Properties

Label 783.2.a.j.1.3
Level $783$
Weight $2$
Character 783.1
Self dual yes
Analytic conductor $6.252$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(1,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,0,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 13x^{6} + 11x^{5} + 49x^{4} - 37x^{3} - 43x^{2} + 35x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.19689\) of defining polynomial
Character \(\chi\) \(=\) 783.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.19689 q^{2} -0.567458 q^{4} -0.563409 q^{5} -0.343748 q^{7} +3.07296 q^{8} +0.674338 q^{10} -3.12248 q^{11} +4.44814 q^{13} +0.411428 q^{14} -2.54308 q^{16} -7.44614 q^{17} +3.15603 q^{19} +0.319711 q^{20} +3.73726 q^{22} +3.69833 q^{23} -4.68257 q^{25} -5.32393 q^{26} +0.195063 q^{28} -1.00000 q^{29} +9.66146 q^{31} -3.10214 q^{32} +8.91219 q^{34} +0.193671 q^{35} +9.34175 q^{37} -3.77742 q^{38} -1.73133 q^{40} +8.00721 q^{41} -0.957186 q^{43} +1.77187 q^{44} -4.42648 q^{46} +2.49817 q^{47} -6.88184 q^{49} +5.60451 q^{50} -2.52413 q^{52} +10.0552 q^{53} +1.75923 q^{55} -1.05632 q^{56} +1.19689 q^{58} +6.40694 q^{59} +13.9651 q^{61} -11.5637 q^{62} +8.79907 q^{64} -2.50612 q^{65} -11.0168 q^{67} +4.22537 q^{68} -0.231803 q^{70} +9.26894 q^{71} +8.09644 q^{73} -11.1810 q^{74} -1.79091 q^{76} +1.07335 q^{77} -8.37007 q^{79} +1.43279 q^{80} -9.58373 q^{82} +3.27202 q^{83} +4.19522 q^{85} +1.14565 q^{86} -9.59525 q^{88} -5.67667 q^{89} -1.52904 q^{91} -2.09864 q^{92} -2.99003 q^{94} -1.77814 q^{95} +6.01316 q^{97} +8.23679 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} + 11 q^{4} - 2 q^{5} + 5 q^{7} + 3 q^{8} + 7 q^{10} - 2 q^{11} + 11 q^{13} + 8 q^{14} + 21 q^{16} + 6 q^{17} + 5 q^{19} - 27 q^{20} + 17 q^{22} - 4 q^{23} + 30 q^{25} + 16 q^{26} + 2 q^{28}+ \cdots - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.19689 −0.846328 −0.423164 0.906053i \(-0.639081\pi\)
−0.423164 + 0.906053i \(0.639081\pi\)
\(3\) 0 0
\(4\) −0.567458 −0.283729
\(5\) −0.563409 −0.251964 −0.125982 0.992033i \(-0.540208\pi\)
−0.125982 + 0.992033i \(0.540208\pi\)
\(6\) 0 0
\(7\) −0.343748 −0.129925 −0.0649623 0.997888i \(-0.520693\pi\)
−0.0649623 + 0.997888i \(0.520693\pi\)
\(8\) 3.07296 1.08646
\(9\) 0 0
\(10\) 0.674338 0.213244
\(11\) −3.12248 −0.941462 −0.470731 0.882277i \(-0.656010\pi\)
−0.470731 + 0.882277i \(0.656010\pi\)
\(12\) 0 0
\(13\) 4.44814 1.23369 0.616846 0.787084i \(-0.288410\pi\)
0.616846 + 0.787084i \(0.288410\pi\)
\(14\) 0.411428 0.109959
\(15\) 0 0
\(16\) −2.54308 −0.635769
\(17\) −7.44614 −1.80595 −0.902977 0.429690i \(-0.858623\pi\)
−0.902977 + 0.429690i \(0.858623\pi\)
\(18\) 0 0
\(19\) 3.15603 0.724043 0.362021 0.932170i \(-0.382087\pi\)
0.362021 + 0.932170i \(0.382087\pi\)
\(20\) 0.319711 0.0714896
\(21\) 0 0
\(22\) 3.73726 0.796786
\(23\) 3.69833 0.771154 0.385577 0.922676i \(-0.374002\pi\)
0.385577 + 0.922676i \(0.374002\pi\)
\(24\) 0 0
\(25\) −4.68257 −0.936514
\(26\) −5.32393 −1.04411
\(27\) 0 0
\(28\) 0.195063 0.0368634
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 9.66146 1.73525 0.867624 0.497220i \(-0.165646\pi\)
0.867624 + 0.497220i \(0.165646\pi\)
\(32\) −3.10214 −0.548387
\(33\) 0 0
\(34\) 8.91219 1.52843
\(35\) 0.193671 0.0327364
\(36\) 0 0
\(37\) 9.34175 1.53577 0.767887 0.640586i \(-0.221308\pi\)
0.767887 + 0.640586i \(0.221308\pi\)
\(38\) −3.77742 −0.612778
\(39\) 0 0
\(40\) −1.73133 −0.273748
\(41\) 8.00721 1.25052 0.625258 0.780418i \(-0.284994\pi\)
0.625258 + 0.780418i \(0.284994\pi\)
\(42\) 0 0
\(43\) −0.957186 −0.145970 −0.0729848 0.997333i \(-0.523252\pi\)
−0.0729848 + 0.997333i \(0.523252\pi\)
\(44\) 1.77187 0.267120
\(45\) 0 0
\(46\) −4.42648 −0.652649
\(47\) 2.49817 0.364395 0.182198 0.983262i \(-0.441679\pi\)
0.182198 + 0.983262i \(0.441679\pi\)
\(48\) 0 0
\(49\) −6.88184 −0.983120
\(50\) 5.60451 0.792598
\(51\) 0 0
\(52\) −2.52413 −0.350034
\(53\) 10.0552 1.38119 0.690596 0.723240i \(-0.257348\pi\)
0.690596 + 0.723240i \(0.257348\pi\)
\(54\) 0 0
\(55\) 1.75923 0.237215
\(56\) −1.05632 −0.141157
\(57\) 0 0
\(58\) 1.19689 0.157159
\(59\) 6.40694 0.834112 0.417056 0.908881i \(-0.363062\pi\)
0.417056 + 0.908881i \(0.363062\pi\)
\(60\) 0 0
\(61\) 13.9651 1.78805 0.894025 0.448017i \(-0.147870\pi\)
0.894025 + 0.448017i \(0.147870\pi\)
\(62\) −11.5637 −1.46859
\(63\) 0 0
\(64\) 8.79907 1.09988
\(65\) −2.50612 −0.310846
\(66\) 0 0
\(67\) −11.0168 −1.34591 −0.672955 0.739683i \(-0.734975\pi\)
−0.672955 + 0.739683i \(0.734975\pi\)
