Properties

Label 783.2.e.a.262.10
Level $783$
Weight $2$
Character 783.262
Analytic conductor $6.252$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(262,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.262"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 261)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 262.10
Character \(\chi\) \(=\) 783.262
Dual form 783.2.e.a.523.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10224 - 1.90914i) q^{2} +(-1.42988 - 2.47662i) q^{4} +(0.463291 + 0.802444i) q^{5} +(2.26860 - 3.92934i) q^{7} -1.89533 q^{8} +2.04264 q^{10} +(-1.20435 + 2.08600i) q^{11} +(-0.371618 - 0.643660i) q^{13} +(-5.00111 - 8.66217i) q^{14} +(0.770648 - 1.33480i) q^{16} +5.13650 q^{17} -5.36170 q^{19} +(1.32490 - 2.29480i) q^{20} +(2.65498 + 4.59856i) q^{22} +(-0.335860 - 0.581727i) q^{23} +(2.07072 - 3.58660i) q^{25} -1.63845 q^{26} -12.9753 q^{28} +(-0.500000 + 0.866025i) q^{29} +(-1.44652 - 2.50544i) q^{31} +(-3.59421 - 6.22535i) q^{32} +(5.66167 - 9.80630i) q^{34} +4.20410 q^{35} +4.90470 q^{37} +(-5.90990 + 10.2362i) q^{38} +(-0.878089 - 1.52089i) q^{40} +(1.06714 + 1.84833i) q^{41} +(-5.53316 + 9.58372i) q^{43} +6.88832 q^{44} -1.48080 q^{46} +(-4.29186 + 7.43372i) q^{47} +(-6.79313 - 11.7660i) q^{49} +(-4.56488 - 7.90660i) q^{50} +(-1.06274 + 1.84071i) q^{52} -10.5674 q^{53} -2.23186 q^{55} +(-4.29975 + 7.44738i) q^{56} +(1.10224 + 1.90914i) q^{58} +(4.71055 + 8.15891i) q^{59} +(4.51517 - 7.82051i) q^{61} -6.37765 q^{62} -12.7642 q^{64} +(0.344334 - 0.596405i) q^{65} +(3.04601 + 5.27585i) q^{67} +(-7.34458 - 12.7212i) q^{68} +(4.63394 - 8.02621i) q^{70} +12.8590 q^{71} +0.359617 q^{73} +(5.40617 - 9.36376i) q^{74} +(7.66659 + 13.2789i) q^{76} +(5.46440 + 9.46461i) q^{77} +(-1.69119 + 2.92923i) q^{79} +1.42814 q^{80} +4.70497 q^{82} +(3.23863 - 5.60948i) q^{83} +(2.37970 + 4.12175i) q^{85} +(12.1978 + 21.1272i) q^{86} +(2.28264 - 3.95365i) q^{88} -0.921884 q^{89} -3.37221 q^{91} +(-0.960479 + 1.66360i) q^{92} +(9.46134 + 16.3875i) q^{94} +(-2.48403 - 4.30246i) q^{95} +(1.17421 - 2.03379i) q^{97} -29.9507 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + q^{2} - 5 q^{4} - q^{5} + 7 q^{7} - 6 q^{8} - 20 q^{10} + 3 q^{11} + 7 q^{13} - 10 q^{14} + 7 q^{16} - 2 q^{17} - 56 q^{19} - 4 q^{20} + 13 q^{22} + 4 q^{23} + 4 q^{25} + 12 q^{26} - 32 q^{28}+ \cdots - 86 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10224 1.90914i 0.779404 1.34997i −0.152882 0.988244i \(-0.548856\pi\)
0.932286 0.361722i \(-0.117811\pi\)
\(3\) 0 0
\(4\) −1.42988 2.47662i −0.714940 1.23831i
\(5\) 0.463291 + 0.802444i 0.207190 + 0.358864i 0.950828 0.309718i \(-0.100235\pi\)
−0.743638 + 0.668582i \(0.766901\pi\)
\(6\) 0 0
\(7\) 2.26860 3.92934i 0.857452 1.48515i −0.0169002 0.999857i \(-0.505380\pi\)
0.874352 0.485293i \(-0.161287\pi\)
\(8\) −1.89533 −0.670099
\(9\) 0 0
\(10\) 2.04264 0.645939
\(11\) −1.20435 + 2.08600i −0.363126 + 0.628953i −0.988474 0.151394i \(-0.951624\pi\)
0.625348 + 0.780346i \(0.284957\pi\)
\(12\) 0 0
\(13\) −0.371618 0.643660i −0.103068 0.178519i 0.809879 0.586597i \(-0.199533\pi\)
−0.912947 + 0.408078i \(0.866199\pi\)
\(14\) −5.00111 8.66217i −1.33660 2.31506i
\(15\) 0 0
\(16\) 0.770648 1.33480i 0.192662 0.333700i
\(17\) 5.13650 1.24578 0.622892 0.782308i \(-0.285958\pi\)
0.622892 + 0.782308i \(0.285958\pi\)
\(18\) 0 0
\(19\) −5.36170 −1.23006 −0.615029 0.788504i \(-0.710856\pi\)
−0.615029 + 0.788504i \(0.710856\pi\)
\(20\) 1.32490 2.29480i 0.296257 0.513132i
\(21\) 0 0
\(22\) 2.65498 + 4.59856i 0.566043 + 0.980416i
\(23\) −0.335860 0.581727i −0.0700317 0.121298i 0.828883 0.559422i \(-0.188977\pi\)
−0.898915 + 0.438123i \(0.855643\pi\)
\(24\) 0 0
\(25\) 2.07072 3.58660i 0.414144 0.717319i
\(26\) −1.63845 −0.321327
\(27\) 0 0
\(28\) −12.9753 −2.45211
\(29\) −0.500000 + 0.866025i −0.0928477 + 0.160817i
\(30\) 0 0
\(31\) −1.44652 2.50544i −0.259802 0.449990i 0.706387 0.707826i \(-0.250324\pi\)
−0.966189 + 0.257836i \(0.916991\pi\)
\(32\) −3.59421 6.22535i −0.635373 1.10050i
\(33\) 0 0
\(34\) 5.66167 9.80630i 0.970969 1.68177i
\(35\) 4.20410 0.710622
\(36\) 0 0
\(37\) 4.90470 0.806327 0.403164 0.915128i \(-0.367911\pi\)
0.403164 + 0.915128i \(0.367911\pi\)
\(38\) −5.90990 + 10.2362i −0.958712 + 1.66054i
\(39\) 0 0
\(40\) −0.878089 1.52089i −0.138838 0.240474i
\(41\) 1.06714 + 1.84833i 0.166659 + 0.288661i 0.937243 0.348677i \(-0.113369\pi\)
−0.770584 + 0.637338i \(0.780036\pi\)
\(42\) 0 0
\(43\) −5.53316 + 9.58372i −0.843799 + 1.46150i 0.0428610 + 0.999081i \(0.486353\pi\)
−0.886660 + 0.462422i \(0.846981\pi\)
\(44\) 6.88832 1.03845
\(45\) 0 0
\(46\) −1.48080 −0.218332
\(47\) −4.29186 + 7.43372i −0.626032 + 1.08432i 0.362308 + 0.932058i \(0.381989\pi\)
−0.988340 + 0.152261i \(0.951345\pi\)
\(48\) 0 0
\(49\) −6.79313 11.7660i −0.970447 1.68086i
\(50\) −4.56488 7.90660i −0.645571 1.11816i
\(51\) 0 0
\(52\) −1.06274 + 1.84071i −0.147375 + 0.255261i
\(53\) −10.5674 −1.45154 −0.725771 0.687936i \(-0.758517\pi\)
−0.725771 + 0.687936i \(0.758517\pi\)
\(54\) 0 0
\(55\) −2.23186 −0.300944
\(56\) −4.29975 + 7.44738i −0.574578 + 0.995198i
\(57\) 0 0
\(58\) 1.10224 + 1.90914i 0.144732 + 0.250682i
\(59\) 4.71055 + 8.15891i 0.613262 + 1.06220i 0.990687 + 0.136160i \(0.0434762\pi\)
−0.377425 + 0.926040i \(0.623191\pi\)
\(60\) 0 0
\(61\) 4.51517 7.82051i 0.578109 1.00131i −0.417587 0.908637i \(-0.637124\pi\)
0.995696 0.0926771i \(-0.0295424\pi\)
\(62\) −6.37765 −0.809962
\(63\) 0 0
\(64\) −12.7642 −1.59552
\(65\) 0.344334 0.596405i 0.0427094 0.0739749i
\(66\) 0 0
\(67\) 3.04601 + 5.27585i 0.372130 + 0.644548i 0.989893 0.141817i \(-0.0452943\pi\)
−0.617763 + 0.786364i \(0.711961\pi\)
\(68\) −7.34458 12.7212i −0.890661 1.54267i
\(69\) 0 0
\(70\) 4.63394 8.02621i 0.553861 0.959316i
