) 0 0
\(931\) −0.417957 0.524101i −0.0136980 0.0171767i
\(932\) 13.8597 17.3795i 0.453990 0.569285i
\(933\) 0 0
\(934\) −1.31701 0.634241i −0.0430940 0.0207530i
\(935\) 3.60917 + 4.52575i 0.118032 + 0.148008i
\(936\) 0 0
\(937\) 4.54938 19.9321i 0.148622 0.651154i −0.844647 0.535323i \(-0.820190\pi\)
0.993269 0.115831i \(-0.0369531\pi\)
\(938\) 0.181355 0.227412i 0.00592145 0.00742527i
\(939\) 0 0
\(940\) −82.3512 −2.68600
\(941\) 10.3898 + 45.5207i 0.338698 + 1.48393i 0.801781 + 0.597618i \(0.203886\pi\)
−0.463083 + 0.886315i \(0.653257\pi\)
\(942\) 0 0
\(943\) 3.20517 + 1.54353i 0.104375 + 0.0502641i
\(944\) −7.38851 32.3712i −0.240475 1.05359i
\(945\) 0 0
\(946\) 0.0133277 + 0.0583923i 0.000433320 + 0.00189850i
\(947\) −6.36873 + 7.98614i −0.206956 + 0.259515i −0.874467 0.485086i \(-0.838788\pi\)
0.667511 + 0.744600i \(0.267360\pi\)
\(948\) 0 0
\(949\) 1.76088 7.71492i 0.0571606 0.250437i
\(950\) 0.0250974 + 0.0314711i 0.000814266 + 0.00102106i
\(951\) 0 0
\(952\) 0.902150 0.434452i 0.0292388 0.0140807i
\(953\) 4.18030 5.24193i 0.135413 0.169803i −0.709501 0.704704i \(-0.751080\pi\)
0.844915 + 0.534901i \(0.179651\pi\)
\(954\) 0 0
\(955\) −61.8606 + 29.7905i −2.00176 + 0.963997i
\(956\) −8.77750 −0.283885
\(957\) 0 0
\(958\) 1.08471 0.0350454
\(959\) 22.6922 10.9280i 0.732770 0.352884i
\(960\) 0 0
\(961\) −10.9982 + 13.7913i −0.354781 + 0.444881i
\(962\) −0.356077 + 0.171477i −0.0114804 + 0.00552866i
\(963\) 0 0
\(964\) −5.40356 6.77585i −0.174037 0.218235i
\(965\) −9.49584 + 41.6040i −0.305682 + 1.33928i
\(966\) 0 0
\(967\) 28.8734 36.2061i 0.928507 1.16431i −0.0576234 0.998338i \(-0.518352\pi\)
0.986130 0.165973i \(-0.0530763\pi\)
\(968\) −0.377031 1.65188i −0.0121182 0.0530935i
\(969\) 0 0
\(970\) −0.224193 0.982254i −0.00719841 0.0315383i
\(971\) −16.9355 8.15570i −0.543486 0.261729i 0.141935 0.989876i \(-0.454668\pi\)
−0.685421 + 0.728147i \(0.740382\pi\)
\(972\) 0 0
\(973\) −7.55262 33.0902i −0.242126 1.06082i
\(974\) −0.250494 −0.00802634
\(975\) 0 0
\(976\) 25.2190 31.6236i 0.807240 1.01225i
\(977\) 8.82303 38.6562i 0.282274 1.23672i −0.612596 0.790396i \(-0.709875\pi\)
0.894870 0.446327i \(-0.147268\pi\)
\(978\) 0 0
\(979\) 3.43834 + 4.31154i 0.109890 + 0.137797i
\(980\) 21.7349 + 10.4670i 0.694295 + 0.334355i
\(981\) 0 0
\(982\) 0.821955 1.03070i 0.0262296 0.0328909i
\(983\) 13.6519 + 17.1189i 0.435426 + 0.546007i 0.950331 0.311240i \(-0.100744\pi\)
−0.514905 + 0.857247i \(0.672173\pi\)
\(984\) 0 0
\(985\) 43.3522 1.38132
\(986\) −0.416955 0.614438i −0.0132786 0.0195677i
\(987\) 0 0
\(988\) −0.737955 + 0.355380i −0.0234775 + 0.0113062i
\(989\) −1.24067 1.55575i −0.0394511 0.0494701i
\(990\) 0 0
\(991\) 11.4546 5.51624i 0.363867 0.175229i −0.243012 0.970023i \(-0.578135\pi\)
0.606879 + 0.794794i \(0.292421\pi\)
\(992\) −1.55730 0.749958i −0.0494445 0.0238112i
\(993\) 0 0
\(994\) −0.218242 + 0.956179i −0.00692220 + 0.0303281i
\(995\) −0.934386 + 4.09381i −0.0296220 + 0.129783i
\(996\) 0 0
\(997\) 12.0266 + 52.6918i 0.380885 + 1.66877i 0.694713 + 0.719287i \(0.255532\pi\)
−0.313827 + 0.949480i \(0.601611\pi\)
\(998\) 0.114631 0.00362857
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.k.f.136.5 60
3.2 odd 2 inner 783.2.k.f.136.6 yes 60
29.16 even 7 inner 783.2.k.f.190.5 yes 60
87.74 odd 14 inner 783.2.k.f.190.6 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.k.f.136.5 60 1.1 even 1 trivial
783.2.k.f.136.6 yes 60 3.2 odd 2 inner
783.2.k.f.190.5 yes 60 29.16 even 7 inner
783.2.k.f.190.6 yes 60 87.74 odd 14 inner