\(68\) 4.22537 0.512401
\(69\) 0 0
\(70\) −0.231803 −0.0277057
\(71\) 9.26894 1.10002 0.550011 0.835158i \(-0.314624\pi\)
0.550011 + 0.835158i \(0.314624\pi\)
\(72\) 0 0
\(73\) 8.09644 0.947616 0.473808 0.880628i \(-0.342879\pi\)
0.473808 + 0.880628i \(0.342879\pi\)
\(74\) −11.1810 −1.29977
\(75\) 0 0
\(76\) −1.79091 −0.205432
\(77\) 1.07335 0.122319
\(78\) 0 0
\(79\) −8.37007 −0.941706 −0.470853 0.882212i \(-0.656054\pi\)
−0.470853 + 0.882212i \(0.656054\pi\)
\(80\) 1.43279 0.160191
\(81\) 0 0
\(82\) −9.58373 −1.05835
\(83\) 3.27202 0.359151 0.179575 0.983744i \(-0.442528\pi\)
0.179575 + 0.983744i \(0.442528\pi\)
\(84\) 0 0
\(85\) 4.19522 0.455036
\(86\) 1.14565 0.123538
\(87\) 0 0
\(88\) −9.59525 −1.02286
\(89\) −5.67667 −0.601726 −0.300863 0.953667i \(-0.597275\pi\)
−0.300863 + 0.953667i \(0.597275\pi\)
\(90\) 0 0
\(91\) −1.52904 −0.160287
\(92\) −2.09864 −0.218799
\(93\) 0 0
\(94\) −2.99003 −0.308398
\(95\) −1.77814 −0.182433
\(96\) 0 0
\(97\) 6.01316 0.610544 0.305272 0.952265i \(-0.401253\pi\)
0.305272 + 0.952265i \(0.401253\pi\)
\(98\) 8.23679 0.832042
\(99\) 0 0
\(100\) 2.65716 0.265716
\(101\) −1.66941 −0.166113 −0.0830563 0.996545i \(-0.526468\pi\)
−0.0830563 + 0.996545i \(0.526468\pi\)
\(102\) 0 0
\(103\) 6.49460 0.639932 0.319966 0.947429i \(-0.396329\pi\)
0.319966 + 0.947429i \(0.396329\pi\)
\(104\) 13.6690 1.34035
\(105\) 0 0
\(106\) −12.0350 −1.16894
\(107\) −7.97526 −0.770998 −0.385499 0.922708i \(-0.625971\pi\)
−0.385499 + 0.922708i \(0.625971\pi\)
\(108\) 0 0
\(109\) 14.8682 1.42412 0.712059 0.702119i \(-0.247763\pi\)
0.712059 + 0.702119i \(0.247763\pi\)
\(110\) −2.10561 −0.200762
\(111\) 0 0
\(112\) 0.874178 0.0826020
\(113\) 11.1400 1.04796 0.523981 0.851730i \(-0.324446\pi\)
0.523981 + 0.851730i \(0.324446\pi\)
\(114\) 0 0
\(115\) −2.08367 −0.194303
\(116\) 0.567458 0.0526871
\(117\) 0 0
\(118\) −7.66839 −0.705932
\(119\) 2.55960 0.234638
\(120\) 0 0
\(121\) −1.25013 −0.113649
\(122\) −16.7147 −1.51328
\(123\) 0 0
\(124\) −5.48247 −0.492340
\(125\) 5.45525 0.487932
\(126\) 0 0
\(127\) −6.75722 −0.599607 −0.299803 0.954001i \(-0.596921\pi\)
−0.299803 + 0.954001i \(0.596921\pi\)
\(128\) −4.32722 −0.382476
\(129\) 0 0
\(130\) 2.99955 0.263078
\(131\) −9.69793 −0.847312 −0.423656 0.905823i \(-0.639253\pi\)
−0.423656 + 0.905823i \(0.639253\pi\)
\(132\) 0 0
\(133\) −1.08488 −0.0940710
\(134\) 13.1858 1.13908
\(135\) 0 0
\(136\) −22.8817 −1.96209
\(137\) 2.85279 0.243731 0.121865 0.992547i \(-0.461112\pi\)
0.121865 + 0.992547i \(0.461112\pi\)
\(138\) 0 0
\(139\) 3.87677 0.328824 0.164412 0.986392i \(-0.447427\pi\)
0.164412 + 0.986392i \(0.447427\pi\)
\(140\) −0.109900 −0.00928825
\(141\) 0 0
\(142\) −11.0939 −0.930979
\(143\) −13.8892 −1.16147
\(144\) 0 0
\(145\) 0.563409 0.0467886
\(146\) −9.69053 −0.801994
\(147\) 0 0
\(148\) −5.30105 −0.435743
\(149\) 20.6157 1.68891 0.844454 0.535629i \(-0.179925\pi\)
0.844454 + 0.535629i \(0.179925\pi\)
\(150\) 0 0
\(151\) −17.3083 −1.40853 −0.704264 0.709938i \(-0.748723\pi\)
−0.704264 + 0.709938i \(0.748723\pi\)
\(152\) 9.69836 0.786641
\(153\) 0 0
\(154\) −1.28468 −0.103522
\(155\) −5.44335 −0.437221
\(156\) 0 0
\(157\) −13.5590 −1.08213 −0.541065 0.840981i \(-0.681979\pi\)
−0.541065 + 0.840981i \(0.681979\pi\)
\(158\) 10.0180 0.796992
\(159\) 0 0
\(160\) 1.74778 0.138174
\(161\) −1.27129 −0.100192
\(162\) 0 0
\(163\) 5.62357 0.440472 0.220236 0.975447i \(-0.429317\pi\)
0.220236 + 0.975447i \(0.429317\pi\)
\(164\) −4.54375 −0.354808
\(165\) 0 0
\(166\) −3.91624 −0.303959
\(167\) 14.3289 1.10880 0.554400 0.832250i \(-0.312948\pi\)
0.554400 + 0.832250i \(0.312948\pi\)
\(168\) 0 0
\(169\) 6.78594 0.521996
\(170\) −5.02121 −0.385109
\(171\) 0 0
\(172\) 0.543163 0.0414158
\(173\) −1.38627 −0.105396 −0.0526979 0.998610i \(-0.516782\pi\)
−0.0526979 + 0.998610i \(0.516782\pi\)
\(174\) 0 0
\(175\) 1.60963 0.121676
\(176\) 7.94070 0.598552
\(177\) 0 0
\(178\) 6.79434 0.509257
\(179\) −19.4439 −1.45331 −0.726654 0.687004i \(-0.758926\pi\)
−0.726654 + 0.687004i \(0.758926\pi\)
\(180\) 0 0
\(181\) −6.89110 −0.512211 −0.256106 0.966649i \(-0.582440\pi\)
−0.256106 + 0.966649i \(0.582440\pi\)
\(182\) 1.83009 0.135655
\(183\) 0 0
\(184\) 11.3648 0.837825
\(185\) −5.26323 −0.386960
\(186\) 0 0
\(187\) 23.2504 1.70024
\(188\) −1.41761 −0.103389
\(189\) 0 0
\(190\) 2.12823 0.154398
\(191\) 13.7672 0.996157 0.498078 0.867132i \(-0.334039\pi\)
0.498078 + 0.867132i \(0.334039\pi\)
\(192\) 0 0
\(193\) −7.15801 −0.515245 −0.257623 0.966246i \(-0.582939\pi\)