\(71\) 12.8590 1.52608 0.763039 0.646353i \(-0.223707\pi\)
0.763039 + 0.646353i \(0.223707\pi\)
\(72\) 0 0
\(73\) 0.359617 0.0420899 0.0210450 0.999779i \(-0.493301\pi\)
0.0210450 + 0.999779i \(0.493301\pi\)
\(74\) 5.40617 9.36376i 0.628454 1.08852i
\(75\) 0 0
\(76\) 7.66659 + 13.2789i 0.879418 + 1.52320i
\(77\) 5.46440 + 9.46461i 0.622726 + 1.07859i
\(78\) 0 0
\(79\) −1.69119 + 2.92923i −0.190274 + 0.329564i −0.945341 0.326083i \(-0.894271\pi\)
0.755067 + 0.655648i \(0.227604\pi\)
\(80\) 1.42814 0.159671
\(81\) 0 0
\(82\) 4.70497 0.519577
\(83\) 3.23863 5.60948i 0.355486 0.615720i −0.631715 0.775201i \(-0.717649\pi\)
0.987201 + 0.159481i \(0.0509820\pi\)
\(84\) 0 0
\(85\) 2.37970 + 4.12175i 0.258114 + 0.447067i
\(86\) 12.1978 + 21.1272i 1.31532 + 2.27820i
\(87\) 0 0
\(88\) 2.28264 3.95365i 0.243330 0.421461i
\(89\) −0.921884 −0.0977195 −0.0488598 0.998806i \(-0.515559\pi\)
−0.0488598 + 0.998806i \(0.515559\pi\)
\(90\) 0 0
\(91\) −3.37221 −0.353504
\(92\) −0.960479 + 1.66360i −0.100137 + 0.173442i
\(93\) 0 0
\(94\) 9.46134 + 16.3875i 0.975863 + 1.69024i
\(95\) −2.48403 4.30246i −0.254856 0.441424i
\(96\) 0 0
\(97\) 1.17421 2.03379i 0.119223 0.206500i −0.800237 0.599684i \(-0.795293\pi\)
0.919460 + 0.393184i \(0.128626\pi\)
\(98\) −29.9507 −3.02548
\(99\) 0 0
\(100\) −11.8435 −1.18435
\(101\) −3.27997 + 5.68107i −0.326369 + 0.565288i −0.981788 0.189977i \(-0.939159\pi\)
0.655419 + 0.755265i \(0.272492\pi\)
\(102\) 0 0
\(103\) 6.89267 + 11.9385i 0.679155 + 1.17633i 0.975236 + 0.221169i \(0.0709871\pi\)
−0.296080 + 0.955163i \(0.595680\pi\)
\(104\) 0.704337 + 1.21995i 0.0690659 + 0.119626i
\(105\) 0 0
\(106\) −11.6478 + 20.1746i −1.13134 + 1.95953i
\(107\) 4.16667 0.402807 0.201404 0.979508i \(-0.435450\pi\)
0.201404 + 0.979508i \(0.435450\pi\)
\(108\) 0 0
\(109\) 17.2935 1.65642 0.828210 0.560418i \(-0.189359\pi\)
0.828210 + 0.560418i \(0.189359\pi\)
\(110\) −2.46006 + 4.26094i −0.234557 + 0.406265i
\(111\) 0 0
\(112\) −3.49659 6.05627i −0.330397 0.572264i
\(113\) −2.72887 4.72655i −0.256711 0.444636i 0.708648 0.705562i \(-0.249305\pi\)
−0.965359 + 0.260926i \(0.915972\pi\)
\(114\) 0 0
\(115\) 0.311202 0.539018i 0.0290197 0.0502637i
\(116\) 2.85976 0.265522
\(117\) 0 0
\(118\) 20.7687 1.91191
\(119\) 11.6527 20.1830i 1.06820 1.85018i
\(120\) 0 0
\(121\) 2.59907 + 4.50172i 0.236279 + 0.409247i
\(122\) −9.95364 17.2402i −0.901160 1.56086i
\(123\) 0 0
\(124\) −4.13669 + 7.16495i −0.371485 + 0.643431i
\(125\) 8.47030 0.757607
\(126\) 0 0
\(127\) −2.77140 −0.245922 −0.122961 0.992411i \(-0.539239\pi\)
−0.122961 + 0.992411i \(0.539239\pi\)
\(128\) −6.88081 + 11.9179i −0.608183 + 1.05340i
\(129\) 0 0
\(130\) −0.759080 1.31477i −0.0665757 0.115313i
\(131\) 10.1056 + 17.5034i 0.882928 + 1.52928i 0.848070 + 0.529884i \(0.177765\pi\)
0.0348584 + 0.999392i \(0.488902\pi\)
\(132\) 0 0
\(133\) −12.1636 + 21.0679i −1.05472 + 1.82682i
\(134\) 13.4298 1.16016
\(135\) 0 0
\(136\) −9.73535 −0.834799
\(137\) −8.17049 + 14.1517i −0.698052 + 1.20906i 0.271089 + 0.962554i \(0.412616\pi\)
−0.969141 + 0.246508i \(0.920717\pi\)
\(138\) 0 0
\(139\) 10.1406 + 17.5641i 0.860118 + 1.48977i 0.871814 + 0.489836i \(0.162943\pi\)
−0.0116965 + 0.999932i \(0.503723\pi\)
\(140\) −6.01135 10.4120i −0.508052 0.879972i
\(141\) 0 0
\(142\) 14.1737 24.5496i 1.18943 2.06015i
\(143\) 1.79023 0.149707
\(144\) 0 0
\(145\) −0.926583 −0.0769485
\(146\) 0.396385 0.686559i 0.0328051 0.0568200i
\(147\) 0 0
\(148\) −7.01313 12.1471i −0.576476 0.998485i
\(149\) −3.65821 6.33621i −0.299693 0.519083i 0.676373 0.736559i \(-0.263551\pi\)
−0.976066 + 0.217477i \(0.930217\pi\)
\(150\) 0 0
\(151\) 7.24188 12.5433i 0.589336 1.02076i −0.404983 0.914324i \(-0.632723\pi\)
0.994320 0.106436i \(-0.0339440\pi\)
\(152\) 10.1622 0.824261
\(153\) 0 0
\(154\) 24.0924 1.94142
\(155\) 1.34032 2.32150i 0.107657 0.186467i
\(156\) 0 0
\(157\) −1.86899 3.23719i −0.149162 0.258356i 0.781756 0.623584i \(-0.214324\pi\)
−0.930918 + 0.365229i \(0.880991\pi\)
\(158\) 3.72821 + 6.45745i 0.296601 + 0.513727i
\(159\) 0 0
\(160\) 3.33033 5.76830i 0.263286 0.456025i
\(161\) −3.04773 −0.240195
\(162\) 0 0
\(163\) −14.2825 −1.11869 −0.559344 0.828936i \(-0.688947\pi\)
−0.559344 + 0.828936i \(0.688947\pi\)
\(164\) 3.05175 5.28579i 0.238302 0.412751i
\(165\) 0 0
\(166\) −7.13952 12.3660i −0.554134 0.959789i
\(167\) 1.78844 + 3.09767i 0.138394 + 0.239705i 0.926889 0.375336i \(-0.122473\pi\)
−0.788495 + 0.615041i \(0.789139\pi\)
\(168\) 0 0
\(169\) 6.22380 10.7799i 0.478754 0.829226i
\(170\) 10.4920 0.804701
\(171\) 0 0
\(172\) 31.6470 2.41306
\(173\) 11.1252 19.2693i 0.845830 1.46502i −0.0390687 0.999237i \(-0.512439\pi\)
0.884899 0.465784i \(-0.154228\pi\)
\(174\) 0 0
\(175\) −9.39530 16.2731i −0.710218 1.23013i
\(176\) 1.85626 + 3.21514i 0.139921 + 0.242350i
\(177\) 0 0
\(178\) −1.01614 + 1.76001i −0.0761629 + 0.131918i
\(179\) −16.9360 −1.26585 −0.632927 0.774212i \(-0.718147\pi\)
−0.632927 + 0.774212i \(0.718147\pi\)
\(180\) 0 0
\(181\) −0.223217 −0.0165916 −0.00829581 0.999966i \(-0.502641\pi\)
−0.00829581 + 0.999966i \(0.502641\pi\)
\(182\) −3.71700 + 6.43803i −0.275522 + 0.477218i
\(183\) 0 0
\(184\) 0.636565 + 1.10256i 0.0469282 + 0.0812820i
\(185\) 2.27230 + 3.93575i 0.167063 + 0.289362i
\(186\) 0 0
\(187\) −6.18616 + 10.7147i −0.452377 + 0.783539i
\(188\) 24.5474 1.79030
\(189\) 0 0
\(190\) −10.9520 −0.794543
\(191\) 0.851901 1.47554i 0.0616414 0.106766i −0.833558 0.552432i \(-0.813700\pi\)
0.895199 + 0.445666i \(0.147033\pi\)
\(192\) 0 0
\(193\) −11.6175 20.1221i −0.836245 1.44842i −0.893012 0.450032i \(-0.851413\pi\)
0.0567668 0.998387i \(-0.481921\pi\)
\(194\) −2.58853 4.48347i −0.185846 0.321894i
\(195\) 0 0
\(196\) −19.4267 + 33.6480i −1.38762 + 2.40343i
\(197\) −3.11364 −0.221838 −0.110919 0.993829i \(-0.535379\pi\)
