Properties

Label 783.2.k.f.136.3
Level $783$
Weight $2$
Character 783.136
Analytic conductor $6.252$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(82,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0,-10,0,0,4,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{7})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 136.3
Character \(\chi\) \(=\) 783.136
Dual form 783.2.k.f.190.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.42552 + 0.686496i) q^{2} +(0.313861 - 0.393569i) q^{4} +(1.33026 - 0.640620i) q^{5} +(0.300750 + 0.377129i) q^{7} +(0.526918 - 2.30858i) q^{8} +(-1.45653 + 1.82644i) q^{10} +(-0.893763 - 3.91583i) q^{11} +(-0.713691 - 3.12688i) q^{13} +(-0.687624 - 0.331142i) q^{14} +(1.05773 + 4.63420i) q^{16} -6.16896 q^{17} +(-4.73505 + 5.93756i) q^{19} +(0.165388 - 0.724614i) q^{20} +(3.96228 + 4.96854i) q^{22} +(-1.48532 - 0.715295i) q^{23} +(-1.75825 + 2.20478i) q^{25} +(3.16398 + 3.96750i) q^{26} +0.242820 q^{28} +(-1.81488 - 5.07013i) q^{29} +(4.26937 - 2.05602i) q^{31} +(-1.73639 - 2.17737i) q^{32} +(8.79399 - 4.23496i) q^{34} +(0.641673 + 0.309013i) q^{35} +(-1.89985 + 8.32377i) q^{37} +(2.67381 - 11.7147i) q^{38} +(-0.777983 - 3.40856i) q^{40} -5.44168 q^{41} +(-9.14266 - 4.40287i) q^{43} +(-1.82167 - 0.877268i) q^{44} +2.60841 q^{46} +(2.17854 + 9.54479i) q^{47} +(1.50587 - 6.59765i) q^{49} +(0.992857 - 4.34999i) q^{50} +(-1.45464 - 0.700519i) q^{52} +(-6.97382 + 3.35842i) q^{53} +(-3.69750 - 4.63651i) q^{55} +(1.02910 - 0.495590i) q^{56} +(6.06778 + 5.98168i) q^{58} -2.25688 q^{59} +(1.67795 + 2.10409i) q^{61} +(-4.67464 + 5.86181i) q^{62} +(-4.59527 - 2.21297i) q^{64} +(-2.95254 - 3.70237i) q^{65} +(2.81867 - 12.3494i) q^{67} +(-1.93619 + 2.42791i) q^{68} -1.12686 q^{70} +(-0.734095 - 3.21628i) q^{71} +(-8.01113 - 3.85796i) q^{73} +(-3.00596 - 13.1700i) q^{74} +(0.850694 + 3.72713i) q^{76} +(1.20797 - 1.51475i) q^{77} +(0.235786 - 1.03305i) q^{79} +(4.37581 + 5.48710i) q^{80} +(7.75724 - 3.73569i) q^{82} +(7.42726 - 9.31349i) q^{83} +(-8.20632 + 3.95195i) q^{85} +16.0556 q^{86} -9.51095 q^{88} +(3.00588 - 1.44755i) q^{89} +(0.964596 - 1.20957i) q^{91} +(-0.747703 + 0.360075i) q^{92} +(-9.65801 - 12.1108i) q^{94} +(-2.49513 + 10.9319i) q^{95} +(8.15625 - 10.2276i) q^{97} +(2.38261 + 10.4389i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 10 q^{4} + 4 q^{7} + 4 q^{10} - 24 q^{13} - 26 q^{16} + 4 q^{19} - 8 q^{22} - 16 q^{25} + 112 q^{28} - 4 q^{31} + 26 q^{34} - 18 q^{37} - 78 q^{40} - 8 q^{43} + 72 q^{46} + 14 q^{49} - 12 q^{52}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.42552 + 0.686496i −1.00800 + 0.485426i −0.863645 0.504100i \(-0.831824\pi\)
−0.144352 + 0.989526i \(0.546110\pi\)
\(3\) 0 0
\(4\) 0.313861 0.393569i 0.156930 0.196784i
\(5\) 1.33026 0.640620i 0.594910 0.286494i −0.112100 0.993697i \(-0.535758\pi\)
0.707010 + 0.707203i \(0.250043\pi\)
\(6\) 0 0
\(7\) 0.300750 + 0.377129i 0.113673 + 0.142541i 0.835413 0.549623i \(-0.185229\pi\)
−0.721740 + 0.692165i \(0.756657\pi\)
\(8\) 0.526918 2.30858i 0.186294 0.816206i
\(9\) 0 0
\(10\) −1.45653 + 1.82644i −0.460597 + 0.577570i
\(11\) −0.893763 3.91583i −0.269480 1.18067i −0.910620 0.413244i \(-0.864396\pi\)
0.641141 0.767423i \(-0.278462\pi\)
\(12\) 0 0
\(13\) −0.713691 3.12688i −0.197942 0.867242i −0.972159 0.234321i \(-0.924713\pi\)
0.774217 0.632920i \(-0.218144\pi\)
\(14\) −0.687624 0.331142i −0.183775 0.0885016i
\(15\) 0 0
\(16\) 1.05773 + 4.63420i 0.264432 + 1.15855i
\(17\) −6.16896 −1.49619 −0.748096 0.663591i \(-0.769032\pi\)
−0.748096 + 0.663591i \(0.769032\pi\)
\(18\) 0 0
\(19\) −4.73505 + 5.93756i −1.08629 + 1.36217i −0.159242 + 0.987240i \(0.550905\pi\)
−0.927053 + 0.374931i \(0.877667\pi\)
\(20\) 0.165388 0.724614i 0.0369820 0.162029i
\(21\) 0 0
\(22\) 3.96228 + 4.96854i 0.844761 + 1.05930i
\(23\) −1.48532 0.715295i −0.309712 0.149149i 0.272571 0.962136i \(-0.412126\pi\)
−0.582283 + 0.812986i \(0.697840\pi\)
\(24\) 0 0
\(25\) −1.75825 + 2.20478i −0.351650 + 0.440955i
\(26\) 3.16398 + 3.96750i 0.620507 + 0.778091i
\(27\) 0 0
\(28\) 0.242820 0.0458887
\(29\) −1.81488 5.07013i −0.337015 0.941499i
\(30\) 0 0
\(31\) 4.26937 2.05602i 0.766801 0.369272i −0.00923750 0.999957i \(-0.502940\pi\)
0.776039 + 0.630685i \(0.217226\pi\)
\(32\) −1.73639 2.17737i −0.306954 0.384908i
\(33\) 0 0
\(34\) 8.79399 4.23496i 1.50816 0.726290i
\(35\) 0.641673 + 0.309013i 0.108462 + 0.0522328i
\(36\) 0 0
\(37\) −1.89985 + 8.32377i −0.312333 + 1.36842i 0.538342 + 0.842727i \(0.319051\pi\)
−0.850675 + 0.525693i \(0.823806\pi\)
\(38\) 2.67381 11.7147i 0.433749 1.90038i
\(39\) 0 0
\(40\) −0.777983 3.40856i −0.123010 0.538941i
\(41\) −5.44168 −0.849847 −0.424924 0.905229i \(-0.639699\pi\)
−0.424924 + 0.905229i \(0.639699\pi\)
\(42\) 0 0
\(43\) −9.14266 4.40287i −1.39424 0.671432i −0.422257 0.906476i \(-0.638762\pi\)
−0.971985 + 0.235044i \(0.924476\pi\)
\(44\) −1.82167 0.877268i −0.274627 0.132253i
\(45\) 0 0
\(46\) 2.60841 0.384589
\(47\) 2.17854 + 9.54479i 0.317772 + 1.39225i 0.841450 + 0.540334i \(0.181702\pi\)
−0.523678 + 0.851916i \(0.675441\pi\)
\(48\) 0 0
\(49\) 1.50587 6.59765i 0.215124 0.942522i
\(50\) 0.992857 4.34999i 0.140411 0.615182i
\(51\) 0 0
\(52\) −1.45464 0.700519i −0.201723 0.0971446i
\(53\) −6.97382 + 3.35842i −0.957928 + 0.461314i −0.846459 0.532454i \(-0.821270\pi\)
−0.111469 + 0.993768i \(0.535556\pi\)
\(54\) 0 0
\(55\) −3.69750 4.63651i −0.498570 0.625187i
\(56\) 1.02910 0.495590i 0.137520 0.0662260i
\(57\) 0 0
\(58\) 6.06778 + 5.98168i 0.796738 + 0.785433i
\(59\) −2.25688 −0.293821 −0.146911 0.989150i \(-0.546933\pi\)
−0.146911 + 0.989150i \(0.546933\pi\)
\(60\) 0 0
\(61\) 1.67795 + 2.10409i 0.214840 + 0.269401i 0.877560 0.479466i \(-0.159170\pi\)
−0.662720 + 0.748867i \(0.730598\pi\)
\(62\) −4.67464 + 5.86181i −0.593679 + 0.744450i
\(63\) 0 0
\(64\) −4.59527 2.21297i −0.574409 0.276621i
\(65\) −2.95254 3.70237i −0.366217 0.459222i
\(66\) 0 0
\(67\) 2.81867 12.3494i 0.344355 1.50872i −0.445420 0.895322i \(-0.646946\pi\)
0.789775 0.613396i \(-0.210197\pi\)
\(68\) −1.93619 + 2.42791i −0.234798 + 0.294427i
\(69\) 0 0
\(70\) −1.12686 −0.134685