−0.257623 + 0.966246i \(0.582939\pi\)
\(194\) −7.19708 −0.516720
\(195\) 0 0
\(196\) 3.90515 0.278940
\(197\) −7.61071 −0.542241 −0.271120 0.962545i \(-0.587394\pi\)
−0.271120 + 0.962545i \(0.587394\pi\)
\(198\) 0 0
\(199\) −20.6993 −1.46734 −0.733668 0.679508i \(-0.762193\pi\)
−0.733668 + 0.679508i \(0.762193\pi\)
\(200\) −14.3894 −1.01748
\(201\) 0 0
\(202\) 1.99810 0.140586
\(203\) 0.343748 0.0241264
\(204\) 0 0
\(205\) −4.51133 −0.315085
\(206\) −7.77331 −0.541592
\(207\) 0 0
\(208\) −11.3120 −0.784343
\(209\) −9.85463 −0.681659
\(210\) 0 0
\(211\) −16.0184 −1.10275 −0.551375 0.834257i \(-0.685897\pi\)
−0.551375 + 0.834257i \(0.685897\pi\)
\(212\) −5.70592 −0.391884
\(213\) 0 0
\(214\) 9.54550 0.652517
\(215\) 0.539288 0.0367791
\(216\) 0 0
\(217\) −3.32111 −0.225452
\(218\) −17.7956 −1.20527
\(219\) 0 0
\(220\) −0.998291 −0.0673047
\(221\) −33.1215 −2.22799
\(222\) 0 0
\(223\) 0.779025 0.0521674 0.0260837 0.999660i \(-0.491696\pi\)
0.0260837 + 0.999660i \(0.491696\pi\)
\(224\) 1.06636 0.0712489
\(225\) 0 0
\(226\) −13.3333 −0.886919
\(227\) −7.29804 −0.484388 −0.242194 0.970228i \(-0.577867\pi\)
−0.242194 + 0.970228i \(0.577867\pi\)
\(228\) 0 0
\(229\) −6.91007 −0.456631 −0.228315 0.973587i \(-0.573322\pi\)
−0.228315 + 0.973587i \(0.573322\pi\)
\(230\) 2.49392 0.164444
\(231\) 0 0
\(232\) −3.07296 −0.201750
\(233\) −8.83891 −0.579056 −0.289528 0.957170i \(-0.593498\pi\)
−0.289528 + 0.957170i \(0.593498\pi\)
\(234\) 0 0
\(235\) −1.40749 −0.0918146
\(236\) −3.63567 −0.236662
\(237\) 0 0
\(238\) −3.06355 −0.198581
\(239\) −29.8678 −1.93199 −0.965994 0.258566i \(-0.916750\pi\)
−0.965994 + 0.258566i \(0.916750\pi\)
\(240\) 0 0
\(241\) 14.0103 0.902481 0.451240 0.892402i \(-0.350982\pi\)
0.451240 + 0.892402i \(0.350982\pi\)
\(242\) 1.49627 0.0961840
\(243\) 0 0
\(244\) −7.92462 −0.507321
\(245\) 3.87729 0.247711
\(246\) 0 0
\(247\) 14.0385 0.893246
\(248\) 29.6893 1.88527
\(249\) 0 0
\(250\) −6.52933 −0.412951
\(251\) 17.3119 1.09272 0.546358 0.837552i \(-0.316014\pi\)
0.546358 + 0.837552i \(0.316014\pi\)
\(252\) 0 0
\(253\) −11.5479 −0.726013
\(254\) 8.08764 0.507464
\(255\) 0 0
\(256\) −12.4189 −0.776184
\(257\) −2.08186 −0.129863 −0.0649314 0.997890i \(-0.520683\pi\)
−0.0649314 + 0.997890i \(0.520683\pi\)
\(258\) 0 0
\(259\) −3.21121 −0.199535
\(260\) 1.42212 0.0881961
\(261\) 0 0
\(262\) 11.6073 0.717104
\(263\) 25.1625 1.55159 0.775794 0.630986i \(-0.217349\pi\)
0.775794 + 0.630986i \(0.217349\pi\)
\(264\) 0 0
\(265\) −5.66521 −0.348011
\(266\) 1.29848 0.0796149
\(267\) 0 0
\(268\) 6.25154 0.381874
\(269\) 17.1141 1.04347 0.521733 0.853109i \(-0.325286\pi\)
0.521733 + 0.853109i \(0.325286\pi\)
\(270\) 0 0
\(271\) 1.37081 0.0832710 0.0416355 0.999133i \(-0.486743\pi\)
0.0416355 + 0.999133i \(0.486743\pi\)
\(272\) 18.9361 1.14817
\(273\) 0 0
\(274\) −3.41448 −0.206276
\(275\) 14.6212 0.881693
\(276\) 0 0
\(277\) 28.4761 1.71097 0.855483 0.517831i \(-0.173260\pi\)
0.855483 + 0.517831i \(0.173260\pi\)
\(278\) −4.64007 −0.278293
\(279\) 0 0
\(280\) 0.595143 0.0355666
\(281\) −20.2714 −1.20929 −0.604645 0.796495i \(-0.706685\pi\)
−0.604645 + 0.796495i \(0.706685\pi\)
\(282\) 0 0
\(283\) −6.84558 −0.406928 −0.203464 0.979082i \(-0.565220\pi\)
−0.203464 + 0.979082i \(0.565220\pi\)
\(284\) −5.25973 −0.312108
\(285\) 0 0
\(286\) 16.6238 0.982988
\(287\) −2.75246 −0.162473
\(288\) 0 0
\(289\) 38.4449 2.26147
\(290\) −0.674338 −0.0395985
\(291\) 0 0
\(292\) −4.59439 −0.268866
\(293\) −14.5425 −0.849583 −0.424792 0.905291i \(-0.639653\pi\)
−0.424792 + 0.905291i \(0.639653\pi\)
\(294\) 0 0
\(295\) −3.60973 −0.210166
\(296\) 28.7068 1.66855
\(297\) 0 0
\(298\) −24.6747 −1.42937
\(299\) 16.4507 0.951367
\(300\) 0 0
\(301\) 0.329031 0.0189650
\(302\) 20.7161 1.19208
\(303\) 0 0
\(304\) −8.02602 −0.460324
\(305\) −7.86807 −0.450525
\(306\) 0 0
\(307\) 34.2876 1.95690 0.978448 0.206493i \(-0.0662051\pi\)
0.978448 + 0.206493i \(0.0662051\pi\)
\(308\) −0.609079 −0.0347055
\(309\) 0 0
\(310\) 6.51509 0.370032
\(311\) −5.01658 −0.284464 −0.142232 0.989833i \(-0.545428\pi\)
−0.142232 + 0.989833i \(0.545428\pi\)
\(312\) 0 0
\(313\) −14.5131 −0.820327 −0.410163 0.912012i \(-0.634528\pi\)
−0.410163 + 0.912012i \(0.634528\pi\)
\(314\) 16.2287 0.915837
\(315\) 0 0
\(316\) 4.74966 0.267189
\(317\) 12.3715 0.694851 0.347426 0.937708i \(-0.387056\pi\)
0.347426 + 0.937708i \(0.387056\pi\)
\(318\) 0 0
\(319\) 3.12248 0.174825
\(320\) −4.95748 −0.277131
\(321\) 0 0