−0.110919 + 0.993829i \(0.535379\pi\)
\(198\) 0 0
\(199\) −25.7334 −1.82419 −0.912096 0.409977i \(-0.865537\pi\)
−0.912096 + 0.409977i \(0.865537\pi\)
\(200\) −3.92470 + 6.79777i −0.277518 + 0.480675i
\(201\) 0 0
\(202\) 7.23064 + 12.5238i 0.508746 + 0.881175i
\(203\) 2.26860 + 3.92934i 0.159225 + 0.275785i
\(204\) 0 0
\(205\) −0.988790 + 1.71263i −0.0690601 + 0.119616i
\(206\) 30.3896 2.11734
\(207\) 0 0
\(208\) −1.14555 −0.0794293
\(209\) 6.45738 11.1845i 0.446666 0.773648i
\(210\) 0 0
\(211\) 5.60533 + 9.70871i 0.385887 + 0.668375i 0.991892 0.127085i \(-0.0405622\pi\)
−0.606005 + 0.795461i \(0.707229\pi\)
\(212\) 15.1101 + 26.1715i 1.03777 + 1.79746i
\(213\) 0 0
\(214\) 4.59268 7.95476i 0.313949 0.543776i
\(215\) −10.2539 −0.699307
\(216\) 0 0
\(217\) −13.1263 −0.891070
\(218\) 19.0617 33.0158i 1.29102 2.23611i
\(219\) 0 0
\(220\) 3.19130 + 5.52749i 0.215157 + 0.372663i
\(221\) −1.90881 3.30616i −0.128401 0.222396i
\(222\) 0 0
\(223\) −3.38054 + 5.85527i −0.226378 + 0.392098i −0.956732 0.290971i \(-0.906022\pi\)
0.730354 + 0.683069i \(0.239355\pi\)
\(224\) −32.6154 −2.17920
\(225\) 0 0
\(226\) −12.0315 −0.800326
\(227\) −10.9012 + 18.8815i −0.723541 + 1.25321i 0.236031 + 0.971745i \(0.424153\pi\)
−0.959572 + 0.281464i \(0.909180\pi\)
\(228\) 0 0
\(229\) 3.56571 + 6.17600i 0.235629 + 0.408121i 0.959455 0.281861i \(-0.0909517\pi\)
−0.723826 + 0.689982i \(0.757618\pi\)
\(230\) −0.686041 1.18826i −0.0452362 0.0783514i
\(231\) 0 0
\(232\) 0.947664 1.64140i 0.0622172 0.107763i
\(233\) −15.6138 −1.02289 −0.511447 0.859315i \(-0.670890\pi\)
−0.511447 + 0.859315i \(0.670890\pi\)
\(234\) 0 0
\(235\) −7.95352 −0.518831
\(236\) 13.4710 23.3325i 0.876890 1.51882i
\(237\) 0 0
\(238\) −25.6882 44.4932i −1.66512 2.88407i
\(239\) −0.805993 1.39602i −0.0521353 0.0903011i 0.838780 0.544471i \(-0.183269\pi\)
−0.890915 + 0.454169i \(0.849936\pi\)
\(240\) 0 0
\(241\) −3.96719 + 6.87137i −0.255549 + 0.442624i −0.965045 0.262086i \(-0.915590\pi\)
0.709495 + 0.704710i \(0.248923\pi\)
\(242\) 11.4592 0.736627
\(243\) 0 0
\(244\) −25.8246 −1.65325
\(245\) 6.29439 10.9022i 0.402134 0.696516i
\(246\) 0 0
\(247\) 1.99250 + 3.45111i 0.126780 + 0.219589i
\(248\) 2.74162 + 4.74863i 0.174093 + 0.301538i
\(249\) 0 0
\(250\) 9.33633 16.1710i 0.590482 1.02274i
\(251\) −15.2548 −0.962878 −0.481439 0.876480i \(-0.659886\pi\)
−0.481439 + 0.876480i \(0.659886\pi\)
\(252\) 0 0
\(253\) 1.61798 0.101721
\(254\) −3.05476 + 5.29100i −0.191673 + 0.331987i
\(255\) 0 0
\(256\) 2.40447 + 4.16466i 0.150279 + 0.260291i
\(257\) 7.86293 + 13.6190i 0.490476 + 0.849529i 0.999940 0.0109627i \(-0.00348962\pi\)
−0.509464 + 0.860492i \(0.670156\pi\)
\(258\) 0 0
\(259\) 11.1268 19.2722i 0.691387 1.19752i
\(260\) −1.96943 −0.122139
\(261\) 0 0
\(262\) 44.5552 2.75263
\(263\) −3.64686 + 6.31655i −0.224875 + 0.389495i −0.956282 0.292446i \(-0.905531\pi\)
0.731407 + 0.681941i \(0.238864\pi\)
\(264\) 0 0
\(265\) −4.89578 8.47974i −0.300745 0.520906i
\(266\) 26.8144 + 46.4440i 1.64410 + 2.84766i
\(267\) 0 0
\(268\) 8.71086 15.0877i 0.532101 0.921626i
\(269\) −13.9167 −0.848516 −0.424258 0.905541i \(-0.639465\pi\)
−0.424258 + 0.905541i \(0.639465\pi\)
\(270\) 0 0
\(271\) −5.89268 −0.357955 −0.178978 0.983853i \(-0.557279\pi\)
−0.178978 + 0.983853i \(0.557279\pi\)
\(272\) 3.95843 6.85621i 0.240015 0.415719i
\(273\) 0 0
\(274\) 18.0117 + 31.1972i 1.08813 + 1.88469i
\(275\) 4.98776 + 8.63905i 0.300773 + 0.520954i
\(276\) 0 0
\(277\) −4.07099 + 7.05117i −0.244602 + 0.423664i −0.962020 0.272980i \(-0.911991\pi\)
0.717417 + 0.696644i \(0.245324\pi\)
\(278\) 44.7098 2.68152
\(279\) 0 0
\(280\) −7.96814 −0.476187
\(281\) 10.0913 17.4787i 0.601999 1.04269i −0.390519 0.920595i \(-0.627704\pi\)
0.992518 0.122098i \(-0.0389624\pi\)
\(282\) 0 0
\(283\) 13.7058 + 23.7391i 0.814725 + 1.41114i 0.909526 + 0.415648i \(0.136445\pi\)
−0.0948010 + 0.995496i \(0.530221\pi\)
\(284\) −18.3868 31.8468i −1.09105 1.88976i
\(285\) 0 0
\(286\) 1.97327 3.41781i 0.116682 0.202099i
\(287\) 9.68364 0.571607
\(288\) 0 0
\(289\) 9.38363 0.551978
\(290\) −1.02132 + 1.76898i −0.0599739 + 0.103878i
\(291\) 0 0
\(292\) −0.514209 0.890635i −0.0300918 0.0521205i
\(293\) 3.21385 + 5.56655i 0.187755 + 0.325201i 0.944501 0.328507i \(-0.106546\pi\)
−0.756746 + 0.653709i \(0.773212\pi\)
\(294\) 0 0
\(295\) −4.36471 + 7.55991i −0.254124 + 0.440155i
\(296\) −9.29601 −0.540319
\(297\) 0 0
\(298\) −16.1290 −0.934326
\(299\) −0.249623 + 0.432360i −0.0144361 + 0.0250040i
\(300\) 0 0
\(301\) 25.1051 + 43.4833i 1.44703 + 2.50634i
\(302\) −15.9646 27.6516i −0.918661 1.59117i
\(303\) 0 0
\(304\) −4.13198 + 7.15680i −0.236985 + 0.410471i
\(305\) 8.36736 0.479114
\(306\) 0 0
\(307\) 13.2099 0.753928 0.376964 0.926228i \(-0.376968\pi\)
0.376964 + 0.926228i \(0.376968\pi\)
\(308\) 15.6269 27.0665i 0.890423 1.54226i
\(309\) 0 0
\(310\) −2.95471 5.11770i −0.167816 0.290666i
\(311\) −7.98502 13.8305i −0.452789 0.784254i 0.545769 0.837936i \(-0.316238\pi\)
−0.998558 + 0.0536819i \(0.982904\pi\)
\(312\) 0 0
\(313\) 11.1558 19.3225i 0.630564 1.09217i −0.356872 0.934153i \(-0.616157\pi\)
0.987436 0.158016i \(-0.0505099\pi\)
\(314\) −8.24033 −0.465028
\(315\) 0 0
\(316\) 9.67281 0.544138
\(317\) 1.57365 2.72565i 0.0883852 0.153088i −0.818443 0.574587i \(-0.805163\pi\)
0.906829 + 0.421499i \(0.138496\pi\)
\(318\) 0 0
\(319\) −1.20435 2.08600i −0.0674308 0.116794i
\(320\) −5.91353 10.2425i −0.330577 0.572575i
\(321\) 0 0
\(322\) −3.35934 + 5.81855i −0.187209 + 0.324255i
\(323\) −27.5404 −1.53239
\(324\) 0 0
\(325\) −3.07807 −0.170740
\(326\) −15.7427 + 27.2672i −0.871909 + 1.51019i
\(327\) 0 0
\(328\) −2.02257 3.50320i −0.111678 0.193432i
\(329\) 19.4731 + 33.7283i 1.07358 + 1.85950i
\(330\) 0 0