\(71\) −0.734095 3.21628i −0.0871210 0.381702i 0.912505 0.409067i \(-0.134146\pi\)
−0.999626 + 0.0273645i \(0.991289\pi\)
\(72\) 0 0
\(73\) −8.01113 3.85796i −0.937632 0.451540i −0.0982989 0.995157i \(-0.531340\pi\)
−0.839333 + 0.543617i \(0.817054\pi\)
\(74\) −3.00596 13.1700i −0.349436 1.53098i
\(75\) 0 0
\(76\) 0.850694 + 3.72713i 0.0975813 + 0.427532i
\(77\) 1.20797 1.51475i 0.137661 0.172622i
\(78\) 0 0
\(79\) 0.235786 1.03305i 0.0265280 0.116227i −0.959930 0.280239i \(-0.909586\pi\)
0.986458 + 0.164012i \(0.0524435\pi\)
\(80\) 4.37581 + 5.48710i 0.489231 + 0.613476i
\(81\) 0 0
\(82\) 7.75724 3.73569i 0.856644 0.412538i
\(83\) 7.42726 9.31349i 0.815248 1.02229i −0.183977 0.982930i \(-0.558897\pi\)
0.999225 0.0393578i \(-0.0125312\pi\)
\(84\) 0 0
\(85\) −8.20632 + 3.95195i −0.890100 + 0.428650i
\(86\) 16.0556 1.73132
\(87\) 0 0
\(88\) −9.51095 −1.01387
\(89\) 3.00588 1.44755i 0.318622 0.153440i −0.267736 0.963492i \(-0.586275\pi\)
0.586358 + 0.810052i \(0.300561\pi\)
\(90\) 0 0
\(91\) 0.964596 1.20957i 0.101117 0.126797i
\(92\) −0.747703 + 0.360075i −0.0779534 + 0.0375404i
\(93\) 0 0
\(94\) −9.65801 12.1108i −0.996148 1.24913i
\(95\) −2.49513 + 10.9319i −0.255995 + 1.12159i
\(96\) 0 0
\(97\) 8.15625 10.2276i 0.828141 1.03846i −0.170448 0.985367i \(-0.554522\pi\)
0.998590 0.0530897i \(-0.0169069\pi\)
\(98\) 2.38261 + 10.4389i 0.240680 + 1.05449i
\(99\) 0 0
\(100\) 0.315886 + 1.38398i 0.0315886 + 0.138398i
\(101\) −9.81276 4.72558i −0.976406 0.470212i −0.123538 0.992340i \(-0.539424\pi\)
−0.852867 + 0.522127i \(0.825139\pi\)
\(102\) 0 0
\(103\) −0.885718 3.88059i −0.0872724 0.382365i 0.912363 0.409383i \(-0.134256\pi\)
−0.999635 + 0.0270178i \(0.991399\pi\)
\(104\) −7.59471 −0.744723
\(105\) 0 0
\(106\) 7.63581 9.57500i 0.741655 0.930006i
\(107\) 2.06932 9.06629i 0.200049 0.876471i −0.770857 0.637009i \(-0.780172\pi\)
0.970906 0.239463i \(-0.0769713\pi\)
\(108\) 0 0
\(109\) 5.99903 + 7.52255i 0.574603 + 0.720529i 0.981182 0.193086i \(-0.0618498\pi\)
−0.406579 + 0.913616i \(0.633278\pi\)
\(110\) 8.45381 + 4.07114i 0.806039 + 0.388168i
\(111\) 0 0
\(112\) −1.42958 + 1.79264i −0.135083 + 0.169388i
\(113\) 9.95640 + 12.4849i 0.936620 + 1.17448i 0.984456 + 0.175629i \(0.0561958\pi\)
−0.0478369 + 0.998855i \(0.515233\pi\)
\(114\) 0 0
\(115\) −2.43410 −0.226981
\(116\) −2.56506 0.877034i −0.238160 0.0814306i
\(117\) 0 0
\(118\) 3.21724 1.54934i 0.296171 0.142628i
\(119\) −1.85532 2.32649i −0.170077 0.213269i
\(120\) 0 0
\(121\) −4.62427 + 2.22693i −0.420388 + 0.202448i
\(122\) −3.83641 1.84752i −0.347332 0.167266i
\(123\) 0 0
\(124\) 0.530802 2.32559i 0.0476674 0.208844i
\(125\) −2.56924 + 11.2566i −0.229800 + 1.00682i
\(126\) 0 0
\(127\) 0.335991 + 1.47207i 0.0298144 + 0.130625i 0.987645 0.156708i \(-0.0500883\pi\)
−0.957831 + 0.287334i \(0.907231\pi\)
\(128\) 13.6398 1.20560
\(129\) 0 0
\(130\) 6.75057 + 3.25090i 0.592064 + 0.285123i
\(131\) −6.13008 2.95209i −0.535587 0.257925i 0.146481 0.989213i \(-0.453205\pi\)
−0.682069 + 0.731288i \(0.738919\pi\)
\(132\) 0 0
\(133\) −3.66330 −0.317648
\(134\) 4.45973 + 19.5393i 0.385262 + 1.68794i
\(135\) 0 0
\(136\) −3.25053 + 14.2415i −0.278731 + 1.22120i
\(137\) −0.758827 + 3.32464i −0.0648310 + 0.284043i −0.996944 0.0781257i \(-0.975106\pi\)
0.932113 + 0.362169i \(0.117964\pi\)
\(138\) 0 0
\(139\) 9.17098 + 4.41651i 0.777872 + 0.374603i 0.780309 0.625394i \(-0.215062\pi\)
−0.00243744 + 0.999997i \(0.500776\pi\)
\(140\) 0.323014 0.155555i 0.0272997 0.0131468i
\(141\) 0 0
\(142\) 3.25443 + 4.08093i 0.273106 + 0.342464i
\(143\) −11.6065 + 5.58939i −0.970583 + 0.467408i
\(144\) 0 0
\(145\) −5.66229 5.58194i −0.470227 0.463555i
\(146\) 14.0685 1.16432
\(147\) 0 0
\(148\) 2.67969 + 3.36022i 0.220269 + 0.276209i
\(149\) −2.93241 + 3.67713i −0.240233 + 0.301242i −0.887302 0.461189i \(-0.847423\pi\)
0.647069 + 0.762431i \(0.275994\pi\)
\(150\) 0 0
\(151\) 13.6251 + 6.56152i 1.10880 + 0.533969i 0.896414 0.443218i \(-0.146163\pi\)
0.212383 + 0.977186i \(0.431877\pi\)
\(152\) 11.2123 + 14.0598i 0.909442 + 1.14040i
\(153\) 0 0
\(154\) −0.682125 + 2.98858i −0.0549672 + 0.240827i
\(155\) 4.36224 5.47008i 0.350384 0.439368i
\(156\) 0 0
\(157\) −14.5184 −1.15870 −0.579349 0.815080i \(-0.696693\pi\)
−0.579349 + 0.815080i \(0.696693\pi\)
\(158\) 0.373063 + 1.63450i 0.0296793 + 0.130034i
\(159\) 0 0
\(160\) −3.70472 1.78410i −0.292884 0.141045i
\(161\) −0.176954 0.775285i −0.0139459 0.0611010i
\(162\) 0 0
\(163\) −3.51230 15.3884i −0.275105 1.20531i −0.903901 0.427742i \(-0.859309\pi\)
0.628796 0.777570i \(-0.283548\pi\)
\(164\) −1.70793 + 2.14168i −0.133367 + 0.167237i
\(165\) 0 0
\(166\) −4.19406 + 18.3754i −0.325522 + 1.42621i
\(167\) −9.36770 11.7467i −0.724894 0.908988i 0.273710 0.961812i \(-0.411749\pi\)
−0.998604 + 0.0528240i \(0.983178\pi\)
\(168\) 0 0
\(169\) 2.44455 1.17723i 0.188042 0.0905563i
\(170\) 8.98530 11.2672i 0.689141 0.864155i
\(171\) 0 0
\(172\) −4.60235 + 2.21638i −0.350926 + 0.168997i
\(173\) −17.3906 −1.32218 −0.661092 0.750305i \(-0.729907\pi\)
−0.661092 + 0.750305i \(0.729907\pi\)
\(174\) 0 0
\(175\) −1.36028 −0.102827
\(176\) 17.2014 8.28376i 1.29660 0.624412i
\(177\) 0 0
\(178\) −3.29121 + 4.12705i −0.246687 + 0.309335i
\(179\) 7.67218 3.69473i 0.573446 0.276157i −0.124604 0.992207i \(-0.539766\pi\)
0.698049 + 0.716050i \(0.254052\pi\)
\(180\) 0 0
\(181\) 12.0210 + 15.0739i 0.893515 + 1.12043i 0.992118 + 0.125306i \(0.0399912\pi\)
−0.0986030 + 0.995127i \(0.531437\pi\)
\(182\) −0.544693 + 2.38646i −0.0403753 + 0.176896i
\(183\) 0 0
\(184\) −2.43396 + 3.05209i −0.179434 + 0.225003i
\(185\) 2.80508 + 12.2899i 0.206234 + 0.903568i
\(186\) 0 0
\(187\) 5.51358 + 24.1566i 0.403193 + 1.76650i
\(188\) 4.44029 + 2.13833i 0.323841 + 0.155954i
\(189\) 0 0
\(190\) −3.94782 17.2965i −0.286405 1.25482i
\(191\) 9.51137 0.688219 0.344109 0.938930i \(-0.388181\pi\)
0.344109 + 0.938930i \(0.388181\pi\)
\(192\) 0 0
\(193\) 0.948724 1.18966i 0.0682907 0.0856338i −0.746513 0.665371i \(-0.768273\pi\)
0.814804 + 0.579737i \(0.196845\pi\)
\(194\) −4.60571 + 20.1789i −0.330671 + 1.44876i
\(195\) 0 0
\(196\) −2.12400 2.66341i −0.151714 0.190243i