\(322\) 1.52160 0.0847952
\(323\) −23.5002 −1.30759
\(324\) 0 0
\(325\) −20.8287 −1.15537
\(326\) −6.73078 −0.372784
\(327\) 0 0
\(328\) 24.6058 1.35863
\(329\) −0.858741 −0.0473439
\(330\) 0 0
\(331\) −26.8869 −1.47784 −0.738919 0.673794i \(-0.764663\pi\)
−0.738919 + 0.673794i \(0.764663\pi\)
\(332\) −1.85673 −0.101901
\(333\) 0 0
\(334\) −17.1501 −0.938409
\(335\) 6.20694 0.339121
\(336\) 0 0
\(337\) 34.9709 1.90499 0.952493 0.304559i \(-0.0985091\pi\)
0.952493 + 0.304559i \(0.0985091\pi\)
\(338\) −8.12202 −0.441780
\(339\) 0 0
\(340\) −2.38061 −0.129107
\(341\) −30.1677 −1.63367
\(342\) 0 0
\(343\) 4.77186 0.257656
\(344\) −2.94140 −0.158589
\(345\) 0 0
\(346\) 1.65921 0.0891994
\(347\) 15.2222 0.817173 0.408587 0.912720i \(-0.366022\pi\)
0.408587 + 0.912720i \(0.366022\pi\)
\(348\) 0 0
\(349\) 2.15850 0.115542 0.0577709 0.998330i \(-0.481601\pi\)
0.0577709 + 0.998330i \(0.481601\pi\)
\(350\) −1.92654 −0.102978
\(351\) 0 0
\(352\) 9.68637 0.516285
\(353\) 19.6993 1.04849 0.524243 0.851569i \(-0.324348\pi\)
0.524243 + 0.851569i \(0.324348\pi\)
\(354\) 0 0
\(355\) −5.22221 −0.277166
\(356\) 3.22127 0.170727
\(357\) 0 0
\(358\) 23.2722 1.22998
\(359\) 17.7305 0.935782 0.467891 0.883786i \(-0.345014\pi\)
0.467891 + 0.883786i \(0.345014\pi\)
\(360\) 0 0
\(361\) −9.03948 −0.475762
\(362\) 8.24788 0.433499
\(363\) 0 0
\(364\) 0.867666 0.0454780
\(365\) −4.56161 −0.238765
\(366\) 0 0
\(367\) 8.11400 0.423547 0.211774 0.977319i \(-0.432076\pi\)
0.211774 + 0.977319i \(0.432076\pi\)
\(368\) −9.40512 −0.490276
\(369\) 0 0
\(370\) 6.29949 0.327495
\(371\) −3.45647 −0.179451
\(372\) 0 0
\(373\) −2.18932 −0.113359 −0.0566793 0.998392i \(-0.518051\pi\)
−0.0566793 + 0.998392i \(0.518051\pi\)
\(374\) −27.8281 −1.43896
\(375\) 0 0
\(376\) 7.67677 0.395899
\(377\) −4.44814 −0.229091
\(378\) 0 0
\(379\) 0.629514 0.0323359 0.0161680 0.999869i \(-0.494853\pi\)
0.0161680 + 0.999869i \(0.494853\pi\)
\(380\) 1.00902 0.0517615
\(381\) 0 0
\(382\) −16.4778 −0.843075
\(383\) 9.97756 0.509830 0.254915 0.966964i \(-0.417953\pi\)
0.254915 + 0.966964i \(0.417953\pi\)
\(384\) 0 0
\(385\) −0.604733 −0.0308201
\(386\) 8.56734 0.436066
\(387\) 0 0
\(388\) −3.41221 −0.173229
\(389\) 27.6562 1.40222 0.701112 0.713051i \(-0.252687\pi\)
0.701112 + 0.713051i \(0.252687\pi\)
\(390\) 0 0
\(391\) −27.5382 −1.39267
\(392\) −21.1476 −1.06812
\(393\) 0 0
\(394\) 9.10918 0.458914
\(395\) 4.71577 0.237276
\(396\) 0 0
\(397\) 15.4661 0.776222 0.388111 0.921613i \(-0.373128\pi\)
0.388111 + 0.921613i \(0.373128\pi\)
\(398\) 24.7748 1.24185
\(399\) 0 0
\(400\) 11.9081 0.595406
\(401\) 10.9366 0.546145 0.273073 0.961993i \(-0.411960\pi\)
0.273073 + 0.961993i \(0.411960\pi\)
\(402\) 0 0
\(403\) 42.9755 2.14076
\(404\) 0.947320 0.0471309
\(405\) 0 0
\(406\) −0.411428 −0.0204188
\(407\) −29.1694 −1.44587
\(408\) 0 0
\(409\) 36.5030 1.80496 0.902479 0.430734i \(-0.141745\pi\)
0.902479 + 0.430734i \(0.141745\pi\)
\(410\) 5.39956 0.266665
\(411\) 0 0
\(412\) −3.68541 −0.181567
\(413\) −2.20237 −0.108372
\(414\) 0 0
\(415\) −1.84349 −0.0904932
\(416\) −13.7988 −0.676540
\(417\) 0 0
\(418\) 11.7949 0.576907
\(419\) −15.2539 −0.745202 −0.372601 0.927992i \(-0.621534\pi\)
−0.372601 + 0.927992i \(0.621534\pi\)
\(420\) 0 0
\(421\) 0.529285 0.0257958 0.0128979 0.999917i \(-0.495894\pi\)
0.0128979 + 0.999917i \(0.495894\pi\)
\(422\) 19.1722 0.933288
\(423\) 0 0
\(424\) 30.8993 1.50060
\(425\) 34.8671 1.69130
\(426\) 0 0
\(427\) −4.80048 −0.232312
\(428\) 4.52563 0.218754
\(429\) 0 0
\(430\) −0.645467 −0.0311272
\(431\) 17.8969 0.862062 0.431031 0.902337i \(-0.358150\pi\)
0.431031 + 0.902337i \(0.358150\pi\)
\(432\) 0 0
\(433\) −1.20711 −0.0580098 −0.0290049 0.999579i \(-0.509234\pi\)
−0.0290049 + 0.999579i \(0.509234\pi\)
\(434\) 3.97500 0.190806
\(435\) 0 0
\(436\) −8.43710 −0.404064
\(437\) 11.6720 0.558349
\(438\) 0 0
\(439\) −31.5608 −1.50631 −0.753157 0.657841i \(-0.771470\pi\)
−0.753157 + 0.657841i \(0.771470\pi\)
\(440\) 5.40605 0.257723
\(441\) 0 0
\(442\) 39.6427 1.88561
\(443\) 3.11586 0.148039 0.0740196 0.997257i \(-0.476417\pi\)
0.0740196 + 0.997257i \(0.476417\pi\)
\(444\) 0 0
\(445\) 3.19829 0.151613
\(446\) −0.932406 −0.0441507
\(447\) 0 0
\(448\) −3.02467 −0.142902
\(449\) −28.6953 −1.35421 −0.677107 0.735884i \(-0.736767\pi\)
−0.677107 + 0.735884i \(0.736767\pi\)
\(450\) 0 0
\(451\) −25.0023 −1.17731
\(452\) −6.32147 −0.297337
\(453\) 0 0
\(454\) 8.73494 0.409951
\(455\) 0.861475 0.0403866
\(456\) 0 0