\(331\) 8.92523 15.4590i 0.490575 0.849701i −0.509366 0.860550i \(-0.670120\pi\)
0.999941 + 0.0108490i \(0.00345342\pi\)
\(332\) −18.5234 −1.01660
\(333\) 0 0
\(334\) 7.88518 0.431458
\(335\) −2.82238 + 4.88851i −0.154203 + 0.267088i
\(336\) 0 0
\(337\) 15.8508 + 27.4544i 0.863447 + 1.49553i 0.868581 + 0.495547i \(0.165032\pi\)
−0.00513407 + 0.999987i \(0.501634\pi\)
\(338\) −13.7203 23.7642i −0.746285 1.29260i
\(339\) 0 0
\(340\) 6.80536 11.7872i 0.369072 0.639252i
\(341\) 6.96846 0.377363
\(342\) 0 0
\(343\) −29.8832 −1.61354
\(344\) 10.4871 18.1643i 0.565429 0.979352i
\(345\) 0 0
\(346\) −24.5252 42.4790i −1.31849 2.28368i
\(347\) −16.2161 28.0871i −0.870527 1.50780i −0.861453 0.507837i \(-0.830445\pi\)
−0.00907365 0.999959i \(-0.502888\pi\)
\(348\) 0 0
\(349\) −0.514758 + 0.891588i −0.0275544 + 0.0477256i −0.879474 0.475947i \(-0.842105\pi\)
0.851919 + 0.523673i \(0.175439\pi\)
\(350\) −41.4236 −2.21418
\(351\) 0 0
\(352\) 17.3148 0.922881
\(353\) −10.0761 + 17.4522i −0.536294 + 0.928889i 0.462805 + 0.886460i \(0.346843\pi\)
−0.999099 + 0.0424286i \(0.986490\pi\)
\(354\) 0 0
\(355\) 5.95744 + 10.3186i 0.316188 + 0.547654i
\(356\) 1.31818 + 2.28316i 0.0698636 + 0.121007i
\(357\) 0 0
\(358\) −18.6675 + 32.3331i −0.986611 + 1.70886i
\(359\) −27.8483 −1.46978 −0.734890 0.678187i \(-0.762766\pi\)
−0.734890 + 0.678187i \(0.762766\pi\)
\(360\) 0 0
\(361\) 9.74783 0.513044
\(362\) −0.246040 + 0.426153i −0.0129316 + 0.0223981i
\(363\) 0 0
\(364\) 4.82186 + 8.35170i 0.252734 + 0.437748i
\(365\) 0.166607 + 0.288572i 0.00872062 + 0.0151046i
\(366\) 0 0
\(367\) 6.87873 11.9143i 0.359067 0.621922i −0.628738 0.777617i \(-0.716428\pi\)
0.987805 + 0.155695i \(0.0497617\pi\)
\(368\) −1.03532 −0.0539698
\(369\) 0 0
\(370\) 10.0185 0.520838
\(371\) −23.9732 + 41.5228i −1.24463 + 2.15576i
\(372\) 0 0
\(373\) −10.5133 18.2096i −0.544358 0.942855i −0.998647 0.0520011i \(-0.983440\pi\)
0.454289 0.890854i \(-0.349893\pi\)
\(374\) 13.6373 + 23.6205i 0.705168 + 1.22139i
\(375\) 0 0
\(376\) 8.13448 14.0893i 0.419504 0.726602i
\(377\) 0.743235 0.0382786
\(378\) 0 0
\(379\) −31.3041 −1.60799 −0.803993 0.594639i \(-0.797295\pi\)
−0.803993 + 0.594639i \(0.797295\pi\)
\(380\) −7.10372 + 12.3040i −0.364413 + 0.631183i
\(381\) 0 0
\(382\) −1.87801 3.25280i −0.0960871 0.166428i
\(383\) −9.32276 16.1475i −0.476371 0.825099i 0.523262 0.852172i \(-0.324715\pi\)
−0.999633 + 0.0270728i \(0.991381\pi\)
\(384\) 0 0
\(385\) −5.06321 + 8.76975i −0.258045 + 0.446948i
\(386\) −51.2212 −2.60709
\(387\) 0 0
\(388\) −6.71592 −0.340949
\(389\) −0.703182 + 1.21795i −0.0356528 + 0.0617524i −0.883301 0.468806i \(-0.844684\pi\)
0.847648 + 0.530558i \(0.178018\pi\)
\(390\) 0 0
\(391\) −1.72515 2.98804i −0.0872443 0.151112i
\(392\) 12.8752 + 22.3005i 0.650296 + 1.12634i
\(393\) 0 0
\(394\) −3.43199 + 5.94438i −0.172901 + 0.299474i
\(395\) −3.13406 −0.157692
\(396\) 0 0
\(397\) 11.0056 0.552353 0.276177 0.961107i \(-0.410933\pi\)
0.276177 + 0.961107i \(0.410933\pi\)
\(398\) −28.3644 + 49.1287i −1.42178 + 2.46260i
\(399\) 0 0
\(400\) −3.19160 5.52801i −0.159580 0.276400i
\(401\) −7.25219 12.5612i −0.362157 0.627274i 0.626159 0.779696i \(-0.284626\pi\)
−0.988316 + 0.152421i \(0.951293\pi\)
\(402\) 0 0
\(403\) −1.07510 + 1.86213i −0.0535546 + 0.0927593i
\(404\) 18.7598 0.933337
\(405\) 0 0
\(406\) 10.0022 0.496401
\(407\) −5.90699 + 10.2312i −0.292798 + 0.507142i
\(408\) 0 0
\(409\) 1.77259 + 3.07022i 0.0876490 + 0.151812i 0.906517 0.422169i \(-0.138731\pi\)
−0.818868 + 0.573982i \(0.805398\pi\)
\(410\) 2.17977 + 3.77548i 0.107651 + 0.186458i
\(411\) 0 0
\(412\) 19.7114 34.1411i 0.971110 1.68201i
\(413\) 42.7455 2.10337
\(414\) 0 0
\(415\) 6.00172 0.294613
\(416\) −2.67134 + 4.62690i −0.130973 + 0.226852i
\(417\) 0 0
\(418\) −14.2352 24.6561i −0.696266 1.20597i
\(419\) 7.86579 + 13.6239i 0.384269 + 0.665573i 0.991667 0.128824i \(-0.0411202\pi\)
−0.607399 + 0.794397i \(0.707787\pi\)
\(420\) 0 0
\(421\) −4.05975 + 7.03170i −0.197860 + 0.342704i −0.947834 0.318763i \(-0.896733\pi\)
0.749974 + 0.661467i \(0.230066\pi\)
\(422\) 24.7137 1.20305
\(423\) 0 0
\(424\) 20.0287 0.972678
\(425\) 10.6363 18.4226i 0.515935 0.893625i
\(426\) 0 0
\(427\) −20.4863 35.4833i −0.991401 1.71716i
\(428\) −5.95784 10.3193i −0.287983 0.498801i
\(429\) 0 0
\(430\) −11.3022 + 19.5761i −0.545043 + 0.944042i
\(431\) −12.1165 −0.583629 −0.291815 0.956475i \(-0.594259\pi\)
−0.291815 + 0.956475i \(0.594259\pi\)
\(432\) 0 0
\(433\) 3.43459 0.165056 0.0825279 0.996589i \(-0.473701\pi\)
0.0825279 + 0.996589i \(0.473701\pi\)
\(434\) −14.4684 + 25.0599i −0.694503 + 1.20291i
\(435\) 0 0
\(436\) −24.7277 42.8296i −1.18424 2.05117i
\(437\) 1.80078 + 3.11904i 0.0861430 + 0.149204i
\(438\) 0 0
\(439\) 16.4846 28.5522i 0.786768 1.36272i −0.141169 0.989986i \(-0.545086\pi\)
0.927937 0.372737i \(-0.121581\pi\)
\(440\) 4.23011 0.201663
\(441\) 0 0
\(442\) −8.41590 −0.400304
\(443\) 11.2896 19.5541i 0.536384 0.929045i −0.462711 0.886509i \(-0.653123\pi\)
0.999095 0.0425353i \(-0.0135435\pi\)
\(444\) 0 0
\(445\) −0.427101 0.739760i −0.0202465 0.0350680i
\(446\) 7.45235 + 12.9079i 0.352879 + 0.611205i
\(447\) 0 0
\(448\) −28.9569 + 50.1548i −1.36808 + 2.36959i
\(449\) −21.7754 −1.02764 −0.513821 0.857897i \(-0.671771\pi\)
−0.513821 + 0.857897i \(0.671771\pi\)
\(450\) 0 0
\(451\) −5.14083 −0.242072
\(452\) −7.80392 + 13.5168i −0.367066 + 0.635776i
\(453\) 0 0
\(454\) 24.0316 + 41.6240i 1.12786 + 1.95351i
\(455\) −1.56232 2.70601i −0.0732425 0.126860i
\(456\) 0 0
\(457\) −12.2382 + 21.1972i −0.572480 + 0.991565i 0.423830 + 0.905742i \(0.360685\pi\)
−0.996310 + 0.0858232i \(0.972648\pi\)
\(458\) 15.7211 0.734600
\(459\) 0 0
\(460\) −1.77993 −0.0829895
\(461\) −0.667074 + 1.15541i −0.0310688 + 0.0538127i −0.881142 0.472852i \(-0.843224\pi\)