\(197\) 4.29152 + 2.06669i 0.305758 + 0.147245i 0.580471 0.814281i \(-0.302868\pi\)
−0.274713 + 0.961526i \(0.588583\pi\)
\(198\) 0 0
\(199\) 9.14811 11.4714i 0.648492 0.813184i −0.343544 0.939137i \(-0.611627\pi\)
0.992036 + 0.125953i \(0.0401988\pi\)
\(200\) 4.16345 + 5.22080i 0.294400 + 0.369166i
\(201\) 0 0
\(202\) 17.2324 1.21247
\(203\) 1.36627 2.20929i 0.0958932 0.155062i
\(204\) 0 0
\(205\) −7.23885 + 3.48605i −0.505583 + 0.243476i
\(206\) 3.92662 + 4.92382i 0.273580 + 0.343059i
\(207\) 0 0
\(208\) 13.7357 6.61478i 0.952402 0.458652i
\(209\) 27.4825 + 13.2349i 1.90100 + 0.915476i
\(210\) 0 0
\(211\) −2.48346 + 10.8807i −0.170968 + 0.749060i 0.814634 + 0.579976i \(0.196938\pi\)
−0.985602 + 0.169084i \(0.945919\pi\)
\(212\) −0.867041 + 3.79875i −0.0595486 + 0.260900i
\(213\) 0 0
\(214\) 3.27410 + 14.3448i 0.223813 + 0.980589i
\(215\) −14.9827 −1.02181
\(216\) 0 0
\(217\) 2.05940 + 0.991754i 0.139801 + 0.0673247i
\(218\) −13.7160 6.60526i −0.928962 0.447364i
\(219\) 0 0
\(220\) −2.98529 −0.201268
\(221\) 4.40273 + 19.2896i 0.296159 + 1.29756i
\(222\) 0 0
\(223\) −3.11807 + 13.6612i −0.208802 + 0.914819i 0.756564 + 0.653919i \(0.226876\pi\)
−0.965366 + 0.260900i \(0.915981\pi\)
\(224\) 0.298928 1.30969i 0.0199730 0.0875073i
\(225\) 0 0
\(226\) −22.7639 10.9625i −1.51423 0.729217i
\(227\) −13.5313 + 6.51631i −0.898101 + 0.432503i −0.825203 0.564837i \(-0.808939\pi\)
−0.0728982 + 0.997339i \(0.523225\pi\)
\(228\) 0 0
\(229\) −4.97520 6.23870i −0.328770 0.412265i 0.589783 0.807562i \(-0.299213\pi\)
−0.918553 + 0.395297i \(0.870642\pi\)
\(230\) 3.46987 1.67100i 0.228796 0.110182i
\(231\) 0 0
\(232\) −12.6611 + 1.51825i −0.831241 + 0.0996780i
\(233\) −20.9476 −1.37232 −0.686161 0.727450i \(-0.740705\pi\)
−0.686161 + 0.727450i \(0.740705\pi\)
\(234\) 0 0
\(235\) 9.01260 + 11.3014i 0.587917 + 0.737225i
\(236\) −0.708347 + 0.888239i −0.0461095 + 0.0578194i
\(237\) 0 0
\(238\) 4.24192 + 2.04280i 0.274963 + 0.132415i
\(239\) 6.20784 + 7.78439i 0.401552 + 0.503530i 0.940962 0.338513i \(-0.109924\pi\)
−0.539410 + 0.842043i \(0.681353\pi\)
\(240\) 0 0
\(241\) −0.0404502 + 0.177224i −0.00260563 + 0.0114160i −0.976214 0.216809i \(-0.930435\pi\)
0.973608 + 0.228225i \(0.0732922\pi\)
\(242\) 5.06322 6.34908i 0.325476 0.408134i
\(243\) 0 0
\(244\) 1.35475 0.0867288
\(245\) −2.22338 9.74128i −0.142047 0.622348i
\(246\) 0 0
\(247\) 21.9454 + 10.5684i 1.39635 + 0.672449i
\(248\) −2.49688 10.9395i −0.158552 0.694661i
\(249\) 0 0
\(250\) −4.06509 17.8103i −0.257099 1.12642i
\(251\) −12.1904 + 15.2863i −0.769451 + 0.964861i −0.999966 0.00820789i \(-0.997387\pi\)
0.230516 + 0.973069i \(0.425959\pi\)
\(252\) 0 0
\(253\) −1.47345 + 6.45558i −0.0926347 + 0.405859i
\(254\) −1.48953 1.86782i −0.0934617 0.117197i
\(255\) 0 0
\(256\) −10.2533 + 4.93772i −0.640830 + 0.308607i
\(257\) 11.8435 14.8513i 0.738780 0.926401i −0.260456 0.965486i \(-0.583873\pi\)
0.999236 + 0.0390848i \(0.0124442\pi\)
\(258\) 0 0
\(259\) −3.71052 + 1.78689i −0.230560 + 0.111032i
\(260\) −2.38382 −0.147838
\(261\) 0 0
\(262\) 10.7652 0.665074
\(263\) 16.7757 8.07875i 1.03443 0.498157i 0.161949 0.986799i \(-0.448222\pi\)
0.872484 + 0.488642i \(0.162508\pi\)
\(264\) 0 0
\(265\) −7.12553 + 8.93514i −0.437718 + 0.548881i
\(266\) 5.22211 2.51484i 0.320188 0.154195i
\(267\) 0 0
\(268\) −3.97567 4.98533i −0.242852 0.304527i
\(269\) 0.379197 1.66137i 0.0231200 0.101296i −0.962051 0.272868i \(-0.912028\pi\)
0.985171 + 0.171573i \(0.0548848\pi\)
\(270\) 0 0
\(271\) 10.3255 12.9478i 0.627230 0.786522i −0.362111 0.932135i \(-0.617944\pi\)
0.989342 + 0.145613i \(0.0465154\pi\)
\(272\) −6.52507 28.5882i −0.395640 1.73341i
\(273\) 0 0
\(274\) −1.20063 5.26028i −0.0725324 0.317785i
\(275\) 10.2050 + 4.91446i 0.615384 + 0.296353i
\(276\) 0 0
\(277\) 1.11908 + 4.90299i 0.0672388 + 0.294592i 0.997356 0.0726705i \(-0.0231521\pi\)
−0.930117 + 0.367263i \(0.880295\pi\)
\(278\) −16.1054 −0.965935
\(279\) 0 0
\(280\) 1.05149 1.31853i 0.0628386 0.0787971i
\(281\) −3.62478 + 15.8812i −0.216237 + 0.947394i 0.743994 + 0.668186i \(0.232929\pi\)
−0.960231 + 0.279208i \(0.909928\pi\)
\(282\) 0 0
\(283\) −18.5299 23.2357i −1.10149 1.38122i −0.917238 0.398340i \(-0.869586\pi\)
−0.184248 0.982880i \(-0.558985\pi\)
\(284\) −1.49623 0.720547i −0.0887850 0.0427566i
\(285\) 0 0
\(286\) 12.7082 15.9356i 0.751453 0.942292i
\(287\) −1.63659 2.05222i −0.0966047 0.121138i
\(288\) 0 0
\(289\) 21.0560 1.23859
\(290\) 11.9037 + 4.07006i 0.699010 + 0.239002i
\(291\) 0 0
\(292\) −4.03275 + 1.94207i −0.235999 + 0.113651i
\(293\) −9.92035 12.4397i −0.579553 0.726737i 0.402484 0.915427i \(-0.368147\pi\)
−0.982037 + 0.188691i \(0.939576\pi\)
\(294\) 0 0
\(295\) −3.00224 + 1.44580i −0.174797 + 0.0841779i
\(296\) 18.2150 + 8.77189i 1.05873 + 0.509856i
\(297\) 0 0
\(298\) 1.65589 7.25493i 0.0959231 0.420267i
\(299\) −1.17658 + 5.15494i −0.0680434 + 0.298118i
\(300\) 0 0
\(301\) −1.08921 4.77213i −0.0627809 0.275061i
\(302\) −23.9274 −1.37687
\(303\) 0 0
\(304\) −32.5243 15.6629i −1.86539 0.898327i
\(305\) 3.58003 + 1.72405i 0.204992 + 0.0987190i
\(306\) 0 0
\(307\) −1.68343 −0.0960784 −0.0480392 0.998845i \(-0.515297\pi\)
−0.0480392 + 0.998845i \(0.515297\pi\)
\(308\) −0.217024 0.950842i −0.0123661 0.0541793i
\(309\) 0 0
\(310\) −2.46329 + 10.7924i −0.139906 + 0.612967i
\(311\) 6.24417 27.3575i 0.354074 1.55130i −0.413598 0.910459i \(-0.635728\pi\)
0.767673 0.640842i \(-0.221415\pi\)
\(312\) 0 0
\(313\) −9.38999 4.52198i −0.530754 0.255597i 0.149259 0.988798i \(-0.452311\pi\)
−0.680012 + 0.733201i \(0.738026\pi\)
\(314\) 20.6964 9.96685i 1.16796 0.562462i
\(315\) 0 0
\(316\) −0.332571 0.417031i −0.0187086 0.0234598i
\(317\) −24.3195 + 11.7117i −1.36592 + 0.657792i −0.965948 0.258736i \(-0.916694\pi\)
−0.399971 + 0.916528i \(0.630980\pi\)
\(318\) 0 0
\(319\) −18.2317 + 11.6383i −1.02078 + 0.651617i
\(320\) −7.53058 −0.420972
\(321\) 0 0
\(322\) 0.784481 + 0.983708i 0.0437174 + 0.0548199i
\(323\) 29.2103 36.6286i 1.62530 2.03807i
\(324\) 0 0
\(325\) 8.14893 + 3.92432i 0.452021 + 0.217682i
\(326\) 15.5709 + 19.5253i 0.862395 + 1.08141i
\(327\) 0 0
\(328\) −2.86732 + 12.5625i −0.158321 + 0.693650i
\(329\) −2.94442 + 3.69219i −0.162331 + 0.203557i