\(457\) 19.6815 0.920660 0.460330 0.887748i \(-0.347731\pi\)
0.460330 + 0.887748i \(0.347731\pi\)
\(458\) 8.27059 0.386459
\(459\) 0 0
\(460\) 1.18240 0.0551295
\(461\) −27.5053 −1.28105 −0.640526 0.767937i \(-0.721283\pi\)
−0.640526 + 0.767937i \(0.721283\pi\)
\(462\) 0 0
\(463\) −11.0266 −0.512450 −0.256225 0.966617i \(-0.582479\pi\)
−0.256225 + 0.966617i \(0.582479\pi\)
\(464\) 2.54308 0.118059
\(465\) 0 0
\(466\) 10.5792 0.490071
\(467\) 11.9937 0.555001 0.277501 0.960725i \(-0.410494\pi\)
0.277501 + 0.960725i \(0.410494\pi\)
\(468\) 0 0
\(469\) 3.78699 0.174867
\(470\) 1.68461 0.0777053
\(471\) 0 0
\(472\) 19.6883 0.906226
\(473\) 2.98879 0.137425
\(474\) 0 0
\(475\) −14.7783 −0.678076
\(476\) −1.45246 −0.0665735
\(477\) 0 0
\(478\) 35.7484 1.63509
\(479\) −18.5329 −0.846792 −0.423396 0.905945i \(-0.639162\pi\)
−0.423396 + 0.905945i \(0.639162\pi\)
\(480\) 0 0
\(481\) 41.5534 1.89467
\(482\) −16.7687 −0.763795
\(483\) 0 0
\(484\) 0.709399 0.0322454
\(485\) −3.38787 −0.153835
\(486\) 0 0
\(487\) 2.63814 0.119545 0.0597727 0.998212i \(-0.480962\pi\)
0.0597727 + 0.998212i \(0.480962\pi\)
\(488\) 42.9143 1.94264
\(489\) 0 0
\(490\) −4.64068 −0.209645
\(491\) −35.7876 −1.61507 −0.807535 0.589819i \(-0.799199\pi\)
−0.807535 + 0.589819i \(0.799199\pi\)
\(492\) 0 0
\(493\) 7.44614 0.335357
\(494\) −16.8025 −0.755979
\(495\) 0 0
\(496\) −24.5698 −1.10322
\(497\) −3.18618 −0.142920
\(498\) 0 0
\(499\) −26.7020 −1.19535 −0.597673 0.801740i \(-0.703908\pi\)
−0.597673 + 0.801740i \(0.703908\pi\)
\(500\) −3.09562 −0.138441
\(501\) 0 0
\(502\) −20.7204 −0.924796
\(503\) 23.8994 1.06562 0.532810 0.846235i \(-0.321136\pi\)
0.532810 + 0.846235i \(0.321136\pi\)
\(504\) 0 0
\(505\) 0.940561 0.0418544
\(506\) 13.8216 0.614445
\(507\) 0 0
\(508\) 3.83444 0.170126
\(509\) 5.67013 0.251324 0.125662 0.992073i \(-0.459894\pi\)
0.125662 + 0.992073i \(0.459894\pi\)
\(510\) 0 0
\(511\) −2.78314 −0.123119
\(512\) 23.5185 1.03938
\(513\) 0 0
\(514\) 2.49175 0.109907
\(515\) −3.65912 −0.161240
\(516\) 0 0
\(517\) −7.80047 −0.343064
\(518\) 3.84346 0.168872
\(519\) 0 0
\(520\) −7.70122 −0.337721
\(521\) −27.0996 −1.18726 −0.593628 0.804739i \(-0.702305\pi\)
−0.593628 + 0.804739i \(0.702305\pi\)
\(522\) 0 0
\(523\) −31.7417 −1.38797 −0.693985 0.719990i \(-0.744146\pi\)
−0.693985 + 0.719990i \(0.744146\pi\)
\(524\) 5.50317 0.240407
\(525\) 0 0
\(526\) −30.1168 −1.31315
\(527\) −71.9405 −3.13378
\(528\) 0 0
\(529\) −9.32239 −0.405321
\(530\) 6.78063 0.294532
\(531\) 0 0
\(532\) 0.615624 0.0266907
\(533\) 35.6172 1.54275
\(534\) 0 0
\(535\) 4.49334 0.194264
\(536\) −33.8541 −1.46227
\(537\) 0 0
\(538\) −20.4837 −0.883115
\(539\) 21.4884 0.925570
\(540\) 0 0
\(541\) 10.9163 0.469329 0.234665 0.972076i \(-0.424601\pi\)
0.234665 + 0.972076i \(0.424601\pi\)
\(542\) −1.64071 −0.0704746
\(543\) 0 0
\(544\) 23.0990 0.990361
\(545\) −8.37690 −0.358827
\(546\) 0 0
\(547\) −8.70334 −0.372128 −0.186064 0.982538i \(-0.559573\pi\)
−0.186064 + 0.982538i \(0.559573\pi\)
\(548\) −1.61884 −0.0691535
\(549\) 0 0
\(550\) −17.5000 −0.746201
\(551\) −3.15603 −0.134451
\(552\) 0 0
\(553\) 2.87720 0.122351
\(554\) −34.0828 −1.44804
\(555\) 0 0
\(556\) −2.19991 −0.0932968
\(557\) −28.7237 −1.21706 −0.608530 0.793531i \(-0.708241\pi\)
−0.608530 + 0.793531i \(0.708241\pi\)
\(558\) 0 0
\(559\) −4.25770 −0.180081
\(560\) −0.492520 −0.0208128
\(561\) 0 0
\(562\) 24.2626 1.02346
\(563\) −21.9401 −0.924664 −0.462332 0.886707i \(-0.652987\pi\)
−0.462332 + 0.886707i \(0.652987\pi\)
\(564\) 0 0
\(565\) −6.27637 −0.264049
\(566\) 8.19340 0.344394
\(567\) 0 0
\(568\) 28.4831 1.19512
\(569\) 32.0917 1.34535 0.672677 0.739937i \(-0.265145\pi\)
0.672677 + 0.739937i \(0.265145\pi\)
\(570\) 0 0
\(571\) −7.53172 −0.315193 −0.157596 0.987504i \(-0.550374\pi\)
−0.157596 + 0.987504i \(0.550374\pi\)
\(572\) 7.88155 0.329544
\(573\) 0 0
\(574\) 3.29439 0.137505
\(575\) −17.3177 −0.722197
\(576\) 0 0
\(577\) 5.37930 0.223943 0.111972 0.993711i \(-0.464283\pi\)
0.111972 + 0.993711i \(0.464283\pi\)
\(578\) −46.0143 −1.91394
\(579\) 0 0
\(580\) −0.319711 −0.0132753
\(581\) −1.12475 −0.0466625
\(582\) 0 0
\(583\) −31.3972 −1.30034
\(584\) 24.8800 1.02954
\(585\) 0 0
\(586\) 17.4058 0.719026
\(587\) 25.4186 1.04914 0.524568 0.851368i \(-0.324227\pi\)
0.524568 + 0.851368i \(0.324227\pi\)
\(588\) 0 0
\(589\) 30.4918 1.25639
\(590\) 4.32044 0.177870
\(591\) 0 0
\(592\) −23.7568 −0.976397
\(593\) 45.4128 1.86488 0.932440 0.361325i \(-0.117676\pi\)