0.850073 + 0.526665i \(0.176558\pi\)
\(462\) 0 0
\(463\) 4.98373 + 8.63207i 0.231613 + 0.401166i 0.958283 0.285821i \(-0.0922662\pi\)
−0.726670 + 0.686987i \(0.758933\pi\)
\(464\) 0.770648 + 1.33480i 0.0357764 + 0.0619666i
\(465\) 0 0
\(466\) −17.2102 + 29.8090i −0.797248 + 1.38087i
\(467\) −25.1146 −1.16217 −0.581084 0.813844i \(-0.697371\pi\)
−0.581084 + 0.813844i \(0.697371\pi\)
\(468\) 0 0
\(469\) 27.6408 1.27633
\(470\) −8.76672 + 15.1844i −0.404378 + 0.700404i
\(471\) 0 0
\(472\) −8.92804 15.4638i −0.410946 0.711780i
\(473\) −13.3278 23.0843i −0.612811 1.06142i
\(474\) 0 0
\(475\) −11.1026 + 19.2303i −0.509422 + 0.882345i
\(476\) −66.6477 −3.05479
\(477\) 0 0
\(478\) −3.55360 −0.162538
\(479\) 9.65158 16.7170i 0.440992 0.763821i −0.556771 0.830666i \(-0.687960\pi\)
0.997763 + 0.0668451i \(0.0212933\pi\)
\(480\) 0 0
\(481\) −1.82267 3.15696i −0.0831067 0.143945i
\(482\) 8.74561 + 15.1478i 0.398352 + 0.689965i
\(483\) 0 0
\(484\) 7.43272 12.8738i 0.337851 0.585175i
\(485\) 2.17601 0.0988073
\(486\) 0 0
\(487\) −28.4814 −1.29061 −0.645307 0.763923i \(-0.723271\pi\)
−0.645307 + 0.763923i \(0.723271\pi\)
\(488\) −8.55773 + 14.8224i −0.387390 + 0.670980i
\(489\) 0 0
\(490\) −13.8759 24.0338i −0.626849 1.08573i
\(491\) 2.06270 + 3.57271i 0.0930886 + 0.161234i 0.908809 0.417212i \(-0.136993\pi\)
−0.815721 + 0.578446i \(0.803659\pi\)
\(492\) 0 0
\(493\) −2.56825 + 4.44834i −0.115668 + 0.200343i
\(494\) 8.78488 0.395251
\(495\) 0 0
\(496\) −4.45902 −0.200216
\(497\) 29.1719 50.5272i 1.30854 2.26645i
\(498\) 0 0
\(499\) −5.24487 9.08438i −0.234793 0.406673i 0.724420 0.689359i \(-0.242108\pi\)
−0.959212 + 0.282686i \(0.908774\pi\)
\(500\) −12.1115 20.9778i −0.541643 0.938154i
\(501\) 0 0
\(502\) −16.8146 + 29.1237i −0.750470 + 1.29985i
\(503\) 39.1480 1.74552 0.872762 0.488146i \(-0.162327\pi\)
0.872762 + 0.488146i \(0.162327\pi\)
\(504\) 0 0
\(505\) −6.07832 −0.270482
\(506\) 1.78340 3.08894i 0.0792819 0.137320i
\(507\) 0 0
\(508\) 3.96277 + 6.86372i 0.175820 + 0.304528i
\(509\) −11.0100 19.0698i −0.488009 0.845256i 0.511896 0.859047i \(-0.328943\pi\)
−0.999905 + 0.0137913i \(0.995610\pi\)
\(510\) 0 0
\(511\) 0.815828 1.41305i 0.0360901 0.0625099i
\(512\) −16.9220 −0.747854
\(513\) 0 0
\(514\) 34.6674 1.52911
\(515\) −6.38663 + 11.0620i −0.281429 + 0.487449i
\(516\) 0 0
\(517\) −10.3378 17.9056i −0.454657 0.787489i
\(518\) −24.5289 42.4853i −1.07774 1.86670i
\(519\) 0 0
\(520\) −0.652626 + 1.13038i −0.0286196 + 0.0495705i
\(521\) 24.1240 1.05689 0.528445 0.848967i \(-0.322775\pi\)
0.528445 + 0.848967i \(0.322775\pi\)
\(522\) 0 0
\(523\) −13.5138 −0.590916 −0.295458 0.955356i \(-0.595472\pi\)
−0.295458 + 0.955356i \(0.595472\pi\)
\(524\) 28.8995 50.0554i 1.26248 2.18668i
\(525\) 0 0
\(526\) 8.03945 + 13.9247i 0.350537 + 0.607148i
\(527\) −7.43003 12.8692i −0.323657 0.560590i
\(528\) 0 0
\(529\) 11.2744 19.5278i 0.490191 0.849036i
\(530\) −21.5854 −0.937608
\(531\) 0 0
\(532\) 69.5698 3.01623
\(533\) 0.793133 1.37375i 0.0343544 0.0595036i
\(534\) 0 0
\(535\) 1.93038 + 3.34352i 0.0834577 + 0.144553i
\(536\) −5.77319 9.99946i −0.249364 0.431911i
\(537\) 0 0
\(538\) −15.3396 + 26.5689i −0.661336 + 1.14547i
\(539\) 32.7253 1.40958
\(540\) 0 0
\(541\) 35.5004 1.52628 0.763141 0.646232i \(-0.223656\pi\)
0.763141 + 0.646232i \(0.223656\pi\)
\(542\) −6.49517 + 11.2500i −0.278991 + 0.483227i
\(543\) 0 0
\(544\) −18.4617 31.9765i −0.791537 1.37098i
\(545\) 8.01195 + 13.8771i 0.343194 + 0.594429i
\(546\) 0 0
\(547\) −19.0752 + 33.0391i −0.815595 + 1.41265i 0.0933055 + 0.995638i \(0.470257\pi\)
−0.908900 + 0.417014i \(0.863077\pi\)
\(548\) 46.7313 1.99626
\(549\) 0 0
\(550\) 21.9909 0.937695
\(551\) 2.68085 4.64337i 0.114208 0.197814i
\(552\) 0 0
\(553\) 7.67330 + 13.2905i 0.326302 + 0.565171i
\(554\) 8.97445 + 15.5442i 0.381288 + 0.660410i
\(555\) 0 0
\(556\) 28.9998 50.2291i 1.22987 2.13019i
\(557\) −15.9537 −0.675981 −0.337991 0.941149i \(-0.609747\pi\)
−0.337991 + 0.941149i \(0.609747\pi\)
\(558\) 0 0
\(559\) 8.22488 0.347875
\(560\) 3.23988 5.61163i 0.136910 0.237135i
\(561\) 0 0
\(562\) −22.2462 38.5316i −0.938401 1.62536i
\(563\) −9.23784 16.0004i −0.389328 0.674337i 0.603031 0.797718i \(-0.293960\pi\)
−0.992359 + 0.123381i \(0.960626\pi\)
\(564\) 0 0
\(565\) 2.52853 4.37954i 0.106376 0.184249i
\(566\) 60.4284 2.54000
\(567\) 0 0
\(568\) −24.3719 −1.02262
\(569\) −6.68412 + 11.5772i −0.280213 + 0.485343i −0.971437 0.237297i \(-0.923738\pi\)
0.691224 + 0.722640i \(0.257072\pi\)
\(570\) 0 0
\(571\) −22.1698 38.3993i −0.927779 1.60696i −0.787029 0.616915i \(-0.788382\pi\)
−0.140750 0.990045i \(-0.544951\pi\)
\(572\) −2.55982 4.43374i −0.107031 0.185384i
\(573\) 0 0
\(574\) 10.6737 18.4874i 0.445512 0.771650i
\(575\) −2.78189 −0.116013
\(576\) 0 0
\(577\) 29.9400 1.24642 0.623209 0.782055i \(-0.285829\pi\)
0.623209 + 0.782055i \(0.285829\pi\)
\(578\) 10.3430 17.9147i 0.430214 0.745152i
\(579\) 0 0
\(580\) 1.32490 + 2.29480i 0.0550135 + 0.0952862i
\(581\) −14.6943 25.4514i −0.609624 1.05590i
\(582\) 0 0
\(583\) 12.7269 22.0436i 0.527093 0.912951i
\(584\) −0.681591 −0.0282044
\(585\) 0 0
\(586\) 14.1698 0.585348
\(587\) 11.3491 19.6573i 0.468429 0.811343i −0.530920 0.847422i \(-0.678154\pi\)
0.999349 + 0.0360792i \(0.0114868\pi\)
\(588\) 0 0
\(589\) 7.75578 + 13.4334i 0.319571 + 0.553514i
\(590\) 9.62195 + 16.6657i 0.396130 + 0.686116i
\(591\) 0 0
\(592\) 3.77980 6.54680i 0.155349 0.269072i
\(593\) −14.8743 −0.610816 −0.305408 0.952222i \(-0.598793\pi\)
−0.305408 + 0.952222i \(0.598793\pi\)
\(594\) 0 0
\(595\) 21.5943 0.885282
\(596\) −10.4616 + 18.1200i −0.428524 + 0.742226i
\(597\) 0 0
\(598\) 0.550290 + 0.953131i 0.0225030 + 0.0389764i
\(599\) 4.98070 + 8.62682i 0.203506 + 0.352482i 0.949656 0.313296i \(-0.101433\pi\)