\(330\) 0 0
\(331\) 21.7976 1.19810 0.599052 0.800710i \(-0.295544\pi\)
0.599052 + 0.800710i \(0.295544\pi\)
\(332\) −1.33437 5.84628i −0.0732333 0.320856i
\(333\) 0 0
\(334\) 21.4179 + 10.3143i 1.17194 + 0.564375i
\(335\) −4.16170 18.2336i −0.227378 0.996208i
\(336\) 0 0
\(337\) −2.36853 10.3772i −0.129022 0.565282i −0.997570 0.0696762i \(-0.977803\pi\)
0.868548 0.495605i \(-0.165054\pi\)
\(338\) −2.67659 + 3.35634i −0.145587 + 0.182561i
\(339\) 0 0
\(340\) −1.02027 + 4.47011i −0.0553321 + 0.242426i
\(341\) −11.8668 14.8805i −0.642625 0.805826i
\(342\) 0 0
\(343\) 5.98324 2.88138i 0.323064 0.155580i
\(344\) −14.9818 + 18.7866i −0.807765 + 1.01291i
\(345\) 0 0
\(346\) 24.7907 11.9386i 1.33276 0.641822i
\(347\) 6.00830 0.322542 0.161271 0.986910i \(-0.448441\pi\)
0.161271 + 0.986910i \(0.448441\pi\)
\(348\) 0 0
\(349\) 22.1013 1.18305 0.591527 0.806285i \(-0.298525\pi\)
0.591527 + 0.806285i \(0.298525\pi\)
\(350\) 1.93911 0.933827i 0.103650 0.0499151i
\(351\) 0 0
\(352\) −6.97429 + 8.74548i −0.371731 + 0.466135i
\(353\) −32.6352 + 15.7163i −1.73699 + 0.836493i −0.753063 + 0.657948i \(0.771425\pi\)
−0.983932 + 0.178544i \(0.942861\pi\)
\(354\) 0 0
\(355\) −3.03695 3.80821i −0.161184 0.202119i
\(356\) 0.373715 1.63735i 0.0198068 0.0867794i
\(357\) 0 0
\(358\) −8.40046 + 10.5338i −0.443978 + 0.556731i
\(359\) −3.30493 14.4798i −0.174427 0.764217i −0.984141 0.177391i \(-0.943234\pi\)
0.809713 0.586826i \(-0.199623\pi\)
\(360\) 0 0
\(361\) −8.60607 37.7057i −0.452951 1.98451i
\(362\) −27.4844 13.2358i −1.44455 0.695658i
\(363\) 0 0
\(364\) −0.173298 0.759270i −0.00908331 0.0397966i
\(365\) −13.1284 −0.687171
\(366\) 0 0
\(367\) −5.19012 + 6.50821i −0.270922 + 0.339726i −0.898617 0.438734i \(-0.855427\pi\)
0.627695 + 0.778459i \(0.283999\pi\)
\(368\) 1.74375 7.63989i 0.0908995 0.398257i
\(369\) 0 0
\(370\) −12.4356 15.5938i −0.646498 0.810683i
\(371\) −3.36394 1.61999i −0.174647 0.0841055i
\(372\) 0 0
\(373\) 15.6555 19.6314i 0.810613 1.01648i −0.188793 0.982017i \(-0.560458\pi\)
0.999406 0.0344595i \(-0.0109710\pi\)
\(374\) −24.4431 30.6507i −1.26392 1.58491i
\(375\) 0 0
\(376\) 23.1828 1.19556
\(377\) −14.5584 + 9.29342i −0.749798 + 0.478636i
\(378\) 0 0
\(379\) −27.6833 + 13.3316i −1.42200 + 0.684797i −0.977490 0.210980i \(-0.932335\pi\)
−0.444505 + 0.895777i \(0.646620\pi\)
\(380\) 3.51932 + 4.41309i 0.180537 + 0.226387i
\(381\) 0 0
\(382\) −13.5587 + 6.52952i −0.693723 + 0.334079i
\(383\) 21.0128 + 10.1192i 1.07370 + 0.517068i 0.885298 0.465024i \(-0.153954\pi\)
0.188404 + 0.982092i \(0.439668\pi\)
\(384\) 0 0
\(385\) 0.636541 2.78887i 0.0324411 0.142134i
\(386\) −0.535730 + 2.34719i −0.0272679 + 0.119469i
\(387\) 0 0
\(388\) −1.46534 6.42009i −0.0743915 0.325931i
\(389\) −7.51454 −0.381002 −0.190501 0.981687i \(-0.561011\pi\)
−0.190501 + 0.981687i \(0.561011\pi\)
\(390\) 0 0
\(391\) 9.16290 + 4.41262i 0.463388 + 0.223156i
\(392\) −14.4377 6.95284i −0.729215 0.351172i
\(393\) 0 0
\(394\) −7.53643 −0.379680
\(395\) −0.348133 1.52527i −0.0175165 0.0767446i
\(396\) 0 0
\(397\) 1.10330 4.83387i 0.0553730 0.242605i −0.939666 0.342094i \(-0.888864\pi\)
0.995039 + 0.0994894i \(0.0317209\pi\)
\(398\) −5.16580 + 22.6328i −0.258938 + 1.13448i
\(399\) 0 0
\(400\) −12.0771 5.81604i −0.603857 0.290802i
\(401\) 2.33960 1.12669i 0.116834 0.0562642i −0.374554 0.927205i \(-0.622204\pi\)
0.491388 + 0.870941i \(0.336490\pi\)
\(402\) 0 0
\(403\) −9.47594 11.8825i −0.472030 0.591907i
\(404\) −4.93968 + 2.37882i −0.245758 + 0.118351i
\(405\) 0 0
\(406\) −0.430979 + 4.08733i −0.0213892 + 0.202851i
\(407\) 34.2925 1.69982
\(408\) 0 0
\(409\) 7.91495 + 9.92503i 0.391369 + 0.490761i 0.938011 0.346605i \(-0.112666\pi\)
−0.546642 + 0.837366i \(0.684094\pi\)
\(410\) 7.92599 9.93888i 0.391437 0.490846i
\(411\) 0 0
\(412\) −1.80527 0.869372i −0.0889392 0.0428309i
\(413\) −0.678759 0.851137i −0.0333995 0.0418817i
\(414\) 0 0
\(415\) 3.91379 17.1474i 0.192120 0.841733i
\(416\) −5.56913 + 6.98347i −0.273049 + 0.342393i
\(417\) 0 0
\(418\) −48.2626 −2.36060
\(419\) 6.17368 + 27.0486i 0.301604 + 1.32141i 0.867706 + 0.497078i \(0.165594\pi\)
−0.566102 + 0.824335i \(0.691549\pi\)
\(420\) 0 0
\(421\) −23.1671 11.1567i −1.12910 0.543744i −0.226404 0.974033i \(-0.572697\pi\)
−0.902691 + 0.430290i \(0.858411\pi\)
\(422\) −3.92935 17.2156i −0.191278 0.838043i
\(423\) 0 0
\(424\) 4.07854 + 17.8692i 0.198071 + 0.867807i
\(425\) 10.8466 13.6012i 0.526136 0.659753i
\(426\) 0 0
\(427\) −0.288867 + 1.26561i −0.0139793 + 0.0612472i
\(428\) −2.91873 3.65997i −0.141082 0.176911i
\(429\) 0 0
\(430\) 21.3582 10.2855i 1.02998 0.496013i
\(431\) 19.5331 24.4937i 0.940875 1.17982i −0.0426573 0.999090i \(-0.513582\pi\)
0.983533 0.180731i \(-0.0578462\pi\)
\(432\) 0 0
\(433\) −5.14684 + 2.47859i −0.247341 + 0.119113i −0.553447 0.832884i \(-0.686688\pi\)
0.306106 + 0.951997i \(0.400974\pi\)
\(434\) −3.61656 −0.173600
\(435\) 0 0
\(436\) 4.84350 0.231962
\(437\) 11.2802 5.43225i 0.539605 0.259860i
\(438\) 0 0
\(439\) −4.81335 + 6.03575i −0.229729 + 0.288071i −0.883314 0.468783i \(-0.844693\pi\)
0.653585 + 0.756853i \(0.273264\pi\)
\(440\) −12.6520 + 6.09290i −0.603162 + 0.290467i
\(441\) 0 0
\(442\) −19.5184 24.4753i −0.928397 1.16417i
\(443\) 0.179073 0.784568i 0.00850799 0.0372760i −0.970496 0.241118i \(-0.922486\pi\)
0.979004 + 0.203842i \(0.0653430\pi\)
\(444\) 0 0
\(445\) 3.07127 3.85125i 0.145592 0.182567i
\(446\) −4.93345 21.6149i −0.233606 1.02349i
\(447\) 0 0
\(448\) −0.547456 2.39856i −0.0258649 0.113321i
\(449\) −34.0196 16.3830i −1.60548 0.773160i −0.605737 0.795665i \(-0.707122\pi\)
−0.999747 + 0.0225050i \(0.992836\pi\)
\(450\) 0 0
\(451\) 4.86357 + 21.3087i 0.229017 + 1.00339i
\(452\) 8.03860 0.378104
\(453\) 0 0
\(454\) 14.8157 18.5783i 0.695335 0.871923i
\(455\) 0.508293 2.22698i 0.0238291 0.104402i
\(456\) 0 0
\(457\) 16.6023 + 20.8186i 0.776622 + 0.973853i 1.00000 0.000878959i \(-0.000279782\pi\)
−0.223378 + 0.974732i \(0.571708\pi\)
\(458\) 11.3751 + 5.47796i 0.531523 + 0.255968i
\(459\) 0 0
\(460\) −0.763968 + 0.957986i −0.0356202 + 0.0446663i
\(461\) 19.1192 + 23.9748i 0.890472 + 1.11662i 0.992550 + 0.121840i \(0.0388795\pi\)