0.932440 + 0.361325i \(0.117676\pi\)
\(594\) 0 0
\(595\) −1.44210 −0.0591203
\(596\) −11.6986 −0.479192
\(597\) 0 0
\(598\) −19.6896 −0.805168
\(599\) 7.66157 0.313043 0.156522 0.987675i \(-0.449972\pi\)
0.156522 + 0.987675i \(0.449972\pi\)
\(600\) 0 0
\(601\) 1.51529 0.0618099 0.0309049 0.999522i \(-0.490161\pi\)
0.0309049 + 0.999522i \(0.490161\pi\)
\(602\) −0.393813 −0.0160506
\(603\) 0 0
\(604\) 9.82173 0.399640
\(605\) 0.704338 0.0286354
\(606\) 0 0
\(607\) −34.7165 −1.40910 −0.704550 0.709654i \(-0.748851\pi\)
−0.704550 + 0.709654i \(0.748851\pi\)
\(608\) −9.79046 −0.397055
\(609\) 0 0
\(610\) 9.41721 0.381292
\(611\) 11.1122 0.449551
\(612\) 0 0
\(613\) −3.30485 −0.133481 −0.0667407 0.997770i \(-0.521260\pi\)
−0.0667407 + 0.997770i \(0.521260\pi\)
\(614\) −41.0384 −1.65618
\(615\) 0 0
\(616\) 3.29835 0.132894
\(617\) 16.3926 0.659941 0.329970 0.943991i \(-0.392961\pi\)
0.329970 + 0.943991i \(0.392961\pi\)
\(618\) 0 0
\(619\) −7.70263 −0.309595 −0.154797 0.987946i \(-0.549472\pi\)
−0.154797 + 0.987946i \(0.549472\pi\)
\(620\) 3.08887 0.124052
\(621\) 0 0
\(622\) 6.00429 0.240750
\(623\) 1.95134 0.0781790
\(624\) 0 0
\(625\) 20.3393 0.813572
\(626\) 17.3705 0.694265
\(627\) 0 0
\(628\) 7.69419 0.307032
\(629\) −69.5599 −2.77354
\(630\) 0 0
\(631\) 13.4016 0.533508 0.266754 0.963765i \(-0.414049\pi\)
0.266754 + 0.963765i \(0.414049\pi\)
\(632\) −25.7209 −1.02312
\(633\) 0 0
\(634\) −14.8073 −0.588072
\(635\) 3.80708 0.151079
\(636\) 0 0
\(637\) −30.6114 −1.21287
\(638\) −3.73726 −0.147959
\(639\) 0 0
\(640\) 2.43800 0.0963702
\(641\) 17.4225 0.688148 0.344074 0.938942i \(-0.388193\pi\)
0.344074 + 0.938942i \(0.388193\pi\)
\(642\) 0 0
\(643\) −24.7401 −0.975656 −0.487828 0.872940i \(-0.662211\pi\)
−0.487828 + 0.872940i \(0.662211\pi\)
\(644\) 0.721405 0.0284273
\(645\) 0 0
\(646\) 28.1272 1.10665
\(647\) −6.81224 −0.267817 −0.133908 0.990994i \(-0.542753\pi\)
−0.133908 + 0.990994i \(0.542753\pi\)
\(648\) 0 0
\(649\) −20.0055 −0.785285
\(650\) 24.9297 0.977822
\(651\) 0 0
\(652\) −3.19114 −0.124975
\(653\) −10.2028 −0.399265 −0.199633 0.979871i \(-0.563975\pi\)
−0.199633 + 0.979871i \(0.563975\pi\)
\(654\) 0 0
\(655\) 5.46390 0.213492
\(656\) −20.3629 −0.795039
\(657\) 0 0
\(658\) 1.02782 0.0400685
\(659\) −9.67722 −0.376971 −0.188485 0.982076i \(-0.560358\pi\)
−0.188485 + 0.982076i \(0.560358\pi\)
\(660\) 0 0
\(661\) −33.3035 −1.29536 −0.647678 0.761914i \(-0.724260\pi\)
−0.647678 + 0.761914i \(0.724260\pi\)
\(662\) 32.1806 1.25074
\(663\) 0 0
\(664\) 10.0548 0.390201
\(665\) 0.611231 0.0237025
\(666\) 0 0
\(667\) −3.69833 −0.143200
\(668\) −8.13103 −0.314599
\(669\) 0 0
\(670\) −7.42902 −0.287008
\(671\) −43.6058 −1.68338
\(672\) 0 0
\(673\) −8.90841 −0.343394 −0.171697 0.985150i \(-0.554925\pi\)
−0.171697 + 0.985150i \(0.554925\pi\)
\(674\) −41.8563 −1.61224
\(675\) 0 0
\(676\) −3.85074 −0.148105
\(677\) 33.4097 1.28404 0.642020 0.766688i \(-0.278097\pi\)
0.642020 + 0.766688i \(0.278097\pi\)
\(678\) 0 0
\(679\) −2.06701 −0.0793247
\(680\) 12.8918 0.494376
\(681\) 0 0
\(682\) 36.1073 1.38262
\(683\) −13.2057 −0.505304 −0.252652 0.967557i \(-0.581303\pi\)
−0.252652 + 0.967557i \(0.581303\pi\)
\(684\) 0 0
\(685\) −1.60729 −0.0614114
\(686\) −5.71138 −0.218062
\(687\) 0 0
\(688\) 2.43420 0.0928029
\(689\) 44.7271 1.70397
\(690\) 0 0
\(691\) −44.1972 −1.68134 −0.840670 0.541547i \(-0.817839\pi\)
−0.840670 + 0.541547i \(0.817839\pi\)
\(692\) 0.786648 0.0299039
\(693\) 0 0
\(694\) −18.2193 −0.691596
\(695\) −2.18421 −0.0828518
\(696\) 0 0
\(697\) −59.6228 −2.25837
\(698\) −2.58348 −0.0977863
\(699\) 0 0
\(700\) −0.913395 −0.0345231
\(701\) −1.53167 −0.0578505 −0.0289253 0.999582i \(-0.509208\pi\)
−0.0289253 + 0.999582i \(0.509208\pi\)
\(702\) 0 0
\(703\) 29.4828 1.11197
\(704\) −27.4749 −1.03550
\(705\) 0 0
\(706\) −23.5778 −0.887363
\(707\) 0.573857 0.0215821
\(708\) 0 0
\(709\) −12.9659 −0.486946 −0.243473 0.969908i \(-0.578287\pi\)
−0.243473 + 0.969908i \(0.578287\pi\)
\(710\) 6.25040 0.234573
\(711\) 0 0
\(712\) −17.4442 −0.653748
\(713\) 35.7312 1.33814
\(714\) 0 0
\(715\) 7.82531 0.292650
\(716\) 11.0336 0.412346
\(717\) 0 0
\(718\) −21.2215 −0.791979
\(719\) 47.3995 1.76770 0.883852 0.467767i \(-0.154941\pi\)
0.883852 + 0.467767i \(0.154941\pi\)
\(720\) 0 0
\(721\) −2.23251 −0.0831429
\(722\) 10.8192 0.402651
\(723\) 0 0
\(724\) 3.91041 0.145329
\(725\) 4.68257 0.173906
\(726\) 0 0
\(727\) 32.5408 1.20687 0.603436 0.797411i \(-0.293798\pi\)
0.603436 + 0.797411i \(0.293798\pi\)