−0.746150 + 0.665778i \(0.768100\pi\)
\(600\) 0 0
\(601\) 0.588301 1.01897i 0.0239973 0.0415645i −0.853777 0.520638i \(-0.825694\pi\)
0.877775 + 0.479074i \(0.159027\pi\)
\(602\) 110.688 4.51129
\(603\) 0 0
\(604\) −41.4201 −1.68536
\(605\) −2.40825 + 4.17122i −0.0979094 + 0.169584i
\(606\) 0 0
\(607\) −11.8473 20.5201i −0.480866 0.832884i 0.518893 0.854839i \(-0.326344\pi\)
−0.999759 + 0.0219552i \(0.993011\pi\)
\(608\) 19.2711 + 33.3785i 0.781545 + 1.35368i
\(609\) 0 0
\(610\) 9.22287 15.9745i 0.373423 0.646788i
\(611\) 6.37972 0.258096
\(612\) 0 0
\(613\) −37.9295 −1.53196 −0.765979 0.642865i \(-0.777746\pi\)
−0.765979 + 0.642865i \(0.777746\pi\)
\(614\) 14.5605 25.2195i 0.587614 1.01778i
\(615\) 0 0
\(616\) −10.3568 17.9385i −0.417288 0.722764i
\(617\) 6.46731 + 11.2017i 0.260364 + 0.450964i 0.966339 0.257273i \(-0.0828240\pi\)
−0.705974 + 0.708237i \(0.749491\pi\)
\(618\) 0 0
\(619\) −1.91618 + 3.31891i −0.0770176 + 0.133398i −0.901962 0.431816i \(-0.857873\pi\)
0.824944 + 0.565214i \(0.191206\pi\)
\(620\) −7.66596 −0.307872
\(621\) 0 0
\(622\) −35.2058 −1.41162
\(623\) −2.09139 + 3.62239i −0.0837898 + 0.145128i
\(624\) 0 0
\(625\) −6.42939 11.1360i −0.257176 0.445441i
\(626\) −24.5929 42.5961i −0.982928 1.70248i
\(627\) 0 0
\(628\) −5.34486 + 9.25757i −0.213283 + 0.369417i
\(629\) 25.1930 1.00451
\(630\) 0 0
\(631\) 22.0032 0.875933 0.437967 0.898991i \(-0.355699\pi\)
0.437967 + 0.898991i \(0.355699\pi\)
\(632\) 3.20536 5.55185i 0.127503 0.220841i
\(633\) 0 0
\(634\) −3.46910 6.00866i −0.137776 0.238634i
\(635\) −1.28397 2.22389i −0.0509526 0.0882526i
\(636\) 0 0
\(637\) −5.04889 + 8.74493i −0.200044 + 0.346487i
\(638\) −5.30996 −0.210223
\(639\) 0 0
\(640\) −12.7513 −0.504038
\(641\) −2.51413 + 4.35460i −0.0993022 + 0.171997i −0.911396 0.411530i \(-0.864994\pi\)
0.812094 + 0.583527i \(0.198328\pi\)
\(642\) 0 0
\(643\) −6.36545 11.0253i −0.251029 0.434795i 0.712781 0.701387i \(-0.247436\pi\)
−0.963809 + 0.266593i \(0.914102\pi\)
\(644\) 4.35789 + 7.54809i 0.171725 + 0.297436i
\(645\) 0 0
\(646\) −30.3562 + 52.5785i −1.19435 + 2.06867i
\(647\) 43.9990 1.72978 0.864889 0.501963i \(-0.167389\pi\)
0.864889 + 0.501963i \(0.167389\pi\)
\(648\) 0 0
\(649\) −22.6927 −0.890765
\(650\) −3.39278 + 5.87646i −0.133076 + 0.230494i
\(651\) 0 0
\(652\) 20.4222 + 35.3723i 0.799795 + 1.38528i
\(653\) 8.74258 + 15.1426i 0.342123 + 0.592575i 0.984827 0.173540i \(-0.0555206\pi\)
−0.642703 + 0.766115i \(0.722187\pi\)
\(654\) 0 0
\(655\) −9.36365 + 16.2183i −0.365868 + 0.633702i
\(656\) 3.28954 0.128435
\(657\) 0 0
\(658\) 85.8562 3.34702
\(659\) 1.04543 1.81073i 0.0407241 0.0705361i −0.844945 0.534853i \(-0.820367\pi\)
0.885669 + 0.464317i \(0.153700\pi\)
\(660\) 0 0
\(661\) −5.99363 10.3813i −0.233125 0.403785i 0.725601 0.688116i \(-0.241562\pi\)
−0.958726 + 0.284331i \(0.908229\pi\)
\(662\) −19.6755 34.0790i −0.764712 1.32452i
\(663\) 0 0
\(664\) −6.13827 + 10.6318i −0.238211 + 0.412594i
\(665\) −22.5411 −0.874107
\(666\) 0 0
\(667\) 0.671720 0.0260091
\(668\) 5.11451 8.85858i 0.197886 0.342749i
\(669\) 0 0
\(670\) 6.22190 + 10.7767i 0.240373 + 0.416338i
\(671\) 10.8757 + 18.8373i 0.419853 + 0.727206i
\(672\) 0 0
\(673\) 2.82920 4.90033i 0.109058 0.188894i −0.806331 0.591465i \(-0.798550\pi\)
0.915389 + 0.402571i \(0.131883\pi\)
\(674\) 69.8856 2.69189
\(675\) 0 0
\(676\) −35.5971 −1.36912
\(677\) −14.2753 + 24.7255i −0.548643 + 0.950278i 0.449724 + 0.893167i \(0.351522\pi\)
−0.998368 + 0.0571109i \(0.981811\pi\)
\(678\) 0 0
\(679\) −5.32763 9.22773i −0.204456 0.354128i
\(680\) −4.51030 7.81207i −0.172962 0.299579i
\(681\) 0 0
\(682\) 7.68093 13.3038i 0.294118 0.509428i
\(683\) −30.2589 −1.15782 −0.578912 0.815390i \(-0.696523\pi\)
−0.578912 + 0.815390i \(0.696523\pi\)
\(684\) 0 0
\(685\) −15.1413 −0.578518
\(686\) −32.9385 + 57.0512i −1.25760 + 2.17823i
\(687\) 0 0
\(688\) 8.52824 + 14.7713i 0.325136 + 0.563152i
\(689\) 3.92703 + 6.80181i 0.149608 + 0.259128i
\(690\) 0 0
\(691\) 16.6414 28.8237i 0.633068 1.09651i −0.353853 0.935301i \(-0.615129\pi\)
0.986921 0.161205i \(-0.0515381\pi\)
\(692\) −63.6305 −2.41887
\(693\) 0 0
\(694\) −71.4964 −2.71397
\(695\) −9.39614 + 16.2746i −0.356416 + 0.617331i
\(696\) 0 0
\(697\) 5.48134 + 9.49397i 0.207621 + 0.359610i
\(698\) 1.13478 + 1.96549i 0.0429520 + 0.0743950i
\(699\) 0 0
\(700\) −26.8683 + 46.5372i −1.01553 + 1.75894i
\(701\) −9.14819 −0.345522 −0.172761 0.984964i \(-0.555269\pi\)
−0.172761 + 0.984964i \(0.555269\pi\)
\(702\) 0 0
\(703\) −26.2975 −0.991830
\(704\) 15.3726 26.6261i 0.579376 1.00351i
\(705\) 0 0
\(706\) 22.2125 + 38.4732i 0.835979 + 1.44796i
\(707\) 14.8819 + 25.7762i 0.559691 + 0.969414i
\(708\) 0 0
\(709\) 23.4677 40.6472i 0.881346 1.52654i 0.0315017 0.999504i \(-0.489971\pi\)
0.849845 0.527033i \(-0.176696\pi\)
\(710\) 26.2662 0.985753
\(711\) 0 0
\(712\) 1.74727 0.0654818
\(713\) −0.971654 + 1.68295i −0.0363887 + 0.0630271i
\(714\) 0 0
\(715\) 0.829400 + 1.43656i 0.0310178 + 0.0537244i
\(716\) 24.2164 + 41.9440i 0.905009 + 1.56752i
\(717\) 0 0
\(718\) −30.6956 + 53.1664i −1.14555 + 1.98415i
\(719\) 23.1046 0.861658 0.430829 0.902434i \(-0.358221\pi\)
0.430829 + 0.902434i \(0.358221\pi\)
\(720\) 0 0
\(721\) 62.5470 2.32937
\(722\) 10.7445 18.6100i 0.399868 0.692592i
\(723\) 0 0
\(724\) 0.319174 + 0.552825i 0.0118620 + 0.0205456i
\(725\) 2.07072 + 3.58660i 0.0769047 + 0.133203i
\(726\) 0 0
\(727\) 13.5030 23.3879i 0.500800 0.867410i −0.499200 0.866487i \(-0.666373\pi\)
1.00000 0.000923514i \(-0.000293964\pi\)
\(728\) 6.39144 0.236883
\(729\) 0 0
\(730\) 0.734567 0.0271875
\(731\) −28.4211 + 49.2268i −1.05119 + 1.82072i
\(732\) 0 0
\(733\) −2.02103 3.50053i −0.0746485 0.129295i 0.826285 0.563252i \(-0.190450\pi\)
−0.900933 + 0.433957i \(0.857117\pi\)