−0.102078 + 0.994776i \(0.532549\pi\)
\(462\) 0 0
\(463\) −12.1589 −0.565070 −0.282535 0.959257i \(-0.591175\pi\)
−0.282535 + 0.959257i \(0.591175\pi\)
\(464\) 21.5764 13.7733i 1.00166 0.639411i
\(465\) 0 0
\(466\) 29.8613 14.3804i 1.38330 0.666160i
\(467\) −6.56520 8.23250i −0.303801 0.380955i 0.606373 0.795180i \(-0.292624\pi\)
−0.910174 + 0.414226i \(0.864052\pi\)
\(468\) 0 0
\(469\) 5.50503 2.65108i 0.254199 0.122416i
\(470\) −20.6061 9.92335i −0.950487 0.457730i
\(471\) 0 0
\(472\) −1.18919 + 5.21019i −0.0547370 + 0.239819i
\(473\) −9.06953 + 39.7362i −0.417018 + 1.82707i
\(474\) 0 0
\(475\) −4.76560 20.8794i −0.218661 0.958014i
\(476\) −1.49795 −0.0686582
\(477\) 0 0
\(478\) −14.1934 6.83517i −0.649190 0.312633i
\(479\) −15.3524 7.39331i −0.701468 0.337809i 0.0489239 0.998803i \(-0.484421\pi\)
−0.750392 + 0.660993i \(0.770135\pi\)
\(480\) 0 0
\(481\) 27.3834 1.24857
\(482\) −0.0640008 0.280406i −0.00291516 0.0127721i
\(483\) 0 0
\(484\) −0.574925 + 2.51891i −0.0261330 + 0.114496i
\(485\) 4.29792 18.8304i 0.195159 0.855046i
\(486\) 0 0
\(487\) −11.2714 5.42800i −0.510754 0.245966i 0.160712 0.987001i \(-0.448621\pi\)
−0.671466 + 0.741035i \(0.734335\pi\)
\(488\) 5.74160 2.76501i 0.259910 0.125166i
\(489\) 0 0
\(490\) 9.85684 + 12.3601i 0.445287 + 0.558372i
\(491\) −10.4235 + 5.01971i −0.470407 + 0.226536i −0.654042 0.756458i \(-0.726928\pi\)
0.183635 + 0.982995i \(0.441214\pi\)
\(492\) 0 0
\(493\) 11.1959 + 31.2774i 0.504239 + 1.40866i
\(494\) −38.5389 −1.73395
\(495\) 0 0
\(496\) 14.0438 + 17.6104i 0.630587 + 0.790731i
\(497\) 0.992173 1.24415i 0.0445051 0.0558076i
\(498\) 0 0
\(499\) 22.3283 + 10.7527i 0.999550 + 0.481358i 0.860786 0.508967i \(-0.169973\pi\)
0.138764 + 0.990325i \(0.455687\pi\)
\(500\) 3.62386 + 4.54418i 0.162064 + 0.203222i
\(501\) 0 0
\(502\) 6.88373 30.1596i 0.307236 1.34609i
\(503\) 21.0937 26.4506i 0.940521 1.17938i −0.0430897 0.999071i \(-0.513720\pi\)
0.983611 0.180305i \(-0.0577084\pi\)
\(504\) 0 0
\(505\) −16.0808 −0.715587
\(506\) −2.33130 10.2141i −0.103639 0.454072i
\(507\) 0 0
\(508\) 0.684816 + 0.329790i 0.0303838 + 0.0146321i
\(509\) −6.36536 27.8885i −0.282140 1.23613i −0.895044 0.445978i \(-0.852856\pi\)
0.612904 0.790157i \(-0.290001\pi\)
\(510\) 0 0
\(511\) −0.954404 4.18152i −0.0422203 0.184979i
\(512\) −5.78196 + 7.25035i −0.255529 + 0.320423i
\(513\) 0 0
\(514\) −6.68787 + 29.3015i −0.294989 + 1.29243i
\(515\) −3.66421 4.59478i −0.161465 0.202470i
\(516\) 0 0
\(517\) 35.4287 17.0616i 1.55815 0.750366i
\(518\) 4.06273 5.09451i 0.178506 0.223840i
\(519\) 0 0
\(520\) −10.1029 + 4.86532i −0.443044 + 0.213359i
\(521\) 23.1052 1.01226 0.506128 0.862458i \(-0.331076\pi\)
0.506128 + 0.862458i \(0.331076\pi\)
\(522\) 0 0
\(523\) −19.0757 −0.834120 −0.417060 0.908879i \(-0.636940\pi\)
−0.417060 + 0.908879i \(0.636940\pi\)
\(524\) −3.08584 + 1.48606i −0.134806 + 0.0649190i
\(525\) 0 0
\(526\) −18.3681 + 23.0329i −0.800888 + 1.00428i
\(527\) −26.3375 + 12.6835i −1.14728 + 0.552502i
\(528\) 0 0
\(529\) −12.6457 15.8572i −0.549814 0.689445i
\(530\) 4.02368 17.6289i 0.174777 0.765750i
\(531\) 0 0
\(532\) −1.14976 + 1.44176i −0.0498486 + 0.0625082i
\(533\) 3.88368 + 17.0155i 0.168221 + 0.737023i
\(534\) 0 0
\(535\) −3.05531 13.3862i −0.132092 0.578735i
\(536\) −27.0243 13.0142i −1.16727 0.562129i
\(537\) 0 0
\(538\) 0.599970 + 2.62864i 0.0258665 + 0.113329i
\(539\) −27.1812 −1.17078
\(540\) 0 0
\(541\) −0.981894 + 1.23126i −0.0422149 + 0.0529359i −0.802491 0.596664i \(-0.796492\pi\)
0.760276 + 0.649600i \(0.225064\pi\)
\(542\) −5.83066 + 25.5458i −0.250448 + 1.09729i
\(543\) 0 0
\(544\) 10.7117 + 13.4321i 0.459262 + 0.575896i
\(545\) 12.7994 + 6.16385i 0.548264 + 0.264030i
\(546\) 0 0
\(547\) 6.10809 7.65930i 0.261163 0.327488i −0.633911 0.773406i \(-0.718551\pi\)
0.895074 + 0.445918i \(0.147123\pi\)
\(548\) 1.07031 + 1.34212i 0.0457213 + 0.0573327i
\(549\) 0 0
\(550\) −17.9212 −0.764163
\(551\) 38.6978 + 13.2313i 1.64858 + 0.563674i
\(552\) 0 0
\(553\) 0.460505 0.221767i 0.0195827 0.00943051i
\(554\) −4.96115 6.22109i −0.210779 0.264309i
\(555\) 0 0
\(556\) 4.61661 2.22324i 0.195788 0.0942864i
\(557\) 6.73940 + 3.24553i 0.285558 + 0.137517i 0.571180 0.820825i \(-0.306486\pi\)
−0.285622 + 0.958342i \(0.592200\pi\)
\(558\) 0 0
\(559\) −7.24224 + 31.7303i −0.306314 + 1.34205i
\(560\) −0.753316 + 3.30049i −0.0318334 + 0.139471i
\(561\) 0 0
\(562\) −5.73518 25.1274i −0.241924 1.05994i
\(563\) 2.33889 0.0985724 0.0492862 0.998785i \(-0.484305\pi\)
0.0492862 + 0.998785i \(0.484305\pi\)
\(564\) 0 0
\(565\) 21.2427 + 10.2299i 0.893687 + 0.430377i
\(566\) 42.3660 + 20.4024i 1.78077 + 0.857576i
\(567\) 0 0
\(568\) −7.81184 −0.327778
\(569\) 8.92006 + 39.0814i 0.373949 + 1.63838i 0.715572 + 0.698539i \(0.246166\pi\)
−0.341624 + 0.939837i \(0.610977\pi\)
\(570\) 0 0
\(571\) 2.16612 9.49039i 0.0906493 0.397161i −0.909165 0.416436i \(-0.863279\pi\)
0.999814 + 0.0192758i \(0.00613604\pi\)
\(572\) −1.44301 + 6.32224i −0.0603353 + 0.264346i
\(573\) 0 0
\(574\) 3.74183 + 1.80197i 0.156181 + 0.0752128i
\(575\) 4.18864 2.01714i 0.174678 0.0841206i
\(576\) 0 0
\(577\) 24.4255 + 30.6286i 1.01685 + 1.27509i 0.960971 + 0.276649i \(0.0892240\pi\)
0.0558768 + 0.998438i \(0.482205\pi\)
\(578\) −30.0158 + 14.4549i −1.24849 + 0.601243i
\(579\) 0 0
\(580\) −3.97405 + 0.476547i −0.165013 + 0.0197875i
\(581\) 5.74614 0.238390
\(582\) 0 0
\(583\) 19.3839 + 24.3067i 0.802801 + 1.00668i
\(584\) −13.1276 + 16.4615i −0.543224 + 0.681182i
\(585\) 0 0
\(586\) 22.6815 + 10.9228i 0.936965 + 0.451218i
\(587\) −13.0173 16.3232i −0.537282 0.673731i 0.436896 0.899512i \(-0.356078\pi\)
−0.974178 + 0.225781i \(0.927506\pi\)
\(588\) 0 0
\(589\) −8.00792 + 35.0850i −0.329961 + 1.44565i
\(590\) 3.28723 4.12205i 0.135333 0.169702i
\(591\) 0 0
\(592\) −40.5836 −1.66797
\(593\) 4.13674 + 18.1242i 0.169875 + 0.744273i 0.986048 + 0.166464i \(0.0532349\pi\)
−0.816172 + 0.577809i \(0.803908\pi\)
\(594\) 0 0
\(595\) −3.95845 1.90629i −0.162281 0.0781502i
\(596\) 0.526835 + 2.30821i 0.0215800 + 0.0945481i
\(597\) 0 0
\(598\) −1.86160 8.15620i −0.0761265 0.333532i