\(728\) −4.69868 −0.174145
\(729\) 0 0
\(730\) 5.45974 0.202074
\(731\) 7.12734 0.263614
\(732\) 0 0
\(733\) −21.2440 −0.784664 −0.392332 0.919824i \(-0.628332\pi\)
−0.392332 + 0.919824i \(0.628332\pi\)
\(734\) −9.71155 −0.358460
\(735\) 0 0
\(736\) −11.4727 −0.422891
\(737\) 34.3996 1.26712
\(738\) 0 0
\(739\) −12.9289 −0.475597 −0.237799 0.971314i \(-0.576426\pi\)
−0.237799 + 0.971314i \(0.576426\pi\)
\(740\) 2.98666 0.109792
\(741\) 0 0
\(742\) 4.13701 0.151874
\(743\) 1.92982 0.0707984 0.0353992 0.999373i \(-0.488730\pi\)
0.0353992 + 0.999373i \(0.488730\pi\)
\(744\) 0 0
\(745\) −11.6151 −0.425544
\(746\) 2.62037 0.0959385
\(747\) 0 0
\(748\) −13.1936 −0.482407
\(749\) 2.74148 0.100172
\(750\) 0 0
\(751\) 42.2181 1.54056 0.770281 0.637705i \(-0.220116\pi\)
0.770281 + 0.637705i \(0.220116\pi\)
\(752\) −6.35303 −0.231671
\(753\) 0 0
\(754\) 5.32393 0.193886
\(755\) 9.75165 0.354899
\(756\) 0 0
\(757\) −15.6503 −0.568819 −0.284410 0.958703i \(-0.591798\pi\)
−0.284410 + 0.958703i \(0.591798\pi\)
\(758\) −0.753458 −0.0273668
\(759\) 0 0
\(760\) −5.46414 −0.198205
\(761\) −36.0119 −1.30543 −0.652715 0.757603i \(-0.726370\pi\)
−0.652715 + 0.757603i \(0.726370\pi\)
\(762\) 0 0
\(763\) −5.11093 −0.185028
\(764\) −7.81228 −0.282639
\(765\) 0 0
\(766\) −11.9420 −0.431483
\(767\) 28.4989 1.02904
\(768\) 0 0
\(769\) 45.9039 1.65534 0.827668 0.561217i \(-0.189667\pi\)
0.827668 + 0.561217i \(0.189667\pi\)
\(770\) 0.723798 0.0260839
\(771\) 0 0
\(772\) 4.06187 0.146190
\(773\) 4.98199 0.179190 0.0895949 0.995978i \(-0.471443\pi\)
0.0895949 + 0.995978i \(0.471443\pi\)
\(774\) 0 0
\(775\) −45.2404 −1.62508
\(776\) 18.4782 0.663329
\(777\) 0 0
\(778\) −33.1014 −1.18674
\(779\) 25.2710 0.905427
\(780\) 0 0
\(781\) −28.9421 −1.03563
\(782\) 32.9602 1.17865
\(783\) 0 0
\(784\) 17.5010 0.625037
\(785\) 7.63929 0.272658
\(786\) 0 0
\(787\) 23.0001 0.819866 0.409933 0.912116i \(-0.365552\pi\)
0.409933 + 0.912116i \(0.365552\pi\)
\(788\) 4.31876 0.153849
\(789\) 0 0
\(790\) −5.64425 −0.200814
\(791\) −3.82935 −0.136156
\(792\) 0 0
\(793\) 62.1188 2.20590
\(794\) −18.5112 −0.656938
\(795\) 0 0
\(796\) 11.7460 0.416326
\(797\) −29.0865 −1.03030 −0.515149 0.857101i \(-0.672263\pi\)
−0.515149 + 0.857101i \(0.672263\pi\)
\(798\) 0 0
\(799\) −18.6017 −0.658081
\(800\) 14.5260 0.513572
\(801\) 0 0
\(802\) −13.0898 −0.462218
\(803\) −25.2809 −0.892145
\(804\) 0 0
\(805\) 0.716258 0.0252448
\(806\) −51.4369 −1.81179
\(807\) 0 0
\(808\) −5.13003 −0.180474
\(809\) 3.35592 0.117988 0.0589940 0.998258i \(-0.481211\pi\)
0.0589940 + 0.998258i \(0.481211\pi\)
\(810\) 0 0
\(811\) −6.08002 −0.213498 −0.106749 0.994286i \(-0.534044\pi\)
−0.106749 + 0.994286i \(0.534044\pi\)
\(812\) −0.195063 −0.00684536
\(813\) 0 0
\(814\) 34.9125 1.22368
\(815\) −3.16837 −0.110983
\(816\) 0 0
\(817\) −3.02091 −0.105688
\(818\) −43.6900 −1.52759
\(819\) 0 0
\(820\) 2.55999 0.0893988
\(821\) −36.1402 −1.26130 −0.630650 0.776067i \(-0.717212\pi\)
−0.630650 + 0.776067i \(0.717212\pi\)
\(822\) 0 0
\(823\) −13.0576 −0.455158 −0.227579 0.973760i \(-0.573081\pi\)
−0.227579 + 0.973760i \(0.573081\pi\)
\(824\) 19.9576 0.695258
\(825\) 0 0
\(826\) 2.63599 0.0917180
\(827\) −37.9302 −1.31896 −0.659481 0.751721i \(-0.729224\pi\)
−0.659481 + 0.751721i \(0.729224\pi\)
\(828\) 0 0
\(829\) −31.1409 −1.08157 −0.540785 0.841161i \(-0.681873\pi\)
−0.540785 + 0.841161i \(0.681873\pi\)
\(830\) 2.20645 0.0765869
\(831\) 0 0
\(832\) 39.1395 1.35692
\(833\) 51.2431 1.77547
\(834\) 0 0
\(835\) −8.07301 −0.279378
\(836\) 5.59209 0.193406
\(837\) 0 0
\(838\) 18.2572 0.630685
\(839\) 6.64645 0.229461 0.114730 0.993397i \(-0.463400\pi\)
0.114730 + 0.993397i \(0.463400\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −0.633495 −0.0218317
\(843\) 0 0
\(844\) 9.08975 0.312882
\(845\) −3.82326 −0.131524
\(846\) 0 0
\(847\) 0.429732 0.0147658
\(848\) −25.5712 −0.878119
\(849\) 0 0
\(850\) −41.7320 −1.43139
\(851\) 34.5488 1.18432
\(852\) 0 0
\(853\) 45.5778 1.56055 0.780277 0.625434i \(-0.215078\pi\)
0.780277 + 0.625434i \(0.215078\pi\)
\(854\) 5.74564 0.196612
\(855\) 0 0
\(856\) −24.5077 −0.837655
\(857\) −4.74936 −0.162235 −0.0811175 0.996705i \(-0.525849\pi\)
−0.0811175 + 0.996705i \(0.525849\pi\)
\(858\) 0 0
\(859\) −26.5881 −0.907174 −0.453587 0.891212i \(-0.649856\pi\)
−0.453587 + 0.891212i \(0.649856\pi\)
\(860\) −0.306023 −0.0104353
\(861\) 0 0
\(862\) −21.4206 −0.729587
\(863\) 16.0940 0.547848 0.273924 0.961751i \(-0.411678\pi\)