\(734\) −15.1641 26.2649i −0.559716 0.969456i
\(735\) 0 0
\(736\) −2.41430 + 4.18170i −0.0889924 + 0.154139i
\(737\) −14.6739 −0.540520
\(738\) 0 0
\(739\) 24.7100 0.908974 0.454487 0.890753i \(-0.349823\pi\)
0.454487 + 0.890753i \(0.349823\pi\)
\(740\) 6.49824 11.2553i 0.238880 0.413753i
\(741\) 0 0
\(742\) 52.8486 + 91.5365i 1.94013 + 3.36041i
\(743\) 9.23046 + 15.9876i 0.338633 + 0.586529i 0.984176 0.177195i \(-0.0567023\pi\)
−0.645543 + 0.763724i \(0.723369\pi\)
\(744\) 0 0
\(745\) 3.38964 5.87102i 0.124187 0.215098i
\(746\) −46.3528 −1.69710
\(747\) 0 0
\(748\) 35.3818 1.29369
\(749\) 9.45253 16.3723i 0.345388 0.598229i
\(750\) 0 0
\(751\) 12.6844 + 21.9700i 0.462861 + 0.801698i 0.999102 0.0423666i \(-0.0134897\pi\)
−0.536242 + 0.844065i \(0.680156\pi\)
\(752\) 6.61502 + 11.4576i 0.241225 + 0.417814i
\(753\) 0 0
\(754\) 0.819226 1.41894i 0.0298344 0.0516748i
\(755\) 13.4204 0.488419
\(756\) 0 0
\(757\) 31.0623 1.12898 0.564490 0.825440i \(-0.309073\pi\)
0.564490 + 0.825440i \(0.309073\pi\)
\(758\) −34.5048 + 59.7640i −1.25327 + 2.17073i
\(759\) 0 0
\(760\) 4.70805 + 8.15458i 0.170779 + 0.295798i
\(761\) −18.7325 32.4457i −0.679054 1.17616i −0.975266 0.221034i \(-0.929057\pi\)
0.296212 0.955122i \(-0.404276\pi\)
\(762\) 0 0
\(763\) 39.2322 67.9521i 1.42030 2.46003i
\(764\) −4.87247 −0.176280
\(765\) 0 0
\(766\) −41.1038 −1.48514
\(767\) 3.50105 6.06399i 0.126415 0.218958i
\(768\) 0 0
\(769\) 12.4824 + 21.6202i 0.450128 + 0.779645i 0.998394 0.0566593i \(-0.0180449\pi\)
−0.548265 + 0.836305i \(0.684712\pi\)
\(770\) 11.1618 + 19.3328i 0.402243 + 0.696705i
\(771\) 0 0
\(772\) −33.2232 + 57.5443i −1.19573 + 2.07107i
\(773\) 14.4493 0.519705 0.259853 0.965648i \(-0.416326\pi\)
0.259853 + 0.965648i \(0.416326\pi\)
\(774\) 0 0
\(775\) −11.9813 −0.430382
\(776\) −2.22551 + 3.85470i −0.0798912 + 0.138376i
\(777\) 0 0
\(778\) 1.55016 + 2.68495i 0.0555758 + 0.0962601i
\(779\) −5.72166 9.91021i −0.205000 0.355070i
\(780\) 0 0
\(781\) −15.4867 + 26.8238i −0.554158 + 0.959830i
\(782\) −7.60612 −0.271994
\(783\) 0 0
\(784\) −20.9404 −0.747873
\(785\) 1.73177 2.99952i 0.0618097 0.107057i
\(786\) 0 0
\(787\) −15.5870 26.9974i −0.555615 0.962353i −0.997855 0.0654568i \(-0.979150\pi\)
0.442240 0.896897i \(-0.354184\pi\)
\(788\) 4.45213 + 7.71132i 0.158601 + 0.274704i
\(789\) 0 0
\(790\) −3.45450 + 5.98336i −0.122905 + 0.212879i
\(791\) −24.7629 −0.880469
\(792\) 0 0
\(793\) −6.71167 −0.238338
\(794\) 12.1308 21.0112i 0.430506 0.745658i
\(795\) 0 0
\(796\) 36.7956 + 63.7319i 1.30419 + 2.25892i
\(797\) −6.58939 11.4131i −0.233408 0.404275i 0.725401 0.688327i \(-0.241654\pi\)
−0.958809 + 0.284052i \(0.908321\pi\)
\(798\) 0 0
\(799\) −22.0451 + 38.1833i −0.779901 + 1.35083i
\(800\) −29.7704 −1.05254
\(801\) 0 0
\(802\) −31.9747 −1.12907
\(803\) −0.433105 + 0.750160i −0.0152839 + 0.0264726i
\(804\) 0 0
\(805\) −1.41199 2.44564i −0.0497661 0.0861973i
\(806\) 2.37005 + 4.10504i 0.0834813 + 0.144594i
\(807\) 0 0
\(808\) 6.21661 10.7675i 0.218700 0.378799i
\(809\) 20.3684 0.716113 0.358057 0.933700i \(-0.383440\pi\)
0.358057 + 0.933700i \(0.383440\pi\)
\(810\) 0 0
\(811\) −6.64714 −0.233413 −0.116706 0.993166i \(-0.537234\pi\)
−0.116706 + 0.993166i \(0.537234\pi\)
\(812\) 6.48766 11.2370i 0.227672 0.394340i
\(813\) 0 0
\(814\) 13.0219 + 22.5545i 0.456416 + 0.790536i
\(815\) −6.61694 11.4609i −0.231781 0.401457i
\(816\) 0 0
\(817\) 29.6671 51.3850i 1.03792 1.79773i
\(818\) 7.81530 0.273256
\(819\) 0 0
\(820\) 5.65540 0.197495
\(821\) −22.7247 + 39.3603i −0.793097 + 1.37368i 0.130944 + 0.991390i \(0.458199\pi\)
−0.924041 + 0.382294i \(0.875134\pi\)
\(822\) 0 0
\(823\) 3.04646 + 5.27662i 0.106193 + 0.183932i 0.914225 0.405207i \(-0.132801\pi\)
−0.808032 + 0.589139i \(0.799467\pi\)
\(824\) −13.0639 22.6273i −0.455102 0.788259i
\(825\) 0 0
\(826\) 47.1159 81.6072i 1.63937 2.83948i
\(827\) −13.6049 −0.473090 −0.236545 0.971621i \(-0.576015\pi\)
−0.236545 + 0.971621i \(0.576015\pi\)
\(828\) 0 0
\(829\) −12.7936 −0.444340 −0.222170 0.975008i \(-0.571314\pi\)
−0.222170 + 0.975008i \(0.571314\pi\)
\(830\) 6.61536 11.4581i 0.229622 0.397718i
\(831\) 0 0
\(832\) 4.74339 + 8.21580i 0.164448 + 0.284832i
\(833\) −34.8929 60.4363i −1.20897 2.09399i
\(834\) 0 0
\(835\) −1.65714 + 2.87025i −0.0573476 + 0.0993289i
\(836\) −36.9331 −1.27736
\(837\) 0 0
\(838\) 34.6800 1.19800
\(839\) −15.4668 + 26.7892i −0.533972 + 0.924866i 0.465241 + 0.885184i \(0.345968\pi\)
−0.999212 + 0.0396818i \(0.987366\pi\)
\(840\) 0 0
\(841\) −0.500000 0.866025i −0.0172414 0.0298629i
\(842\) 8.94967 + 15.5013i 0.308426 + 0.534210i
\(843\) 0 0
\(844\) 16.0299 27.7646i 0.551771 0.955696i
\(845\) 11.5337 0.396772
\(846\) 0 0
\(847\) 23.5850 0.810392
\(848\) −8.14374 + 14.1054i −0.279657 + 0.484380i
\(849\) 0 0
\(850\) −23.4475 40.6123i −0.804243 1.39299i
\(851\) −1.64729 2.85319i −0.0564685 0.0978062i
\(852\) 0 0
\(853\) −27.9653 + 48.4373i −0.957514 + 1.65846i −0.229005 + 0.973425i \(0.573547\pi\)
−0.728508 + 0.685037i \(0.759786\pi\)
\(854\) −90.3235 −3.09081
\(855\) 0 0
\(856\) −7.89721 −0.269921
\(857\) 5.92568 10.2636i 0.202417 0.350597i −0.746889 0.664948i \(-0.768454\pi\)
0.949307 + 0.314351i \(0.101787\pi\)
\(858\) 0 0
\(859\) 12.7090 + 22.0126i 0.433625 + 0.751060i 0.997182 0.0750168i \(-0.0239010\pi\)
−0.563558 + 0.826077i \(0.690568\pi\)
\(860\) 14.6618 + 25.3950i 0.499963 + 0.865961i
\(861\) 0 0
\(862\) −13.3553 + 23.1320i −0.454883 + 0.787880i
\(863\) −23.3768 −0.795755 −0.397878 0.917438i \(-0.630253\pi\)
−0.397878 + 0.917438i \(0.630253\pi\)
\(864\) 0 0
\(865\) 20.6167 0.700991
\(866\) 3.78575 6.55711i 0.128645 0.222820i
\(867\) 0 0
\(868\) 18.7690 + 32.5089i 0.637061 + 1.10342i
\(869\) −4.07359 7.05566i −0.138187 0.239347i
\(870\) 0 0
\(871\) 2.26390 3.92120i 0.0767095 0.132865i
