Properties

Label 2-783-1.1-c1-0-3
Degree $2$
Conductor $783$
Sign $1$
Analytic cond. $6.25228$
Root an. cond. $2.50045$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.19·2-s − 0.567·4-s − 0.563·5-s − 0.343·7-s + 3.07·8-s + 0.674·10-s − 3.12·11-s + 4.44·13-s + 0.411·14-s − 2.54·16-s − 7.44·17-s + 3.15·19-s + 0.319·20-s + 3.73·22-s + 3.69·23-s − 4.68·25-s − 5.32·26-s + 0.195·28-s − 29-s + 9.66·31-s − 3.10·32-s + 8.91·34-s + 0.193·35-s + 9.34·37-s − 3.77·38-s − 1.73·40-s + 8.00·41-s + ⋯
L(s)  = 1  − 0.846·2-s − 0.283·4-s − 0.251·5-s − 0.129·7-s + 1.08·8-s + 0.213·10-s − 0.941·11-s + 1.23·13-s + 0.109·14-s − 0.635·16-s − 1.80·17-s + 0.724·19-s + 0.0714·20-s + 0.796·22-s + 0.771·23-s − 0.936·25-s − 1.04·26-s + 0.0368·28-s − 0.185·29-s + 1.73·31-s − 0.548·32-s + 1.52·34-s + 0.0327·35-s + 1.53·37-s − 0.612·38-s − 0.273·40-s + 1.25·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(783\)    =    \(3^{3} \cdot 29\)
Sign: $1$
Analytic conductor: \(6.25228\)
Root analytic conductor: \(2.50045\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 783,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7372454632\)
\(L(\frac12)\) \(\approx\) \(0.7372454632\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + 1.19T + 2T^{2} \)
5 \( 1 + 0.563T + 5T^{2} \)
7 \( 1 + 0.343T + 7T^{2} \)
11 \( 1 + 3.12T + 11T^{2} \)
13 \( 1 - 4.44T + 13T^{2} \)
17 \( 1 + 7.44T + 17T^{2} \)
19 \( 1 - 3.15T + 19T^{2} \)
23 \( 1 - 3.69T + 23T^{2} \)
31 \( 1 - 9.66T + 31T^{2} \)
37 \( 1 - 9.34T + 37T^{2} \)
41 \( 1 - 8.00T + 41T^{2} \)
43 \( 1 + 0.957T + 43T^{2} \)
47 \( 1 - 2.49T + 47T^{2} \)
53 \( 1 - 10.0T + 53T^{2} \)
59 \( 1 - 6.40T + 59T^{2} \)
61 \( 1 - 13.9T + 61T^{2} \)
67 \( 1 + 11.0T + 67T^{2} \)
71 \( 1 - 9.26T + 71T^{2} \)
73 \( 1 - 8.09T + 73T^{2} \)
79 \( 1 + 8.37T + 79T^{2} \)
83 \( 1 - 3.27T + 83T^{2} \)
89 \( 1 + 5.67T + 89T^{2} \)
97 \( 1 - 6.01T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16970606459244773127765825656, −9.386260699079276531851095843830, −8.568326336690874613344928544397, −8.003325930514568014976500267977, −7.06042309665700392607756385026, −5.98751748541057374276020733927, −4.79860764282221541789026776097, −3.93273872588995248953549851087, −2.45485417185104925606707125232, −0.810839385700066633029461873531, 0.810839385700066633029461873531, 2.45485417185104925606707125232, 3.93273872588995248953549851087, 4.79860764282221541789026776097, 5.98751748541057374276020733927, 7.06042309665700392607756385026, 8.003325930514568014976500267977, 8.568326336690874613344928544397, 9.386260699079276531851095843830, 10.16970606459244773127765825656

Graph of the $Z$-function along the critical line