\(599\) 4.70831 5.90403i 0.192376 0.241232i −0.676283 0.736642i \(-0.736411\pi\)
0.868660 + 0.495409i \(0.164982\pi\)
\(600\) 0 0
\(601\) −7.99894 + 35.0457i −0.326284 + 1.42954i 0.499871 + 0.866100i \(0.333381\pi\)
−0.826155 + 0.563443i \(0.809477\pi\)
\(602\) 4.82874 + 6.05504i 0.196805 + 0.246785i
\(603\) 0 0
\(604\) 6.85880 3.30302i 0.279081 0.134398i
\(605\) −4.72486 + 5.92479i −0.192093 + 0.240877i
\(606\) 0 0
\(607\) −4.59961 + 2.21506i −0.186692 + 0.0899063i −0.524895 0.851167i \(-0.675895\pi\)
0.338203 + 0.941073i \(0.390181\pi\)
\(608\) 21.1502 0.857753
\(609\) 0 0
\(610\) −6.28698 −0.254552
\(611\) 28.2906 13.6241i 1.14452 0.551170i
\(612\) 0 0
\(613\) −9.72405 + 12.1936i −0.392751 + 0.492494i −0.938415 0.345510i \(-0.887706\pi\)
0.545664 + 0.838004i \(0.316277\pi\)
\(614\) 2.39977 1.15567i 0.0968468 0.0466390i
\(615\) 0 0
\(616\) −2.86042 3.58685i −0.115250 0.144519i
\(617\) 0.643771 2.82055i 0.0259173 0.113551i −0.960315 0.278919i \(-0.910024\pi\)
0.986232 + 0.165368i \(0.0528811\pi\)
\(618\) 0 0
\(619\) 10.3979 13.0385i 0.417927 0.524063i −0.527650 0.849462i \(-0.676927\pi\)
0.945577 + 0.325398i \(0.105498\pi\)
\(620\) −0.783717 3.43369i −0.0314748 0.137900i
\(621\) 0 0
\(622\) 9.87960 + 43.2853i 0.396136 + 1.73558i
\(623\) 1.44993 + 0.698252i 0.0580904 + 0.0279749i
\(624\) 0 0
\(625\) 0.655869 + 2.87355i 0.0262348 + 0.114942i
\(626\) 16.4900 0.659072
\(627\) 0 0
\(628\) −4.55677 + 5.71401i −0.181835 + 0.228014i
\(629\) 11.7201 51.3490i 0.467310 2.04742i
\(630\) 0 0
\(631\) 25.7057 + 32.2339i 1.02333 + 1.28321i 0.958432 + 0.285321i \(0.0921001\pi\)
0.0648959 + 0.997892i \(0.479328\pi\)
\(632\) −2.26063 1.08866i −0.0899230 0.0433046i
\(633\) 0 0
\(634\) 26.6280 33.3905i 1.05753 1.32611i
\(635\) 1.38999 + 1.74300i 0.0551602 + 0.0691687i
\(636\) 0 0
\(637\) −21.7048 −0.859976
\(638\) 18.0001 29.1066i 0.712631 1.15234i
\(639\) 0 0
\(640\) 18.1445 8.73791i 0.717223 0.345396i
\(641\) −5.63784 7.06963i −0.222681 0.279234i 0.657924 0.753085i \(-0.271435\pi\)
−0.880605 + 0.473851i \(0.842863\pi\)
\(642\) 0 0
\(643\) −20.0926 + 9.67607i −0.792373 + 0.381587i −0.785870 0.618392i \(-0.787784\pi\)
−0.00650343 + 0.999979i \(0.502070\pi\)
\(644\) −0.360667 0.173688i −0.0142123 0.00684426i
\(645\) 0 0
\(646\) −16.4946 + 72.2676i −0.648972 + 2.84333i
\(647\) −8.67886 + 38.0246i −0.341201 + 1.49490i 0.455341 + 0.890317i \(0.349517\pi\)
−0.796542 + 0.604583i \(0.793340\pi\)
\(648\) 0 0
\(649\) 2.01712 + 8.83758i 0.0791788 + 0.346905i
\(650\) −14.3105 −0.561304
\(651\) 0 0
\(652\) −7.15877 3.44748i −0.280359 0.135014i
\(653\) 38.0768 + 18.3368i 1.49006 + 0.717575i 0.989011 0.147845i \(-0.0472336\pi\)
0.501048 + 0.865419i \(0.332948\pi\)
\(654\) 0 0
\(655\) −10.0458 −0.392521
\(656\) −5.75581 25.2179i −0.224727 0.984592i
\(657\) 0 0
\(658\) 1.66267 7.28464i 0.0648176 0.283985i
\(659\) 0.302889 1.32704i 0.0117989 0.0516943i −0.968686 0.248290i \(-0.920131\pi\)
0.980485 + 0.196596i \(0.0629886\pi\)
\(660\) 0 0
\(661\) −28.3589 13.6569i −1.10304 0.531194i −0.208424 0.978039i \(-0.566833\pi\)
−0.894611 + 0.446845i \(0.852548\pi\)
\(662\) −31.0730 + 14.9640i −1.20769 + 0.581591i
\(663\) 0 0
\(664\) −17.5874 22.0539i −0.682522 0.855856i
\(665\) −4.87314 + 2.34678i −0.188972 + 0.0910042i
\(666\) 0 0
\(667\) −0.930951 + 8.82896i −0.0360465 + 0.341859i
\(668\) −7.56329 −0.292633
\(669\) 0 0
\(670\) 18.4499 + 23.1354i 0.712781 + 0.893799i
\(671\) 6.73956 8.45114i 0.260178 0.326253i
\(672\) 0 0
\(673\) −31.7011 15.2664i −1.22199 0.588477i −0.292122 0.956381i \(-0.594361\pi\)
−0.929864 + 0.367904i \(0.880076\pi\)
\(674\) 10.5003 + 13.1669i 0.404456 + 0.507172i
\(675\) 0 0
\(676\) 0.303925 1.33158i 0.0116894 0.0512148i
\(677\) −6.16457 + 7.73013i −0.236924 + 0.297093i −0.886052 0.463586i \(-0.846562\pi\)
0.649128 + 0.760679i \(0.275134\pi\)
\(678\) 0 0
\(679\) 6.31012 0.242160
\(680\) 4.79934 + 21.0273i 0.184046 + 0.806359i
\(681\) 0 0
\(682\) 27.1319 + 13.0660i 1.03893 + 0.500324i
\(683\) 2.06518 + 9.04814i 0.0790219 + 0.346218i 0.998947 0.0458763i \(-0.0146080\pi\)
−0.919925 + 0.392094i \(0.871751\pi\)
\(684\) 0 0
\(685\) 1.12039 + 4.90875i 0.0428079 + 0.187554i
\(686\) −6.55119 + 8.21494i −0.250126 + 0.313648i
\(687\) 0 0
\(688\) 10.7334 47.0260i 0.409206 1.79285i
\(689\) 15.4785 + 19.4095i 0.589685 + 0.739442i
\(690\) 0 0
\(691\) 13.5429 6.52192i 0.515196 0.248105i −0.158174 0.987411i \(-0.550561\pi\)
0.673370 + 0.739306i \(0.264846\pi\)
\(692\) −5.45823 + 6.84440i −0.207491 + 0.260185i
\(693\) 0 0
\(694\) −8.56497 + 4.12467i −0.325122 + 0.156570i
\(695\) 15.0291 0.570086
\(696\) 0 0
\(697\) 33.5695 1.27153
\(698\) −31.5059 + 15.1724i −1.19252 + 0.574285i
\(699\) 0 0
\(700\) −0.426938 + 0.535364i −0.0161368 + 0.0202348i
\(701\) 18.8083 9.05758i 0.710378 0.342100i −0.0435553 0.999051i \(-0.513868\pi\)
0.753933 + 0.656951i \(0.228154\pi\)
\(702\) 0 0
\(703\) −40.4270 50.6939i −1.52473 1.91196i
\(704\) −4.55852 + 19.9722i −0.171806 + 0.752730i
\(705\) 0 0
\(706\) 35.7330 44.8078i 1.34483 1.68636i
\(707\) −1.16904 5.12190i −0.0439663 0.192629i
\(708\) 0 0
\(709\) −8.24606 36.1284i −0.309687 1.35683i −0.855014 0.518605i \(-0.826451\pi\)
0.545326 0.838224i \(-0.316406\pi\)
\(710\) 6.94356 + 3.34384i 0.260587 + 0.125492i
\(711\) 0 0
\(712\) −1.75794 7.70205i −0.0658817 0.288646i
\(713\) −7.81206 −0.292564
\(714\) 0 0
\(715\) −11.8590 + 14.8707i −0.443500 + 0.556132i
\(716\) 0.953866 4.17916i 0.0356477 0.156183i
\(717\) 0 0
\(718\) 14.6516 + 18.3725i 0.546793 + 0.685657i
\(719\) 13.2393 + 6.37570i 0.493741 + 0.237773i 0.664149 0.747600i \(-0.268794\pi\)
−0.170407 + 0.985374i \(0.554508\pi\)
\(720\) 0 0
\(721\) 1.19710 1.50112i 0.0445824 0.0559046i
\(722\) 38.1529 + 47.8423i 1.41991 + 1.78050i
\(723\) 0 0
\(724\) 9.70553 0.360703
\(725\) 14.3695 + 4.91315i 0.533670 + 0.182470i
\(726\) 0 0
\(727\) 20.8128 10.0229i 0.771905 0.371730i −0.00610522 0.999981i \(-0.501943\pi\)
0.778010 + 0.628251i \(0.216229\pi\)
\(728\) −2.28411 2.86419i −0.0846549 0.106154i
\(729\) 0 0
\(730\) 18.7148 9.01258i 0.692666 0.333570i
\(731\) 56.4006 + 27.1611i 2.08605 + 1.00459i
\(732\) 0 0
\(733\) −1.74718 + 7.65491i −0.0645337 + 0.282741i −0.996891 0.0787987i \(-0.974892\pi\)