\(872\) −32.7769 −1.10997
\(873\) 0 0
\(874\) 7.93959 0.268561
\(875\) 19.2158 33.2827i 0.649611 1.12516i
\(876\) 0 0
\(877\) −1.67270 2.89720i −0.0564830 0.0978314i 0.836401 0.548117i \(-0.184655\pi\)
−0.892884 + 0.450286i \(0.851322\pi\)
\(878\) −36.3401 62.9429i −1.22642 2.12422i
\(879\) 0 0
\(880\) −1.71998 + 2.97910i −0.0579806 + 0.100425i
\(881\) 41.5838 1.40099 0.700496 0.713656i \(-0.252962\pi\)
0.700496 + 0.713656i \(0.252962\pi\)
\(882\) 0 0
\(883\) 14.9366 0.502657 0.251328 0.967902i \(-0.419133\pi\)
0.251328 + 0.967902i \(0.419133\pi\)
\(884\) −5.45875 + 9.45483i −0.183598 + 0.318000i
\(885\) 0 0
\(886\) −24.8877 43.1068i −0.836119 1.44820i
\(887\) −0.186039 0.322230i −0.00624659 0.0108194i 0.862885 0.505400i \(-0.168655\pi\)
−0.869132 + 0.494581i \(0.835322\pi\)
\(888\) 0 0
\(889\) −6.28721 + 10.8898i −0.210866 + 0.365231i
\(890\) −1.88308 −0.0631209
\(891\) 0 0
\(892\) 19.3351 0.647386
\(893\) 23.0117 39.8574i 0.770056 1.33378i
\(894\) 0 0
\(895\) −7.84628 13.5902i −0.262272 0.454269i
\(896\) 31.2197 + 54.0740i 1.04298 + 1.80649i
\(897\) 0 0
\(898\) −24.0017 + 41.5722i −0.800949 + 1.38728i
\(899\) 2.89303 0.0964880
\(900\) 0 0
\(901\) −54.2794 −1.80831
\(902\) −5.66645 + 9.81457i −0.188672 + 0.326790i
\(903\) 0 0
\(904\) 5.17211 + 8.95836i 0.172022 + 0.297950i
\(905\) −0.103415 0.179119i −0.00343762 0.00595413i
\(906\) 0 0
\(907\) 0.385152 0.667102i 0.0127887 0.0221508i −0.859560 0.511034i \(-0.829262\pi\)
0.872349 + 0.488884i \(0.162596\pi\)
\(908\) 62.3498 2.06915
\(909\) 0 0
\(910\) −6.88821 −0.228342
\(911\) −13.2921 + 23.0225i −0.440385 + 0.762770i −0.997718 0.0675194i \(-0.978492\pi\)
0.557332 + 0.830289i \(0.311825\pi\)
\(912\) 0 0
\(913\) 7.80091 + 13.5116i 0.258172 + 0.447168i
\(914\) 26.9790 + 46.7290i 0.892386 + 1.54566i
\(915\) 0 0
\(916\) 10.1971 17.6619i 0.336921 0.583564i
\(917\) 91.7022 3.02827
\(918\) 0 0
\(919\) −5.15934 −0.170191 −0.0850954 0.996373i \(-0.527120\pi\)
−0.0850954 + 0.996373i \(0.527120\pi\)
\(920\) −0.589830 + 1.02162i −0.0194461 + 0.0336817i
\(921\) 0 0
\(922\) 1.47056 + 2.54708i 0.0484302 + 0.0838836i
\(923\) −4.77861 8.27680i −0.157290 0.272434i
\(924\) 0 0
\(925\) 10.1563 17.5912i 0.333936 0.578394i
\(926\) 21.9731 0.722082
\(927\) 0 0
\(928\) 7.18842 0.235971
\(929\) −19.6030 + 33.9534i −0.643153 + 1.11397i 0.341572 + 0.939856i \(0.389041\pi\)
−0.984725 + 0.174118i \(0.944293\pi\)
\(930\) 0 0
\(931\) 36.4227 + 63.0860i 1.19371 + 2.06756i
\(932\) 22.3259 + 38.6695i 0.731308 + 1.26666i
\(933\) 0 0
\(934\) −27.6824 + 47.9474i −0.905797 + 1.56889i
\(935\) −11.4640 −0.374912
\(936\) 0 0
\(937\) −29.3931 −0.960232 −0.480116 0.877205i \(-0.659405\pi\)
−0.480116 + 0.877205i \(0.659405\pi\)
\(938\) 30.4669 52.7702i 0.994779 1.72301i
\(939\) 0 0
\(940\) 11.3726 + 19.6979i 0.370933 + 0.642474i
\(941\) 10.1080 + 17.5075i 0.329511 + 0.570729i 0.982415 0.186711i \(-0.0597829\pi\)
−0.652904 + 0.757440i \(0.726450\pi\)
\(942\) 0 0
\(943\) 0.716817 1.24156i 0.0233428 0.0404309i
\(944\) 14.5207 0.472609
\(945\) 0 0
\(946\) −58.7617 −1.91051
\(947\) 16.6473 28.8340i 0.540965 0.936979i −0.457884 0.889012i \(-0.651392\pi\)
0.998849 0.0479670i \(-0.0152742\pi\)
\(948\) 0 0
\(949\) −0.133640 0.231471i −0.00433813 0.00751387i
\(950\) 24.4755 + 42.3928i 0.794090 + 1.37541i
\(951\) 0 0
\(952\) −22.0856 + 38.2535i −0.715800 + 1.23980i
\(953\) −22.6156 −0.732592 −0.366296 0.930498i \(-0.619374\pi\)
−0.366296 + 0.930498i \(0.619374\pi\)
\(954\) 0 0
\(955\) 1.57871 0.0510860
\(956\) −2.30495 + 3.99228i −0.0745473 + 0.129120i
\(957\) 0 0
\(958\) −21.2768 36.8525i −0.687422 1.19065i
\(959\) 37.0712 + 64.2092i 1.19709 + 2.07342i
\(960\) 0 0
\(961\) 11.3152 19.5985i 0.365006 0.632209i
\(962\) −8.03611 −0.259095
\(963\) 0 0
\(964\) 22.6904 0.730809
\(965\) 10.7646 18.6448i 0.346524 0.600197i
\(966\) 0 0
\(967\) −3.44661 5.96971i −0.110836 0.191973i 0.805272 0.592906i \(-0.202019\pi\)
−0.916107 + 0.400933i \(0.868686\pi\)
\(968\) −4.92609 8.53224i −0.158330 0.274236i
\(969\) 0 0
\(970\) 2.39849 4.15430i 0.0770108 0.133387i
\(971\) 0.238354 0.00764915 0.00382457 0.999993i \(-0.498783\pi\)
0.00382457 + 0.999993i \(0.498783\pi\)
\(972\) 0 0
\(973\) 92.0204 2.95004
\(974\) −31.3934 + 54.3750i −1.00591 + 1.74229i
\(975\) 0 0
\(976\) −6.95922 12.0537i −0.222759 0.385830i
\(977\) −2.93440 5.08252i −0.0938796 0.162604i 0.815261 0.579094i \(-0.196594\pi\)
−0.909140 + 0.416490i \(0.863260\pi\)
\(978\) 0 0
\(979\) 1.11027 1.92305i 0.0354845 0.0614609i
\(980\) −36.0009 −1.15001
\(981\) 0 0
\(982\) 9.09441 0.290214
\(983\) 8.31197 14.3968i 0.265111 0.459185i −0.702482 0.711702i \(-0.747925\pi\)
0.967593 + 0.252516i \(0.0812582\pi\)
\(984\) 0 0
\(985\) −1.44252 2.49852i −0.0459626 0.0796096i
\(986\) 5.66167 + 9.80630i 0.180304 + 0.312296i
\(987\) 0 0
\(988\) 5.69807 9.86936i 0.181280 0.313986i
\(989\) 7.43347 0.236371
\(990\) 0 0
\(991\) 0.420562 0.0133596 0.00667980 0.999978i \(-0.497874\pi\)
0.00667980 + 0.999978i \(0.497874\pi\)
\(992\) −10.3982 + 18.0101i −0.330142 + 0.571823i
\(993\) 0 0
\(994\) −64.3090 111.386i −2.03976 3.53296i
\(995\) −11.9221 20.6496i −0.377954 0.654636i
\(996\) 0 0
\(997\) 9.77079 16.9235i 0.309444 0.535973i −0.668797 0.743445i \(-0.733190\pi\)
0.978241 + 0.207473i \(0.0665238\pi\)
\(998\) −23.1245 −0.731992
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.e.a.262.10 22
3.2 odd 2 261.2.e.a.88.2 22
9.2 odd 6 2349.2.a.f.1.10 11
9.4 even 3 inner 783.2.e.a.523.10 22
9.5 odd 6 261.2.e.a.175.2 yes 22
9.7 even 3 2349.2.a.e.1.2 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.e.a.88.2 22 3.2 odd 2
261.2.e.a.175.2 yes 22 9.5 odd 6
783.2.e.a.262.10 22 1.1 even 1 trivial
783.2.e.a.523.10 22 9.4 even 3 inner
2349.2.a.e.1.2 11 9.7 even 3
2349.2.a.f.1.10 11 9.2 odd 6