0.273924 + 0.961751i \(0.411678\pi\)
\(864\) 0 0
\(865\) 0.781035 0.0265560
\(866\) 1.44477 0.0490953
\(867\) 0 0
\(868\) 1.88459 0.0639671
\(869\) 26.1353 0.886581
\(870\) 0 0
\(871\) −49.0041 −1.66044
\(872\) 45.6895 1.54724
\(873\) 0 0
\(874\) −13.9701 −0.472546
\(875\) −1.87523 −0.0633944
\(876\) 0 0
\(877\) −8.36466 −0.282455 −0.141227 0.989977i \(-0.545105\pi\)
−0.141227 + 0.989977i \(0.545105\pi\)
\(878\) 37.7747 1.27484
\(879\) 0 0
\(880\) −4.47386 −0.150814
\(881\) −15.7376 −0.530215 −0.265107 0.964219i \(-0.585407\pi\)
−0.265107 + 0.964219i \(0.585407\pi\)
\(882\) 0 0
\(883\) 33.6912 1.13380 0.566900 0.823787i \(-0.308143\pi\)
0.566900 + 0.823787i \(0.308143\pi\)
\(884\) 18.7950 0.632145
\(885\) 0 0
\(886\) −3.72934 −0.125290
\(887\) −46.5853 −1.56418 −0.782091 0.623164i \(-0.785847\pi\)
−0.782091 + 0.623164i \(0.785847\pi\)
\(888\) 0 0
\(889\) 2.32278 0.0779036
\(890\) −3.82799 −0.128315
\(891\) 0 0
\(892\) −0.442064 −0.0148014
\(893\) 7.88429 0.263838
\(894\) 0 0
\(895\) 10.9549 0.366182
\(896\) 1.48747 0.0496930
\(897\) 0 0
\(898\) 34.3451 1.14611
\(899\) −9.66146 −0.322228
\(900\) 0 0
\(901\) −74.8726 −2.49437
\(902\) 29.9250 0.996393
\(903\) 0 0
\(904\) 34.2327 1.13856
\(905\) 3.88251 0.129059
\(906\) 0 0
\(907\) 6.83215 0.226858 0.113429 0.993546i \(-0.463817\pi\)
0.113429 + 0.993546i \(0.463817\pi\)
\(908\) 4.14133 0.137435
\(909\) 0 0
\(910\) −1.03109 −0.0341803
\(911\) 57.7016 1.91174 0.955869 0.293792i \(-0.0949173\pi\)
0.955869 + 0.293792i \(0.0949173\pi\)
\(912\) 0 0
\(913\) −10.2168 −0.338127
\(914\) −23.5565 −0.779180
\(915\) 0 0
\(916\) 3.92118 0.129559
\(917\) 3.33365 0.110087
\(918\) 0 0
\(919\) −44.5911 −1.47092 −0.735462 0.677566i \(-0.763035\pi\)
−0.735462 + 0.677566i \(0.763035\pi\)
\(920\) −6.40304 −0.211102
\(921\) 0 0
\(922\) 32.9208 1.08419
\(923\) 41.2295 1.35709
\(924\) 0 0
\(925\) −43.7434 −1.43827
\(926\) 13.1976 0.433700
\(927\) 0 0
\(928\) 3.10214 0.101833
\(929\) −50.3234 −1.65106 −0.825529 0.564359i \(-0.809123\pi\)
−0.825529 + 0.564359i \(0.809123\pi\)
\(930\) 0 0
\(931\) −21.7193 −0.711821
\(932\) 5.01571 0.164295
\(933\) 0 0
\(934\) −14.3551 −0.469713
\(935\) −13.0995 −0.428399
\(936\) 0 0
\(937\) 40.0577 1.30863 0.654314 0.756223i \(-0.272957\pi\)
0.654314 + 0.756223i \(0.272957\pi\)
\(938\) −4.53260 −0.147995
\(939\) 0 0
\(940\) 0.798692 0.0260505
\(941\) 51.3528 1.67405 0.837026 0.547163i \(-0.184292\pi\)
0.837026 + 0.547163i \(0.184292\pi\)
\(942\) 0 0
\(943\) 29.6133 0.964340
\(944\) −16.2933 −0.530302
\(945\) 0 0
\(946\) −3.57725 −0.116306
\(947\) −10.2326 −0.332516 −0.166258 0.986082i \(-0.553168\pi\)
−0.166258 + 0.986082i \(0.553168\pi\)
\(948\) 0 0
\(949\) 36.0141 1.16907
\(950\) 17.6880 0.573875
\(951\) 0 0
\(952\) 7.86554 0.254924
\(953\) −19.1875 −0.621544 −0.310772 0.950484i \(-0.600588\pi\)
−0.310772 + 0.950484i \(0.600588\pi\)
\(954\) 0 0
\(955\) −7.75655 −0.250996
\(956\) 16.9487 0.548161
\(957\) 0 0
\(958\) 22.1819 0.716664
\(959\) −0.980643 −0.0316666
\(960\) 0 0
\(961\) 62.3437 2.01109
\(962\) −49.7348 −1.60351
\(963\) 0 0
\(964\) −7.95024 −0.256060
\(965\) 4.03289 0.129823
\(966\) 0 0
\(967\) −27.3710 −0.880190 −0.440095 0.897951i \(-0.645055\pi\)
−0.440095 + 0.897951i \(0.645055\pi\)
\(968\) −3.84162 −0.123474
\(969\) 0 0
\(970\) 4.05490 0.130195
\(971\) 56.6753 1.81880 0.909398 0.415926i \(-0.136543\pi\)
0.909398 + 0.415926i \(0.136543\pi\)
\(972\) 0 0
\(973\) −1.33263 −0.0427223
\(974\) −3.15756 −0.101175
\(975\) 0 0
\(976\) −35.5143 −1.13679
\(977\) −14.2809 −0.456885 −0.228443 0.973557i \(-0.573363\pi\)
−0.228443 + 0.973557i \(0.573363\pi\)
\(978\) 0 0
\(979\) 17.7253 0.566502
\(980\) −2.20020 −0.0702828
\(981\) 0 0
\(982\) 42.8337 1.36688
\(983\) −56.8075 −1.81188 −0.905940 0.423407i \(-0.860834\pi\)
−0.905940 + 0.423407i \(0.860834\pi\)
\(984\) 0 0
\(985\) 4.28795 0.136625
\(986\) −8.91219 −0.283822
\(987\) 0 0
\(988\) −7.96624 −0.253440
\(989\) −3.53999 −0.112565
\(990\) 0 0
\(991\) 15.0319 0.477503 0.238752 0.971081i \(-0.423262\pi\)
0.238752 + 0.971081i \(0.423262\pi\)
\(992\) −29.9712 −0.951587
\(993\) 0 0
\(994\) 3.81350 0.120957
\(995\) 11.6622 0.369716
\(996\) 0 0
\(997\) 34.1487 1.08150 0.540750 0.841184i \(-0.318141\pi\)
0.540750 + 0.841184i \(0.318141\pi\)
\(998\) 31.9593 1.01165
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.a.j.1.3 yes 8
3.2 odd 2 783.2.a.i.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.a.i.1.6 8 3.2 odd 2
783.2.a.j.1.3 yes 8 1.1 even 1 trivial