0.932357 + 0.361539i \(0.117749\pi\)
\(734\) 2.93078 12.8406i 0.108177 0.473955i
\(735\) 0 0
\(736\) 1.02165 + 4.47613i 0.0376585 + 0.164992i
\(737\) −50.8773 −1.87409
\(738\) 0 0
\(739\) −31.4187 15.1305i −1.15576 0.556583i −0.244999 0.969523i \(-0.578788\pi\)
−0.910758 + 0.412940i \(0.864502\pi\)
\(740\) 5.71731 + 2.75331i 0.210172 + 0.101214i
\(741\) 0 0
\(742\) 5.90749 0.216871
\(743\) −6.03657 26.4479i −0.221460 0.970280i −0.956380 0.292126i \(-0.905637\pi\)
0.734920 0.678154i \(-0.237220\pi\)
\(744\) 0 0
\(745\) −1.54523 + 6.77010i −0.0566129 + 0.248037i
\(746\) −8.84044 + 38.7325i −0.323672 + 1.41810i
\(747\) 0 0
\(748\) 11.2378 + 5.41183i 0.410894 + 0.197876i
\(749\) 4.04151 1.94629i 0.147674 0.0711159i
\(750\) 0 0
\(751\) −13.2645 16.6332i −0.484029 0.606953i 0.478515 0.878079i \(-0.341175\pi\)
−0.962544 + 0.271127i \(0.912604\pi\)
\(752\) −41.9282 + 20.1916i −1.52896 + 0.736310i
\(753\) 0 0
\(754\) 14.3735 23.2423i 0.523452 0.846435i
\(755\) 22.3284 0.812614
\(756\) 0 0
\(757\) −23.5366 29.5140i −0.855454 1.07271i −0.996573 0.0827128i \(-0.973642\pi\)
0.141119 0.989993i \(-0.454930\pi\)
\(758\) 30.3111 38.0089i 1.10095 1.38055i
\(759\) 0 0
\(760\) 23.9224 + 11.5204i 0.867755 + 0.417889i
\(761\) 7.60038 + 9.53057i 0.275513 + 0.345483i 0.900266 0.435340i \(-0.143372\pi\)
−0.624753 + 0.780823i \(0.714800\pi\)
\(762\) 0 0
\(763\) −1.03276 + 4.52482i −0.0373884 + 0.163809i
\(764\) 2.98525 3.74338i 0.108002 0.135431i
\(765\) 0 0
\(766\) −36.9010 −1.33329
\(767\) 1.61072 + 7.05701i 0.0581596 + 0.254814i
\(768\) 0 0
\(769\) −4.19134 2.01844i −0.151144 0.0727869i 0.356783 0.934187i \(-0.383874\pi\)
−0.507926 + 0.861400i \(0.669588\pi\)
\(770\) 1.00714 + 4.41258i 0.0362949 + 0.159018i
\(771\) 0 0
\(772\) −0.170447 0.746777i −0.00613452 0.0268771i
\(773\) −12.6382 + 15.8478i −0.454565 + 0.570006i −0.955317 0.295585i \(-0.904486\pi\)
0.500752 + 0.865591i \(0.333057\pi\)
\(774\) 0 0
\(775\) −2.97355 + 13.0280i −0.106813 + 0.467979i
\(776\) −19.3136 24.2184i −0.693317 0.869392i
\(777\) 0 0
\(778\) 10.7122 5.15870i 0.384049 0.184948i
\(779\) 25.7666 32.3103i 0.923185 1.15764i
\(780\) 0 0
\(781\) −11.9383 + 5.74918i −0.427186 + 0.205722i
\(782\) −16.0912 −0.575419
\(783\) 0 0
\(784\) 32.1677 1.14885
\(785\) −19.3133 + 9.30080i −0.689322 + 0.331960i
\(786\) 0 0
\(787\) 20.9397 26.2575i 0.746418 0.935979i −0.253087 0.967444i \(-0.581446\pi\)
0.999505 + 0.0314648i \(0.0100172\pi\)
\(788\) 2.16032 1.04036i 0.0769583 0.0370612i
\(789\) 0 0
\(790\) 1.54336 + 1.93532i 0.0549104 + 0.0688554i
\(791\) −1.71404 + 7.50970i −0.0609443 + 0.267014i
\(792\) 0 0
\(793\) 5.38170 6.74843i 0.191110 0.239644i
\(794\) 1.74565 + 7.64820i 0.0619509 + 0.271425i
\(795\) 0 0
\(796\) −1.64354 7.20082i −0.0582538 0.255226i
\(797\) 18.7917 + 9.04962i 0.665637 + 0.320554i 0.736014 0.676967i \(-0.236706\pi\)
−0.0703767 + 0.997520i \(0.522420\pi\)
\(798\) 0 0
\(799\) −13.4393 58.8814i −0.475448 2.08307i
\(800\) 7.85362 0.277668
\(801\) 0 0
\(802\) −2.56168 + 3.21225i −0.0904561 + 0.113428i
\(803\) −7.94706 + 34.8183i −0.280446 + 1.22871i
\(804\) 0 0
\(805\) −0.732057 0.917970i −0.0258016 0.0323542i
\(806\) 21.6654 + 10.4335i 0.763132 + 0.367505i
\(807\) 0 0
\(808\) −16.0799 + 20.1635i −0.565688 + 0.709351i
\(809\) 34.6369 + 43.4333i 1.21777 + 1.52703i 0.777118 + 0.629355i \(0.216681\pi\)
0.440650 + 0.897679i \(0.354748\pi\)
\(810\) 0 0
\(811\) 30.6586 1.07657 0.538284 0.842764i \(-0.319073\pi\)
0.538284 + 0.842764i \(0.319073\pi\)
\(812\) −0.440689 1.23113i −0.0154652 0.0432042i
\(813\) 0 0
\(814\) −48.8847 + 23.5417i −1.71341 + 0.825135i
\(815\) −14.5304 18.2205i −0.508977 0.638237i
\(816\) 0 0
\(817\) 69.4332 33.4373i 2.42916 1.16982i
\(818\) −18.0964 8.71478i −0.632727 0.304705i
\(819\) 0 0
\(820\) −0.899991 + 3.94312i −0.0314290 + 0.137700i
\(821\) 7.59977 33.2968i 0.265234 1.16207i −0.650253 0.759718i \(-0.725337\pi\)
0.915487 0.402348i \(-0.131806\pi\)
\(822\) 0 0
\(823\) −5.37768 23.5612i −0.187454 0.821291i −0.977953 0.208827i \(-0.933036\pi\)
0.790498 0.612464i \(-0.209822\pi\)
\(824\) −9.42534 −0.328347
\(825\) 0 0
\(826\) 1.55189 + 0.747350i 0.0539971 + 0.0260036i
\(827\) −26.9529 12.9798i −0.937244 0.451353i −0.0980476 0.995182i \(-0.531260\pi\)
−0.839196 + 0.543829i \(0.816974\pi\)
\(828\) 0 0
\(829\) −20.4692 −0.710926 −0.355463 0.934690i \(-0.615677\pi\)
−0.355463 + 0.934690i \(0.615677\pi\)
\(830\) 6.19244 + 27.1308i 0.214943 + 0.941725i
\(831\) 0 0
\(832\) −3.64009 + 15.9483i −0.126197 + 0.552907i
\(833\) −9.28965 + 40.7006i −0.321867 + 1.41019i
\(834\) 0 0
\(835\) −19.9867 9.62506i −0.691667 0.333089i
\(836\) 13.8345 6.66235i 0.478477 0.230422i
\(837\) 0 0
\(838\) −27.3695 34.3203i −0.945464 1.18557i
\(839\) 8.60288 4.14293i 0.297004 0.143030i −0.279447 0.960161i \(-0.590151\pi\)
0.576452 + 0.817131i \(0.304437\pi\)
\(840\) 0 0
\(841\) −22.4124 + 18.4034i −0.772842 + 0.634598i
\(842\) 40.6843 1.40207
\(843\) 0 0
\(844\) 3.50286 + 4.39244i 0.120573 + 0.151194i
\(845\) 2.49772 3.13205i 0.0859243 0.107746i
\(846\) 0 0
\(847\) −2.23059 1.07420i −0.0766440 0.0369098i
\(848\) −22.9400 28.7658i −0.787763 0.987823i
\(849\) 0 0
\(850\) −6.12489 + 26.8349i −0.210082 + 0.920429i
\(851\) 8.77584 11.0046i 0.300832 0.377231i
\(852\) 0 0
\(853\) −19.9634 −0.683535 −0.341767 0.939785i \(-0.611025\pi\)
−0.341767 + 0.939785i \(0.611025\pi\)
\(854\) −0.457049 2.00246i −0.0156399 0.0685229i
\(855\) 0 0
\(856\) −19.8399 9.55438i −0.678113 0.326562i
\(857\) 4.12143 + 18.0572i 0.140785 + 0.616821i 0.995253 + 0.0973169i \(0.0310260\pi\)
−0.854468 + 0.519504i \(0.826117\pi\)
\(858\) 0 0
\(859\) 3.73230 + 16.3523i 0.127344 + 0.557932i 0.997836 + 0.0657490i \(0.0209437\pi\)
−0.870492 + 0.492183i \(0.836199\pi\)
\(860\) −4.70247 + 5.89671i −0.160353 + 0.201076i
\(861\) 0 0
\(862\) −11.0300 + 48.3257i −0.375684 + 1.64598i
\(863\) 24.0442 + 30.1505i 0.818476 + 1.02634i 0.999084 + 0.0427811i \(0.0136218\pi\)
−0.180609 + 0.983555i \(0.557807\pi\)
\(864\) 0 0
\(865\) −23.1340 + 11.1408i −0.786581 + 0.378797i
\(866\) 5.63540 7.06656i 0.191499 0.240132i
\(867\) 0 0
\(868\) 1.03669 0.499243i 0.0351875 0.0169454i
\(869\) −4.25597 −0.144374
\(870\) 0 0
\(871\) −40.6268 −1.37659
\(872\) 20.5274 9.88547i 0.695145 0.334764i
\(873\) 0 0
\(874\) −12.3510 + 15.4876i −0.417777 + 0.523876i
\(875\) −5.01789 + 2.41649i −0.169636 + 0.0816922i
\(876\) 0 0
\(877\) −19.1143 23.9686i −0.645445 0.809362i 0.346227 0.938151i \(-0.387463\pi\)
−0.991672 + 0.128788i \(0.958891\pi\)
\(878\) 2.71803 11.9084i 0.0917289 0.401891i
\(879\) 0 0
\(880\) 17.5756 22.0391i 0.592474 0.742938i
\(881\) 3.03166 + 13.2826i 0.102139 + 0.447501i 0.999974 + 0.00716935i \(0.00228210\pi\)
−0.897835 + 0.440332i \(0.854861\pi\)
\(882\) 0 0
\(883\) 4.80086 + 21.0340i 0.161562 + 0.707849i 0.989198 + 0.146584i \(0.0468280\pi\)
−0.827636 + 0.561265i \(0.810315\pi\)
\(884\) 8.97363 + 4.32147i 0.301816 + 0.145347i
\(885\) 0 0
\(886\) 0.283331 + 1.24135i 0.00951868 + 0.0417041i
\(887\) −18.1424 −0.609161 −0.304580 0.952487i \(-0.598516\pi\)
−0.304580 + 0.952487i \(0.598516\pi\)
\(888\) 0 0
\(889\) −0.454112 + 0.569438i −0.0152304 + 0.0190984i
\(890\) −1.73430 + 7.59846i −0.0581338 + 0.254701i
\(891\) 0 0
\(892\) 4.39797 + 5.51488i 0.147255 + 0.184652i
\(893\) −66.9882 32.2598i −2.24168 1.07953i
\(894\) 0 0
\(895\) 7.83908 9.82990i 0.262032 0.328577i
\(896\) 4.10217 + 5.14396i 0.137044 + 0.171848i
\(897\) 0 0
\(898\) 59.7426 1.99363
\(899\) −18.1727 17.9148i −0.606093 0.597493i
\(900\) 0 0
\(901\) 43.0212 20.7179i 1.43324 0.690214i
\(902\) −21.5615 27.0372i −0.717918 0.900241i
\(903\) 0 0
\(904\) 34.0687 16.4066i 1.13311 0.545676i
\(905\) 25.6477 + 12.3513i 0.852559 + 0.410571i
\(906\) 0 0
\(907\) 9.93571 43.5312i 0.329910 1.44543i −0.489390 0.872065i \(-0.662781\pi\)
0.819300 0.573365i \(-0.194362\pi\)
\(908\) −1.68231 + 7.37069i −0.0558295 + 0.244605i
\(909\) 0 0
\(910\) 0.804227 + 3.52355i 0.0266599 + 0.116804i
\(911\) 56.3437 1.86675 0.933374 0.358904i \(-0.116850\pi\)
0.933374 + 0.358904i \(0.116850\pi\)
\(912\) 0 0
\(913\) −43.1083 20.7598i −1.42668 0.687051i
\(914\) −37.9588 18.2800i −1.25557 0.604649i
\(915\) 0 0
\(916\) −4.01688 −0.132721
\(917\) −0.730305 3.19967i −0.0241168 0.105663i
\(918\) 0 0
\(919\) −3.57797 + 15.6761i −0.118026 + 0.517107i 0.881005 + 0.473107i \(0.156867\pi\)
−0.999032 + 0.0440006i \(0.985990\pi\)
\(920\) −1.28257 + 5.61931i −0.0422851 + 0.185263i
\(921\) 0 0
\(922\) −43.7135 21.0513i −1.43963 0.693288i
\(923\) −9.53302 + 4.59086i −0.313783 + 0.151110i
\(924\) 0 0
\(925\) −15.0116 18.8240i −0.493580 0.618929i
\(926\) 17.3327 8.34701i 0.569589 0.274300i
\(927\) 0 0
\(928\) −7.88820 + 12.7554i −0.258943 + 0.418717i
\(929\) −44.6471 −1.46482 −0.732412 0.680862i \(-0.761605\pi\)
−0.732412 + 0.680862i \(0.761605\pi\)
\(930\) 0 0
\(931\) 32.0436 + 40.1814i 1.05019 + 1.31689i
\(932\) −6.57462 + 8.24431i −0.215359 + 0.270051i
\(933\) 0 0
\(934\) 15.0104 + 7.22864i 0.491156 + 0.236528i
\(935\) 22.8097 + 28.6024i 0.745956 + 0.935400i
\(936\) 0 0
\(937\) 12.1754 53.3439i 0.397753 1.74267i −0.238458 0.971153i \(-0.576642\pi\)
0.636211 0.771515i \(-0.280501\pi\)
\(938\) −6.02759 + 7.55836i −0.196808 + 0.246789i
\(939\) 0 0
\(940\) 7.27659 0.237336
\(941\) 8.33838 + 36.5328i 0.271824 + 1.19094i 0.907859 + 0.419277i \(0.137716\pi\)
−0.636035 + 0.771660i \(0.719427\pi\)
\(942\) 0 0
\(943\) 8.08266 + 3.89240i 0.263208 + 0.126754i
\(944\) −2.38717 10.4589i −0.0776957 0.340407i
\(945\) 0 0
\(946\) −14.3499 62.8711i −0.466556 2.04412i
\(947\) 35.1177 44.0362i 1.14117 1.43098i 0.255416 0.966831i \(-0.417787\pi\)
0.885755 0.464153i \(-0.153641\pi\)
\(948\) 0 0
\(949\) −6.34592 + 27.8033i −0.205997 + 0.902533i
\(950\) 21.1271 + 26.4926i 0.685454 + 0.859532i
\(951\) 0 0
\(952\) −6.34849 + 3.05727i −0.205756 + 0.0990868i
\(953\) 2.20354 2.76315i 0.0713796 0.0895071i −0.744860 0.667221i \(-0.767484\pi\)
0.816239 + 0.577714i \(0.196055\pi\)
\(954\) 0 0
\(955\) 12.6526 6.09317i 0.409429 0.197170i
\(956\) 5.01209 0.162103
\(957\) 0 0
\(958\) 26.9606 0.871059
\(959\) −1.48204 + 0.713711i −0.0478574 + 0.0230469i
\(960\) 0 0
\(961\) −5.32790 + 6.68097i −0.171868 + 0.215515i
\(962\) −39.0356 + 18.7986i −1.25856 + 0.606090i
\(963\) 0 0
\(964\) 0.0570541 + 0.0715435i 0.00183759 + 0.00230426i
\(965\) 0.499929 2.19033i 0.0160933 0.0705093i
\(966\) 0 0
\(967\) −37.4649 + 46.9795i −1.20479 + 1.51076i −0.400747 + 0.916189i \(0.631249\pi\)
−0.804043 + 0.594571i \(0.797322\pi\)
\(968\) 2.70443 + 11.8489i 0.0869237 + 0.380838i
\(969\) 0 0
\(970\) 6.80022 + 29.7937i 0.218342 + 0.956619i
\(971\) −7.41072 3.56881i −0.237821 0.114529i 0.311178 0.950352i \(-0.399277\pi\)
−0.548999 + 0.835823i \(0.684991\pi\)
\(972\) 0 0
\(973\) 1.09258 + 4.78691i 0.0350265 + 0.153461i
\(974\) 19.7939 0.634237
\(975\) 0 0
\(976\) −7.97595 + 10.0015i −0.255304 + 0.320141i
\(977\) 8.04254 35.2367i 0.257304 1.12732i −0.666818 0.745221i \(-0.732344\pi\)
0.924121 0.382100i \(-0.124799\pi\)
\(978\) 0 0
\(979\) −8.35492 10.4767i −0.267024 0.334838i
\(980\) −4.53170 2.18235i −0.144760 0.0697127i
\(981\) 0 0
\(982\) 11.4130 14.3114i 0.364203 0.456696i
\(983\) −33.3167 41.7778i −1.06264 1.33250i −0.940425 0.340000i \(-0.889573\pi\)
−0.122211 0.992504i \(-0.538998\pi\)
\(984\) 0 0
\(985\) 7.03280 0.224084
\(986\) −37.4318 36.9007i −1.19207 1.17516i
\(987\) 0 0
\(988\) 11.0472 5.32004i 0.351458 0.169253i
\(989\) 10.4305 + 13.0794i 0.331669 + 0.415900i
\(990\) 0 0
\(991\) 2.38129 1.14677i 0.0756440 0.0364282i −0.395679 0.918389i \(-0.629491\pi\)
0.471323 + 0.881961i \(0.343777\pi\)
\(992\) −11.8900 5.72593i −0.377508 0.181798i
\(993\) 0 0
\(994\) −0.560265 + 2.45468i −0.0177705 + 0.0778578i
\(995\) 4.82058 21.1204i 0.152823 0.669560i
\(996\) 0 0
\(997\) 0.945420 + 4.14216i 0.0299418 + 0.131183i 0.987690 0.156425i \(-0.0499970\pi\)
−0.957748 + 0.287608i \(0.907140\pi\)
\(998\) −39.2112 −1.24121
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.k.f.136.3 60
3.2 odd 2 inner 783.2.k.f.136.8 yes 60
29.16 even 7 inner 783.2.k.f.190.3 yes 60
87.74 odd 14 inner 783.2.k.f.190.8 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.k.f.136.3 60 1.1 even 1 trivial
783.2.k.f.136.8 yes 60 3.2 odd 2 inner
783.2.k.f.190.3 yes 60 29.16 even 7 inner
783.2.k.f.190.8 yes 60 87.74 odd 14 inner